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1. fejezet

Bevezetés, koszonetnyilvanitas

Dolgozatom az elektroméagneses térszimulacié témakorében irodott. A szamités-
technika rohamos fejlédésének és az iparban elterjedt szimulédcios szoftverek tér-
nyerésének koszonhet&en napjainkban mar alapvets feladat és elvaras a kutatési és
fejlesztési teriileten a kiilonb6z8 anyagparaméterek jellemzdinek szimulécioja, mo-
dellezése és az adott feladathoz optimalizalasa. Az elmult évek, évtizedek soran az
elektromagneses terek numerikus szamitasa fontos, integralt része lett a villamos-
mérndki és informatikai tudomanyoknak. Ertekezésem ezen széles teriileten beliil
alacsonyfrekvencias problémak szimulaciojaval foglalkozik végeselem-modszer segit-
ségével.

A villamos gépek, motorok és transzformatorok tervezése soran kiilonosen fon-
tos az adott feladathoz illeszkeds (példaul kis veszteséggel rendelkezs) vasanyag
kivalasztasa. Az elektroméagneses szempontbol értelmezett anyagparaméterek opti-
malizaldsdt numerikus térszamitassal, igy végeselem-modszerrel is hatékonyan lehet
segiteni. Dolgozatom elsé részében az elméleti attekintés utan bemutatom a magne-
ses térerdsség és a magneses indukcié kozotti skalaris hiszterézis mérési lehet&ségét,
illetve az ebbdl felépithetd és a szimulaciohoz illeszthets nemlinearis karakterisztikat,
a karakterisztika paramétereinek meghatarozasat. A masodik egységhen felvazolom
az elektromégneses tér jellemz6 mennyiségei kozott Osszefiiggést teremtd Maxwell-
egyenletek teljes rendszerét, kiilonds figyelmet forditva a nemlinearitast is maguk-
ban foglal6 konstittucios relaciokra. A harmadik részben bemutatom a végeselem-
modszert, annak alkalmazasi lehetségeit a villamosmérnoki gyakorlatban, illetve
felvazolom a nemlinearis karakterisztika szimulacidhoz illesztését biztosito fixpontos
modszert is. A negyedik egységben definidlom a munkadm soran vizsgalt problé-
matereket és a hozzajuk kapcsolodo, a szimulacio sordn megoldasra keriil parcialis
differencidlegyenleteket, végiil bemutatom az elvégzett szimulécidkat, eredményeket.

Dolgozatomat a Széchenyi Istvan Egyetem Automatizalasi Tanszékének Elekt-
romagneses Terek Laboratériumaban irtam, mely munkakozosségnek 2012 januarja
Ota vagyok aktiv tagja. A mérések, szimulaciok és kiértékelések elvégzése soran a
laboratérium minden kollégaja rendelkezésemre allt és tamogatott, amit eziton is
szeretnék megkoszonni.

Munkam a TAMOP-4.2.2.A-11/1/KONV-2012-0012: Hibrid és elektromos jdr-
midvek fejlesztését megalapozd kutatdsok projekt keretében, a Magyar Allam és az
Eurépai Uni6é tamogatésaval, az Eurdpai Szocidlis Alap tarsfinanszirozasaval valo-
sult meg. A dolgozatot BFTEX szovegszerkeszt&ben szerkesztettem.



2. fejezet

A magneses hiszterézis

2.1. A hiszterézis operator

A hiszterézis, mint jelenség altalanos megértéséhez elsé kozelitésben érdemes abszt-
rahalni a problémat: definidljunk egy olyan I'{ } rendszeroperatorral egyértelmten
jellemezhetd egy bemenett és egy kimenetii rendszert, mely a bemenetére érkezd
u(t) folytonos ideji jelet y(t) folytonos ideji kimeneti véalaszjellé képezi le, mely
leképzés matematikai, operatoros alakban [1]:

y(t) =T {u(t)}. (2.1)

Elsfordulhat tovabba, hogy a rendszer bemeneti jele idéfiiggs vektor, ebben

az esetben a kimenet is hasonloképpen vektorfiiggvény forméjaban adodik. A két

mennyiség kozott a vektorialis operator teremt kapesolatot: 7(¢) = [{@(t)}. Ab-

ban az esetben, ha az operator altal végzett leképzés, tehat u(t) és y(t) kapcsolata

nemlinearis és tobbértéki, tovabba y(t) kimeneti- vagy valaszjel értéke egy tetszo-

leges 7 idépillanatban fiigg u(t) és y(t) t < 7 illetve t < 7 idSpontbeli értékeitdl,

egyszeriibben fogalmazva a rendszer el6életétsl, akkor hiszterézissel biré rendszerrsl

beszélhetiink. Az Osszefiiggés a 2.1. abran tanulmanyozhato, a feltiintetett nyilak a
fiiggvény masodik valtozojat, az id6t reprezentaljak.

y(t) A

() ) (@) =

2.1. dbra. A rendszermodell és egy lehetséges gerjesztés-vilasz karakterisztika

Az ilyen karakterisztikival jellemzett rendszerek memoriaval rendelkeznek; gy
is mondhatjuk, hogy a kimeneti jel aktuélis értéke dontéen fiigg attol, hogy rendszer
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a vizsgalodas idgpillanatat megel6zGen milyen &llapotban volt. Ezen altalanos defi-
nici6 segitségével a tudomany kiilonb6z6 teriileteinek jelenségei targyalhatoak attol
fiiggden, hogy u(t) és y(t) milyen elgondolas alapjan keriil megvalasztasra.

A természettudomany vizsgalodasi teriiletétdl elszakadt, de kivalo demonstra-
cios példa a kozgazdasagtan altal targyalt export hiszterézissel biro idéfiiggése [2]:
egy orszag gazdasdganak attérése az exporttermelésre idGigényes és nehézkes, de ha
az atallas megtortént, utana nem igényel kiillonosebb erdfeszitést a fenntartasa. A
jelenség szerepe a villamosmérnoki gyakorlatban is kiemelkedd: a dolgozatom téma-
jaul szolgélo ferroméagneses hiszterézisen til jelentds szerepe van az elektronikaban
példaul a hiszterézises komparatornak is.

2.2. A ferromagneses hiszterézis

Ferromégneses hiszterézisr6l beszélhetiink akkor, ha a rendszermodell bemenete
u(t) = H(t) magneses térerdsség, a kimenete pedig y(t) = B(t) magneses indukcio.
A jelenség okénak targyaldsat az anyagok magneses tulajdonsaganak kialakulasatol
célszerti kezdeni. A magnesesség egyik lehetséges forrdsa az elektronok kiilonbo6zé
energiaszinteken torténd mozgasa az anyagok atomi strukturajaban [3]. A fizikai
atommodellekben az elektronok palyamenti mozgasa és forgasa szimulalhato elemi
aramhurkok és a hozzajuk kapcsolodd méagneses dipolus fogalméanak segitségével. Az
elemi Aramhurok 77; magneses momentuma definidlja az Aramhurok altal létrehozott
méagneses mezdt [18]:

m; = 1; - ds;, (2.2)

ahol I; az elemi aramhurok arama, ds; pedig a hurok altal koriilzart feliillet. Mdgne-
ses atomnak nevezziik az olyan atomokat, amelyek kompenzalatlan mégneses mo-
mentummal rendelkeznek az elektronjaik mozgasabol fakadéan. Egy ilyen atom
teljes magneses momentuma az elemi aramhurkok &ltal 1étrehozott momentumok
vektorialis 0sszegeként szamithatd. Ha egy AV térfogat n darab magneses atomot
tartalmaz, és ezen atomok 77; momentummal rendelkeznek (i = 1,2,...,n), akkor a
vektorialis 0sszegiikbdl adddo m magneses momentum:

i=1

Ezen magneses momentum térfogati stirtiségét nevezziik M mégnesezettségi vek-

tornak:
v 1 Z” ,

B mdgneses indukcid hatasara az m momentummal rendelkezé magneses dipdlusra
hato 7 forgatonyomaték az indukcio és a momentum vektorialis szorzataként defini-
alhato:

7= xB. (2.5)

Tovabbé ugyanezen magneses dipolus energidja az indukcié és a momentum vektori-
alis szorzatanak minusz egyszeresével lesz ekvivalens. A B méagneses indukciévektor
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két Osszetevére bonthato: ,uofl a szabad tér magneses indukcidja (po a vakuum per-
meabilitdsa, értéke 47-10~7 [ ]) ,uOM pedig a magnesezettségi vektorbol adodo in-
dukcibkomponens, amely a vizsgalt anyag magneses tulajdonsaganak fuggvenye [3].

Az indukciovektor tehat B = 140 (H + M ) alakban irhaté fel, ahol H=2 _ M az

ugynevezett mdgneses térerdsség. Magneses anyagok esetében M magnesezettseg és
H méagneses térerdsség kapcsolata egy, a 2.1.-ben targyalt nemlinearis, tébbértéki
hiszterézis operatorral fejezhetd ki:

M = s#{H}. (2.6)

Ezek alapjan a magneses térerdsség és a magneses indukcié kapcsolatat egy méa-
sik, hasonléan hiszterézises tulajdonsagot reprezentalé operator fejezi ki:

B = (ﬁ + M) , (2.7)
B = o (FI + %”{F[}) , (2.8)
B=%{H}. (2.9)

2.3. A jelenség oka

A ferromagneses anyagok esetén tapasztalhaté nemlinearis, tobbértéki M-H kap-
csolat fizikai magyarazatat mutatja be a 2.2. abra.

M A
S 4_'.»"("/ ‘\“*.‘4_ o
VoA NS
 —  —
H=0 Ha
B
\\’\<_/x'/ 7, —>
N Py / g
R N
A > Hb Hce

2.2. abra. Az els6 magnesezési gorbe és a doménstruktira alakulasa

Az ilyen tipust anyagok esetében a kiilsG elektronhéjon jelentGs mennyiségi
kompenzalatlan spint elektron talalhato, melyek egyméssal kolcsonhatasban all-
nak, ugynevezett doméneket hozva igy létre [4]. Amennyiben az anyag nem volt
még magneses térben, a magneses erévonalak egy doméncsoporton beliil zarédnak.
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Tz v

neses tulajdonsidggal. Ha az anyagot magneses térbe helyezziik, azok a domének,
melyek magnesezettsége eredend@en a kiils§ tér irAnyaba mutat, néni kezdenek a
tobbi domén rovasara. Ezen doménfal-elmozdulasok irreverzibilisek, amely irrever-
zibilitds megmagyarazza, hogy miért rendelkeznek az ilyen tipust anyagok méagneses
szemponthol memoriaval.

Az 2.2. abra lényegében az ered6 mégneses momentumot, vagy az ezzel ara-
nyos magnesezettséget adja meg a magneses térersség fiiggvényében. Ez az tgy-
nevezett els6 magnesezési gorbe, mely harom szakaszra bonthat6: a nemlinearis
(A) szakasz a reverzibilis faleltolodasokkal, a kozel linearis (B) szakasz az irrever-
zibilis faleltolodasokkal, a telitési vagy szaturacios (C) szakasz pedig a momen-
tumok elfordulasaval magyarazhato [3]. Ferromégneses kozegben M >> H, igy

B = Lo (FI + ]\7[> ~ ,uOJ\7[, teh&t a B — H gorbe és az M — H gorbe jo kozelitéssel
megegyezik. A teljes hiszterézishurok a 2.3. abran lathato.

B A M A
Bm Mm
Br Me A
-Hm -Hm o
A - »
-He He Hm ?I -He He Hm H
— -Br A -Mr
Bm -Mm

2.3. abra. A teljes hiszterézishurok

A H = B = M = 0 pont definidlja az ugynevezett lemagnesezett allapotot. Ha
a magneses térerésséget noveljiik, az anyag magnesezettsége (és termeészetesen az
indukei6 is) néni fog. A gorbe ezen szakasza az eddig targyalt els6 magnesezési gorbe
(sziizgorbe). Ha a méagneses térerdsséget kritikus szintig noveljiik, akkor telitésbe
jutunk: ettél a ponttol kezdve a novekvs térerdsség ellenére sem fog valtozni a
magneses indukcio értéke. Ezen nevezetes pont a szaturacios pont (H,,, M,,, By,) [5].

Az irreverzibilis faleltolodasok megmagyarazzak, hogy csokkend térerdsség esetén
a magnesezettség alakulasa miért nem koveti a sziizgorbét. Csokkend méagneses tér-
erGsség esetén a megvaltozott doménstruktira miatt az indukcié bar csokkenni kezd,
de nem az el6z6 esetben tapasztalt fliggvény szerint. Zérusra csokkentett magneses
térerdsség esetén nem fogunk zérus magnesezettséget tapasztalni, maradni fog vala-
mekkora M,, B, remanencia. Az anyag lemagnesezéséhez negativ térerdsséget kell
létrehoznunk: ez a —H, koercitiv méagneses tér, ekkor B = M = 0. H csokkentése
esetén negativ szaturdcioba keriiliink, az innen névekvo térerésség negativ remanen-
ciat hagy, és a lemagnesezéshez pozitiv koercitiv teret igényel. A H = B = 0 allapot
ezen a gorbén soha nem érhetd el [4].
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2.4. A skalaris B-H kapcsolat mérése

Munkam soran kizarolag a skalaris hiszterézis vizsgalataval foglalkoztam, azaz a
méagneses térerdsség és a magneses indukcié vektorjainak kizarolag a hosszat, nagy-
sagat vizsgaltam, az altaluk bezart szoget nem. Az ilyen jellegii vizsgalat esetén min-
den esetben ki kell kétni, hogy Hés B egymassal parhuzamosak. A skalaris Gssze-
fiiggés mérésére a legelterjedtebb elrendezés az tgynevezett toroid-transzformatoros
mérés, melynek sematikus vazlata a 2.4. 4bran lathato.

2.4. 4bra. Toroid transzformétor

A transzformator elkészitéséhez egy adott tipusd anyagbol egy kor alaka pro-
batestet valaszottam, amelyet megfelels6 modon feltekercseltem. A mérés soran egy
kivalo mindségi, kis veszteségt, villamos gépbe tervezett méagneses vasanyagot vizs-
galtam. A mérés elve a kovetkezs: két eltéré tekercselést vezettem ra a proba-
testre. A primer oldalt drammal gerjesztettem, mely hatasara fesziiltség indukalo-
dott, amit a szekunder oldali, a primer oldaltél gondosan elszeparalt tekercselésen
tudtam visszamérni. A visszamért fesziiltségbdl a magneses indukcié értéke szamit-
hat6. Az alabbiakban bemutatom a mérés elméleti hatterét, a felhasznalt képleteket
és eszkozoket.

A 2.4. dbran N, jeloli a primer oldali-, Ny, a szekunder oldali tekercs menetsza-
méat. Ry és Ro a kiils6 és belsd sugarak, melyekb6l Ry kozepes sugar Ry = w
alapjan szamithato, mely segitségével a toroid probatest kozepes hossza [, = 2R,m
formulaval irhat6 le. A méréshez sziikséges alaposszefiiggések a Maxwell-egyenletek
segitségével levezethetGek. A Maxwell-egyenletek teljes rendszerére dolgozatom kii-
16n fejezetben tér ki, itt csak az alkalmazéast mutatom be az adott mérési problémaéval
kapcsolatban.

Az ismert aramgerejsztés és a magneses térerdsség kozott a kvazistacionarius
gerjesztési torvény, vagy masnéven az [. Maxwell-egyenlet redukalt alakja teremt

kapcsolatot:
]fﬁ il = / J.di (2.10)
! A

A mérési elrendezés elényeit kihasznalva az integralok skalaris szorzattd egyszert-
sOdnek:

H(t)2Rym = N,I(t). (2.11)
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Innen a magneses térerdsség kifejezhetd, mely alapjan belathato, hogy a térerGs-
ség pillanatnyi értéke a primer oldali menetszam, a pillanatnyi gerjesztGaram és a
kbzepes sugar ismeretében szamithato:

N,I(t)
H(t) = =2~=, 2.12
=35 (212)

A magneses indukcioé meghatarozasahoz a Faraday-féle indukcios torvénybdl (11
Maxwell-egyenlet) sziikséges kiindulni:

fE-dl: —— - dA (2.13)

Mivel a magneses indukcio feliileti integralja megadja a feliileteten athalado fluxust,
illetve a magneses térerGsség vonalmenti integralja az indukalt fesziiltséggel lesz
egyenld, ezért (2.13) atalakithato [1]:

ui(t) = —st% /A O (2.14)
wilt) = —NSZ%B(t)A, (2.15)
B(t) = By + Nsle/o w;(7)dT. (2.16)

A formulaban A a toroid keresztmetszete, By pedig konstans. A mérést a 2.5. abran
lathato transzformatoron, LabVIEW 6] mérérendszer segitségével végeztem el.

2.5. abra. A vizsgalt transzformator és a mérérendszer

A szamitégépes mérdrendszer segitségével egy aramgeneratort vezéreltem, mely
aramgenerator a primer oldali gerjesztést szolgéltatta. A rendszer a szekunder oldali
indukalt fesziiltséget mérte vissza és dolgozta fel szamitogépes titon. Az adatcsere
és a vezérlés egy NI-DAQ [7] adatgyijts kartya segitségével tortént [19].

2.5. Meérési eredmények

A mérés sordn nem vizsgaltam a probatest B — H kapcsolatanak frekvenciafiig-
gését, kizarolag a nemlinearitast reprezentald hiszterézismentes magnesezési gorbe
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cs vz

amplitidojanak fokozatos novelésével tettem meg. A méréshez hasznalt toroid pa-
raméterei: N, = 197; N, = 139; Ry = 23,5 mm; Ry = 28,5 mm; R, = 26 mm;l;, =
163,3628 mm; A = 107 m?2. A koncentrikus hurkok mindegyike kijeldl egy-egy,
az adott hurokra jellemz6 |H gz, |Bmaz| értéket, mely pontok meghatarozzak az
anyagra jellemz6 hiszterézismentes méagnesezési gorbét. Az eredmények a 2.6. ab-
ran lathatoak.

05r 05-

B [T]
B [T]

-05r -05r

15 . . . . . . . ) 15 . . . . . . . )
2000 -1500 -1000 <500 0 500 1000 1500 2000 2000 -1500 -1000 <500 0 500 1000 1500 2000
H{Am] H{Am]

2.6. 4bra. Mért koncentrikus gorbék

A pontokra egy paraméterezett inverz tangens-gorbe illeszthetd, melyet célszeri
a kovetkezd alakban felirni:

B(H,t) = 2TBSarczfg (%?) , (2.17)

ahol B, és Hy meghatarozando6 paraméterek. Az identifikiciot Matlab Curve Fitting
Toolboz |8] komponensének segitségével tettem meg. Az eredmény a 2.7. abréan
lathato.

15 15

Lt +t t

n
1 o 1

05 * 05

B[]

0 E 0
o

-05 N -05

¥

) # 4

+
4+
ot T +—

15 . . . . . . . . 15 . . . . . . . ,
2000 -1500 -1000 -500 0 500 1000 1500 2000 2000 -1500 -1000 -500 O 500 1000 1500 2000
H [Am] H{[Am]

2.7. dbra. Az eredeti pontok és az illesztett gérbe

Az illesztett inverz tangens-gérbe paraméterei: By = 1,25805, Hy = 146,47722.
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TDK-DOLGOZAT 2.6. A MAGNESES PERMEABILITAS MEGHATAROZASA

2.6. A magneses permeabilitas meghatarozasa

Linearis, izotrop kozeget feltételezve a magneses térerdsség és a magneses indukciod
kozotti kapcesolat B = ,uo,u,,l—jf alakban irhaté fel, ahol u, a vizsgalt anyag vakuum-
hoz viszonyitott relativ permeabilitdsa. Bar ebben az esetben p értéke konstans,
érdemes szem elGtt tartani, hogy a permeabilitds a magneses térerGsség fliggvénye,
pontosabban a méagneses indukcio H-szerinti derivaltja. Skalaris esetben:

B 0B
OH'
Ezen okbo6l a nemlinearis, hiszterézismentes karakterisztikaval rendelkezd anyagok is
térerdsségfiiggd permeabilitassal fognak rendelkezni, amely fiiggvény a magnesezési

gorbe derivalasaval kaphato. Mivel a B-H karakterisztika analitikus, zart formaban
felirhato, ezért a derivalas is konnyen elvégezhets:

0 [2B, H\\ 2B, 1

po=p(H) (2.18)

Hy

A képlet alapjan meghatarozott permeabilitasfiiggvény a 2.8. abran lathato.

x107° Permeabilitas

M [Vs/Am]
w

0 ; . . . ;
-2000 -1500 -1000 -500 0 500 1000 1500 2000
H [Am]

2.8. 4bra. A vizsgalt anyag permeabilitasfiiggvénye

Erdemes megfigyelni a két szabadon valaszthato, az anyagot jellemzé paraméter
(Hoy,Bs) hatasat a nemlinearis magnesezési gorbére és a permeabilitdsra. Amennyi-
ben By értékét noveljiik, ugy valtozik a fliggvény telitési pontja. Masképpen fogal-
mazva: B, értéke szdmszertien befolyasolja az inverz tangens-gorbe konvergenciajat:

2B, H

I}gl(l)o {Tarctg (E)} =B, VB, €R", (2.20)
2B, H

ngfloo {Tarctg (E)} =-B, VB,€eR". (2.21)

A paraméter a konvergencia sebességét is megvaltoztatja: minél nagyobb B,
értéke, annél "élesebb" lesz a fiiggvény nullatmenete, ami a permeabilitds maximu-
manak novekedését fogja maga utan vonni. Ez a jelenség tanulményozhato a 2.9.
abran.
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TDK-DOLGOZAT 2.6. A MAGNESES PERMEABILITAS MEGHATAROZASA

B[T]
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2.9. abra. B, paraméter hatasa

Hj novelése szamszertien nem fogja befolyasolni az indukciofiiggvény konvergen-
ciajat, csupan annak sebességét: a fiiggvény minden esetben |Bg|-hez tart, de egyre
"lassabban". H, értékét novelve a permeabilitds maximuma csOkken, ami abbol
adodik, hogy a konvergencia sebessége miatt egyre laposabb indukciogorbéket ka-
punk. A fizika nyelvén ez azt jelenti, hogy az anyagot nehezebb felmégnesezni: egy
bizonyos indukcitérték eléréhez nagyobb mégneses teret kell alkalmazni, mint egy
kisebb Hjy-val jellemezhet$ anyag esetében. Ez lathato 3.1. dbréan.
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0.02

0.015
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0.005

0
-2000

-1000

1000

2000

H [Alm]
2.10. abra. H, paraméter hatéasa

Osszefoglalva: B, értéke szamszertien megadja az adott ferromagneses anyagra
jellemz6 maximalis indukcidértéket, novelése a magneses permeabilitasfiiggvény ma-
ximumanak novekedését vonja maga utan. H, futtatisa esetén az adott szaturacio-
hoz tartozo fiiggvénymeredekség valtoztathatd, amely ellentétes, csokkend permea-
bilitAsmaximumot eredményez.
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3. fejezet

A Maxwell-egyenletek teljes
rendszere

3.1. Bevezetés

James Clerk Mazwell (1831-1879) a tizenkilencedik szézad kivalo elméleti fizikusa,
matematikusa volt ("A legalaposabb és legtermékenyebb fizikus volt Newton dta.”
- Einstein), életének legfontosabb tevékenysége az elektromossaghoz kothets. Ki-
emelkedd kozremiikodése abban all, hogy kiterjesztette és matematikai forméba 6n-
totte a korabbi fizikusok (példaul Michael Faraday és André-Marie Ampére) kisér-
leti tapasztalatait, és egy Osszekapcsolodo, egységes parcidlis differencidlegyenlet-
rendszerbe foglalta azokat. Az egyenleteket Maxwell 1861-ben publikilta elGszor az
On Physical Lines of Force cimi cikkében [9)].

3.1. abra. James Clerk Maxwell és Oliver Heaviside

Maxwell egyenletrendszere hiisz egyenletet és htsz valtozd6 mennyiséget tartal-
mazott. A Maxwell-egyenletek mai formajat egy oridsi formatumi, kiemelkedd, de
méltatlanul elfelejtett autodidakta angol villamosmérndknek, Oliver Heaviside-nak
(1850-1925) koszonhetjiik [10], aki munkéja soran kifejlesztette és a villamosmérnoki
gyakorlatba iiltette a vektoranalizist, a rotacio és divergencia operatorok segitségével
tizenkét egyenletet atalakitott, igy az egyenletrendszert négy egyenletté redukalta
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TDK-DOLGOZAT 3.2. A MAXWELL-EGYENLETEK

négy valtozoval.

3.2. A Maxwell-egyenletek

A Maxwell-egyenletek segitségével a tér barmely pontjaban barmely térjellemzé (le-
gyen az akar elektromos, akir mégneses) meghatérozhato. Az egyenletek tehat
Osszefiiggést teremtenek a gerjesztd mennyiségek (t6ltés, aram), a térintenzitasok
(mégneses indukcid, elektromos térerdsség) és a gerjesztettségi mennyiségek (mag-
neses térerGsség, elektromos eltolas) kozott. A négy Maxwell-egyenlet integralis

alakban:
— — — D —
waZl:/ <J+a—> - dA, (3.1)

FE-dl = dA 2
]§ s (3.2)

]f B-dA =0, (3.3)

f{ Bdi— / pdv. (3.4)

Az els6 Maxwell-egyenlet (3.1) az Ampére-féle gerjesztési torvény, fizikai jelen-
tése, hogy az aram és az elektromos tér valtozdsa magneses teret kelt (értelemsze-
rien a két mennyiség egyszerre is létrehozhatja a teret, de kiilon-kiilon is képesek
mégneses teret kelteni). A masodik egyenlet (3.2) a Faraday-féle indukcios tor-
vény, fizikai jelentése, hogy a mégneses tér valtozasa elektromos teret kelt. A har-
madik egyenlet(3.3) a magneses Gauss-torvény, jelentése, hogy az indukcidovonalak
forrasmentesek, 6nmagukban zarodnak. A negyedik egyenlet (3.4) az elektroszta-
tika Gauss torvénye, jelentése, hogy az elektromos tér forrasos, er6vonalai toltéseken
kezd&dnek, toltéseken végzddnek.

A konstittcios relaciok munkam soran felhasznalt, ferromagneses anyagok esetén
érvényes formuléi:

B =%{H}
D=cE
T=o(E+E) (3:5)
1
— H2 E2
w 2,u +25

Az egyenletek igy teljesek és ellentmondasmentesek. Integralis alakjuk fizikailag
szemléletes, de a numerikus szamitasok soran ebben a formaban alkalmazni Gket
nehéz, koriilményes. Az egyenletek atirhatok differencialis alakba a Stokes-tétel

]{U-df:/VxU-d/T (3.6)
l A
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TDK-DOLGOZAT 3.2. A MAXWELL-EGYENLETEK

és a Gauss-Osztrogradszkij-tétel segitségével [11]:

fﬁdﬁ:/vwmu (3.7)
A |4

ahol V az tgynevezett nabla vektoroperator, mely segitségével a egy ¥ (7,t) =
€,V (t) + €yuy(t) + €,v,(t)alakban leirhatd vektor rotacidja és divergenciaja kife-
jezhetd Descartes-féle koordinata-rendszerben:

v= |2 (3.8)

€x €, €,
V x 7 = curl (v) = | & 3% 2l —¢, (avz_%>
Uy Uy U (3.9)
L [ 0v, Ovu, L [(Ov,  Ov,
_ey(ax ) az) e (a_‘a_y)
O, n % n Ov,
oxr Oy 0z
A kifejezések alapjan belathato, hogy a rotacié vektoroperéator leképzése vektorbol

vektort, mig a divergencia vektoroperator leképzése vektorbol skalart eredményez.
A Maxwell-egyenletek differencidlis alakja az eddigieket felhasznalva:

V- = div (7) (3.10)

- - 0D
g=J+2 11
V x J+at, (3.11)
_ 0B
E=-=- 12
V x o (3.12)
V-B=0, (3.13)
V-D=p. (3.14)

H minden esetben a magneses térerGsséget jeloli, dimenzidja %, J az aramst-
riiség, dimenzidja %, D az elektromos eltolas, dimenzi6ja %, E az elektromos

térerdsség, dimenzidja %, B a magneses indukci6, dimenzidja T, p a toltésstliriség,
dimenzidja % A konstitucits relaciokban pg jeloli a vakuum permeabilitasat, ér-
téke és dimenzioja 47 - 10*7;1/—7‘;7 £o a vakuum permittivitasa, értéke és dimenzioja
8,854 - 10712 o pedig az anyag vezetSképességét jeldli.

Az egyenletek segitségével papiron, analitikus, zart formaban csak igen kevés
példa oldhaté meg, melyek esetében jellegiikb6l, elrendezésiikbél addéddan jelentGsen
egyszertisédnek az itt bemutatott Osszefiiggések (tipikusan ilyen a toroid transzfor-
méator esete is). Az elektrodinamika alapegyenleteibdl levezetett, a kés6bbiek soran
altalam is bemutatasra keriil6 parcialis differencidlegyenlet-rendszerek megoldésa

altalaban kozelité modszerekkel, numerikus technikdk segitségével torténik.
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4. fejezet

A végeselem-modszer

4.1. Torténeti attekintés

A végeselem-modszer (angolul Finite Element Method, réviden FEM) numerikus
modszer parcidlis differencidlegyenletek kozelité megoldésara, mely megoldas soran
az eredeti differencidlegyenletet algebrai egyenletrendszerre képezziik le. Torténete
egészen a milt szdzad elejéig vezethetS vissza; bar a modszer elméleti hatterének
megalapozasa mar ekkor megtortént, csak a szdzad masodik felében, a szamitogépek
megjelenésével valt igazan fontossé (nagyjabol 1960-t61 kezdve). Kezdetben mecha-
nikai problémak megoldasara hasznaltak, de késébb gyakorlatilag a fizikai minden
teriiletén elterjedt. A kovetkezékben altalanosan igyekszem bemutatni a modszer
alapjait, fontos lépéseit.

4.2. A mobdszer alapelve

4.2.1. Probléma absztrahalasa, peremfeltételek

Vizsgaljunk egy () problématartomanyt, mely tartoményt két perem, I'p és I'y ha-
tarol. Q-n értelmezziink egy tetszbleges < P P& >-vel jelolt, n-ed rendi parcialis
differencialegyenletet (az ismeretlen vektorfiiggvény legyen A(F, t)), melynek par-
tikularis megoldasat keressiik az adott tartomanyon beliil. Ezt szemlélteti a 4.1.
abra.

Iy

I'y

=]

4.1. abra. Sematikus problématér
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A megoldashoz definialni kell bizonyos peremfeltételeket; a kétféle peremen két-
felét:

FD : A:Ao, (41)
04 -
o /

Dirichlet-peremrél és peremfeltételrsl (I'p, 4.1) beszéliink akkor, ha a peremen

Ly : (F,t). (4.2)

a keresett A(F,r)fiiggvény értékét direkt modon elSirjiik. Neumann-peremrsl és
peremfeltételrsl (I'y, 4.2) beszéliink akkor, ha a peremen a keresett A(7,t) fiiggvény
normaélis irdnyd derivaltjat hatarozzuk meg.

4.2.2. A sulyozott maradék elve, gyenge alak

A modszer alkalmazésa soran az eredeti < P& > helyett egy altalanosabb, az
eredeti differencidlegyenletbdl szarmaztatott integralos alak keriil megoldasra. Ezt
az alakot ugy kapjuk, hogy a < Z%P& >-t nullara rendezziik, egy W; stlyozofiigg-
vénnyel megszorozzuk, majd integraljuk a teljes problématartomanyra [4]:

/<<@@é">-WidQ:0 YW, € W. (4.3)
Q

Amennyiben a keresett fiiggvény vektorfiiggvény (vektorpotencial), tgy a su-
lyozotiiggvény is vektorfiiggvény lesz, skalarpotencial esetében W is skalarfiiggvény.
Amennyiben az integralos alak nullat ad, gy az eredeti differencidlegyenletnek is
nullat kell adnia, igy azt mondhatjuk, hogy az integralos alak megkozelitGleg ekvi-
valens az eredeti < Z292¢& >-vel. Erdemes megjegyezni, hogy az ekvivalencia nem
teljesiil €2 bizonyos részein, ahol a differencidlegyenlet operdtorai nem értelemezet-
tek. Tipikusan ilyenek példaul a kézeghatérok, ahol a térjellemzéknek ugrasuk van.
Az integrélos formula ezen esetekben is megoldasra vezet, ezért azt allithatjuk, hogy
az egyenlet ezen alakja joval dltalanosabb. A silyozott maradék elvének masik nagy
elénye, hogy segitségével kikiiszobolhetGek az eredeti egyenletekben gyakran eld-
forduld masodrendd derivaltak is [12]. A sualyozott maradék elvének segitségével
felirt integralegyenletet hivjuk a parcialis differencidlegyenlet tgynevezett gyenge
alakjanak, mely a szimulaci6é soran ténylegesen kiszamitasra kertil.

4.2.3. A problématér diszkretizalasa

Miként a modszer neve is sugallja, a végeselemes szimulécié sordn a vizsgilt prob-
lémateret diszkrét szamu és nagysagu elemekre bontjuk fel, mely elemek tipusa a
dimenziés és kétdimenzids szimulaciokat végeztem. Az els6 esetben vonal-, mig a
mésodikban haromszog elemeket alkalmaztam.

Szimulaciéim soran csomoéponti elemeket hasznaltam, azaz a vektor-, illetve ska-
larpotencial értékeit az elemek csomopontjaiban értelmeztem, szamoltam ki. A
diszkretizalds modja a 4.2. abran tanulmanyozhat6. Egydimenzidban egy szakaszt
kettd, kétdimenzioban egy hdromszoget érteleszemriien harom csomopont ir le. Egy
csomopontot dimenziotol fiiggden egy (P, (z,)) vagy ketts (P, (x,, y,)) sikkoordinéta
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hataroz meg, illetve egy elemet ketts vagy harom csomoépont ir le egyértelmiien. Az
egydimenzids elem fontos jellemzGje a dl hossz, a kétdimenziosé a T teriilet.

P(x) Pyx)

dl

4.2. dbra. Diszkretizalas egy- és kétdimenzioban

Munkam soran egydimenzidés problémara kézzel allitottam el végeselem-halot,
mig kétdimenzios esetben a GMSH szoftver racsgeneralé moduljat hasznaltam, mely
segitségével gyorsan elGallithatoak azok az input fdajlok, melyek a szimulacidohoz sziik-
ségesek. Ezek: Nodes, Connect, Dirichlet, Exc. A Nodes nevd fajlban taroltam a
csomopontok koordindtait. Ez egydimenzids esetben egy sorvektor, kétdimenzios
esetben egy matrix, melynek két oszlopa és annyi sora van, ahdny csomoépont. A
Connect rendeli 6ssze a csomoépontokat elemmé. Kétdimenzios esetben harom osz-
lopa és annyi sora van, ahany elemre felosztottuk a problématartomanyt. A Dirich-
let vektor azon csomopontok sorszamat tartalmazza, amelyekre a megoldés soran a
Dirichlet-tipust peremfeltételt alkalmazni kell. Amennyiben a feladat megkivéanja,
tgy azonositani kell azon csomopontokat és/vagy elemeket, melyekre gerjesztést ki-
vanunk megadni. Erre szolgél az Fzc nevi fajl.

4.2.4. Asszemblalas, megoldas

Mint ahogyan azt mar a bevezetSben emlitettem, a végeselemes szimulacié soran
az eredeti differencidlegyenletet algebrai egyenletrendszerre képezziik le. Megoldés-
kor az adott problémara felirt gyenge alakot kell minden elemre felirni. Az egyet-
len elemre felirt egyenletrendszer egyiitthatoit a probléma komplexitasatol fiiggGen
egy vagy tObb matrixba kell asszemblalni, amely folyamat olyan egyiitthatématri-
xot eredményez, melynek elemei tobbnyire zérusok. Az ilyen tipusti métrixot ritka
matrixnak, angolul sparse matriz-nak nevezziik. A szimuléci6 soran felirt egyenlet-
rendszer altalanosan az alabbi alakban irhato fel:

Ku=0b. (4.4)

A (4.4) formulaban K az egyiitthatométrix, u az ismeretleneket tartalmazé vektor,
b pedig a gerjesztést, a peremfeltételeket, illetve id6fiiggs probléma esetén az el6z8
idélépést magaban foglalo vektort jelenti. A feladat megoldasa az

u=K"'b (4.5)

egyenlet kiszamitasaval torténik. A szimulécio kritikus 1épése az egyiitthatoméatrix
invertalasa, amely komplex, sok ismeretlent tartalmazé feladatok esetén rendkiviil
idGigényes miivelet.
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4.3. Formafiiggvények

A szimulécio soran a keresett potencialértéket (amely a probléma tipusatol fiiggGen
lehet skalar- vagy vektorpotencial) formafiiggvények segitségével kozelitjiik. Mivel
munkam soran kizarolag vektorpotenciallal és csomoponti (nodalis) elemekkel dol-
goztam, ezért a tovabbiakban csak ennek a bemutatasaval fogok foglalkozni. Cso-
moponti elemekrdl beszéliink akkor, ha a potencialérték az elemek csomépontjaiban
értelmezett. Az altalam megoldott egydimenzios és kétdimenzios problémak esetén a
csomoponti potencidlértékek interpoldlhatoak skalaris formafiiggvények segitségével.
Tetsz6leges A vektorpotencial A = A(F,t) értéke kozelithets [4]:

N
A~ > W, A, (4.6)
=1

ahol N jeloli a csomoépontok szamat, W,; a kozelitéshez hasznalt dgynevezett for-
mafiigguény. A szimulacié soran a 4.2.2. pontban emlitett W; silyozofiiggvény és a
formafiiggvény megegyezik (ez az ugynevezett Galjorkin-mddszer [14]), amely miatt
a kialakul6 egyenletrendszer szimmetrikus és négyzetes lesz. Ez megtehetd, hiszen
W; fiiggvény tetszGleges lehet. Az igy bevezetett csomoéponti formafiiggvények a
kovetkezdképpen definidlhatoak:

W, — { 1 az i-edik csomépontban, (4.7)

0 az Osszes tObbiben.

Munkédm soran az egydimenzi6s szimulaciokhoz a 4.3. abran lathato6 linearis forma-
fiiggvényeket alkalmaztam.

X, X,
4.3. abra. Egydimenzids, linearis formafiiggvény

Ezen formafiiggvények az egyenes egyenletének segitségével felirhatoak:

Wiz) = 2" Wy(z) =

To — I »’U2—«751'

r — I

(4.8)

A kétdimenziés szimulaciokhoz hasznalt linearis formafiiggvények bevezetéséhez a
baricentrikus koordinata-rendszer ismerete sziikséges, amely a 4.4 abran tanulma-
nyozhato.
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(x5,

e
4.4. dbra. Baricentrikus koordinatak

A haromszog csiucsainak koordinatéi segitségével a sikidom teriilete szamithato
egy matrix determinansanak segitségével:

1z wn
1 T2 Yo, (49)
I x3 y3

1
2

ahol (z,,,y,) a haromszog csicsainak koordinatai az 6ramutatéd jarasaval ellenkezd
iranyban felvéve. A haromszog belsejében felvett tetszéleges pont koordinatéinak
segitségével harom kiilonb6z6 teriiletfiiggvény definialhato:

oy LR LI
Al =—1 T2 Yz, AQ =—-11 =« Yy, A3 =—11 T2 Ya|. (410)
2 2 2
I x5 ys 1 x3 ys Lz oy

A kétdimenzios, lineéris formafiiggvényt leiro egyenlet [4,12] ezek alapjan:

A;

Wi=73 i=123 (4.11)

4.4. A szimulaci6 lépései

Egy végeselemes szimulacio altalanos lépései a 4.5. abran lathatéak. A modell
specifikicidja soran at kell gondolni, hogy pontosan milyen problémat, elektroméag-
neses jelenséget, milyen geometriai elrendezést szeretnénk vizsgalni, a jelenséget mi-
lyen parcialis differencidlegyenletek irjék le, a kozeghatarokon milyen peremfeltéte-
leket kell kielégiteni, a térjellemz6 mennyiségek kozott milyen kapcsolat definialhato
(linearis-nemlinearis probléma), illetve érdemes mar itt szem elGtt tartani, hogy jel-
leg és nagysagrend tekintetében milyen végeredményt varunk. Az eléfeldolgozas so-
ran pontosan definialasra keriil a gerjesztés tipusa (ha van) és az anyagparaméterek,
majd a szimulalt geometria diszkretizilasa, a racsstruktira eltarolasa kovetkezik.
A szamitési fazis tartalmazza az elemegyenlet felirdsat a gyenge alak alapjan, a
K egyiitthatomatrix feltdltését és a b vektor aktualizalasat a gerjesztés és az el6z8
id6lépés alapjan, amennyiben id6fiiggé a probléma. A szimulacio kritikus lépése
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az egylitthatomatrix invertalasat magaban foglalo megold6 fazis. Amennyiben idé-
fiiged a probléma, illetve nemlinearis anyagtulajdonsig keriil szimulalasra, igy a
szamitasi lépéseket annyiszor kell elvégezni, ahany idélépés van, idélépésenként pe-
dig annyiszor, ahdnyszor a kés6bbiek soran bemutatott, nemlinearitas szimuldlasara
hasznalt iteracios technika megfelel6 pontossaggal kozeliti a valos eredményt. Ezt
koveti az utofeldolgozas, az eredmények kiértékelése, mely soran véltoztathatunk a
kiindulaskor specifikilt modellen, amennyiben sziikség van ra.

~| A modell specifikacioja
Eléfeldolgozas
Adatok 0sszegyUjtése
Racsgeneralas
O )]
5| 2 > o
\g :% - Szamitas
s = Elemegyenlet felirasa
Bl
45‘ \4: Y
o| & Asszemblélas
; !
=
~ ’
E Megoldas
F N
Q) \
z

Utofeldolgozas

4.5. dbra. Végeselemes szimulacio lépései
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5. fejezet

Nemlinearitas implementacidja
végeselemes kornyezetben

Ebben a fejezetben altalanosan bemutatom az implementéacié soran hasznélt fixpon-
tos iteracios sémat, illetve felvazolom a magneses térerGsség és a magneses indukcio
kozoOtti nemlinearis kapcsolat megvalositasi lehet&ségeit, modszereinek l1épéseit a nu-
merikus térszamitasban.

5.1. Fixpontos iteraciés séma

A fixpontos iteraciés technika elve abban &ll, hogy az

r=f(x) (5.1)

alakban felirt nemlineéris egyenlet ismert xy(k = 0,1, ...,n) kozelits értékeinek fel-
hasznalasaval tovabbi kozelits értékek sorozatat képezziik, amelyek 1épésrél-lépésre
az egyenlet valodi gyokéhez tartanak. Ha az egyenlet (5.1) alakban adott, akkor a
kézenfekvs iteracios eljaras:

Tni1 = [ (xy) (n=0,1,2,...;x9 adott) . (5.2)

Ezt az iteracios eljarast szukcessziv approximécionak (magyarul sorozatos kozelités-
nek) [11] nevezziik. Az x,, sorozat ¢ = f(c) fixponthoz, tehat az © = f(z) egyenlet
megoldasidhoz konvergal, ha c-nek van olyan I kérnyezete, ahol

f(@) — f(c)

r —cC

<K <1 (K = konstans) (5.3)

és az iteracio xo kezdgértéke ebben a I kornyezetben fekszik. Amennyiben f(z)
folytonosan differencialhato, ugy a megfelels feltétel [11]:

|f (1) — f(a2)]

<1 VIL'l,ZL‘Q el (54)
|21 — 2o

Ezen formula alapjan megfogalmazhato a kontraktiv leképzés definicioja [1] is:

|f(21) = fa)| S K|y — 29| Vo290 €l (5.5)
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>

X

c X X, X,

5.1. abra. Fixpontos iteracié kontraktiv, konvergens leképzés esetén

amennyiben 0 < K < 1. Ebben az esetben az f(z) leképzést kontraktiv leképzés-
nek hivjuk, mert csokkenti az z; és x5 pontok kozotti tavolsagot. Ez a leképzés
a 5.1. &bran lathato konvergens eljarast eredményezi, mely az z = f(z) egyenlet
megoldasidhoz konvergal. Ha ez a feltétel nem teljesiil, igy az iteracié divergens.
Tetszbleges F'(x) = 0 alaku egyenlet felirhato = = f(z) alakban a kovetkezokép-
pen [1]:
Tpr1 = Ty — AF(z,) = f(zn), n=0,1,2,..., (5.6)

ahol \ paraméter megvalasztasaval az f(z) fliiggvény kontraktivitasa biztosithato.

5.2. A polarizaciés formula

A B magneses indukcio az 5.2. abran lathaté mdédon két komponensre bonthato
fel [1]:
B =upH+ R, (5.7)

ahol u konstans, kizarolag a H magneses térerGsség fiiggvénye, tehat ez a komponens
linearis, ezen kiviil R tartalmazza az anyagtol fiiggé nemlinearis komponenst, amely
az adott karakterisztikara jellemz6. A formula felirhato a

R=B—puH (5.8)

alakban, mely alakbol kiindulva, a mégneses indukciot direkt karakterisztikaval fel-
irva a kdvetkez6 Osszefiiggés adodik:

R=2{H}— puH, (5.9)
mely leképzés kontraktiv p optimalis megvalasztasa esetén:

o= 'MWHTW (5.10)
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(5.7) Osszefiiggéséhez hasonléan a magneses térerdsségre felirhato:
H=vB+1, (5.11)

ahol v konstans, igy vB linearis, I pedig az adott anyag karakterisztikajara jellemzd

nemlinedris rezidual: o .
[=H-vB. (5.12)

Ba

nemlinedris karakterisztika

linearis 6sszetevd

S
S
o

pH

. >

H

5.2. abra. A magneses indukci6 két komponensre bontésa

A magneses térerdsség és a magneses indukcié kozotti direkt kapcsolatot leird
karakterisztikat felhasznalva:

[=H—vp{H)}, (5.13)
mely leképzés kontraktiv v optimalis megvéilasztasa esetén:

2Vmaxymin
y = —mermin_ (5.14)
Vimax + Vmin

5.3. Nemlinearis formalizmusok megvalo6sitasa

5.3.1. Séma a magneses térerdsségre épitve

Az alabbiakban Gsszefoglalom a fixpontos iteracié 1épéseit abban az esetben, amely-
ben a megvalositott potencidlformalizmus a magneses térerdsségre keriil felirasra,
tehat a szimulacié kimenete maga a H méagneses térergsségvektor [1]. Az iteracios
sorozat yu optimalis megvélasztasara épit (5.10). Az iteracio tetszoleges B(© értékbol
indithat6. Az n-edik lépésben a kévetkezdket kell végrehajtani [1] (T.F.H. : n > 0):

(n—1

1. H™ magneses térerdsség meghatarozasa R(=1) alapjan a potencialformaliz-

mus segitségével, tehat: H™ = .#{R"D};

2. B mégneses indukcié a direkt modell segitségével meghatarozhato, tehat:
B — @{H(n)};
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3. R nemlinearis reziduél értéke javithato:

R™ = B™ _ yF™ = {H™} - uH™, (5.15)

Az el6z6 lépéseket addig kell ismételni, amig az eljards nem konvergal megfelelé
mértékben. A feltétel megfogalmazhato:

— —

R _ Rn=1)

’ <, (5.16)

ahol € egy megfelelGen kis kiiszobindex.

5.3.2. Séma a magneses indukciéra épitve

A maéagneses indukciora épitett iterdcios sorozat v optimalis megvalasztasara épit
(5.14). Az iteracio tetszéleges [0 értékbél indithaté. Az n-edik 1épésben a kovet-
kezdket kell végrehajtani 1| (T.F.H.:n > 0):

1. B™ magneses indukcidé meghatéarozasa Jtn=1) alapjan a potencialformalizmus
segitségével, tehat: B = #{I"V};

—

2. H™ magneses térerésség a kovetkezs formulaval becsiilhetd B® alapjan:

—

H™ = yB™ 4 [ (5.17)

3. I™ nemlinedris reziduél értéke javithato:

—

™ = ™ — p{H™}: (5.18)

Az el6z6 lépéseket addig kell ismételni, amig az eljards nem konvergal megfelelg
mértékben. A feltétel megfogalmazhato:

H[_'(n) . [_'(nfl)

<e, (5.19)

ahol € egy megfelelGen kis kiiszobindex.
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6. fejezet

Egydimenziés probléma szimulacioja

6.1. A probléma definialasa

Klasszikus elektrodinamikai probléméanak tekinthet a 6.1. abran lathato valtakozo
magneses térbe helyezett vezets lemez. A vizsgalodas targyat képezé lemez hosszu-
saga sokszorosa a szélességének, ezért gyakorlati szempontbol végteleniil hossziinak
tekinthetd (I >> 2a) [11].

e
wy®

6.1. abra. Vezetd lemez magneses térben

A szimulacié soran a 2a vastagsaghoz képest végtelennek feltételezett [ lemez-
hosszisag miatt elenged6 csupén a vizsgalt probatest x = 2a tartoméanyénak vizs-
galata, amely kivaloan leirja a lemez belsejében kialakul6 méagneses teret. A véges-
elemes diszkretizalas soran ezt az z-irdnyu szakaszt osztottam egydimenzids vonal
elemekre a [—a; +a] intervallumon beliil.
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6.2. A problémat leir6 egyenletek

A szimulacié soran megoldasra keriil6 differencidlegyenlet levezetéséhez a Maxwell-
egyenletek kvazistacionarius alakjai, illetve a nemlinearitast is magukban foglalo
konstitucios relaciok sziikségesek [14]:

VxH=1J, (6.1)
_ OB

E —_ ——_—— -2

Vv x TR (6.2)

V.-B=0, (6.3)

B=uH+R, (6.4)

J =0E. (6.5)

Felhasznalva (6.1) és (6.5) egyenleteket, majd az eredményt atrendezve a kovetkezs
egyenlet adodik:

L1 .
E=-VxH (6.6)
g

Ezt visszahelyettesitve (6.2) egyenletbe

V x —V x H=—"2= 6.7

Y (6.7)
adodik. Felhasznalva (6.4) egyenletet, illetve azt a tényt, hogy a o anyagparamétert
a vizsgalt tartoményon beliil konstansnak tekinthetjiik

VXVX]:?:—J% (uﬁﬂi) (6.8)

irhato fel, melyet atrendezve a problémara felirthato differencidlegyenlet végleges
alakjat kapjuk:
0H R

VxVxH+uaat O

(6.9)

6.3. Gyenge alak levezetése

Az egyenletet egy tetszGleges W silyozofiiggvénnyel megszorozva, majd integralva
a teljes problématartomanyra a kévetkezd integralegyenlet adodik:

/W VxVdeQ+ua/W —dQ——a/W —dQ (6.10)
Az egyenlgség bal oldalan masodrendt derivalt taldlhato, mely kikiiszébolhets
V- (Ux0)=0-Vxu—u-Vxu (6.11)
azonossag felhasznélasaval, az alabbi megvalasztas esetén:

. @=VxH. (6.12)

=

U=
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Az Osszefiiggést felhasznalva a kovetkezd integralegyenlet irhato fel:

/V VXHXW dQ+/V><H VdoQJr;w/W —dQ—

:—O'/W —dQ

Az integralegyenlet bal oldalanak els6 tagja egy vektormezé divergencidjanak tér-
fogati integralja, mely a Gauss-Osztrogradszkij-tétel segitségével (3.7) atirhato a
térfogatot hatarolo feliiletre vett korintegralra. Ezek alapjan a gyenge alak:

(6.13)

%VXHXW ndF+/V><H VdoQ+ua/W —dQ—
Q

:—U/W —dQ

Egy- és kétdimenzios szimulaciok esetén az els§ korintegral értéke zérus, igy ezzel a
taggal az implementaciéo soran nem kell foglalkozni. A differencidlegyenlet gyenge
alakja tehat a kovetkezs formaban adodik:

(6.14)

/VXH VdoQ+ua/W —dQ_—a/W %dﬁ (6.15)
Q

6.4. Végeselemes implementacid

H mégneses térerdsség a vizsgalt példaban olyan vektormennyiség, amelynek csak
z-irdnyu komponense van, de kizarblag = térdimenziotol és az id6tol fiigg:

H = H.(x)e, = He,. (6.16)

H kozelitése W skalaris, linearis, egydimenzios formafiiggvények segitségével torté-

nik:
NP

H~> WH,, (6.17)
i=1
ahol N, a csomoépontok szama. Végeselem-modszernél a korabban targyaltak sze-
rint a gyenge alak silyfiiggvénye megegyezik a potencial approximaciojahoz hasznélt
formafiiggvénnyel, tovabba az altalanos rotacié operatorok gradiensekké egyszerti-
sodnek, (6.15) tehat atirhato:

Np

H;

/VZWH VW, dQ+;w/WZW8 A0 =
Q

= (6.18)

> AR

=— [ W,y W,=2dQ) j=1,.. N,

U/Q ]; ot J P
ad ol OH
Z/vm-ijdQHﬁWZ/ijdQ—’:
— g ~ Jq ot
- = (6.19)

o [wwanl oy
= 2 J, Wi o J =1L .. Ny
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A formula egyetlen elemre felirva:

A S R K AR A RO B AR

e (8] e ) ]

Ez az egyenlet harom integralt tartalmaz, melyek megvalositiasat célszerd kiilon-
kiilon targyalni.

(6.20)

6.4.1. Az elsé integral

Az els6 integral tartamazza a csomo6ponti formafiiggvények gradienseit és a magneses
térerdsséget, mint ismeretlent. Lineéris formafiiggvények mellett egy-egy végeselem
felett konstans gradiensek adddnak, amely 1ényegesen megkonnyiti az integral kiér-
tékelését. Egydimenzids esetben a gradiensek a

— 1
vwl:%{xxz—j}:_:p -z
J . i ! (6.21)
VWQZ_{QC xl}:
dr | x9 — 21 To — T1

alakot oltik, az €2 elemen térténd integralas pedig lényegében nem més, mint a
szakasz hoszzaval torténd szorzas. (6.20) alapjan az elsg integral:

(58 o o]

_ valvwl VWIVWQ] } (122 — a1) {Hl} | (6.22)

VWQVW1 VWQVWQ H2

Az elemhosszal szorzott 2 x 2-es matrix elemei asszemblélaskor a K egyiitthatomatrix
megfelel§ helyeihez ad6dnak hozza, a magneses térerGsség ismeretleneit tartalmazo
oszlopvektor elemeit pedig u megfelel§ elemei reprezentéljak.

6.4.2. A masodik és harmadik integral

A két masik integral kiértékelése hasonld modon zajlik, igy most csak a masodik
integralt fogom bemutatni, a harmadik, az egyenlet jobb oldalan talalhato kifejezés
kiértékelése az itt leirtakkal teljesen analog.

Fontos eltérés az eddiekhez képest, hogy a kifejezésekben nem a formafiiggvények
gradiensei, hanem maguk a fiiggvények szerepelnek, tehat nem konstans értékii fiigg-
vényt kell integralni egy-egy végeselem felett. A kiértékeléshez numerikus integralas,
Gauss-kvadrattra sziikséges, amivel dolgozatom a késGbbiek soran fog foglalkozni.
A mésik 1ényeges kiilonbség, hogy a kifejezések az ismeretlen magneses térerGsség és
R rezidual id6 szerinti derivaltjat tartalmazzak, ami azt jelenti, hogy ezen kifejezé-
seket két részre kell bontani. Ehhez el6szor be kell vezeni a numerikus differencialas

fogalmat [11]: of  flta) — f(th)
AL ALY

~ 6.23
ot to — 11 ( )
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A masodik integral ezek alapjan felirhat6

WiW, WiW, W
W/Q {szl WQWJ e [% (6.24)
alakban. A kifejezés els6 tagja
afl 6.25
NU/Q {W2W1 W2W2:| {%} ( )

tartalmazza H; és H, ismeretleneket, igy ez a tag a K egyiitthatomatrix és u vektor
részét fogja képezni, mig
WiW, WiW, Hiola
— ds) | gt 2

MO-/Q [WQWl W2W2 —H?l;ld (6 6)
az el6z6 idGlépés H-értékeit tartalmazza, igy a megoldando linearis algebrai egyenlet-
rendszer masik, gerjesztési oldalara, a b, linearis komponenst tartalmazé vektorba
fog keriilni.

A harmadik, a magneses indukci6 rezidualis komponensének derivaltjat tartal-
mazo6 integral értelmezése és megvalositasa az itt leirtakkal teljesen analog. Mivel az
integral nem tartalmaz ismeretlen H potencialértéket, ezért kizarolag a gerjesztési
oldalon fog szerepni a b,., rezidualis gerjesztési vektorkomponensben. A felirdsra
keriil6 egyenletrendszer az eddigiek alapjan:

=res’

(6.27)

6.5. Gauss-kvadratiara

A Gauss-kvadratira numerikus médszer hatarozott integralok kozelitd meghatéaro-
zasara. Abban az esetben, ha egy elemen az integralando fiiggvény nem konstans,
hanem a helynek valamilyen fiiggvénye, gy az elem felett értelmezett integral kisza-
mitasara kozelité modszert, Gauss-kvadratirat sziikséges hasznalni. A Gauss-tipust
kvadtaturaképletek kézépérték-formulak [11]:

b n
/ f(z) de ~ Z WYy Y= f(Tg0), (6.28)
a v=1

ahol ¢, és x, a formula silyai és pontjai, a szamitas soran mindketts szabad para-
méter, értékeit ugy célszerd megvalasztani, hogy a kozelités minél pontosabb legyen.
Amennyiben az [a;b] = [—1; 1] valasztéassal éliink, ugy egy els6foku polinom integ-
ralja az intervallumon beliil a

CQ:L

1
xgvl = =
\/f (6.29)

Tgo = ﬁ C1 = 1

silyokkal és pontokkal kozelithet§. Ebben a fejezetben kizarolag az egydimenzios
esetet mutatom be, a kétdimenzidos Gauss-kvadraturat dolgozatom a késGbbiek fo-
lyaman targyalja. Mivel az egydimenziés formafiiggvények els6fokuak, igy az itt
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6.6. DISZKRETIZALAS, PEREMFELTETELEK

bemutatott stulyokkal és pontokkal kiértékelhet§ az integral. Mivel az integraléast
nem a [—1; 1] intervallumon, hanem egy végeselem [z1; 5] intervalluman kell végre-
hajtani, igy az alabbi transzformacioval kell élni [11]:

b . n
/a f(a) do ~ 2“2ch

v=1

(6.30)

b—a +a—|—b
5 Ty 5 )

A kvadratira lépései egydimenzios szimulacio esetén (6.25) egyiitthat6jan bemu-

tatva:

AR R R

T—x1

m]} dr ~

Toa—Tpu
To—I1 . [wQ*xpyV
Lpv—T1 To—T1
T2—T1

T 7x1i|
D,V
T2—T1 } Cv

v=1
. T2—Tp,1 T2—Tp,2
) T To—x1 T2—Tp 1 Tp,1—T1 c + To—11 . T2—Tp, 2 Tp,2—T1 c
- 2 Tp,1 —%1 To—T1 To—x1 1 Tp,2—1 To—T1 To—T1 2 (>
To—T1 r2—T1
(6.31)
ahol:
Lo — X1 T + T
Tp1 = Ta1

D, 2 9, 2 ’
(6.32)

. To — X1 T -+ i)

xp72 - 2 :Eg>2 + 2 °

6.6. Diszkretizalas, peremfeltételek

Miként azt mar emlitettem, a diszkretizalast egydimenzioban, z-iranyban, [—a; al-n
végeztem el. Ez a lehetd legegyszertibb eset, racsgenerald szoftver hasznalata nélkiil,
Matlab-kornyezetben két parancs segitségével el lehet végezni:

N = 100;
X [-a:(2xa)/N:a];

Ebben az esetben N = 100 végeselem adodik 101 csomdponttal. A megoldashoz a
lemez két oldalara eld kell irni direkt modon a magneses térerdsség idéfiiggvényét.
Ez ebben az esetben egy egyszert Dirichlet-peremfeltételt jelent, ami azt jelenti,

hogy az x = —a és az x = a csomoOpontok térerGsség-értékét kell elGirni:
H(x = —a,t) = Hycos(wt),
H(x = a,t) = Hycos(wt).

6.7.

A szimulacié paraméterei: f = 500 Hz, T = 2ms, o = 2,22 - 10° %, a= 0,175 -
1073 m, Ho = 2000 2.

A szimulécio elsd szakaszaban (t < 0,17) az inverz tangens-gorbe jellegébdl
adodoan a magneses térersség és a magneses indukcié kozott lényegében linearis
kapcsolat tapasztalhato, a két fiiggvény csupan egy konstansban tér el egyméstol.
Ez lathato a 6.2. dbran.

Eredmények, kiértékelés
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H[Am]
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6.2. abra. H és B kozotti linearis kapesolat (¢ < 0,17)

A magneses térerdsség tovabbi ndvelése utan az anyag telitésbe jut, ami azt
jelenti, hogy a méagneses térerGsség tovabbi novekedése ellenére sem novekszik tovabb
az indukci6 értéke az anyag belsejében B,-nél. Ezt szemlélteti a 6.3. abra.

H [A/m]

H [A/m]
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6.4. abra. Eles atmenet t = 0, 527-nél

A 6.4. abra a pozitiv szaturdciobél torténd éles atmenetet mutatja. Az abran
lathato, hogy mikozben a lemez kozepe még szinte pozitiv telitésben van, addig
a lemez szélén mar negativ indukcidértékek tapasztalhatdéak. Ennek oka az inverz
tangens-gorbe H = 0 -kozeli nagy meredeksége. Mivel a térerdsség alakulasa a lemez
szélét6l a kozepe felé kozel linearis, rdadasul a kozéppontra jo kozelitéssel szimmet-
rikus is, igy a magneses indukci6é adott pillanatban felvett helyfiiggése gyakorlatilag
kirajzolja a modell gorbéjének egy szakaszat. A 6.5. abra ugyanezt a jelenséget
mutatja, csak a negativ szaturaciobol torténd visszatérés esetén.
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6.5. abra. Eles atmenet t = 1,027-nél

A 6.6. abra egyetlen csomépont modell alapjan szamitott B— H-karakterisztikajat
mutatja. Lathato, hogy a fixpontos iteracio e = 10~* kiiszobindex mellett gyakor-
latilag hibatlanul kozeliti az analitikus formulaval leirt karakterisztikat. Az abréan
tanulméanyozhaté tovabbd mind a pH linearis, mind az R rezidualis komponens
alakulasa, mely pontok szuperpozicidja minden idGpillanatban kiadja az adott cso-
moépont B — H-karakterisztikajat.

Modell-karakterisztika
Szimulalt karakterisztika
Szimulalt linearis komponens
\... + Szimulalt rezidudl

B[T]
o
S,

_6 L L L L L L L J
-2000 -1500 -1000 -500 0 500 1000 1500 2000
H [A/m]

6.6. abra. A karakterisztika alakuldsa az N = 50 csomopontban

A 5.1. abra a konvergencidhoz sziikséges fixpontos lépések szamat abrazolja az
id6lépések fliggvényében két eltérd ¢ kiiszobindex esetén. Megfigyelhets, hogyha a
pontossagot ezerszeresére noveljitkk (¢ = 1072 — & = 1079), gy a fixpontos lépé-
sek szama atlagosan koriilbeliill haromszorosara novekszik. Az egy peridédusra fel-
vett konvergenciagdrbék jellegébdl lathatod, hogy a fixpontos 1épések szama bizonyos
szakaszokon ndvekvé-, més szakaszokon csOkkend-, vagy impulzusszeriien cskkend
tendenciat mutat. A kezdeti rovid tranzienst leszamitva a fiiggvény 4 szakaszra
bonthato:

1. Az els6 szakasz a zérusrol ndvekvs méagneses térerGsség szakasza. Fzen a szaka-
szon a fixpontos lépések szama idGlépésenként ng, melynek oka, hogy a modell
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karakterisztikdja egyre hatarozottabban kezd elszakadni a linearis szakasztol,
a rezidudl értéke jelentGsen csokken, hogy az inverz tangens-gérbének megfele-
16en kompenzalja a linearis komponenst. Mivel a fixpontos 1épések a rezidual
aktualis értékének javitasat szolgaljak egészen a kiiszObindexig, ezért a szami-
tas egyre tobb iteracios lépést igényel a megkivant konvergencidhoz.

2. A maximum elérése utan a lépések szama impulzusszertien lecsokken, melynek
oka, hogy a magneses indukci6 eléri a szaturacios értéket, igy néhany idéleé-
pésen keresztiil az indukci6 értéke valtozatlan, konstans, igy nincs sziikség a
rezidudl értékének lényeges javitasara.

3. A kovetkez6 szakaszon a térerdsség és a magneses indukeio is csokken, a modell
kezd visszatérni a linearis szakaszra, mely sorédn a reziduél értékét folyamato-
san javitani kell a negativ értékektsl egészen a nullaig.

4. Amennyiben a modell visszatér a linearis szakaszra, agy a rezidual értéke kozel
nulla, igy nincs sziikséges lényeges mennyiségi fixpontos lépésre annak javi-
tasahoz. Ez lényegében azt jelenti, hogy a modell kimenetét megkozelitéleg a
line4ris komponens hatarozza meg.

A kovetkez§ szakaszok az itt leirtakkal teljesen analog médon magyarazhatoak. El-
mondhat6 tehat, hogy a kdvetkez6 impulzusszerii 1épésszamvisszaesés a negativ sza-
turacié konstans méagneses indukciojanak, mig a kevésbé meredek visszazuhanas a
kvéazi-linearis szakaszra torténd visszatérésének koszonhetd.

N
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6.7. abra. Fixpontos lépések szdma idélépésenként (e = 1072, = 107°)
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7. fejezet

Kétdimenzidés probléma szimulacioja

7.1. Vezetd lemez magneses térben

Az el6z6 fejezetben bemutatott differencidlegyenlet alkalmazhato kétdimenzios prob-

c sz

lemez, melynek vastagsaga elhanyagolhat6 a tobbi geometriai paraméteréhez képest.
A szimmetriat kihasznalva elegendd csupéan a lemez egynegyedének vizsgélata.

Iy

b/2

SZ

\ 4 \
a rSZ
y <>
a/2

7.1. dbra. A vizsgalt lemez

A vizsgalt Q problémateret (7.1. abra) I'p és Iy, perem hatarolja; el6bbi az ere-
deti lemez valodi pereme, utébbi pedig az egyszertsitésb6l adodod szimmetriaperem.
['p csomoépontjain Dirichlet-peremfeltételt kell elGirni, hiszen a lemeznek ez a széle
koézvetlen kapcsolatban all az alkalmazott kiils6é periodikus magneses térerdsséggel.
['sz szimmetriaperem kezelése kényelmes, hiszen ezekre a csomépontokra semmilyen
peremfeltételt sem kell alkalmazni.
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7.2. Racsgenerilas

Munkdm soran az adott geometridara két racsot is generdltam: egyet kézzel, egyet
pedig GMSH [16] szoftver racsgenerdldo moduljanak segitségével. Elgbbi modszerrel
szimmetrikus racsot készitettem, majd matrixok formajaban, manualisan vittem be
a racsot leir6 adatokat a programkodba, utobbival egy gyakorlatiasabb, aszimmet-
rikus racsot generdltam, és az adatokat fajlokboél olvastam be a szimulacidhoz. A
7.2. abran tanulméanyozhatdak a lényeges kiilonbségek.

0.18 0.18

0.16 0.16

0.14

0.12

0.1

y [m]
y [m]

0.08

0.06

0.04

0.02

0 001 002 003 004 005 006 002 003 004 005 006
x[m] x[m]

7.2. dbra. Kézzel és GMSH-val generalt racs

A konkrét példa két raccsal torténd szimulacioja nem kizardlag a fizikai tarta-
lom szempontjabol fontos (elméletileg teljesen mindegy, hogy a megoldot melyik
végeselem-racson futtatom le, megegyez6 eredményt kell, hogy kapjak), hanem egy
érdekes szimulaciotechnologiai problémara is felhivja a figyelmet.

7.3. Végeselemes implementacid

Kétdimenzios probléma vizsgalata soran haromszogeket haszndlva egy elemet ha-
rom csomopont definial egyértelmten, ami azt jelenti, hogy egyetlen elemen Gsszesen
harom formafiiggvény (W5, W, W3) értelmezett. Miként azt bemutattam, a véges-
elemes implementécié soran sziikség van a formafiiggvények gradienseire is, amely
kétdimenzios esetben formafiiggvényenként ketts tagi, hiszen a fliggvény mind z-
valtozo, mind y-valtozo szerint parcidlisan differencidlhaté. Ezek (4.9) és (4.10)
jeloléseit konzekvensen felhasznalva:

oWy oWy 3 (2 —wys) 5 (x3—12)

VW1 = ngx + ngy = 8x + ay == A + A ’
oWy  OWy  s(ys—w) 3 (x1—x3)
p— p— p— 7.1
VWy = gWaq + gWay = —= + i U — (7.1)
B 0wy W5 5 () | g (1 — )
VW;), = gW;:,x + gW3y = 833 + ay - A + A
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Az eddigiek alapjan (6.19) egyetlen elemre felirva:

VW1 Hl
/ VWy| - [VWy VW, VW] 3 dQ | Hy| +
Q VIVs H;

O0H
Wi =

+ po / Wol - [Wh Wy Wi] 3 dQ |252| = (7.2)
Q

at
oH
Wi T

W oL

1

= —0'/ WQ . [Wl WQ Wg] d§) Ok
o | (W oty

Mivel az els6 integral ismét konstans fliggvényeket tartalmaz egy-egy végeselem fe-
lett, ezért az egydimenzios példdhoz hasonléan az integralas a végeselem teriiletével
valod szorzassa egyszeriisodik. A kifejezést kifejtve, atirva, tovabba elvégezve a be-
szorzasokat a kovetkezs formula adodik:

ngx ngy
IWaa | - [Wie gWar gWsa] + |gWay | - [gWhy Wy gWsy| » A+
gWi’)x gW3y
Wi, Wi, WiWs ot
+ po / WoWy WoW, WoWs| ¢ dQ | 22| = (7.3)
QW Wy WiWs bl
Wiy, Wi, WiWs o
:—a/ WolWy WoW, WoWs| » dQ |22
L WsW Wy WiWs O

ahol a masodik és harmadik integral kiértékeléséhez (mivel az integrandus nem kons-

tans fiiggvény a tartomanyon beliil) ismét numerikus integralasi technika hasznalata
sziikséges.

7.4. Numerikus integralas haromszog felett

Egy tetszbleges kétvaltozos f(x,y) fiiggvény haromszog feletti integralja kozelithetd
[17]:

A S
/ f(z,y) dQ ~ 3 Z flar&i + bim; + 1, a2 + bami + ¢2) - Vs, (7.4)
@ i=1

ahol &; és n; a kvadratira pontjait, ©; pedig a stlyait jeloli. Megvélasztéasuk a pontos
kozelités érdekében a kovetkezGképpen torténik:

1 1 1
= — = — ’19 —_— -
51 67 T 67 1 37
1 2 1

&2 6’ Up) 3 2 3 ( )
2 1 1
—— S e = =
&3 3 3 6’ 3 3

w
~J
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A tovabbi paraméterek a haromszog csicsainak koordinataibol szamithatoak:
a; = T2 — I, by = x3 — 1, €1 = T,
az = Y2 — Y1, by = ys — 1, C2 = Y1.

Az eddigiek alapjan a haromszog felett integralandé formafiiggvények a kovet-
kezGképpen irhatoak fel:

(7.6)

I a1&+bimi +c1 aéy + bam; + ¢
% 1 x2 Y2
Al 1 T3 Ys
W1 = K = A )
1 T U1
511 @& +bmi+ a1 axki +bams + o (7.7)
W, — Ay _ 1 x3 Y3
A A ’
1 T U1
% 1 x2 Y2
W — & _ 1 al@- + 617]2 + C1 agfi -+ bQTh + Co
3 A A :

7.5. Eredmények, kiértékelés

A szimulaci6 paraméterei: f =1 Hz, T =1s,0 = 2,22-10° %, 5=0,175- 1073 m,
b A
5 =0,15m, Hy= 2000 <.

Az eredmény jellege, a magneses térerGsség és a magneses indukecié alakulésa
Osszevethets az egydimenzids szimulacié esetén tapasztalttal, hiszen a kétdimenzios
lemez minden z-irdnyt metszetén tulajdonképpen az egydimenzids, a teljes z-iranyt
atfogd szimulacidonak a felét tanulmanyozhatjuk.

200
200 0.8

100

H [A/m]

v [m) 0o X m] v [m] o ¥ [m]

7.3. dbra. H és B kozotti linearis kapcsolat (¢ < 0,17)

A kézzel rajzolt, szabélyos racson lefutattott, és a GMSH-val generélt stirtibb ra-
cson elvégzett szimulécid kozotti kiilonbség a 7.9. dbran tanulmanyozhatd. A szi-
mulacios hiba oka, hogy az anyag belsejében felvett végeselem-méret dsszemérhets
az ott terjedd elektromégneses hullam hullamhosszival és behatolasi mélységével,
emiatt az elemek kozotti valtozas olyan mértékd, ami mér szimulaciés hibat okoz.
A hiba elkeriilésének érdekében célszerd tehat a végeselem-halot kellGen strtre fel-
venni.
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7.4. dbra. Szaturacio (t = 0,257)
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7.5. abra. Eles atmenet ¢ = 0, 527-nél
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7.6. abra. Eles atmenet ¢ = 1,077-nél
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B [T]

4r
—— Modell-karakterisztika
+ Szimulalt karakterisztika
3r Szimulalt linearis komponens
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7.7. abra. A karakterisztika alakulasa az N = 60 csomdpontban
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é é 1002
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7.8. 4bra. Fixpontos lépések szama id6lépésenként (e = 1072, e = 107°)
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7.9. abra. Szimuléciés hiba a ritkdbb, szimmetrikus racsbol adédoan
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8. fejezet

Kétdimenzids szimulaci6é a magneses
indukciora épitve

Ebben a fejezetben bemutatom a nemlinearis, orvényaramt A-formalizmus egyen-
leteit, gyenge alakjanak levezetését és a végeselemes implementaciot egy konkrét
példan keresztiil.

8.1. A probléma definialasa

A formalizmus segitségével vizsgalt probléma altalanositva a 8.1. abran lathatd. Az
adott magneses permeabilitasfiiggvénnyel és vezetSképességgel rendelkezd €2 problé-
materet harom kiilénboz6 tipusti perem hatarolja. I'p Dirichlet-tipusti peremen a
keresett A vektorpotencial értéke direkt modon keriil elGirasra, I'y Neumann-tipusi
peremen A normalis irdnyt derivaltja keriil meghatarozasra, 'y pedig az a kiilén
perem, ahol a gerjesztés, a K feliileti aram keriil el6irasra.

Fontos megjegyezni, hogy 'y i is egy Neumann-tipusi perem, pusztéan a konnyebb
matematikai kezelhetGség miatt keriil kiilon bevezetésre I'y mellett.

.
.
.
P

~ //

\\~~— —”
o T

8.1. abra. A vizsgalt probléma altalanositva
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8.2. A problémat leir6 egyenletek

A probléméat leiré differencidlegyenlet levezetéséhez a Maxwell-egyenletek kvazista-
cionérius alakjai, illetve a nemlinearitist is figyelembe vevd konstitticids relaciok
sziikségesek:

VxH=1], (8.1)
. 0B
E=-=- 8.2
V.-B=0, (8.3)
H=vB+1, (8.4)
J=0E. (8.5)

A probléméhoz tartozd peremfeltétel:
Hxii=K A T'yg peremen. (8.6)

Mivel (8.3) alapjén a méagneses indukciévektor divergenciamentes [4], A vektor-
potencial bevezthetd

B=VxA (8.7)
alapjan, mert: . .
V.-VxA=0 VA(71). (8.8)

A vektormez6 divergencidjat is meg kell hatarozni, ebben az esetben a valasztas:
V- A =0. Ez az tgynevezett Coulomb-mérték, ami kétdimenziés szimulacio esetén
automatikusan teljesiil [4]. (8.2) atirhato (8.7) segitségével:

VXE:—Q(VxE). (8.9)

Nem mozgé koordinata-rendszerben az id6- és a hely szerinti derivalas felcserélhetd,
ezért (8.9) felirhato

L 9A
V x (E+ E) =0 (8.10)

alakban. E + 01@/ Ot rotaciomentes vektormez§ altalanos esetben szarmaztathato a
V' elektromos skalarpotencialbol a

VxVV =0 VYV(t) (8.11)
Osszefiiggés alapjan [4]:
E+2_ gy (8.12)
ot '
Az altalam vizsgalt problémak esetén VV = 0 igy
. 04
E=— 8.13
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irhato fel. A gerjesztési torvény (8.1) felirhato (8.4), (8.5), (8.7) és (8.13) segitsége-
vel, igy a problémat leird egyenlet a

V x (uv x A+ f) - —a%—? (8.14)

alakban adodik. A peremfeltétel (8.4) és (8.7) segitségével kifejezve:

—

(Nx/ﬂ f) x =K. (8.15)

8.3. Gyenge alak levezetése

A levezetés elss lépése (8.14) és (8.15) osszeaddsa, megszorzésa egy tetszGleges W
formafiiggvénnyel és integralasa a problématartomanyra:

/QW-{VX (uvwhf)} dQ+/F W-{(uvwhf) xﬁ}-ﬁdr:

NK

- A’ -, — —
:—J/W-a—d§2+ W Kdl.
o ot

(8.16)

Felbontva az els¢ integrandus zardjelét, tovabba atrendezve az egyenletet a
S - . 0A
W-VxvVxAdQY+o | W —dQ +
+/ W-{(qu/ﬂ—f)xﬁ}-ﬁdF:—/W-fodQ+ (8.17)
Cni Q

+/ W -
Pnk

formula adodik. Az egyenlet mindkét oldaldnak elsé integrandusa a

dl

=i

VA(ix?0)=7-Vxu—u-Vxy (8.18)

azonossagot felhasznélva felbonthaté a bal oldalon v = W, i = vV X ff, a jobb
oldalon v = W, 4 = I megvélasztassal. A felbontas elvégzése utan a kovetkezd
egyenlet adodik:

/v-(va,@xW) dQ+/nyE-VdoQ+0/W-%dQ+
Q Q Q
+/FNKVV-{(VV><E+J*)xﬁ}-ﬁdf:—/ﬂV-(fo) o — (8.19)
_/f.wmm W R df

Q I'nk

Egy vektormezd divergencidajanak teljes problématérre vett integralja (3.7) értel-
mében atirhatd a térfogatot hatarolo feliiletre vett korintegralra, igy a kovetkezd
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formula adédik:

S - o . 9A
]{ (VVXAXW)-ﬁdF—i-/VVXA~VXWdQ—I—U/W-a—dQ+
I'pul'n (9] O at

+/ W-{(quﬁ+f>xﬁ}-ﬁdF:—j{ IxW.7dl —
vk 'pul'y
_/f.vam/ W R df.
Q 'nk
(8.20)
A vegyes szorzat
(@xb)-c=(Gxa) -b=(bx7d-a VaFt), b(Ft), &7 t) (8.21)

tulajdonsagat felhasznalva az egyenlet bal oldalanak elsé integralja felbonthato:

]gDUFN (NxﬁxW).ﬁdrzjéD (Wxﬁ)-wxﬁdn

(8.22)
]{ (ﬁxnyA) W dr.
I'n
Mivel I'p-n a vektorpotencidl kozelitése a
Ar Ap+) WiA (8.23)

formula segitségével gy torténik, hogy W,; = 0, ezért az els6 tag zérus, kiesik. A
Neumann-perem integralja atirhato
§ {ax(@-D)}war=§ (ixd)-War-$ (3xD)War. 52
I'n INY; I'n

Mivel 'y peremen nem folyik aram, a kifejezés els6 tagja kiesik. (8.20) jobb olda-
lanak els integrédlja az el6zéekkel teljesen analég moédon felbonthato:

_jéDUFfoW-ﬁdr:—ﬁD (Wxﬁ)-fdl“—y{}v <ﬁxf>-WdF. (8.25)

(8.20) bal oldalanak negyedik integralja atirhato a
/ W~(ﬁxﬁ)~<ny/T+f) dr (8.26)
'nk

alakba, ami 77 x 7 miatt zérus, kiesik. Az eddigiek alapjan (8.20) a kovetkezs alakot
olti:

. - - 9A N
/VVXA-VdoQ+a/W-%—tdQ—]{ (ﬁx[)WdP:
“ o N (8.27)
:_]{ (ﬁxf).mr_/f.wmm W R i

'y Q I'nik

A T'y-re vett korintegral kiesik, hiszen mindkét oldalon egyforméan szerepel, igy
adodik a ténylegesen implementélasra keriil6 gyenge alak:

. . . 0A " . VoL
/VVXA-VXWdQ—I—J/W-%—t dQ:—/I-VdoQ+ WK df. (8.28)
Q Q Q

I'nk
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8.4. Végeselemes implementacid

Az A maéagneses vektorpotencial a vizsgalt pédaban olyan vektormennyiség, amelynek
csak z-irAnyu komponense van, de kizarolag (z, y)-térdimenzioktol és az id6t6l fligg:

A=A (z,y)é. = Aé.. (8.29)
A vektorpotencial emiatt automatikusan kielégiti a Coulomb-mértéket, hiszen:

L 0A
V~A_§_O. (8.30)

A kozelitése W skalaris, linearis formafiiggvények segitségével torténik:
NP
Ar D WA, (8.31)
i=1

Az implementécio alapjait tekintve megegyezik az eddig targyaltakkal, ezért a részle-
tes bemutatastol ezattal eltekintek, csupan az eddigiektdl eltérd gerjesztés megvalo-
sitasat és a megoldas mechanizmusat, 1épéseit kivinom bemutatni. A tovabbiakban
n jeloli a kétdimenzios diszkretizalas soran létrejott csomopontok szamét, m pe-
dig az elemek szamat. A szimulacio soran a K egylitthatomatrix (n x n) mérett,
u és b ismeretleneket és a peremfeltételeket tartalmazé oszlopvektor n-méretd. A
szimulécio lépései a kovetkezok:

1. K egyiitthatomatrix asszemblaldsa (8.28) els6 és méasodik integraljanak egyiitt-
hatoi alapjan (n x n);

2. B egyiitthatomatrix asszemblalasa (8.28) masodik integralja alapjn, hiszen
ez a tag az ismeretlen vektorpotencial id6 szerinti derivaltjat tartalmazza, igy
valamilyen modon el kell allitani A4 egyiitthatoit is (n x n);

3. b oszlopvektor b, -komponensének elGallitasa (8.28) negyedik integréalja alap-
jan. Az elgallitas soran egy dimenziét vissza kell 1épni, hiszen ez a tag egy
feliileti integral, a feliilet pedig szakaszokkal diszkretizalhato. Ez egyetlen
elemre:

L dl
/ W R df = H K2 (8.32)
vk 1 2

ahol dl a szakasz hosszat jeloli. b,,. (n x 1) mérett;

—€xc

4. b oszlopvektor b 44- komponensének elittasa B egyiitthatomatrix és Aq alap-
jan:

bag = B Ao (8.33)

bag (n x 1) méretd;

5. Fixpontos iteracié inditasa addig, amig e kiiszobindex kell6en kis értékiire
csokken. Az els6 lépésnél by, és by, oszlopvektorok kinullazasra keriilnek, mé-
retiik (n x 1)-es. Egyetlen fixpontos 1épésben a kiovetkezoket kell végrehajtani:
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8.9.

(a) b (n x 1) elsallitasa:

Q = l—)exc + [—)Adt - (Z—)Ix + l—)Iy); (834)

(b) Dirichlet-peremfeltétel érvényesitése, tehat K és b megfelel elemeinek

explicit értékadasa;

(¢) u kiszamitasa:

u=K1b

(8.35)

u ebben az esetben az A vektorpotencidl értékeit tartalmazza. Mivel
csomoponti végeselemekkel dolgoztam, ezért a kiszdmitds utdn minden
csomopontban rendelkezésemre all egy-egy A-érték.

(d) B = V x A kiszamitasa. Ez azt jelenti, hogy minden egyes végeselemre

(2)
(h)

(i)

ki kell szamitani az elemet alkoté csomépontokban rendelkezésre allo A-
értékekbdl egy B, és egy B, indukcioértéket. Igy jon létre két (m x 1)
méretld vektor, B, és B, ;

H, és H, approximélésa:

ﬂx = Vﬁx + Lmold?

8.36
ﬂy - Vﬁy + iyolda ( )
H, és H, (m x 1)-méretii vektorok;
I, és I, szamitasa:
I.=H,—v#{H,},
ly = Ey - Vﬁ{ﬂy}?
I, és I, (m x 1)-méretii vektorok;
by, s by, feltoltése (8.28) harmadik integralja szerint;
e =L = Lyl (8.38)
lxold = lx’ lyold = ly; (839)
Agug = 4; (8.40)

A szimulalt geometria

A szimulélt geometriai elrendezést a 8.2. abra mutatja. Az adott v, reciprok per-
meabilitasfliiggvénnyel és oo vezetSképességel rendelkez6 vasanyagon a szaggatott
vonallal jelolt szakaszon &dramjarta vezetst feltételeziink, ami a lemezek teljes ke-
resztmetszetére van feltekercselve. A feltekercselt vasanyagot vy és o, paraméterek-
kel rendelkez§ levegs veszi koriil.

['vx peremen az aramjérta vezetst reprezentalod K feliileti aramstriiséget sziik-
séges elGirni, ami a tekercselés irdnyabol adodoéan a lemez egyik oldaldn pozitiv, a
mésik oldalan negativ elGjellel keriil elGirasra. I'p Dirichlet-peremen a csomoéponti
potencialértékek kinullazasra keriilnek, hiszen ez a vizsgalodas tényleges hatarfelii-

lete.
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Konklizi6, jovébeli tervek

Dolgozatomban bemutattam a magneses térerGsség és a magneses indukcid ko-
zOtti skalaris hiszteréziskapcsolat mérésének elvét, ismertettem az elvégzett mérések
eredményeit és egy inverz-tangens gorbével analitikus médon leirhaté modell para-
métereinek identifikaciojaval egy nemlinearis karakterisztikat illesztettem a mérési
eredményeimre. Bemutattam a Maxwell-egyenletek teljes rendszerét, felvazoltam a
végeselem-modszer alapelvét, legfontosabb jellemz6it.

Bemutattam azokat a sziikséges eljardsokat, amelyek a nemlineéris anyagtulaj-
donsigok implementaldsdhoz sziikségesek végeselem-modszer esetén, bemutattam a
polarizacios formulat, az iteracios lépéseket két kiilonb6z6 formalizmus esetére. Fel-
vazoltam a magneses térersségre épiilé formalizmus alapegyenleteit, levezettem a
problémat leird differencidlegyenletet, az abbol levezetett gyenge alakot, valamint
megvalositasat végeselem-modszer segitségével. Az eredmények alapjan lathato,
hogy a direkt H-ra épiil6 formalizmus eredménye jol kezelhets, fixpontos megol-
das mellett is viszonylag gyorsan konvergal, hatranya viszont, hogy peremfeltételek
megadéisa esetén direkt moédon a mégneses térerdsséget kell elGirni, ami kevésbé
gyakorlatias megoldas.

Egy altalanos és egy konkrét probléman keresztiil bemutattam az 6rvényarami,
nemlinearis A-formalizmus alapegyenleteit, levezettem a megoldésra keriils diffe-
rencidlegyenletet és bemutattam a peremfeltételeket, levezettem a gyenge alakot,
felvazoltam a megoldas sordn asszemblalasra keriil6 matrixokat és vektorokat, vala-
mint az iteracios lépések sorrendjét, a megoldas mechanizmusat, végiil ismertettem
az eredményeket. Az eredmények alapjan megfogalmazhato, hogy az A-formalizmus
implementalasa Osszetettem, komplexebb feladat, a direkt modell illesztése a szimu-
laciohoz nehezebb, a fixpontos iteracié konvergenciaja bar itt is biztositott, de sokkal
lassabb, mint a magneses térerdsségre épiild feladat esetén. A modszer nagy el6nye,
hogy sokkal gyakorlatiasabb, hiszen a feliileti Aram peremfeltételként elGirhato, mint
gerjesztés.

A legfontosabb jévGbeli tervem, hogy az elvégzett mérési eredményeim alapjan
egy jol miikodd, jol kezelhets skalaris Preisach-modellt illesszek a bemutatott szi-
mulécidhoz, igy az eddigieken tal nemlinearis, tobbértékd, hiszterézises kapcsolatot
valositsak meg a magneses térerGsség és a magneses indukcio kozott.
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