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1. fejezet

Bevezetés, köszönetnyilvánítás

Dolgozatom az elektromágneses térszimuláció témakörében íródott. A számítás-
technika rohamos fejl®désének és az iparban elterjedt szimulációs szoftverek tér-
nyerésének köszönhet®en napjainkban már alapvet® feladat és elvárás a kutatási és
fejlesztési területen a különböz® anyagparaméterek jellemz®inek szimulációja, mo-
dellezése és az adott feladathoz optimalizálása. Az elmúlt évek, évtizedek során az
elektromágneses terek numerikus számítása fontos, integrált része lett a villamos-
mérnöki és informatikai tudományoknak. Értekezésem ezen széles területen belül
alacsonyfrekvenciás problémák szimulációjával foglalkozik végeselem-módszer segít-
ségével.

A villamos gépek, motorok és transzformátorok tervezése során különösen fon-
tos az adott feladathoz illeszked® (például kis veszteséggel rendelkez®) vasanyag
kiválasztása. Az elektromágneses szempontból értelmezett anyagparaméterek opti-
malizálását numerikus térszámítással, így végeselem-módszerrel is hatékonyan lehet
segíteni. Dolgozatom els® részében az elméleti áttekintés után bemutatom a mágne-
ses térer®sség és a mágneses indukció közötti skaláris hiszterézis mérési lehet®ségét,
illetve az ebb®l felépíthet® és a szimulációhoz illeszthet® nemlineáris karakterisztikát,
a karakterisztika paramétereinek meghatározását. A második egységben felvázolom
az elektromágneses tér jellemz® mennyiségei között összefüggést teremt® Maxwell-
egyenletek teljes rendszerét, különös �gyelmet fordítva a nemlinearitást is maguk-
ban foglaló konstitúciós relációkra. A harmadik részben bemutatom a végeselem-
módszert, annak alkalmazási lehet®ségeit a villamosmérnöki gyakorlatban, illetve
felvázolom a nemlineáris karakterisztika szimulációhoz illesztését biztosító �xpontos
módszert is. A negyedik egységben de�niálom a munkám során vizsgált problé-
matereket és a hozzájuk kapcsolódó, a szimuláció során megoldásra kerül® parciális
di�erenciálegyenleteket, végül bemutatom az elvégzett szimulációkat, eredményeket.

Dolgozatomat a Széchenyi István Egyetem Automatizálási Tanszékének Elekt-
romágneses Terek Laboratóriumában írtam, mely munkaközösségnek 2012 januárja
óta vagyok aktív tagja. A mérések, szimulációk és kiértékelések elvégzése során a
laboratórium minden kollégája rendelkezésemre állt és támogatott, amit ezúton is
szeretnék megköszönni.

Munkám a TÁMOP-4.2.2.A-11/1/KONV-2012-0012: Hibrid és elektromos jár-
m¶vek fejlesztését megalapozó kutatások projekt keretében, a Magyar Állam és az
Európai Unió támogatásával, az Európai Szociális Alap társ�nanszírozásával való-
sult meg. A dolgozatot LATEX szövegszerkeszt®ben szerkesztettem.
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2. fejezet

A mágneses hiszterézis

2.1. A hiszterézis operátor

A hiszterézis, mint jelenség általános megértéséhez els® közelítésben érdemes abszt-
rahálni a problémát: de�niáljunk egy olyan Γ{} rendszeroperátorral egyértelm¶en
jellemezhet® egy bemenet¶ és egy kimenet¶ rendszert, mely a bemenetére érkez®
u(t) folytonos idej¶ jelet y(t) folytonos idej¶ kimeneti válaszjellé képezi le, mely
leképzés matematikai, operátoros alakban [1]:

y(t) = Γ {u(t)} . (2.1)

El®fordulhat továbbá, hogy a rendszer bemeneti jele id®függ® vektor, ebben
az esetben a kimenet is hasonlóképpen vektorfüggvény formájában adódik. A két
mennyiség között a vektoriális operátor teremt kapcsolatot: ~y(t) = ~Γ{~u(t)}. Ab-
ban az esetben, ha az operátor által végzett leképzés, tehát u(t) és y(t) kapcsolata
nemlineáris és többérték¶, továbbá y(t) kimeneti- vagy válaszjel értéke egy tetsz®-
leges τ id®pillanatban függ u(t) és y(t) t ≤ τ illetve t < τ id®pontbeli értékeit®l,
egyszer¶bben fogalmazva a rendszer el®életét®l, akkor hiszterézissel bíró rendszerr®l
beszélhetünk. Az összefüggés a 2.1. ábrán tanulmányozható, a feltüntetett nyilak a
függvény második változóját, az id®t reprezentálják.

y(t)

u(t)

u(t) y(t)

2.1. ábra. A rendszermodell és egy lehetséges gerjesztés-válasz karakterisztika

Az ilyen karakterisztikával jellemzett rendszerek memóriával rendelkeznek; úgy
is mondhatjuk, hogy a kimeneti jel aktuális értéke dönt®en függ attól, hogy rendszer
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TDK-dolgozat 2.2. A FERROMÁGNESES HISZTERÉZIS

a vizsgálódás id®pillanatát megel®z®en milyen állapotban volt. Ezen általános de�-
níció segítségével a tudomány különböz® területeinek jelenségei tárgyalhatóak attól
függ®en, hogy u(t) és y(t) milyen elgondolás alapján kerül megválasztásra.

A természettudomány vizsgálódási területét®l elszakadt, de kiváló demonstrá-
ciós példa a közgazdaságtan által tárgyalt export hiszterézissel bíró id®függése [2]:
egy ország gazdaságának áttérése az exporttermelésre id®igényes és nehézkes, de ha
az átállás megtörtént, utána nem igényel különösebb er®feszítést a fenntartása. A
jelenség szerepe a villamosmérnöki gyakorlatban is kiemelked®: a dolgozatom témá-
jául szolgáló ferromágneses hiszterézisen túl jelent®s szerepe van az elektronikában
például a hiszterézises komparátornak is.

2.2. A ferromágneses hiszterézis

Ferromágneses hiszterézisr®l beszélhetünk akkor, ha a rendszermodell bemenete
u(t) = H(t) mágneses térer®sség, a kimenete pedig y(t) = B(t) mágneses indukció.
A jelenség okának tárgyalását az anyagok mágneses tulajdonságának kialakulásától
célszer¶ kezdeni. A mágnesesség egyik lehetséges forrása az elektronok különböz®
energiaszinteken történ® mozgása az anyagok atomi struktúrájában [3]. A �zikai
atommodellekben az elektronok pályamenti mozgása és forgása szimulálható elemi
áramhurkok és a hozzájuk kapcsolódó mágneses dipólus fogalmának segítségével. Az
elemi áramhurok ~mi mágneses momentuma de�niálja az áramhurok által létrehozott
mágneses mez®t [18]:

~mi = Ii · d~si, (2.2)

ahol Ii az elemi áramhurok árama, d~si pedig a hurok által körülzárt felület. Mágne-
ses atomnak nevezzük az olyan atomokat, amelyek kompenzálatlan mágneses mo-
mentummal rendelkeznek az elektronjaik mozgásából fakadóan. Egy ilyen atom
teljes mágneses momentuma az elemi áramhurkok által létrehozott momentumok
vektoriális összegeként számítható. Ha egy ∆V térfogat n darab mágneses atomot
tartalmaz, és ezen atomok ~mi momentummal rendelkeznek (i = 1, 2, ..., n), akkor a
vektoriális összegükb®l adódó ~m mágneses momentum:

~m =
n∑
i=1

~mi. (2.3)

Ezen mágneses momentum térfogati s¶r¶ségét nevezzük ~M mágnesezettségi vek-
tornak:

~M = lim
∆V→0

(
1

∆V

n∑
i=1

~mi

)
. (2.4)

~B mágneses indukció hatására az ~m momentummal rendelkez® mágneses dipólusra
ható τ forgatónyomaték az indukció és a momentum vektoriális szorzataként de�ni-
álható:

~τ = ~m× ~B. (2.5)

Továbbá ugyanezen mágneses dipólus energiája az indukció és a momentum vektori-
ális szorzatának mínusz egyszeresével lesz ekvivalens. A ~B mágneses indukcióvektor
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TDK-dolgozat 2.3. A JELENSÉG OKA

két összetev®re bontható: µ0
~H a szabad tér mágneses indukciója (µ0 a vákuum per-

meabilitása, értéke 4π·10−7
[
V s
Am

]
), µ0

~M pedig a mágnesezettségi vektorból adódó in-
dukciókomponens, amely a vizsgált anyag mágneses tulajdonságának függvénye [3].

Az indukcióvektor tehát ~B = µ0

(
~H + ~M

)
alakban írható fel, ahol ~H =

~B
µ0
− ~M az

úgynevezett mágneses térer®sség. Mágneses anyagok esetében ~M mágnesezettség és
~H mágneses térer®sség kapcsolata egy, a 2.1.-ben tárgyalt nemlineáris, többérték¶
hiszterézis operátorral fejezhet® ki:

~M = H { ~H}. (2.6)

Ezek alapján a mágneses térer®sség és a mágneses indukció kapcsolatát egy má-
sik, hasonlóan hiszterézises tulajdonságot reprezentáló operátor fejezi ki:

~B = µ0

(
~H + ~M

)
, (2.7)

~B = µ0

(
~H + H { ~H}

)
, (2.8)

~B = B{ ~H}. (2.9)

2.3. A jelenség oka

A ferromágneses anyagok esetén tapasztalható nemlineáris, többérték¶ ~M - ~H kap-
csolat �zikai magyarázatát mutatja be a 2.2. ábra.

H

M

A

B

C

H = 0 Ha

Hb Hc

2.2. ábra. Az els® mágnesezési görbe és a doménstruktúra alakulása

Az ilyen típusú anyagok esetében a küls® elektronhéjon jelent®s mennyiség¶
kompenzálatlan spin¶ elektron található, melyek egymással kölcsönhatásban áll-
nak, úgynevezett doméneket hozva így létre [4]. Amennyiben az anyag nem volt
még mágneses térben, a mágneses er®vonalak egy doméncsoporton belül záródnak.
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TDK-dolgozat 2.3. A JELENSÉG OKA

Ekkor az anyag a legkisebb energiájú állapotban van, kifelé nem rendelkezik mág-
neses tulajdonsággal. Ha az anyagot mágneses térbe helyezzük, azok a domének,
melyek mágnesezettsége eredend®en a küls® tér irányába mutat, n®ni kezdenek a
többi domén rovására. Ezen doménfal-elmozdulások irreverzibilisek, amely irrever-
zibilitás megmagyarázza, hogy miért rendelkeznek az ilyen típusú anyagok mágneses
szempontból memóriával.

Az 2.2. ábra lényegében az ered® mágneses momentumot, vagy az ezzel ará-
nyos mágnesezettséget adja meg a mágneses térer®sség függvényében. Ez az úgy-
nevezett els® mágnesezési görbe, mely három szakaszra bontható: a nemlineáris
(A) szakasz a reverzibilis faleltolódásokkal, a közel lineáris (B) szakasz az irrever-
zibilis faleltolódásokkal, a telítési vagy szaturációs (C) szakasz pedig a momen-
tumok elfordulásával magyarázható [3]. Ferromágneses közegben M >> H, így
~B = µ0

(
~H + ~M

)
≈ µ0

~M , tehát a B −H görbe és az M −H görbe jó közelítéssel

megegyezik. A teljes hiszterézishurok a 2.3. ábrán látható.

H

B

Hm

Bm

-Hm

-Bm

Br

-Br

-Hc Hc H

M

Hm

Mm

-Hm

-Mm

Mr

-Mr

-Hc Hc

2.3. ábra. A teljes hiszterézishurok

A H = B = M = 0 pont de�niálja az úgynevezett lemágnesezett állapotot. Ha
a mágneses térer®sséget növeljük, az anyag mágnesezettsége (és természetesen az
indukció is) n®ni fog. A görbe ezen szakasza az eddig tárgyalt els® mágnesezési görbe
(sz¶zgörbe). Ha a mágneses térer®sséget kritikus szintig növeljük, akkor telítésbe
jutunk: ett®l a ponttól kezdve a növekv® térer®sség ellenére sem fog változni a
mágneses indukció értéke. Ezen nevezetes pont a szaturációs pont (Hm,Mm, Bm) [5].

Az irreverzibilis faleltolódások megmagyarázzák, hogy csökken® térer®sség esetén
a mágnesezettség alakulása miért nem követi a sz¶zgörbét. Csökken® mágneses tér-
er®sség esetén a megváltozott doménstruktúra miatt az indukció bár csökkenni kezd,
de nem az el®z® esetben tapasztalt függvény szerint. Zérusra csökkentett mágneses
térer®sség esetén nem fogunk zérus mágnesezettséget tapasztalni, maradni fog vala-
mekkora Mr, Br remanencia. Az anyag lemágnesezéséhez negatív térer®sséget kell
létrehoznunk: ez a −Hc koercitív mágneses tér, ekkor B = M = 0. H csökkentése
esetén negatív szaturációba kerülünk, az innen növekv® térer®sség negatív remanen-
ciát hagy, és a lemágnesezéshez pozitív koercitív teret igényel. A H = B = 0 állapot
ezen a görbén soha nem érhet® el [4].
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TDK-dolgozat 2.4. A SKALÁRIS B-H KAPCSOLAT MÉRÉSE

2.4. A skaláris B-H kapcsolat mérése

Munkám során kizárólag a skaláris hiszterézis vizsgálatával foglalkoztam, azaz a
mágneses térer®sség és a mágneses indukció vektorjainak kizárólag a hosszát, nagy-
ságát vizsgáltam, az általuk bezárt szöget nem. Az ilyen jelleg¶ vizsgálat esetén min-
den esetben ki kell kötni, hogy ~H és ~B egymással párhuzamosak. A skaláris össze-
függés mérésére a legelterjedtebb elrendezés az úgynevezett toroid-transzformátoros
mérés, melynek sematikus vázlata a 2.4. ábrán látható.

Np Nsz

R1

R2

Rk

2.4. ábra. Toroid transzformátor

A transzformátor elkészítéséhez egy adott típusú anyagból egy kör alakú pró-
batestet válaszottam, amelyet megfelel® módon feltekercseltem. A mérés során egy
kiváló min®ség¶, kis veszteség¶, villamos gépbe tervezett mágneses vasanyagot vizs-
gáltam. A mérés elve a következ®: két eltér® tekercselést vezettem rá a próba-
testre. A primer oldalt árammal gerjesztettem, mely hatására feszültség indukáló-
dott, amit a szekunder oldali, a primer oldaltól gondosan elszeparált tekercselésen
tudtam visszamérni. A visszamért feszültségb®l a mágneses indukció értéke számít-
ható. Az alábbiakban bemutatom a mérés elméleti hátterét, a felhasznált képleteket
és eszközöket.

A 2.4. ábrán Np jelöli a primer oldali-, Nsz a szekunder oldali tekercs menetszá-
mát. R1 és R2 a küls® és bels® sugarak, melyekb®l Rk közepes sugár Rk = R1+R2

2

alapján számítható, mely segítségével a toroid próbatest közepes hossza lk = 2Rkπ
formulával írható le. A méréshez szükséges alapösszefüggések a Maxwell-egyenletek
segítségével levezethet®ek. A Maxwell-egyenletek teljes rendszerére dolgozatom kü-
lön fejezetben tér ki, itt csak az alkalmazást mutatom be az adott mérési problémával
kapcsolatban.

Az ismert áramgerejsztés és a mágneses térer®sség között a kvázistacionárius
gerjesztési törvény, vagy másnéven az I. Maxwell-egyenlet redukált alakja teremt
kapcsolatot: ∮

l

~H · d~l =

∫
A

~J · d ~A. (2.10)

A mérési elrendezés el®nyeit kihasználva az integrálok skaláris szorzattá egyszer¶-
södnek:

H(t)2Rkπ = NpI(t). (2.11)
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TDK-dolgozat 2.5. MÉRÉSI EREDMÉNYEK

Innen a mágneses térer®sség kifejezhet®, mely alapján belátható, hogy a térer®s-
ség pillanatnyi értéke a primer oldali menetszám, a pillanatnyi gerjeszt®áram és a
közepes sugár ismeretében számítható:

H(t) =
NpI(t)

2Rkπ
. (2.12)

A mágneses indukció meghatározásához a Faraday-féle indukciós törvényb®l ( II.
Maxwell-egyenlet) szükséges kiindulni:∮

l

~E · d~l =

∫
A

−∂
~B

∂t
· d ~A (2.13)

Mivel a mágneses indukció felületi integrálja megadja a felületeten áthaladó �uxust,
illetve a mágneses térer®sség vonalmenti integrálja az indukált feszültséggel lesz
egyenl®, ezért (2.13) átalakítható [1]:

ui(t) = −Nsz
∂

∂t

∫
A

~B(t) · d ~A, (2.14)

ui(t) = −Nsz
∂

∂t
B(t)A, (2.15)

B(t) = B0 +
1

NszA

∫ t

0

ui(τ)dτ. (2.16)

A formulában A a toroid keresztmetszete, B0 pedig konstans. A mérést a 2.5. ábrán
látható transzformátoron, LabVIEW [6] mér®rendszer segítségével végeztem el.

2.5. ábra. A vizsgált transzformátor és a mér®rendszer

A számítógépes mér®rendszer segítségével egy áramgenerátort vezéreltem, mely
áramgenerátor a primer oldali gerjesztést szolgáltatta. A rendszer a szekunder oldali
indukált feszültséget mérte vissza és dolgozta fel számítógépes úton. Az adatcsere
és a vezérlés egy NI-DAQ [7] adatgy¶jt® kártya segítségével történt [19].

2.5. Mérési eredmények

A mérés során nem vizsgáltam a próbatest B − H kapcsolatának frekvenciafüg-
gését, kizárólag a nemlinearitást reprezentáló hiszterézismentes mágnesezési görbe

9



TDK-dolgozat 2.5. MÉRÉSI EREDMÉNYEK

identi�kációjához szükséges koncentrikus görbéket vettem fel, amit a gerjeszt®áram
amplitúdójának fokozatos növelésével tettem meg. A méréshez használt toroid pa-
raméterei: Np = 197;Nsz = 139;R2 = 23, 5 mm;R1 = 28, 5 mm;Rk = 26 mm; lk =
163, 3628 mm;A = 10−5 m2. A koncentrikus hurkok mindegyike kijelöl egy-egy,
az adott hurokra jellemz® |Hmax|, |Bmax| értéket, mely pontok meghatározzák az
anyagra jellemz® hiszterézismentes mágnesezési görbét. Az eredmények a 2.6. áb-
rán láthatóak.

−2000 −1500 −1000 −500 0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

H[A/m]

B
 [
T

]

−2000 −1500 −1000 −500 0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

H[A/m]

B
 [
T

]

2.6. ábra. Mért koncentrikus görbék

A pontokra egy paraméterezett inverz tangens-görbe illeszthet®, melyet célszer¶
a következ® alakban felírni:

B(H, t) =
2Bs

π
arctg

(
H(t)

H0

)
, (2.17)

ahol Bs és H0 meghatározandó paraméterek. Az identi�kációt Matlab Curve Fitting
Toolbox [8] komponensének segítségével tettem meg. Az eredmény a 2.7. ábrán
látható.
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2.7. ábra. Az eredeti pontok és az illesztett görbe

Az illesztett inverz tangens-görbe paraméterei: Bs = 1, 25805, H0 = 146, 47722.
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TDK-dolgozat 2.6. A MÁGNESES PERMEABILITÁS MEGHATÁROZÁSA

2.6. A mágneses permeabilitás meghatározása

Lineáris, izotróp közeget feltételezve a mágneses térer®sség és a mágneses indukció
közötti kapcsolat ~B = µ0µr ~H alakban írható fel, ahol µr a vizsgált anyag vákuum-
hoz viszonyított relatív permeabilitása. Bár ebben az esetben µ értéke konstans,
érdemes szem el®tt tartani, hogy a permeabilitás a mágneses térer®sség függvénye,
pontosabban a mágneses indukció ~H-szerinti deriváltja. Skaláris esetben:

µ = µ (H) =
∂B

∂H
. (2.18)

Ezen okból a nemlineáris, hiszterézismentes karakterisztikával rendelkez® anyagok is
térer®sségfügg® permeabilitással fognak rendelkezni, amely függvény a mágnesezési
görbe deriválásával kapható. Mivel a B-H karakterisztika analitikus, zárt formában
felírható, ezért a deriválás is könnyen elvégezhet®:

µ(H) =
∂

∂H

{
2Bs

π
arctg

(
H

H0

)}
=

2Bs

πH0

1

1 +
(
H
H0

)2 . (2.19)

A képlet alapján meghatározott permeabilitásfüggvény a 2.8. ábrán látható.
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2.8. ábra. A vizsgált anyag permeabilitásfüggvénye

Érdemes meg�gyelni a két szabadon választható, az anyagot jellemz® paraméter
(H0,Bs) hatását a nemlineáris mágnesezési görbére és a permeabilitásra. Amennyi-
ben Bs értékét növeljük, úgy változik a függvény telítési pontja. Másképpen fogal-
mazva: Bs értéke számszer¶en befolyásolja az inverz tangens-görbe konvergenciáját:

lim
H→∞

{
2Bs

π
arctg

(
H

H0

)}
= Bs ∀Bs ∈ R+, (2.20)

lim
H→−∞

{
2Bs

π
arctg

(
H

H0

)}
= −Bs ∀Bs ∈ R+. (2.21)

A paraméter a konvergencia sebességét is megváltoztatja: minél nagyobb Bs

értéke, annál "élesebb" lesz a függvény nullátmenete, ami a permeabilitás maximu-
mának növekedését fogja maga után vonni. Ez a jelenség tanulmányozható a 2.9.
ábrán.
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2.9. ábra. Bs paraméter hatása

H0 növelése számszer¶en nem fogja befolyásolni az indukciófüggvény konvergen-
ciáját, csupán annak sebességét: a függvény minden esetben |Bs|-hez tart, de egyre
"lassabban". H0 értékét növelve a permeabilitás maximuma csökken, ami abból
adódik, hogy a konvergencia sebessége miatt egyre laposabb indukciógörbéket ka-
punk. A �zika nyelvén ez azt jelenti, hogy az anyagot nehezebb felmágnesezni: egy
bizonyos indukcióérték eléréhez nagyobb mágneses teret kell alkalmazni, mint egy
kisebb H0-val jellemezhet® anyag esetében. Ez látható 3.1. ábrán.
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2.10. ábra. H0 paraméter hatása

Összefoglalva: Bs értéke számszer¶en megadja az adott ferromágneses anyagra
jellemz® maximális indukcióértéket, növelése a mágneses permeabilitásfüggvény ma-
ximumának növekedését vonja maga után. H0 futtatása esetén az adott szaturáció-
hoz tartozó függvénymeredekség változtatható, amely ellentétes, csökken® permea-
bilitásmaximumot eredményez.
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3. fejezet

A Maxwell-egyenletek teljes

rendszere

3.1. Bevezetés

James Clerk Maxwell (1831-1879) a tizenkilencedik század kiváló elméleti �zikusa,
matematikusa volt ("A legalaposabb és legtermékenyebb �zikus volt Newton óta."
- Einstein), életének legfontosabb tevékenysége az elektromossághoz köthet®. Ki-
emelked® közrem¶ködése abban áll, hogy kiterjesztette és matematikai formába ön-
tötte a korábbi �zikusok (például Michael Faraday és André-Marie Ampére) kísér-
leti tapasztalatait, és egy összekapcsolódó, egységes parciális di�erenciálegyenlet-
rendszerbe foglalta azokat. Az egyenleteket Maxwell 1861-ben publikálta el®ször az
On Physical Lines of Force cím¶ cikkében [9].

3.1. ábra. James Clerk Maxwell és Oliver Heaviside

Maxwell egyenletrendszere húsz egyenletet és húsz változó mennyiséget tartal-
mazott. A Maxwell-egyenletek mai formáját egy óriási formátumú, kiemelked®, de
méltatlanul elfelejtett autodidakta angol villamosmérnöknek, Oliver Heaviside-nak
(1850-1925) köszönhetjük [10], aki munkája során kifejlesztette és a villamosmérnöki
gyakorlatba ültette a vektoranalízist, a rotáció és divergencia operátorok segítségével
tizenkét egyenletet átalakított, így az egyenletrendszert négy egyenletté redukálta
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TDK-dolgozat 3.2. A MAXWELL-EGYENLETEK

négy változóval.

3.2. A Maxwell-egyenletek

A Maxwell-egyenletek segítségével a tér bármely pontjában bármely térjellemz® (le-
gyen az akár elektromos, akár mágneses) meghatározható. Az egyenletek tehát
összefüggést teremtenek a gerjeszt® mennyiségek (töltés, áram), a térintenzitások
(mágneses indukció, elektromos térer®sség) és a gerjesztettségi mennyiségek (mág-
neses térer®sség, elektromos eltolás) között. A négy Maxwell-egyenlet integrális
alakban: ∮

l

~H · d~l =

∫
A

(
~J +

∂ ~D

∂t

)
· d ~A, (3.1)

∮
l

~E · d~l =

∫
A

−∂
~B

∂t
· d ~A, (3.2)∮

A

~B · d ~A = 0, (3.3)∮
A

~D · d ~A =

∫
V

ρ dV. (3.4)

Az els® Maxwell-egyenlet (3.1) az Ampére-féle gerjesztési törvény, �zikai jelen-
tése, hogy az áram és az elektromos tér változása mágneses teret kelt (értelemsze-
r¶en a két mennyiség egyszerre is létrehozhatja a teret, de külön-külön is képesek
mágneses teret kelteni). A második egyenlet (3.2) a Faraday-féle indukciós tör-
vény, �zikai jelentése, hogy a mágneses tér változása elektromos teret kelt. A har-
madik egyenlet(3.3) a mágneses Gauss-törvény, jelentése, hogy az indukcióvonalak
forrásmentesek, önmagukban záródnak. A negyedik egyenlet (3.4) az elektroszta-
tika Gauss törvénye, jelentése, hogy az elektromos tér forrásos, er®vonalai töltéseken
kezd®dnek, töltéseken végz®dnek.

A konstitúciós relációk munkám során felhasznált, ferromágneses anyagok esetén
érvényes formulái:

~B = B{ ~H}
~D = ε ~E

~J = σ
(
~E + ~Eb

)
w =

1

2
µH2 +

1

2
εE2.

(3.5)

Az egyenletek így teljesek és ellentmondásmentesek. Integrális alakjuk �zikailag
szemléletes, de a numerikus számítások során ebben a formában alkalmazni ®ket
nehéz, körülményes. Az egyenletek átírhatók di�erenciális alakba a Stokes-tétel∮

l

~v · d~l =

∫
A

∇× ~v · d ~A (3.6)

14



TDK-dolgozat 3.2. A MAXWELL-EGYENLETEK

és a Gauss-Osztrogradszkij-tétel segítségével [11]:∮
A

~v · d ~A =

∫
V

∇ · ~v dV, (3.7)

ahol ∇ az úgynevezett nabla vektoroperátor, mely segítségével a egy ~v (~r, t) =
~exvx(t) + ~eyvy(t) + ~ezvz(t)alakban leírható vektor rotációja és divergenciája kife-
jezhet® Descartes-féle koordináta-rendszerben:

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 (3.8)

∇× ~v = curl (~v) =

∣∣∣∣∣∣
~ex ~ey ~ez
∂
∂x

∂
∂y

∂
∂z

~vx ~vy ~vz

∣∣∣∣∣∣ = ~ex

(
∂vz
∂y
− ∂vy

∂z

)

− ~ey

(
∂vz
∂x
− ∂vx

∂z

)
+ ~ez

(
∂vy
∂x
− ∂vx

∂y

) (3.9)

∇ · ~v = div (~v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(3.10)

A kifejezések alapján belátható, hogy a rotáció vektoroperátor leképzése vektorból
vektort, míg a divergencia vektoroperátor leképzése vektorból skalárt eredményez.

A Maxwell-egyenletek di�erenciális alakja az eddigieket felhasználva:

∇× ~H = ~J +
∂ ~D

∂t
, (3.11)

∇× ~E = −∂
~B

∂t
, (3.12)

∇ · ~B = 0, (3.13)

∇ · ~D = ρ. (3.14)

~H minden esetben a mágneses térer®sséget jelöli, dimenziója A
m
, ~J az árams¶-

r¶ség, dimenziója A
m2 , ~D az elektromos eltolás, dimenziója C

m2 , ~E az elektromos

térer®sség, dimenziója V
m
, ~B a mágneses indukció, dimenziója T , ρ a töltéss¶r¶ség,

dimenziója C
m3 . A konstitúciós relációkban µ0 jelöli a vákuum permeabilitását, ér-

téke és dimenziója 4π · 10−7 V s
Am

, ε0 a vákuum permittivitása, értéke és dimenziója
8, 854 · 10−12 As

V m
, σ pedig az anyag vezet®képességét jelöli.

Az egyenletek segítségével papíron, analitikus, zárt formában csak igen kevés
példa oldható meg, melyek esetében jellegükb®l, elrendezésükb®l adódóan jelent®sen
egyszer¶s®dnek az itt bemutatott összefüggések (tipikusan ilyen a toroid transzfor-
mátor esete is). Az elektrodinamika alapegyenleteib®l levezetett, a kés®bbiek során
általam is bemutatásra kerül® parciális di�erenciálegyenlet-rendszerek megoldása
általában közelít® módszerekkel, numerikus technikák segítségével történik.
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4. fejezet

A végeselem-módszer

4.1. Történeti áttekintés

A végeselem-módszer (angolul Finite Element Method, röviden FEM ) numerikus
módszer parciális di�erenciálegyenletek közelít® megoldására, mely megoldás során
az eredeti di�erenciálegyenletet algebrai egyenletrendszerre képezzük le. Története
egészen a múlt század elejéig vezethet® vissza; bár a módszer elméleti hátterének
megalapozása már ekkor megtörtént, csak a század második felében, a számítógépek
megjelenésével vált igazán fontossá (nagyjából 1960-tól kezdve). Kezdetben mecha-
nikai problémák megoldására használták, de kés®bb gyakorlatilag a �zikai minden
területén elterjedt. A következ®kben általánosan igyekszem bemutatni a módszer
alapjait, fontos lépéseit.

4.2. A módszer alapelve

4.2.1. Probléma absztrahálása, peremfeltételek

Vizsgáljunk egy Ω problématartományt, mely tartományt két perem, ΓD és ΓN ha-
tárol. Ω-n értelmezzünk egy tetsz®leges < PDE >-vel jelölt, n-ed rend¶ parciális
di�erenciálegyenletet (az ismeretlen vektorfüggvény legyen ~A(~r, t)), melynek par-
tikuláris megoldását keressük az adott tartományon belül. Ezt szemlélteti a 4.1.
ábra.

Ω

Γ
D

Γ
N

n

4.1. ábra. Sematikus problématér
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A megoldáshoz de�niálni kell bizonyos peremfeltételeket; a kétféle peremen két-
félét:

ΓD : ~A = ~A0, (4.1)

ΓN :
∂ ~A

∂n
= ~f (~r, t) . (4.2)

Dirichlet-peremr®l és peremfeltételr®l (ΓD, 4.1) beszélünk akkor, ha a peremen
a keresett ~A(~r, r)függvény értékét direkt módon el®írjük. Neumann-peremr®l és
peremfeltételr®l (ΓN , 4.2) beszélünk akkor, ha a peremen a keresett ~A(~r, t) függvény
normális irányú deriváltját határozzuk meg.

4.2.2. A súlyozott maradék elve, gyenge alak

A módszer alkalmazása során az eredeti < PDE > helyett egy általánosabb, az
eredeti di�erenciálegyenletb®l származtatott integrálos alak kerül megoldásra. Ezt
az alakot úgy kapjuk, hogy a < PDE >-t nullára rendezzük, egy Wi súlyozófügg-
vénnyel megszorozzuk, majd integráljuk a teljes problématartományra [4]:∫

Ω

< PDE > ·Wi dΩ = 0 ∀Wi ∈ W. (4.3)

Amennyiben a keresett függvény vektorfüggvény (vektorpotenciál), úgy a sú-
lyozófüggvény is vektorfüggvény lesz, skalárpotenciál esetében W is skalárfüggvény.
Amennyiben az integrálos alak nullát ad, úgy az eredeti di�erenciálegyenletnek is
nullát kell adnia, így azt mondhatjuk, hogy az integrálos alak megközelít®leg ekvi-
valens az eredeti < PDE >-vel. Érdemes megjegyezni, hogy az ekvivalencia nem
teljesül Ω bizonyos részein, ahol a di�erenciálegyenlet operátorai nem értelemezet-
tek. Tipikusan ilyenek például a közeghatárok, ahol a térjellemz®knek ugrásuk van.
Az integrálos formula ezen esetekben is megoldásra vezet, ezért azt állíthatjuk, hogy
az egyenlet ezen alakja jóval általánosabb. A súlyozott maradék elvének másik nagy
el®nye, hogy segítségével kiküszöbölhet®ek az eredeti egyenletekben gyakran el®-
forduló másodrend¶ deriváltak is [12]. A súlyozott maradék elvének segítségével
felírt integrálegyenletet hívjuk a parciális di�erenciálegyenlet úgynevezett gyenge
alak jának, mely a szimuláció során ténylegesen kiszámításra kerül.

4.2.3. A problématér diszkretizálása

Miként a módszer neve is sugallja, a végeselemes szimuláció során a vizsgált prob-
lémateret diszkrét számú és nagyságú elemekre bontjuk fel, mely elemek típusa a
probléma jellegét®l és dimenziójától függ®en megválasztható. Munkám során egy-
dimenziós és kétdimenziós szimulációkat végeztem. Az els® esetben vonal-, míg a
másodikban háromszög elemeket alkalmaztam.

Szimulációim során csomóponti elemeket használtam, azaz a vektor-, illetve ska-
lárpotenciál értékeit az elemek csomópontjaiban értelmeztem, számoltam ki. A
diszkretizálás módja a 4.2. ábrán tanulmányozható. Egydimenzióban egy szakaszt
kett®, kétdimenzióban egy háromszöget érteleszemr¶en három csomópont ír le. Egy
csomópontot dimenziótól függ®en egy (Pn(xn)) vagy kett® (Pn(xn, yn)) síkkoordináta
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határoz meg, illetve egy elemet kett® vagy három csomópont ír le egyértelm¶en. Az
egydimenziós elem fontos jellemz®je a dl hossz, a kétdimenziósé a T terület.

x

y

dl

P (x )1 1 P (x )2 2 P (x )N N

P (x ,y )1 1 1

P (x ,y )2 2 2P (x ,y )3 3 3

T

4.2. ábra. Diszkretizálás egy- és kétdimenzióban

Munkám során egydimenziós problémára kézzel állítottam el® végeselem-hálót,
míg kétdimenziós esetben a GMSH szoftver rácsgeneráló modulját használtam, mely
segítségével gyorsan el®állíthatóak azok az input fájlok, melyek a szimulációhoz szük-
ségesek. Ezek: Nodes, Connect, Dirichlet, Exc. A Nodes nev¶ fájlban tároltam a
csomópontok koordinátáit. Ez egydimenziós esetben egy sorvektor, kétdimenziós
esetben egy mátrix, melynek két oszlopa és annyi sora van, ahány csomópont. A
Connect rendeli össze a csomópontokat elemmé. Kétdimenziós esetben három osz-
lopa és annyi sora van, ahány elemre felosztottuk a problématartományt. A Dirich-
let vektor azon csomópontok sorszámát tartalmazza, amelyekre a megoldás során a
Dirichlet-típusú peremfeltételt alkalmazni kell. Amennyiben a feladat megkívánja,
úgy azonosítani kell azon csomópontokat és/vagy elemeket, melyekre gerjesztést kí-
vánunk megadni. Erre szolgál az Exc nev¶ fájl.

4.2.4. Asszemblálás, megoldás

Mint ahogyan azt már a bevezet®ben említettem, a végeselemes szimuláció során
az eredeti di�erenciálegyenletet algebrai egyenletrendszerre képezzük le. Megoldás-
kor az adott problémára felírt gyenge alakot kell minden elemre felírni. Az egyet-
len elemre felírt egyenletrendszer együtthatóit a probléma komplexitásától függ®en
egy vagy több mátrixba kell asszemblálni, amely folyamat olyan együtthatómátri-
xot eredményez, melynek elemei többnyire zérusok. Az ilyen típusú mátrixot ritka
mátrixnak, angolul sparse matrix -nak nevezzük. A szimuláció során felírt egyenlet-
rendszer általánosan az alábbi alakban írható fel:

K u = b. (4.4)

A (4.4) formulában K az együtthatómátrix, u az ismeretleneket tartalmazó vektor,
b pedig a gerjesztést, a peremfeltételeket, illetve id®függ® probléma esetén az el®z®
id®lépést magában foglaló vektort jelenti. A feladat megoldása az

u = K−1 b (4.5)

egyenlet kiszámításával történik. A szimuláció kritikus lépése az együtthatómátrix
invertálása, amely komplex, sok ismeretlent tartalmazó feladatok esetén rendkívül
id®igényes m¶velet.
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4.3. Formafüggvények

A szimuláció során a keresett potenciálértéket (amely a probléma típusától függ®en
lehet skalár- vagy vektorpotenciál) formafüggvények segítségével közelítjük. Mivel
munkám során kizárólag vektorpotenciállal és csomóponti (nodális) elemekkel dol-
goztam, ezért a továbbiakban csak ennek a bemutatásával fogok foglalkozni. Cso-
móponti elemekr®l beszélünk akkor, ha a potenciálérték az elemek csomópontjaiban
értelmezett. Az általam megoldott egydimenziós és kétdimenziós problémák esetén a
csomóponti potenciálértékek interpolálhatóak skaláris formafüggvények segítségével.
Tetsz®leges ~A vektorpotenciál ~A = ~A(~r, t) értéke közelíthet® [4]:

~A ≈
N∑
i=1

Wi
~Ai, (4.6)

ahol N jelöli a csomópontok számát, Wi a közelítéshez használt úgynevezett for-
mafüggvény. A szimuláció során a 4.2.2. pontban említett Wi súlyozófüggvény és a
formafüggvény megegyezik (ez az úgynevezett Galjorkin-módszer [14]), amely miatt
a kialakuló egyenletrendszer szimmetrikus és négyzetes lesz. Ez megtehet®, hiszen
Wi függvény tetsz®leges lehet. Az így bevezetett csomóponti formafüggvények a
következ®képpen de�niálhatóak:

Wi =

{
1 az i-edik csomópontban,
0 az összes többiben.

(4.7)

Munkám során az egydimenziós szimulációkhoz a 4.3. ábrán látható lineáris forma-
függvényeket alkalmaztam.

x1 x2

W (x)1
W (x)2

1

4.3. ábra. Egydimenziós, lineáris formafüggvény

Ezen formafüggvények az egyenes egyenletének segítségével felírhatóak:

W1(x) =
x2 − x
x2 − x1

, W2(x) =
x− x1

x2 − x1

. (4.8)

A kétdimenziós szimulációkhoz használt lineáris formafüggvények bevezetéséhez a
baricentrikus koordináta-rendszer ismerete szükséges, amely a 4.4 ábrán tanulmá-
nyozható.
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(x ,y )1 1

(x ,y )2 2

(x ,y )3 3

(x,y)

∆1

∆2

∆3

4.4. ábra. Baricentrikus koordináták

A háromszög csúcsainak koordinátái segítségével a síkidom területe számítható
egy mátrix determinánsának segítségével:

∆ =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ , (4.9)

ahol (xn, yn) a háromszög csúcsainak koordinátái az óramutató járásával ellenkez®
irányban felvéve. A háromszög belsejében felvett tetsz®leges pont koordinátáinak
segítségével három különböz® területfüggvény de�niálható:

∆1 =
1

2

∣∣∣∣∣∣
1 x y
1 x2 y2

1 x3 y3

∣∣∣∣∣∣ , ∆2 =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x y
1 x3 y3

∣∣∣∣∣∣ , ∆3 =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x y

∣∣∣∣∣∣ . (4.10)

A kétdimenziós, lineáris formafüggvényt leíró egyenlet [4, 12] ezek alapján:

Wi =
∆i

∆
i = 1, 2, 3. (4.11)

4.4. A szimuláció lépései

Egy végeselemes szimuláció általános lépései a 4.5. ábrán láthatóak. A modell
speci�kációja során át kell gondolni, hogy pontosan milyen problémát, elektromág-
neses jelenséget, milyen geometriai elrendezést szeretnénk vizsgálni, a jelenséget mi-
lyen parciális di�erenciálegyenletek írják le, a közeghatárokon milyen peremfeltéte-
leket kell kielégíteni, a térjellemz® mennyiségek között milyen kapcsolat de�niálható
(lineáris-nemlineáris probléma), illetve érdemes már itt szem el®tt tartani, hogy jel-
leg és nagyságrend tekintetében milyen végeredményt várunk. Az el®feldolgozás so-
rán pontosan de�niálásra kerül a gerjesztés típusa (ha van) és az anyagparaméterek,
majd a szimulált geometria diszkretizálása, a rácsstruktúra eltárolása következik.

A számítási fázis tartalmazza az elemegyenlet felírását a gyenge alak alapján, a
K együtthatómátrix feltöltését és a b vektor aktualizálását a gerjesztés és az el®z®
id®lépés alapján, amennyiben id®függ® a probléma. A szimuláció kritikus lépése
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az együtthatómátrix invertálását magában foglaló megoldó fázis. Amennyiben id®-
függ® a probléma, illetve nemlineáris anyagtulajdonság kerül szimulálásra, úgy a
számítási lépéseket annyiszor kell elvégezni, ahány id®lépés van, id®lépésenként pe-
dig annyiszor, ahányszor a kés®bbiek során bemutatott, nemlinearitás szimulálására
használt iterációs technika megfelel® pontossággal közelíti a valós eredményt. Ezt
követi az utófeldolgozás, az eredmények kiértékelése, mely során változtathatunk a
kiinduláskor speci�kált modellen, amennyiben szükség van rá.

Adatok összegyűjtése

Rácsgenerálás

Elemegyenlet felírása

Asszemblálás

Megoldás

Utófeldolgozás

Előfeldolgozás

Számítás

O
p

ti
m

a
li

z
á
c
ió

N
e
m

li
n

e
á

r
is

 s
z
á

m
ít

á
s
 /

 I
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é
s

4.5. ábra. Végeselemes szimuláció lépései
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5. fejezet

Nemlinearitás implementációja

végeselemes környezetben

Ebben a fejezetben általánosan bemutatom az implementáció során használt �xpon-
tos iterációs sémát, illetve felvázolom a mágneses térer®sség és a mágneses indukció
közötti nemlineáris kapcsolat megvalósítási lehet®ségeit, módszereinek lépéseit a nu-
merikus térszámításban.

5.1. Fixpontos iterációs séma

A �xpontos iterációs technika elve abban áll, hogy az

x = f (x) (5.1)

alakban felírt nemlineáris egyenlet ismert xk(k = 0, 1, ..., n) közelít® értékeinek fel-
használásával további közelít® értékek sorozatát képezzük, amelyek lépésr®l-lépésre
az egyenlet valódi gyökéhez tartanak. Ha az egyenlet (5.1) alakban adott, akkor a
kézenfekv® iterációs eljárás:

xn+1 = f (xn) (n = 0, 1, 2, ...;x0 adott) . (5.2)

Ezt az iterációs eljárást szukcesszív approximációnak (magyarul sorozatos közelítés-
nek) [11] nevezzük. Az xn sorozat c = f(c) �xponthoz, tehát az x = f(x) egyenlet
megoldásához konvergál, ha c-nek van olyan I környezete, ahol∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ ≤ K < 1 (K = konstans) (5.3)

és az iteráció x0 kezd®értéke ebben a I környezetben fekszik. Amennyiben f(x)
folytonosan di�erenciálható, úgy a megfelel® feltétel [11]:

|f(x1)− f(x2)|
|x1 − x2|

< 1 ∀ x1, x2 ∈ I. (5.4)

Ezen formula alapján megfogalmazható a kontraktív leképzés de�níciója [1] is:

|f(x1)− f(x2)| ≤ K |x1 − x2| ∀ x1, x2 ∈ I (5.5)
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x

y

y = x

y = f (x)

x0
x

1
x

2c

c = f(c)

5.1. ábra. Fixpontos iteráció kontraktív, konvergens leképzés esetén

amennyiben 0 < K < 1. Ebben az esetben az f(x) leképzést kontraktív leképzés-
nek hívjuk, mert csökkenti az x1 és x2 pontok közötti távolságot. Ez a leképzés
a 5.1. ábrán látható konvergens eljárást eredményezi, mely az x = f(x) egyenlet
megoldásához konvergál. Ha ez a feltétel nem teljesül, úgy az iteráció divergens.

Tetsz®leges F (x) = 0 alakú egyenlet felírható x = f(x) alakban a következ®kép-
pen [1]:

xn+1 = xn − λF (xn) ≡ f(xn), n = 0, 1, 2, ..., (5.6)

ahol λ paraméter megválasztásával az f(x) függvény kontraktivitása biztosítható.

5.2. A polarizációs formula

A ~B mágneses indukció az 5.2. ábrán látható módon két komponensre bontható
fel [1]:

~B = µ ~H + ~R, (5.7)

ahol µ konstans, kizárólag a ~H mágneses térer®sség függvénye, tehát ez a komponens
lineáris, ezen kívül ~R tartalmazza az anyagtól függ® nemlineáris komponenst, amely
az adott karakterisztikára jellemz®. A formula felírható a

~R = ~B − µ ~H (5.8)

alakban, mely alakból kiindulva, a mágneses indukciót direkt karakterisztikával fel-
írva a következ® összefüggés adódik:

~R = B{ ~H} − µ ~H, (5.9)

mely leképzés kontraktív µ optimális megválasztása esetén:

µ =
µmax + µmin

2
. (5.10)
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(5.7) összefüggéséhez hasonlóan a mágneses térer®sségre felírható:

~H = ν ~B + ~I, (5.11)

ahol ν konstans, így ν ~B lineáris, ~I pedig az adott anyag karakterisztikájára jellemz®
nemlineáris reziduál:

~I = ~H − ν ~B. (5.12)

H

B

lineáris összetevő

nemlineáris karakterisztika

μH

R

5.2. ábra. A mágneses indukció két komponensre bontása

A mágneses térer®sség és a mágneses indukció közötti direkt kapcsolatot leíró
karakterisztikát felhasználva:

~I = ~H − νB{ ~H}, (5.13)

mely leképzés kontraktív ν optimális megválasztása esetén:

ν =
2νmaxνmin
νmax + νmin

. (5.14)

5.3. Nemlineáris formalizmusok megvalósítása

5.3.1. Séma a mágneses térer®sségre építve

Az alábbiakban összefoglalom a �xpontos iteráció lépéseit abban az esetben, amely-
ben a megvalósított potenciálformalizmus a mágneses térer®sségre kerül felírásra,
tehát a szimuláció kimenete maga a ~H mágneses térer®sségvektor [1]. Az iterációs
sorozat µ optimális megválasztására épít (5.10). Az iteráció tetsz®leges ~R(0) értékb®l
indítható. Az n-edik lépésben a következ®ket kell végrehajtani [1] (T.F.H. : n > 0):

1. ~H(n) mágneses térer®sség meghatározása ~R(n−1) alapján a potenciálformaliz-
mus segítségével, tehát: ~H(n) = M {~R(n−1)};

2. ~B(n) mágneses indukció a direkt modell segítségével meghatározható, tehát:
~B(n) = B{ ~H(n)};
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3. ~R nemlineáris reziduál értéke javítható:

~R(n) = ~B(n) − µ ~H(n) = B{ ~H(n)} − µ ~H(n); (5.15)

Az el®z® lépéseket addig kell ismételni, amíg az eljárás nem konvergál megfelel®
mértékben. A feltétel megfogalmazható:∣∣∣∣∣∣~R(n) − ~R(n−1)

∣∣∣∣∣∣ < ε, (5.16)

ahol ε egy megfelel®en kis küszöbindex.

5.3.2. Séma a mágneses indukcióra építve

A mágneses indukcióra épített iterációs sorozat ν optimális megválasztására épít
(5.14). Az iteráció tetsz®leges ~I(0) értékb®l indítható. Az n-edik lépésben a követ-
kez®ket kell végrehajtani [1] (T.F.H. : n > 0):

1. ~B(n) mágneses indukció meghatározása ~I(n−1) alapján a potenciálformalizmus
segítségével, tehát: ~B(n) = M {~I(n−1)};

2. ~H(n) mágneses térer®sség a következ® formulával becsülhet® ~B(n) alapján:

~H(n) = ν ~B(n) + ~I(n−1); (5.17)

3. ~I(n) nemlineáris reziduál értéke javítható:

~I(n) = ~H(n) − νB{ ~H(n)}; (5.18)

Az el®z® lépéseket addig kell ismételni, amíg az eljárás nem konvergál megfelel®
mértékben. A feltétel megfogalmazható:∣∣∣∣∣∣~I(n) − ~I(n−1)

∣∣∣∣∣∣ < ε, (5.19)

ahol ε egy megfelel®en kis küszöbindex.
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6. fejezet

Egydimenziós probléma szimulációja

6.1. A probléma de�niálása

Klasszikus elektrodinamikai problémának tekinthet® a 6.1. ábrán látható váltakozó
mágneses térbe helyezett vezet® lemez. A vizsgálódás tárgyát képez® lemez hosszú-
sága sokszorosa a szélességének, ezért gyakorlati szempontból végtelenül hosszúnak
tekinthet® (l >> 2a) [11].

x

z

y

l

2a

b

6.1. ábra. Vezet® lemez mágneses térben

A szimuláció során a 2a vastagsághoz képest végtelennek feltételezett l lemez-
hosszúság miatt elenged® csupán a vizsgált próbatest x = 2a tartományának vizs-
gálata, amely kiválóan leírja a lemez belsejében kialakuló mágneses teret. A véges-
elemes diszkretizálás során ezt az x-irányú szakaszt osztottam egydimenziós vonal
elemekre a [−a; +a] intervallumon belül.
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6.2. A problémát leíró egyenletek

A szimuláció során megoldásra kerül® di�erenciálegyenlet levezetéséhez a Maxwell-
egyenletek kvázistacionárius alakjai, illetve a nemlinearitást is magukban foglaló
konstitúciós relációk szükségesek [14]:

∇× ~H = ~J, (6.1)

∇× ~E = −∂
~B

∂t
, (6.2)

∇ · ~B = 0, (6.3)

~B = µ ~H + ~R, (6.4)

~J = σ ~E. (6.5)

Felhasználva (6.1) és (6.5) egyenleteket, majd az eredményt átrendezve a következ®
egyenlet adódik:

~E =
1

σ
∇× ~H. (6.6)

Ezt visszahelyettesítve (6.2) egyenletbe

∇× 1

σ
∇× ~H = −∂

~B

∂t
(6.7)

adódik. Felhasználva (6.4) egyenletet, illetve azt a tényt, hogy a σ anyagparamétert
a vizsgált tartományon belül konstansnak tekinthetjük

∇×∇× ~H = −σ ∂
∂t

(
µ ~H + ~R

)
(6.8)

írható fel, melyet átrendezve a problémára felírható di�erenciálegyenlet végleges
alakját kapjuk:

∇×∇× ~H + µσ
∂ ~H

∂t
= −σ∂

~R

∂t
. (6.9)

6.3. Gyenge alak levezetése

Az egyenletet egy tetsz®leges ~W súlyozófüggvénnyel megszorozva, majd integrálva
a teljes problématartományra a következ® integrálegyenlet adódik:∫

Ω

~W · ∇ ×∇× ~H dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ = −σ

∫
Ω

~W · ∂
~R

∂t
dΩ. (6.10)

Az egyenl®ség bal oldalán másodrend¶ derivált található, mely kiküszöbölhet®

∇ · (~u× ~v) = ~v · ∇ × ~u− ~u · ∇ × ~v (6.11)

azonosság felhasználásával, az alábbi megválasztás esetén:

~v = ~W, ~u = ∇× ~H. (6.12)
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Az összefüggést felhasználva a következ® integrálegyenlet írható fel:∫
Ω

∇ ·
(
∇× ~H × ~W

)
dΩ +

∫
Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ =

= −σ
∫

Ω

~W · ∂
~R

∂t
dΩ.

(6.13)

Az integrálegyenlet bal oldalának els® tagja egy vektormez® divergenciájának tér-
fogati integrálja, mely a Gauss-Osztrogradszkij-tétel segítségével (3.7) átírható a
térfogatot határoló felületre vett körintegrálra. Ezek alapján a gyenge alak:∮

Γ

∇× ~H × ~W · ~n dΓ +

∫
Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ =

= −σ
∫

Ω

~W · ∂
~R

∂t
dΩ.

(6.14)

Egy- és kétdimenziós szimulációk esetén az els® körintegrál értéke zérus, így ezzel a
taggal az implementáció során nem kell foglalkozni. A di�erenciálegyenlet gyenge
alakja tehát a következ® formában adódik:∫

Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ = −σ

∫
Ω

~W · ∂
~R

∂t
dΩ. (6.15)

6.4. Végeselemes implementáció

~H mágneses térer®sség a vizsgált példában olyan vektormennyiség, amelynek csak
z-irányú komponense van, de kizárólag x térdimenziótól és az id®t®l függ:

~H = Hz(x)~ez = H~ez. (6.16)

H közelítése W skaláris, lineáris, egydimenziós formafüggvények segítségével törté-
nik:

H ≈
Np∑
i=1

WiHi, (6.17)

ahol Np a csomópontok száma. Végeselem-módszernél a korábban tárgyaltak sze-
rint a gyenge alak súlyfüggvénye megegyezik a potenciál approximációjához használt
formafüggvénnyel, továbbá az általános rotáció operátorok gradiensekké egyszer¶-
södnek, (6.15) tehát átírható:∫

Ω

∇
Np∑
i=1

WiHi · ∇Wj dΩ + µσ

∫
Ω

Wj

Np∑
i=1

Wi
∂Hi

∂t
dΩ =

= −σ
∫

Ω

Wj

Np∑
i=1

Wi
∂Ri

∂t
dΩ j = 1, ..., Np,

(6.18)

Np∑
i=1

∫
Ω

∇Wi · ∇Wj dΩHi + µσ

Np∑
i=1

∫
Ω

WjWi dΩ
∂Hi

∂t
=

= −σ
Np∑
i=1

∫
Ω

WjWi dΩ
∂Ri

∂t
j = 1, ..., Np.

(6.19)
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A formula egyetlen elemre felírva:∫
Ω

{[
∇W1

∇W2

]
·
[
∇W1 ∇W2

]}
dΩ

[
H1

H2

]
+ µσ

∫
Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ

[
∂H1

∂t
∂H2

∂t

]
=

= −σ
∫

Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ

[
∂R1

∂t
∂R2

∂t

]
.

(6.20)

Ez az egyenlet három integrált tartalmaz, melyek megvalósítását célszer¶ külön-
külön tárgyalni.

6.4.1. Az els® integrál

Az els® integrál tartamazza a csomóponti formafüggvények gradienseit és a mágneses
térer®sséget, mint ismeretlent. Lineáris formafüggvények mellett egy-egy végeselem
felett konstans gradiensek adódnak, amely lényegesen megkönnyíti az integrál kiér-
tékelését. Egydimenziós esetben a gradiensek a

∇W1 =
d

dx

{
x2 − x
x2 − x1

}
= − 1

x2 − x1

,

∇W2 =
d

dx

{
x− x1

x2 − x1

}
=

1

x2 − x1

(6.21)

alakot öltik, az Ω elemen történ® integrálás pedig lényegében nem más, mint a
szakasz hoszzával történ® szorzás. (6.20) alapján az els® integrál:{[

∇W1

∇W2

]
·
[
∇W1 ∇W2

]}
(|x2 − x1|)

[
H1

H2

]
=

=

{[
∇W1∇W1 ∇W1∇W2

∇W2∇W1 ∇W2∇W2

]}
(|x2 − x1|)

[
H1

H2

]
.

(6.22)

Az elemhosszal szorzott 2×2-es mátrix elemei asszembláláskor a K együtthatómátrix
megfelel® helyeihez adódnak hozzá, a mágneses térer®sség ismeretleneit tartalmazó
oszlopvektor elemeit pedig u megfelel® elemei reprezentálják.

6.4.2. A második és harmadik integrál

A két másik integrál kiértékelése hasonló módon zajlik, így most csak a második
integrált fogom bemutatni, a harmadik, az egyenlet jobb oldalán található kifejezés
kiértékelése az itt leírtakkal teljesen analóg.

Fontos eltérés az eddiekhez képest, hogy a kifejezésekben nem a formafüggvények
gradiensei, hanem maguk a függvények szerepelnek, tehát nem konstans érték¶ függ-
vényt kell integrálni egy-egy végeselem felett. A kiértékeléshez numerikus integrálás,
Gauss-kvadratúra szükséges, amivel dolgozatom a kés®bbiek során fog foglalkozni.
A másik lényeges különbség, hogy a kifejezések az ismeretlen mágneses térer®sség és
R reziduál id® szerinti deriváltját tartalmazzák, ami azt jelenti, hogy ezen kifejezé-
seket két részre kell bontani. Ehhez el®ször be kell vezeni a numerikus di�erenciálás
fogalmát [11]:

∂f

∂t
≈ f(t2)− f(t1)

t2 − t1
. (6.23)
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A második integrál ezek alapján felírható

µσ

∫
Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1−H1old

dt
H2−H2old

dt

]
(6.24)

alakban. A kifejezés els® tagja

µσ

∫
Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1

dt
H2

dt

]
(6.25)

tartalmazza H1 és H2 ismeretleneket, így ez a tag a K együtthatómátrix és u vektor
részét fogja képezni, míg

−µσ
∫

Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1old

dt
H2old

dt

]
(6.26)

az el®z® id®lépésH-értékeit tartalmazza, így a megoldandó lineáris algebrai egyenlet-
rendszer másik, gerjesztési oldalára, a blin lineáris komponenst tartalmazó vektorba
fog kerülni.

A harmadik, a mágneses indukció reziduális komponensének deriváltját tartal-
mazó integrál értelmezése és megvalósítása az itt leírtakkal teljesen analóg. Mivel az
integrál nem tartalmaz ismeretlen H potenciálértéket, ezért kizárólag a gerjesztési
oldalon fog szerepni a bres reziduális gerjesztési vektorkomponensben. A felírásra
kerül® egyenletrendszer az eddigiek alapján:

K u = blin + bres. (6.27)

6.5. Gauss-kvadratúra

A Gauss-kvadratúra numerikus módszer határozott integrálok közelít® meghatáro-
zására. Abban az esetben, ha egy elemen az integrálandó függvény nem konstans,
hanem a helynek valamilyen függvénye, úgy az elem felett értelmezett integrál kiszá-
mítására közelít® módszert, Gauss-kvadratúrát szükséges használni. A Gauss-típusú
kvadtatúraképletek középérték-formulák [11]:∫ b

a

f(x) dx ≈
n∑
ν=1

cνyν , yν = f(xg,ν), (6.28)

ahol cν és xν a formula súlyai és pontjai, a számítás során mindkett® szabad para-
méter, értékeit úgy célszer¶ megválasztani, hogy a közelítés minél pontosabb legyen.
Amennyiben az [a; b] = [−1; 1] választással élünk, úgy egy els®fokú polinom integ-
rálja az intervallumon belül a

xg,1 = − 1√
3

c0 = 1,

xg,2 =
1√
3

c1 = 1
(6.29)

súlyokkal és pontokkal közelíthet®. Ebben a fejezetben kizárólag az egydimenziós
esetet mutatom be, a kétdimenziós Gauss-kvadratúrát dolgozatom a kés®bbiek fo-
lyamán tárgyalja. Mivel az egydimenziós formafüggvények els®fokúak, így az itt
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bemutatott súlyokkal és pontokkal kiértékelhet® az integrál. Mivel az integrálást
nem a [−1; 1] intervallumon, hanem egy végeselem [x1;x2] intervallumán kell végre-
hajtani, így az alábbi transzformációval kell élni [11]:∫ b

a

f(x) dx ≈ b− a
2

n∑
ν=1

cνf

(
b− a

2
xg,ν +

a+ b

2

)
. (6.30)

A kvadratúra lépései egydimenziós szimuláció esetén (6.25) együtthatóján bemu-
tatva:

µσ

∫
Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ = µσ

∫ x2

x1

{[ x2−x
x2−x1
x−x1
x2−x1

]
·
[
x2−x
x2−x1

x−x1
x2−x1

]}
dx ≈

≈ x2 − x1

2

2∑
ν=1

{[x2−xp,ν
x2−x1
xp,ν−x1
x2−x1

]
·
[x2−xp,ν
x2−x1

xp,ν−x1
x2−x1

]}
cν =

=
x2 − x1

2

{[
x2−xp,1
x2−x1
xp,1−x1
x2−x1

]
·
[
x2−xp,1
x2−x1

xp,1−x1
x2−x1

]
c1 +

[
x2−xp,2
x2−x1
xp,2−x1
x2−x1

]
·
[
x2−xp,2
x2−x1

xp,2−x1
x2−x1

]
c2

}
,

(6.31)

ahol:

xp,1 =
x2 − x1

2
xg,1 +

x1 + x2

2
,

xp,2 =
x2 − x1

2
xg,2 +

x1 + x2

2
.

(6.32)

6.6. Diszkretizálás, peremfeltételek

Miként azt már említettem, a diszkretizálást egydimenzióban, x-irányban, [−a; a]-n
végeztem el. Ez a lehet® legegyszer¶bb eset, rácsgeneráló szoftver használata nélkül,
Matlab-környezetben két parancs segítségével el lehet végezni:

N = 100;

x = [-a:(2*a)/N:a];

Ebben az esetben N = 100 végeselem adódik 101 csomóponttal. A megoldáshoz a
lemez két oldalára el® kell írni direkt módon a mágneses térer®sség id®függvényét.
Ez ebben az esetben egy egyszer¶ Dirichlet-peremfeltételt jelent, ami azt jelenti,
hogy az x = −a és az x = a csomópontok térer®sség-értékét kell el®írni:

H(x = −a, t) = H0cos(ωt),

H(x = a, t) = H0cos(ωt).
(6.33)

6.7. Eredmények, kiértékelés

A szimuláció paraméterei: f = 500 Hz, T = 2 ms, σ = 2, 22 · 106 A
Vm

, a = 0, 175 ·
10−3 m, H0 = 2000 A

m
.

A szimuláció els® szakaszában (t < 0, 1T ) az inverz tangens-görbe jellegéb®l
adódóan a mágneses térer®sség és a mágneses indukció között lényegében lineáris
kapcsolat tapasztalható, a két függvény csupán egy konstansban tér el egymástól.
Ez látható a 6.2. ábrán.
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6.2. ábra. H és B közötti lineáris kapcsolat (t < 0, 1T )

A mágneses térer®sség további növelése után az anyag telítésbe jut, ami azt
jelenti, hogy a mágneses térer®sség további növekedése ellenére sem növekszik tovább
az indukció értéke az anyag belsejében Bs-nél. Ezt szemlélteti a 6.3. ábra.
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6.3. ábra. Szaturáció (t = 0, 25T )
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6.4. ábra. Éles átmenet t = 0, 52T -nél

A 6.4. ábra a pozitív szaturációból történ® éles átmenetet mutatja. Az ábrán
látható, hogy miközben a lemez közepe még szinte pozitív telítésben van, addig
a lemez szélén már negatív indukcióértékek tapasztalhatóak. Ennek oka az inverz
tangens-görbe H = 0 -közeli nagy meredeksége. Mivel a térer®sség alakulása a lemez
szélét®l a közepe felé közel lineáris, ráadásul a középpontra jó közelítéssel szimmet-
rikus is, így a mágneses indukció adott pillanatban felvett helyfüggése gyakorlatilag
kirajzolja a modell görbéjének egy szakaszát. A 6.5. ábra ugyanezt a jelenséget
mutatja, csak a negatív szaturációból történ® visszatérés esetén.
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6.5. ábra. Éles átmenet t = 1, 02T -nél

A 6.6. ábra egyetlen csomópont modell alapján számítottB−H-karakterisztikáját
mutatja. Látható, hogy a �xpontos iteráció ε = 10−4 küszöbindex mellett gyakor-
latilag hibátlanul közelíti az analitikus formulával leírt karakterisztikát. Az ábrán
tanulmányozható továbbá mind a µH lineáris, mind az R reziduális komponens
alakulása, mely pontok szuperpozíciója minden id®pillanatban kiadja az adott cso-
mópont B −H-karakterisztikáját.
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6.6. ábra. A karakterisztika alakulása az N = 50 csomópontban

A 5.1. ábra a konvergenciához szükséges �xpontos lépések számát ábrázolja az
id®lépések függvényében két eltér® ε küszöbindex esetén. Meg�gyelhet®, hogyha a
pontosságot ezerszeresére növeljük (ε = 10−2 → ε = 10−5), úgy a �xpontos lépé-
sek száma átlagosan körülbelül háromszorosára növekszik. Az egy periódusra fel-
vett konvergenciagörbék jellegéb®l látható, hogy a �xpontos lépések száma bizonyos
szakaszokon növekv®-, más szakaszokon csökken®-, vagy impulzusszer¶en csökken®
tendenciát mutat. A kezdeti rövid tranzienst leszámítva a függvény 4 szakaszra
bontható:

1. Az els® szakasz a zérusról növekv® mágneses térer®sség szakasza. Ezen a szaka-
szon a �xpontos lépések száma id®lépésenként n®, melynek oka, hogy a modell
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karakterisztikája egyre határozottabban kezd elszakadni a lineáris szakasztól,
a reziduál értéke jelent®sen csökken, hogy az inverz tangens-görbének megfele-
l®en kompenzálja a lineáris komponenst. Mivel a �xpontos lépések a reziduál
aktuális értékének javítását szolgálják egészen a küszöbindexig, ezért a számí-
tás egyre több iterációs lépést igényel a megkívánt konvergenciához.

2. A maximum elérése után a lépések száma impulzusszer¶en lecsökken, melynek
oka, hogy a mágneses indukció eléri a szaturációs értéket, így néhány id®lé-
pésen keresztül az indukció értéke változatlan, konstans, így nincs szükség a
reziduál értékének lényeges javítására.

3. A következ® szakaszon a térer®sség és a mágneses indukció is csökken, a modell
kezd visszatérni a lineáris szakaszra, mely során a reziduál értékét folyamato-
san javítani kell a negatív értékekt®l egészen a nulláig.

4. Amennyiben a modell visszatér a lineáris szakaszra, úgy a reziduál értéke közel
nulla, így nincs szükséges lényeges mennyiség¶ �xpontos lépésre annak javí-
tásához. Ez lényegében azt jelenti, hogy a modell kimenetét megközelít®leg a
lineáris komponens határozza meg.

A következ® szakaszok az itt leírtakkal teljesen analóg módon magyarázhatóak. El-
mondható tehát, hogy a következ® impulzusszer¶ lépésszámvisszaesés a negatív sza-
turáció konstans mágneses indukciójának, míg a kevésbé meredek visszazuhanás a
kvázi-lineáris szakaszra történ® visszatérésének köszönhet®.
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6.7. ábra. Fixpontos lépések száma id®lépésenként (ε = 10−2, ε = 10−5)
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7. fejezet

Kétdimenziós probléma szimulációja

7.1. Vezet® lemez mágneses térben

Az el®z® fejezetben bemutatott di�erenciálegyenlet alkalmazható kétdimenziós prob-
léma szimulációjára is. Legyen adott egy szimmetrikus, a szélesség¶ és b hosszúságú
lemez, melynek vastagsága elhanyagolható a többi geometriai paraméteréhez képest.
A szimmetriát kihasználva elegend® csupán a lemez egynegyedének vizsgálata.

a

b b/2

a/2

Ω ГD

ГD

Гsz

Гsz

x

y

7.1. ábra. A vizsgált lemez

A vizsgált Ω problémateret (7.1. ábra) ΓD és Γsz perem határolja; el®bbi az ere-
deti lemez valódi pereme, utóbbi pedig az egyszer¶sítésb®l adódó szimmetriaperem.
ΓD csomópontjain Dirichlet-peremfeltételt kell el®írni, hiszen a lemeznek ez a széle
közvetlen kapcsolatban áll az alkalmazott küls® periodikus mágneses térer®sséggel.
Γsz szimmetriaperem kezelése kényelmes, hiszen ezekre a csomópontokra semmilyen
peremfeltételt sem kell alkalmazni.
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7.2. Rácsgenerálás

Munkám során az adott geometriára két rácsot is generáltam: egyet kézzel, egyet
pedig GMSH [16] szoftver rácsgeneráló moduljának segítségével. El®bbi módszerrel
szimmetrikus rácsot készítettem, majd mátrixok formájában, manuálisan vittem be
a rácsot leíró adatokat a programkódba, utóbbival egy gyakorlatiasabb, aszimmet-
rikus rácsot generáltam, és az adatokat fájlokból olvastam be a szimulációhoz. A
7.2. ábrán tanulmányozhatóak a lényeges különbségek.
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7.2. ábra. Kézzel és GMSH-val generált rács

A konkrét példa két ráccsal történ® szimulációja nem kizárólag a �zikai tarta-
lom szempontjából fontos (elméletileg teljesen mindegy, hogy a megoldót melyik
végeselem-rácson futtatom le, megegyez® eredményt kell, hogy kapjak), hanem egy
érdekes szimulációtechnológiai problémára is felhívja a �gyelmet.

7.3. Végeselemes implementáció

Kétdimenziós probléma vizsgálata során háromszögeket használva egy elemet há-
rom csomópont de�niál egyértelm¶en, ami azt jelenti, hogy egyetlen elemen összesen
három formafüggvény (W1,W2,W3) értelmezett. Miként azt bemutattam, a véges-
elemes implementáció során szükség van a formafüggvények gradienseire is, amely
kétdimenziós esetben formafüggvényenként kett® tagú, hiszen a függvény mind x-
változó, mind y-változó szerint parciálisan di�erenciálható. Ezek (4.9) és (4.10)
jelöléseit konzekvensen felhasználva:

∇W1 = gW1x + gW1y =
∂W1

∂x
+
∂W1

∂y
=

1
2

(y2 − y3)

∆
+

1
2

(x3 − x2)

∆
,

∇W2 = gW2x + gW2y =
∂W2

∂x
+
∂W2

∂y
=

1
2

(y3 − y1)

∆
+

1
2

(x1 − x3)

∆
,

∇W3 = gW3x + gW3y =
∂W3

∂x
+
∂W3

∂y
=

1
2

(y1 − y2)

∆
+

1
2

(x2 − x1)

∆
.

(7.1)
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Az eddigiek alapján (6.19) egyetlen elemre felírva:

∫
Ω


∇W1

∇W2

∇W3

 · [∇W1 ∇W2 ∇W3

] dΩ

H1

H2

H3

+

+ µσ

∫
Ω


W1

W2

W3

 · [W1 W2 W3

] dΩ

∂H1

∂t
∂H2

∂t
∂H3

∂t

 =

= −σ
∫

Ω


W1

W2

W3

 · [W1 W2 W3

] dΩ

∂R1

∂t
∂R2

∂t
∂R3

∂t

 .
(7.2)

Mivel az els® integrál ismét konstans függvényeket tartalmaz egy-egy végeselem fe-
lett, ezért az egydimenziós példához hasonlóan az integrálás a végeselem területével
való szorzássá egyszer¶södik. A kifejezést kifejtve, átírva, továbbá elvégezve a be-
szorzásokat a következ® formula adódik:

gW1x

gW2x

gW3x

 · [gW1x gW2x gW3x

]
+

gW1y

gW2y

gW3y

 · [gW1y gW2y gW3y

]∆+

+ µσ

∫
Ω


W1W1 W1W2 W1W3

W2W1 W2W2 W2W3

W3W1 W3W2 W3W3

 dΩ

∂H1

∂t
∂H2

∂t
∂H3

∂t

 =

= −σ
∫

Ω


W1W1 W1W2 W1W3

W2W1 W2W2 W2W3

W3W1 W3W2 W3W3

 dΩ

∂R1

∂t
∂R2

∂t
∂R3

∂t

 ,
(7.3)

ahol a második és harmadik integrál kiértékeléséhez (mivel az integrandus nem kons-
tans függvény a tartományon belül) ismét numerikus integrálási technika használata
szükséges.

7.4. Numerikus integrálás háromszög felett

Egy tetsz®leges kétváltozós f(x, y) függvény háromszög feletti integrálja közelíthet®
[17]: ∫

Ω

f(x, y) dΩ ≈ ∆

3

3∑
i=1

f(a1ξi + b1ηi + c1, a2ξi + b2ηi + c2) · ϑi, (7.4)

ahol ξi és ηi a kvadratúra pontjait, ϑi pedig a súlyait jelöli. Megválasztásuk a pontos
közelítés érdekében a következ®képpen történik:

ξ1 =
1

6
, η1 =

1

6
, ϑ1 =

1

3
,

ξ2 =
1

6
, η2 =

2

3
, ϑ2 =

1

3
,

ξ3 =
2

3
, η3 =

1

6
, ϑ3 =

1

3
.

(7.5)
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A további paraméterek a háromszög csúcsainak koordinátáiból számíthatóak:

a1 = x2 − x1, b1 = x3 − x1, c1 = x1,

a2 = y2 − y1, b2 = y3 − y1, c2 = y1.
(7.6)

Az eddigiek alapján a háromszög felett integrálandó formafüggvények a követ-
kez®képpen írhatóak fel:

W1 =
∆1

∆
=

1
2

∣∣∣∣∣∣
1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
∆

,

W2 =
∆2

∆
=

1
2

∣∣∣∣∣∣
1 x1 y1

1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

1 x3 y3

∣∣∣∣∣∣
∆

,

W3 =
∆3

∆
=

1
2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

∣∣∣∣∣∣
∆

.

(7.7)

7.5. Eredmények, kiértékelés

A szimuláció paraméterei: f = 1 Hz, T = 1 s, σ = 2, 22 ·106 A
Vm

, a
2

= 0, 175 ·10−3 m,
b
2

= 0, 15 m, H0 = 2000 A
m
.

Az eredmény jellege, a mágneses térer®sség és a mágneses indukció alakulása
összevethet® az egydimenziós szimuláció esetén tapasztalttal, hiszen a kétdimenziós
lemez minden x-irányú metszetén tulajdonképpen az egydimenziós, a teljes x-irányt
átfogó szimulációnak a felét tanulmányozhatjuk.

7.3. ábra. H és B közötti lineáris kapcsolat (t < 0, 1T )

A kézzel rajzolt, szabályos rácson lefutattott, és a GMSH-val generált s¶r¶bb rá-
cson elvégzett szimuláció közötti különbség a 7.9. ábrán tanulmányozható. A szi-
mulációs hiba oka, hogy az anyag belsejében felvett végeselem-méret összemérhet®
az ott terjed® elektromágneses hullám hullámhosszával és behatolási mélységével,
emiatt az elemek közötti változás olyan mérték¶, ami már szimulációs hibát okoz.
A hiba elkerülésének érdekében célszer¶ tehát a végeselem-hálót kell®en s¶r¶re fel-
venni.
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7.4. ábra. Szaturáció (t = 0, 25T )

7.5. ábra. Éles átmenet t = 0, 52T -nél

7.6. ábra. Éles átmenet t = 1, 07T -nél
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7.7. ábra. A karakterisztika alakulása az N = 60 csomópontban
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7.8. ábra. Fixpontos lépések száma id®lépésenként (ε = 10−2, ε = 10−5)

7.9. ábra. Szimulációs hiba a ritkább, szimmetrikus rácsból adódóan
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8. fejezet

Kétdimenziós szimuláció a mágneses

indukcióra építve

Ebben a fejezetben bemutatom a nemlineáris, örvényáramú A-formalizmus egyen-
leteit, gyenge alakjának levezetését és a végeselemes implementációt egy konkrét
példán keresztül.

8.1. A probléma de�niálása

A formalizmus segítségével vizsgált probléma általánosítva a 8.1. ábrán látható. Az
adott mágneses permeabilitásfüggvénnyel és vezet®képességgel rendelkez® Ω problé-
materet három különböz® típusú perem határolja. ΓD Dirichlet-típusú peremen a
keresett ~A vektorpotenciál értéke direkt módon kerül el®írásra, ΓN Neumann-típusú
peremen ~A normális irányú deriváltja kerül meghatározásra, ΓNK pedig az a külön
perem, ahol a gerjesztés, a ~K felületi áram kerül el®írásra.

Fontos megjegyezni, hogy ΓNK is egy Neumann-típusú perem, pusztán a könnyebb
matematikai kezelhet®ség miatt kerül külön bevezetésre ΓN mellett.

Ω

ΓD

ΓN

ΓNK

μ,σ

8.1. ábra. A vizsgált probléma általánosítva
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8.2. A problémát leíró egyenletek

A problémát leíró di�erenciálegyenlet levezetéséhez a Maxwell-egyenletek kvázista-
cionárius alakjai, illetve a nemlinearitást is �gyelembe vev® konstitúciós relációk
szükségesek:

∇× ~H = ~J, (8.1)

∇× ~E = −∂
~B

∂t
, (8.2)

∇ · ~B = 0, (8.3)

~H = ν ~B + ~I, (8.4)

~J = σ ~E. (8.5)

A problémához tartozó peremfeltétel:

~H × ~n = ~K A ΓNK peremen. (8.6)

Mivel (8.3) alapján a mágneses indukcióvektor divergenciamentes [4], ~A vektor-
potenciál bevezthet®

~B = ∇× ~A (8.7)

alapján, mert:
∇ · ∇ × ~A = 0 ∀ ~A(~r, t). (8.8)

~A vektormez® divergenciáját is meg kell határozni, ebben az esetben a választás:
∇ · ~A = 0. Ez az úgynevezett Coulomb-mérték, ami kétdimenziós szimuláció esetén
automatikusan teljesül [4]. (8.2) átírható (8.7) segítségével:

∇× ~E = − ∂

∂t

(
∇× ~A

)
. (8.9)

Nem mozgó koordináta-rendszerben az id®- és a hely szerinti deriválás felcserélhet®,
ezért (8.9) felírható

∇×

(
~E +

∂ ~A

∂t

)
= 0 (8.10)

alakban. ~E + ∂ ~A/∂t rotációmentes vektormez® általános esetben származtatható a
V elektromos skalárpotenciálból a

∇×∇V = 0 ∀V (~r, t) (8.11)

összefüggés alapján [4]:

~E +
∂ ~A

∂t
= −∇V (8.12)

Az általam vizsgált problémák esetén ∇V = 0 így

~E = −∂
~A

∂t
(8.13)
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írható fel. A gerjesztési törvény (8.1) felírható (8.4), (8.5), (8.7) és (8.13) segítségé-
vel, így a problémát leíró egyenlet a

∇×
(
ν∇× ~A+ ~I

)
= −σ∂

~A

∂t
(8.14)

alakban adódik. A peremfeltétel (8.4) és (8.7) segítségével kifejezve:(
ν∇× ~A+ ~I

)
× ~n = ~K. (8.15)

8.3. Gyenge alak levezetése

A levezetés els® lépése (8.14) és (8.15) összeadása, megszorzása egy tetsz®leges ~W
formafüggvénnyel és integrálása a problématartományra:∫

Ω

~W ·
{
∇×

(
ν∇× ~A+ ~I

)}
dΩ +

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ =

= −σ
∫

Ω

~W · ∂
~A

∂t
dΩ +

∫
ΓNK

~W · ~K d~Γ.

(8.16)

Felbontva az els® integrandus zárójelét, továbbá átrendezve az egyenletet a∫
Ω

~W · ∇ × ν∇× ~A dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ +

+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∫
Ω

~W · ∇ × ~I dΩ +

+

∫
ΓNK

~W · ~K d~Γ

(8.17)

formula adódik. Az egyenlet mindkét oldalának els® integrandusa a

∇ · (~u× ~v) = ~v · ∇ × ~u− ~u · ∇ × ~v (8.18)

azonosságot felhasználva felbontható a bal oldalon ~v = ~W , ~u = ν∇ × ~A, a jobb
oldalon ~v = ~W , ~u = ~I megválasztással. A felbontás elvégzése után a következ®
egyenlet adódik:∫

Ω

∇ ·
(
ν∇× ~A× ~W

)
dΩ +

∫
Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ +

+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∫
Ω

∇ ·
(
~I × ~W

)
dΩ −

−
∫

Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(8.19)

Egy vektormez® divergenciájának teljes problématérre vett integrálja (3.7) értel-
mében átírható a térfogatot határoló felületre vett körintegrálra, így a következ®
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formula adódik:∮
ΓD∪ΓN

(
ν∇× ~A× ~W

)
· ~n dΓ +

∫
Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ +

+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∮
ΓD∪ΓN

~I × ~W · ~n dΓ −

−
∫

Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(8.20)

A vegyes szorzat

(~a×~b) · ~c = (~c× ~a) ·~b = (~b× ~c) · ~a ∀~a(~r, t), ~b(~r, t), ~c(~r, t) (8.21)

tulajdonságát felhasználva az egyenlet bal oldalának els® integrálja felbontható:∮
ΓD∪ΓN

(
ν∇× ~A× ~W

)
· ~n dΓ =

∮
ΓD

(
~W × ~n

)
· ν∇× ~A dΓ+∮

ΓN

(
~n× ν∇× ~A

)
· ~W dΓ.

(8.22)

Mivel ΓD-n a vektorpotenciál közelítése a

~A ≈ AD +
∑
i

WiAi (8.23)

formula segítségével úgy történik, hogy Wi = 0, ezért az els® tag zérus, kiesik. A
Neumann-perem integrálja átírható∮

ΓN

{
~n×

(
~H − ~I

)}
· ~W dΓ =

∮
ΓN

(
~n× ~H

)
· ~W dΓ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ. (8.24)

Mivel ΓN peremen nem folyik áram, a kifejezés els® tagja kiesik. (8.20) jobb olda-
lának els® integrálja az el®z®ekkel teljesen analóg módon felbontható:

−
∮

ΓD∪ΓN

~I × ~W · ~n dΓ = −
∮

ΓD

(
~W × ~n

)
· ~I dΓ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ. (8.25)

(8.20) bal oldalának negyedik integrálja átírható a∫
ΓNK

~W · (~n× ~n) ·
(
ν∇× ~A+ ~I

)
dΓ (8.26)

alakba, ami ~n×~n miatt zérus, kiesik. Az eddigiek alapján (8.20) a következ® alakot
ölti: ∫

Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ =

= −
∮

ΓN

(
~n× ~I

)
· ~W dΓ−

∫
Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(8.27)

A ΓN -re vett körintegrál kiesik, hiszen mindkét oldalon egyformán szerepel, így
adódik a ténylegesen implementálásra kerül® gyenge alak:∫

Ω

ν∇× ~A·∇× ~W dΩ+σ

∫
Ω

~W ·∂
~A

∂t
dΩ = −

∫
Ω

~I ·∇× ~W dΩ+

∫
ΓNK

~W · ~K d~Γ. (8.28)
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8.4. Végeselemes implementáció

Az ~Amágneses vektorpotenciál a vizsgált pédában olyan vektormennyiség, amelynek
csak z-irányú komponense van, de kizárólag (x, y)-térdimenzióktól és az id®t®l függ:

~A = Az(x, y)~ez = A~ez. (8.29)

A vektorpotenciál emiatt automatikusan kielégíti a Coulomb-mértéket, hiszen:

∇ · ~A =
∂ ~A

∂z
= 0. (8.30)

A közelítése W skaláris, lineáris formafüggvények segítségével történik:

A ≈
Np∑
i=1

WiAi. (8.31)

Az implementáció alapjait tekintve megegyezik az eddig tárgyaltakkal, ezért a részle-
tes bemutatástól ezúttal eltekintek, csupán az eddigiekt®l eltér® gerjesztés megvaló-
sítását és a megoldás mechanizmusát, lépéseit kívánom bemutatni. A továbbiakban
n jelöli a kétdimenziós diszkretizálás során létrejött csomópontok számát, m pe-
dig az elemek számát. A szimuláció során a K együtthatómátrix (n × n) méret¶,
u és b ismeretleneket és a peremfeltételeket tartalmazó oszlopvektor n-méret¶. A
szimuláció lépései a következ®k:

1. K együtthatómátrix asszemblálása (8.28) els® és második integráljának együtt-
hatói alapján (n× n);

2. B együtthatómátrix asszemblálása (8.28) második integrálja alapján, hiszen
ez a tag az ismeretlen vektorpotenciál id® szerinti deriváltját tartalmazza, így
valamilyen módon el® kell állítani Aold együtthatóit is (n× n);

3. b oszlopvektor bexc-komponensének el®állítása (8.28) negyedik integrálja alap-
ján. Az el®állítás során egy dimenziót vissza kell lépni, hiszen ez a tag egy
felületi integrál, a felület pedig szakaszokkal diszkretizálható. Ez egyetlen
elemre: ∫

ΓNK

~W · ~K d~Γ =

[
1
1

]
·K · dl

2
, (8.32)

ahol dl a szakasz hosszát jelöli. bexc (n× 1) méret¶;

4. b oszlopvektor bAdt- komponensének el®íttása B együtthatómátrix és Aold alap-
ján:

bAdt = BAold (8.33)

bAdt (n× 1) méret¶;

5. Fixpontos iteráció indítása addig, amíg ε küszöbindex kell®en kis érték¶re
csökken. Az els® lépésnél bIx és bIy oszlopvektorok kinullázásra kerülnek, mé-
retük (n×1)-es. Egyetlen �xpontos lépésben a következ®ket kell végrehajtani:
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(a) b (n× 1) el®állítása:

b = bexc + bAdt − (bIx + bIy); (8.34)

(b) Dirichlet-peremfeltétel érvényesítése, tehát K és b megfelel® elemeinek
explicit értékadása;

(c) u kiszámítása:
u = K−1 b (8.35)

u ebben az esetben az A vektorpotenciál értékeit tartalmazza. Mivel
csomóponti végeselemekkel dolgoztam, ezért a kiszámítás után minden
csomópontban rendelkezésemre áll egy-egy A-érték.

(d) ~B = ∇× ~A kiszámítása. Ez azt jelenti, hogy minden egyes végeselemre
ki kell számítani az elemet alkotó csomópontokban rendelkezésre álló A-
értékekb®l egy Bx és egy By indukcióértéket. Így jön létre két (m × 1)
méret¶ vektor, Bx és By;

(e) Hx és Hy approximálása:

Hx = νBx + Ixold,

Hy = νBy + Iyold,
(8.36)

Hx és Hy (m× 1)-méret¶ vektorok;

(f) Ix és Iy számítása:

Ix = Hx − νB{Hx},
Iy = Hy − νB{Hy},

(8.37)

Ix és Iy (m× 1)-méret¶ vektorok;

(g) bIx és bIy feltöltése (8.28) harmadik integrálja szerint;

(h)
ε = ||I − Iold|| ; (8.38)

(i)
Ixold = Ix, Iyold = Iy; (8.39)

6.
Aold = A; (8.40)

8.5. A szimulált geometria

A szimulált geometriai elrendezést a 8.2. ábra mutatja. Az adott ν2 reciprok per-
meabilitásfüggvénnyel és σ2 vezet®képességel rendelkez® vasanyagon a szaggatott
vonallal jelölt szakaszon áramjárta vezet®t feltételezünk, ami a lemezek teljes ke-
resztmetszetére van feltekercselve. A feltekercselt vasanyagot ν1 és σ1 paraméterek-
kel rendelkez® leveg® veszi körül.

ΓNK peremen az áramjárta vezet®t reprezentáló ~K felületi árams¶r¶séget szük-
séges el®írni, ami a tekercselés irányából adódóan a lemez egyik oldalán pozitív, a
másik oldalán negatív el®jellel kerül el®írásra. ΓD Dirichlet-peremen a csomóponti
potenciálértékek kinullázásra kerülnek, hiszen ez a vizsgálódás tényleges határfelü-
lete.
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ΓD

ΓD

ΓNK
ΓNK

σ ν1, 1

σ ν1, 1

σ ν2 2,

8.2. ábra. A szimulált geometriai elrendezés

8.3. ábra. A diszkretizált geometria és a vektorpotenciál alakulása

8.4. ábra. ~B és ~H alakulása
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Konklúzió, jöv®beli tervek

Dolgozatomban bemutattam a mágneses térer®sség és a mágneses indukció kö-
zötti skaláris hiszteréziskapcsolat mérésének elvét, ismertettem az elvégzett mérések
eredményeit és egy inverz-tangens görbével analitikus módon leírható modell para-
métereinek identi�kációjával egy nemlineáris karakterisztikát illesztettem a mérési
eredményeimre. Bemutattam a Maxwell-egyenletek teljes rendszerét, felvázoltam a
végeselem-módszer alapelvét, legfontosabb jellemz®it.

Bemutattam azokat a szükséges eljárásokat, amelyek a nemlineáris anyagtulaj-
donságok implementálásához szükségesek végeselem-módszer esetén, bemutattam a
polarizációs formulát, az iterációs lépéseket két különböz® formalizmus esetére. Fel-
vázoltam a mágneses térer®sségre épül® formalizmus alapegyenleteit, levezettem a
problémát leíró di�erenciálegyenletet, az abból levezetett gyenge alakot, valamint
megvalósítását végeselem-módszer segítségével. Az eredmények alapján látható,
hogy a direkt ~H-ra épül® formalizmus eredménye jól kezelhet®, �xpontos megol-
dás mellett is viszonylag gyorsan konvergál, hátránya viszont, hogy peremfeltételek
megadása esetén direkt módon a mágneses térer®sséget kell el®írni, ami kevésbé
gyakorlatias megoldás.

Egy általános és egy konkrét problémán keresztül bemutattam az örvényáramú,
nemlineáris ~A-formalizmus alapegyenleteit, levezettem a megoldásra kerül® di�e-
renciálegyenletet és bemutattam a peremfeltételeket, levezettem a gyenge alakot,
felvázoltam a megoldás során asszemblálásra kerül® mátrixokat és vektorokat, vala-
mint az iterációs lépések sorrendjét, a megoldás mechanizmusát, végül ismertettem
az eredményeket. Az eredmények alapján megfogalmazható, hogy az ~A-formalizmus
implementálása összetettem, komplexebb feladat, a direkt modell illesztése a szimu-
lációhoz nehezebb, a �xpontos iteráció konvergenciája bár itt is biztosított, de sokkal
lassabb, mint a mágneses térer®sségre épül® feladat esetén. A módszer nagy el®nye,
hogy sokkal gyakorlatiasabb, hiszen a felületi áram peremfeltételként el®írható, mint
gerjesztés.

A legfontosabb jöv®beli tervem, hogy az elvégzett mérési eredményeim alapján
egy jól m¶köd®, jól kezelhet® skaláris Preisach-modellt illesszek a bemutatott szi-
mulációhoz, így az eddigieken túl nemlineáris, többérték¶, hiszterézises kapcsolatot
valósítsak meg a mágneses térer®sség és a mágneses indukció között.
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