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1. fejezet

Bevezetés, koszonetnyilvanitas

Dolgozatom az alacsonyfrekvenciés elektromagneses térszimulacié témakorében iro-
dott. A szamitastechnika rohamos fejlédésének, valamint az ipari hasznalatra fejlesz-
tett szimulacios szoftverek térnyerésének koszénhetGen napjainkban mar alapvetd
feladat és elvaras a kutatési és fejlesztési teriileten a kiilonb6zé anyagparaméterek
jellemzGinek modellezése, szimulacioja és az adott feladathoz optimalizalasa. Az
elmult évek, évtizedek soran az elektromagneses terek numerikus analizise fontos,
integralt részévé valt a villamosmérnoki és informatikai tudomanyoknak. Erteke-
zésem ezen sokszind és rendkiviil széles tudoményteriileten beliil a ferroméagneses
anyagok alacsonyfrekvencias viselkedésének mérésével, modellezésével és szimulaci-
ojaval foglalkozik végeselem-modszer segitségével.

A villamos gépek, motorok és transzformatorok tervezése soran kiilénosen fontos
az adott felhasznalasi teriilethez illeszkedd (példaul kis veszteséggel rendelkezs) vas-
anyag kivalasztasa. Az elektromagneses szempontbol értelmezett anyagparaméterek
optimalizalasat numerikus térszamitassal, igy végeselem-modszerrel is hatékonyan
lehet segiteni. Dolgozatom elsG részében a hiszterézis elméleti attekintését kovetGen
bemutatom a magneses térerdsség és a magneses indukcié kozott értelmezett skaléa-
ris hiszterézis mérésének modjat, tovabba ismertetem az altalam elvégzett mérések
eredményeit is. A masodik egységben felvazolom az altalam implementélt, a hisz-
terézis modellezésére hasznalt skalar Preisach-modell elméletét, mikodését, megva-
részben bemutatom az elektromagneses tér jellemz6 mennyiségei kozott Osszefiiggést
teremt§ Maxwell-egyenletek teljes rendszerét, kitérve a hiszterézises kapcsolatot is
magaban foglald konstitucios relaciokra is. A negyedik egységben Osszefoglalom a
végeselem-modszer elméletét, alkalmazési lehet@ségeit a villamosmérnoki gyakorlat-
ban, tovabba felvazolom az implementalt Preisach-modell numerikus térszimulacio-
val torténd osszekapcsolaséara felhasznalt fixpontos technikat és polarizacios formulat
is. Dolgozatom 6todik részében bemutatom a munkam soran vizsgalt problématere-
ket, valamint a hozzajuk kapcsol6do, a szimulacio soran megoldéasra keriilé parcialis
differencidlegyenleteket és levezetésiiket, végiil felvazolom az elvégzett szimulaciokat,
eredményeket.

Dolgozatomat a Széchenyi Istvan Egyetem Automatizalasi Tanszékének Elektro-
mégneses Terek Laboratoriuméaban irtam, mely munkakozosségnek 2012 januarjatol
2014 szeptemberéig voltam aktiv tagja. Szeretném kdszonetemet kifejezni Prof. Dr.
habil. Kuczmann Miklésnak, az Elektromagneses Terek Laboratérium laborveze-
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t6jének, konzulensemnek és mentoromnak, tovibba Budai Tamas, Friedl Gergely,
Kovacs Gergely, Marcsa Déaniel, Polik Zoltan és Prukner Péter kollégamnak azért
a folyamatos, felbecsiilhetetlen értékid szakmai és emberi tdmogatasért, melyet az
elmilt évek soran kaptam.

Munkam a TAMOP-4.2.2.A-11/1/KONV-2012-0012: Hibrid és elektromos jar-
miivek fejlesztését megalapozd kutatasok projekt keretében, a Magyar Allam és az
Eurépai Unié tamogatasaval, az Europai Szocialis Alap tarsfinanszirozasaval valo-
sult meg. Dolgozatomat KTEX szovegszerkesztGben szerkesztettem.



2. fejezet

A magneses hiszterézis

2.1. Rendszerelméleti megkozelités

A hiszterézis, mint jelenség altalanos megértéséhez elsg kozelitésben érdemes abszt-
rahélni a problémat: definidljunk egy I'{-} operatoraval egyértelmiien jellemezhetd
egy bemenet, egy kimenett rendszert, mely a bemenetére érkezd u(t) folytonos ide-
jt, folytonos értékkészletii gerjesztjelet y(t) folytonos idejii, folytonos értékkeészlet
valaszjellé képezi le, mely leképzés a rendszeroperator segitségével az

y(t) = T{u(t)} (2.1)

alakban irhato fel [1]. Eléfordulhat tovabba, hogy a rendszer bemenete id6fiiggs
vektor, ebben az esetben a kimenet hasonloképpen idéfiiges vektor formajaban ado-
dik, és a gerjesztés-valasz kapcsolat vektoridlis operator segitségével fejezhets ki:
g(t) = T{a(t)}.

Abban az esetben, ha az operator altal végzett leképzés, tehat u(t) és y(t) kap-
csolata nemlinedris és tobbértéki, tovabba y(t) valaszjel értéke egy tetszéleges T
id6pillanatban fiigg u(t) és y(t) t < 7, illetve t < 7 id6pontbeli értékeitsl, egy-
szeriibben fogalmazva a rendszer elGéletétsl, akkor hiszterézissel biré rendszerrsl
beszélhetiink [2]. Egy ilyen rendszer, valamint annak sematikus gerjesztés-valasz
kapcsolata lathato a 2.1. dbrén, ahol a feltiintetett nyilak az id6t reprezentaljak.

y(t) A

)

u(t - ¥

2.1. dbra. A rendszermodell és egy lehetséges gerjesztés-valasz karakterisztika

Az ilyen karakterisztikaval jellemzett rendszerek memoriaval rendelkeznek: ugy
is mondhatjuk, hogy a valaszjel aktuélis értéke dontGen fiigg attol, hogy a rendszer

6
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a vizsgalodas pillanatat megel6z6en milyen allapotban volt. Ezen altalanos defi-
nici6 segitségével a tudomany kiilonbo6zé teriileteinek jelenségei targyalhatok attol
fiigg6en, hogy wu(t) és y(t) milyen elgondolas alapjan keriil megvalasztésra.

A mérnoki tudoméanyteriilettsl elszakadt, de kivalé demonstracios példa a koz-
gazdasagtan altal targyal export hiszterézissel bird idsfiiggése [3]: egy orszag gazda-
saganak attérése az exporttermelésre idGigényes és nehézkes, de ha az atallas sikeriilt,
mar nem igényel kiillondsebb erdfeszitést az allapot fenntartasa. A jelenség szerepe
a villamosmérnoki gyakorlatban is kiemelkedd: a dolgozatom témajaul szolgalo fer-
romagneses hiszterézisen tul jelentds szerepe van az elektronikdban a hiszterézises
komparatornak is [4].

2.2. A ferromagneses hiszterézis

Ferromégneses hiszterézisrdl beszélhetiink akkor, ha a targyalt rendszermodell be-
menete altalanosan @(t) = H(t) magneses térerdsség, kimeneti pedig §(t) = M (t)
méagnesezési vektor [5]. A jelenség okanak térgyalasat az anyagok magneses tulaj-
donsaganak kialakulasatol célszerti kezdeni. A magnesesség egyik lehetséges forrasa
az atomok kiilonb6z6 energiaszinteken torténs mozgasa az anyagok atomi struktira-
jaban [6]. A fizikai atommodellekben az elektronok palyamenti mozgéasa és forgasa
értelmezhetd elemi dramhurkok, valamint a hozzajuk kapcsolodd magneses dipolus
fogalméanak segitségével. Az elemi dramhurok m1; magneses momentuma definialja
az aramhurok &ltal lérehozott magneses mezét [7]:

W = 1, - 3, (2.2)

ahol I; az elemi dramhurok arama, ds; a hurok altal altal koriilzart feliillet. Mag-
neses atomoknak nevezziik az olyan atomokat, melyek kompenzalatlan méagneses
momentummal rendelkeznek az elektronjaik mozgasabol fakadéan. Egy ilyen atom
teljes magneses momentuma az elemi aramhurkok &ltal 1étrehozott momentumok
vektorialis Osszegeként, szuperpozicidjaként szamithat6. Ha egy AV térfogat n da-
rab mégneses atomot tartalmaz, és ezen atomok 1m; momentummal rendelkeznek
(1 =1,2,...,n), akkor a vektorialis 6sszegh6l adodé magneses momentum:

i=1

Ezen magneses momentum térfogati stirtiségét nevezziikk M mégnesezettségi vektor-

nak [6]:
- _ 1 <

B magneses indukcié hatasara az m momentummal rendelkezd mégneses dipolusra
haté 7 forgatonyomaték az indukci6 és a magneses momentum vektoridlis szorzata-
ként definidlhato:

7=mx B. (2.5)
Ugyanezen magneses dipdlus energidja az indukci6 és a magneses momentum vekto-
rialis szozatanak minusz egyszeresével lesz ekvivalens [6]. B magneses indukciévek-
tor két Osszetevire bonthato: ,uoﬁ a szabad tér magneses indukcioja (po a vakuum

7
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permeabilitasa, értéke 47 - 10_7X—;), MOM a magnesezettségi vektorbol ad6do induk-

ciokomponens, amely a vizsgalt anyag magneses tulajdonsaganak fiiggvénye [6]. Az
indukciovektor tehat

B = o <ﬁ + 1\71) (2.6)
alakban irhato6 fel, ahol
— B —
H=—-M (2.7)
Ho

az ugynevezett magneses térerGsség. Ferromagneses anyagok esetén M és H kap-
csolata egy, a 2.1.-ben targyalt nemlineéris, tébbértéki kapcsolat:

M = o {H}. (2.8)

A maéagneses térerGsség és a magneses indukcié kapcsolatat egy maésik, hasonldéan
hiszterézises tulajdonsagot reprezentald operator fejezi ki [8]:

B = (ﬁ + jf{ﬁ}) , (2.9)

B = #{H}. (2.10)

2.3. A jelenség oka

A ferromégneses anyagok esetén tapasztalhatd nemlinearis, tobbértéki M-H 6ssze-
fiiggés fizikai magyarazatat mutatja be a 2.2. abra. Az ilyen tipusi anyagok esetén

MA
« \“«‘ « ,/x‘
N/
—

Ha

B

—_— —

A > Hp He

H

2.2. dbra. Az els6 magnesezési gorbe és a doménstruktara alakulasa

a kiilsG elektronhéjon jelent6s mennyiségli kompenzalatlan spinti elektron talalha-
t0, melyek egymaéssal kolcsonhatasban allnak, tgynevezett doméneket hozva igy
létre [6]. Amennyiben az anyag nem volt még magneses térben, gy a magneses
er6vonalak egy doméncsoporton beliil zarédnak [11]. Ekkor az anyag a legkisebb
energiaju allapotban van, kifelé nem rendelkezik mégneses tulajdonsaggal. Ha az
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anyagot mégneses térbe helyezziik, azok a domének, melyek mégnesezettsége ere-
dendGen a kiils6 tér irAnyaba mutat, néni kezdenek a t6bbi domén rovaséra. Ezen
doménfal-elmozdulasok irreverzibilisek, amely irreverzibilitids megmagyarazza, hogy
miért rendelkeznek az ilyen tipusi anyagok mégneses szempontbél memoriaval.

A 2.2. abra lényegében az eredd mégneses momentumot, vagy az ezzel ara-
nyos magnesezettséget adja meg a magneses térerfsség fiiggvényében. Ez az tgy-
nevezett els6 magnesezési gorbe, mely hadrom szakaszra bonthat6: a nemlinearis
(A) szakasz a reverzibilis faleltolodasokkal, a kozel lineéaris (B) szakasz az irrever-
zibilis faleltolodéasokkal, a telitési vagy szaturacios (C) szakasz pedig a momentu-
mok elfordulaséval magyarszhato [6]. Ferromagneses kozegben M >> H | igy

B = 140 (FI + M) ~ MOJ\_/I, igy a B — H-gorbe és az M — H-gorbe jo kozelitéssel
megegyezik. A teljes hiszterézishurok a 2.3. abran lathato.

B A MA
Bm [re=====m=-—cp, Mm fr======---—ss
Br Mr

oV

He Hm 7{ Hce Hm

-Br

-Bm

2.3. abra. A teljes hiszterézishurok

AH=B=M=0 pont definidlja az tgynevezett lemégnesezett allapotot.
Ha a magneses térerdsséget noveljiik, az anyag magnesezettsége (és természetesen
az indukcio is) néni fog. A gorbe ezen szakasza az eddig is targyalt els6 mag-
nesezési gorbe (szdzgorbe). Ha a mégneses térerdsséget kritikus szintig noéveljiik,
akkor telitésbe jutunk: ett6l a ponttol kezdve a névekvs térerGsség ellenére sem
fog Vélt_g)zni a magneses indukci6é értéke. Ezen nevezetes pont a szaturacids pont
(H,,,M,,,B,,) [12].

Az irreverzibilis faleltolédédsok megmagyarazzak, hogy csokkend térerdsség ese-
tén a magnesezettség alakulasa miért nem koveti a sziizgérbét. Csokkend magneses
térerdsség esetén a megvaltozott doménstruktira miatt az indukcié bar csokkenni
kezd, de nem az el6z6 esetben tapasztalt fliggvény szerint. Zérusra csokkentett mag-
neses tererosseg eseten nem fogunk zérus magnesezettséget tapasztalni, maradni fog
valamekkora M . B remanenc1a Az anyag lemégnesezéséhez negativ térerdsseget
szukseges létrehozni: ez a —H, koercitiv magneses térerGsség, ekkor M =B =0.
H csokkentése esetén negativ szaturacioba keriiliink, az innen névekvd méagneses tér-
erGsség negativ remanenciat hagy, és a leméagnesezés pozitiv koercitiv teret igényel.
A H = B = M = 0 allapot ezen a gorbén nem érhetd el [9].
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2.4. Skalarhiszterézis mérése

Munkam sordn kizarolag a skalaris hiszterézis vizsgalataval foglalkoztam, azaz a
mégneses térerdsségnek és a magneses indukcidonak kizardlag a hosszat, nagysagat
vizsgéltam, az altaluk bezart szoget nem. Az ilyen jellegli vizsgalatok esetén esetén
ki kell k6tni, hogy H é¢s B egymassal parhuzamos. A skalaris Osszefiiggés meérésére
a legelterjedtebb elrendezés a toroid transzformétoros mérés, melynek sematikus
vazlata a 2.4. abran lathato.

2.4. abra. Toroid transzforméator

A transzformator elkészitéséhez egy adott tipusi anyagbol kor alaka probatestet
valasztottam, amelyet megfelel6 modon feltekercseltem. A mérés soran egy kivalo
minGségl, kis veszteségi, villamos gépbe tervezett magneses vasanyagot vizsgaltam.
A méréshez egy primer-, valamint egy szekunder oldali tekercselést vezettem ra
a probatestre. A primer oldalt drammal gerjesztettem, mely hatasara fesziiltség
indukalodott, amit a szekunder oldali, a primer tekercselést6l gondosan elszeparalt
tekercselésen tudtam visszamérni. A visszameért fesziiltségbdl a magneses indukcio
értéke szamithato.

A 2.4. dbran N, jeldli a primer-, N, a szekunder oldali tekercselés menetszamét.
Ry és R, a kiils6, valamint a bels6 sugar, mely értékekbdl Ry kozepes sugar értéke

_R1+R2

Ry, 5

(2.11)
osszefliggeéssel szamithato, amibdl a probatest kozepes hossza (keriilete): [, = 2Rgm.
A méréshez sziikséges alaposszefiiggések a Maxwell-egyenletek segitségével levezet-
heték. A Maxwell-egyenletek teljes rendszerével dolgozatom kiilén fejezetben foglal-
kozik, itt csak a sziikséges egyenletek alkalmazasat mutatom be az adott problémaéaval
kapcsolatban.

Az ismert aramgerjesztés és a magneses térerdsség kozott a kvazistacionarius
gerjesztési torvény, mas néven az [. Maxwell-egyenlet redukalt alakja teremt kapcso-

latot [13]:
j{ﬁ-df:/f-dfi’. (2.12)

l A
A meérési elrendezés elényeit kihasznalva az integralok skalaris szorzattd egyszert-

sodnek:
H(t)2R,m = N,I(t). (2.13)

10
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Az Osszefiiggést a magneses térerdsségre rendezve lathatd, hogy a H pillanatnyi
értéke a primer oldali menetszam, a pillanatnyi gerjesztGaram és a kdzepes sugér
ismeretében szamithato:
H(t) = 2L
2Rk7T
A maégneses indukcié meghatéarozasahoz a Faraday-féle indukcios torvénybdl (I1.
Maxwell-egyenlet) sziikséges kiindulni:

(2.14)

Lo 0B -
E-dl=- | — - dA. 2.15
/ /% (219
1 A
Mivel a magneses indukci6 feliileti integralja megadja a feliileten adthaladé fluxust,

illetve az elektromos térerGsség vonalmenti integralja az indukalt fesziiltséggel lesz
ekvivalens, ezért (2.15) atalakithato:

wit) = —NSZ%B(t)A, (2.16)
B(t) = By + N:Z . / wi(r) dr. (2.17)

A formuldban A a toroid keresztmetszete, By a kezdeti értéket megadd konstans.
A mérést a 2.5. abran lathato toroid transzformatoron, LabVIEW [14] mérérendszer
segitségével végeztem el [30]. A szamitogépes mérdrendszer segitségével egy aram-

2.5. abra. A vizsgalt transzformator és a mérérendszer

generatort vezéreltem, mely aramgenerator a primer oldali gerjesztést szolgaltatta.
A rendszer a szekunder oldali indukalt fesziiltséget mérte vissza és dolgozta fel sza-
mitogépes uton. Az adatgyiijtés és a vezérlés egy NI-DAQ [15] adatgytijt6é kartya
segitségével tortént.

2.5. Mérési eredmények

Munkam soran nem vizsgaltam a probatest B — H-kapcsolatanak frekvenciafiiggé-
sét, kizarolag a késébbiekben bemutatott Preisach-modell implementélasahoz sziik-
séges koncentrikus gorbéket vettem fel, amit a gerjeszt6aram aplitidojanak foko-
zatos novelésével tettem meg. A méréshez hasznalt toroid transzformator paramé-
terei: N, = 197; Ny, = 139; Ry = 23,5 mm; Ry = 28,5 mm; R, = 26 mm;!;, =
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163,3628 mm; A = 107° m?. A mérési eredmények a 2.6. abran lathatok, ahol az -
tengely a maximalis méagneses térerésség értékére (H, . ), az y-tengely a maximalis
méagneses indukcio értékére (B, ) keriilt normalizélasra (H,,.. = 3213,8 %,Bmw =
1,1632 T). A mérést 40 mA és 3 A kozott olyan osztaskozzel végeztem el, hogy a

2.6. 4bra. Mért, normalizalt koncentrikus gérbék

normalasra hasznalt, a legnagyobb gerjesztaramhoz tartozé gorbe megfelel§ stirt-
séggel keriiljon "érintésre", "mintavételezésre" a koncentrikus gorbék (H,,az, Bmaz)
pontjai altal, ami a szimulaciéhoz hasznélt modell felépitése soran fontos kritérium,
kiilonos tekintettel arra a szakaszra, ahol a B(H )-fiiggvény derivaltja a legnagyobb.

12



3. fejezet

A skalar Presiach-modell

3.1. Torténeti Attekintés

Preisach Ferenc (1905-1943) magyar szarmazasa villamosmérnok, a legelterjedtebb
és legjelentdsebb hiszterézismodell megalkotoja. Diploméajat 1927-ben, a Ziirichi
Miiszaki Egyetemen szerezte, doktoratusat H. Barkhausen [17] vezetése alatt vé-
gezte, dolgozatanak cime: A Barkhausen-jelenség vizsgdlata. 1943-ig, a nacik ki-
utasitasaig a Siemens & Halske laboratérium, késébb a magyar Egyesiilt 1zz6 Ku-
tato Laboratorium munkatarsa [16]. Haldla utan szamtalan matematikus, fizikus
és villamosmérndk fejlesztette tovabb a Preisach eredeti Gtletét, ennek eredménye,
hogy napjainkban a Preisach-modell nem kizarélag egyetlen hiszterézismodell, ha-
nem azonos alapokon nyugvo, de egymastol tobbé-kevésbé eltérd hiszterézismodellek
gyljténeve.

3.2. A modell definialasa

H. Barkhausen 1919-ben fedezte fel empirikus titon a 3.1. abran lathato jelenséget,
miszerint a magnesezési folyamat soran a magnesezettség aprd ugrasok soran valto-
zik, és ezzel aldtdmasztotta azt az elméleti elgondolast, miszerint a doménszerkezet
ténylegesen létezik. Az ugrasszert valtozas jelenségét a szakirodalom Barkahusen-
effektusnak nevezi, melyet késébb a felfedez$ doktorandusza, Preisach Ferenc elemi
operatorok fel- és lekapcsolasaként értelmezett. A Preisach-modell a skalaris, sta-

M 4 M4

H H

3.1. dbra. Az els6 magnesezési gorbe és annak egy kinagyitott részlete
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tikus hiszterézis jelenségét képes leirni, modellezni, ahol a hiszterézis nem fiigg a
valtozas sebességétdl [16].

A modell kimenete definici6 szerint végtelen szamu relé-tipusu karakterisztikaval
(hiszteron) rendelkez6 rendszer valaszanak stlyozott szuperpoziciojaként all el6 az

) =T{u(t)} = [[ 1(@.) (@.B)u(t) dads B.1)
a>f
formula alapjan, melyben I'{-} a skalaris hiszterézist reprezentald operator, u (v, )

a mérési adatokbol identifikalhato, a 3.2. abran lathato 4 («, 8) elemi hiszteronokat
stilyoz6d Preisach-eloszlasfiiggvény [8]. Fontos megjegyezni, hogy a modell altalanos

AY(a.pu
+1 O
u(t)
A s
B a u
-1 —(—L)—

u(a,p)

3.2. abra. Egy hiszteron karakterisztikaja és a modellt reprezentalo jelfolyam-halézat

bemutatasa soran wu(t) gerjesztGjel ferromagneses hiszterézis vizsgalata esetén nem
méas, mint H(t) magneses térerdsség, tovabba y(t) valaszjel M (t) magnesezettséggel
lesz ekvivalens.

A hiszteron « értékid bemenetre kapcsolodik fel, valamint § értékid bemenetre
kapcsolodik le, tovabba mindig igaz, hogy o > . A kimeneti fiiggvény értékkészlete
¥ (a, 8) = £1. A rendszer bemenete sokszor valamilyen értékkel, példaul a bemeneti
jel maximalis értékével normalizalt. A modell miikodését definialo (3.1) Gsszefiiggeés
reprezentalhatd egy, a 3.2. abran lathato, az eloszlasfiiggvénnyel stulyozott elemi
hiszterozonok parhuzamos kapcsolasabol allo jelfolyam tipusu halozattal is [18].

3.3. A Preisach-haromszog és az Everett-fliggvény

A jelfolyam tipusa halézat parhuzamos agaiban az egyes hiszteronokra jellemzd o
és [ értékek rendre mashogy alakulnak, ami egyszertien leirhaté az dgynevezett
Preisach-haromszog fogalmanak bevezetésével [19]. A Preisach-haromszog a maxi-
malis bemeneti értékre normalizalt a— [ sik azon része, melyre igaz, hogy a > 3, te-
hat a definicids integral tartdja, mely felett a kiértékelést el kell végezni. A Preisach-
haromszogon belill a rendszer elGéletét az L(t) lépesds fiiggvény reprezentalja, mely
balrol jobbra mozog, ha a rendszer gerjesztése névekszik, és fentrdl lefelé, ha a ger-
jesztés csokken. A lépcss fiiggvény bemeneti jeltdl fliged idtartomanybeli mozgésa
kapcsolja be vagy ki a haromszégén beliil talalhato elemi hiszteronokat, igy hata-
rozva meg a kimenet aktualis értékét. A lépcsds fiiggvény két tartomanyra bontja
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fel a Preisach-haromszoget: a gorbe alatti részteriileten a felkapcsolt hiszteronok ta-
lalhatok (itt 4 = +1), a gorbe felett pedig a lekapcsolt hiszteronok foglalnak helyet
(7 =-1).

Alaphelyzetben a két résztartomany teriilete egyenld, a fel- és lekapcsolt hiszte-
ronok egyensilyt tartanak egymassal. Ekkor a 1épcsés fiiggvény egy szakasz, amely
az origot az (+1,-1) ponttal koti Ossze a sikon. A lépcsds fiiggvény sarkait, for-
dul6pontjait a bemenet maximumai és minimumai alakitjak ki, igy valositva meg
a rendszer memoriajat. A 3.3. abran a gerjesztés-valasz kapcsolat fiiggvényében
tanulmanyozhat6 a 1épcsds gorbe alakuldsa a Preisach-haromszogon.

) Y- A— Ay(®)

_:1 /

\/

3.3. dbra. A lépcsés fliggvény és a karakterisztika alakulasa

Mivel a (3.1) kettds integral kiértékelése bonyolult és idGigényes miivelet, ezért
munkam soran nem ezt az Osszefiiggést, valamint nem a u («, §) Preisach-eloszlast
hasznaltam, hanem a beldle szarmaztathato E («, §) Everett-fiiggvényt, és az ahhoz
rendelt numerikus megvalositasi lehetGséget [9]. Az Everett-fiiggvény és a Preisach-
eloszlas kapcsolata:

82
da0p > (@

Baf) = [[un@.8) ddy > ulas) -

a>p

B (3-2)

Az Everett-fliggvény egyik legnagyobb elénye, hogy segitségével a modell kimenete
sokkal takarékosabban el6allithato. A szakirodalom [6,8,9,20] az

K

y(t) = —E (a0, fo) +2 Y [E (i, Bi1) — E (s, 5,)] (3.3)

=1

Osszefliggeést definialja (3.1) és (3.2) alapjan, ahol K a lépcsts fiiggvény fordulo-
pontjainak szama. Az ismert Osszefliggést kiindulasi alapként felhasznaltam és ki-
egészitettem a modell implementacioja soran, igy ezzel a kérdéssel dolgozatom kiilon
részben foglalkozik.

Az Everett-fliggvény hasznélatanak masik legfontosabb elénye, hogy az kdzvetlen
kapcsolatban all a mérési eredményekkel, igy kikeriilheté a mért gorbéken torténd
Osszetett matematikai miiveletek (numerikus integralas, differencialas) alkalmazasa,
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amely minimalisan zajos fiiggvények esetén is jelentés hibat okozna. A Preisach-
haromszog felett értelmezett fiiggvény szarmaztathatoé a mért koncentrikus gérbék-
bl a 3.4. abran lathaté modon [8].

A fiiggvény felépitése sordn a mért értékeket a legnagyobb amplitidoja aram-
gerjesztéshez tartozd maximélis magneses térerdsség (Hpq. ), valamint a legnagyobb
méagneses indukcios (Ba,) értékére kell normalizélni. Az Everett-fiiggvény érték-

() A BA

6\
7
Q
o
Qv

3.4. dbra. Az Everett-fliggvény felépitése a koncentrikus gorbékbdl

készlete meghatarozhato az

Yo, = Yo 4

E(a,8) = *—

(3.4)
Osszefliggeés segitségével, ahol v, az i-edik normalizalt koncentrikus gérbéhez tartozo
maximalis indukci6 értéke, yq,p, az i-edik normalizalt gorbe j-edik fliiggvényértéke a
csOkkend magneses térerdsséghez (csokkend ([-hoz) tartozoé fiiggvényrészen.

A koncentrikus gorbék hasznalata miatt (3.4) Osszefiiggésével az FEverett-
fiiggvény csak az a = —f-egyenes feletti értelmezési tartomanyon szamithatd koz-
vetlen modon, az egyenes alatti tartomany a fiiggvény E (o, 8;) = E (=05, —)
tulajdonsiganak ismeretében adhatd meg. A felépitett fliggvény a 3.5. abran latha-
t0.

B -1 -1

3.5. abra. A koncentrikus gorbékbdl felépitett Everett-fliggvény
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Az Everett-fiiggvény felépitése soran szem el6tt kell tartani, hogy a mért kon-
centrikus hurkok szama kozvetleniil determinalja fiiggvény diszkrét értelmezési tar-
tomanyéanak felosztasi finomsagat. Amennyiben n darab koncentrikus hurok &ll
rendelkezésre, tgy a fliggvény (n+ 1) - (n + 1) pontban adhaté meg, ahol

Oé,ﬁ € [_17 —Q1, —Qg, ..., —0p_1, 07 Ap—1,..., 02,01, 1} ) (35)

gy az ya,p,-értékek is ezen diszkrét pontokban értelmezhetdk.

3.4. A modell kimenetének szamitasa

Mint mar emlitettem, a skalar Preisach-modell implementaldsa sordn bar a (3.3)
Osszefiiggést hasznéaltam fel kiindulasi pontként, de a kimenet elGallitasa kézelebbrél
nézve nem ilyen egyszer(, ezért célszeri attekinteni, hogy milyen eseteket és hogyan
sziikséges kezelni a szimulacié soran. Munkamban két, egyméstol eltérd szamitési
modszert valositottam meg attol fliggéen, hogy kezdetben névekszik, vagy éppen
csokken a gerjesztés értéke. Az els6 magnesezési gorbét és a hozza tartozo lépcsds
fiiggvényt a 3.6. 4bra mutatja.

y()4 ()4

u(t) u(t)

AB Aﬂ

QY
QyY

//% \\ 1 //’\Q

(a) Novekvs gerjesztés (b) Csokkend gerjesztés
3.6. abra. Els6 magnesezési gorbe

A kezdeti, lemagnesezett allapotban tehat a lépcsés fiiggvény nem mas, mint az
origot a (+1,-1) ponttal 6sszekots szakasz, ekkor a felkapcesolt és a lekapesolt hisz-
teronokat reprezentald részhdromszogek teriilete megegyezik, azok egyensilyt tarta-
nak egymassal. A lépcsds fiiggvényt leiro, a fordulopontokat tarold méatrix (L) ekkor
iires, eltarolt értéket nem tartalmaz, hiszen a rendszer még nem rendelkezik elGélet-
tel. A lemagnesezett allapotbol névekvs és csokkend gerjesztés esetén egyarant az
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els6 magnesezési gorbére keriiliink, a 1épcsés fiiggvényt mindkét esetben az ideigle-
nesen eltarolt (aq, 51) pont reprezentalja, ahol 5 = —a; (L = { Oéolé }) Lényeges
—oq

kiilonbség, hogy mig névekvs gerjesztés esetén a 1épcsGs gorbe balrdl jobbra, addig
csOkkend esetben fentrél lefelé mozog, igy valasztva ketté a Preisach-haromszoget.
Novekvo gerjesztés esetén a modell kimenete az

y<t) = Ymaz & (0517 _051) ) (36)

csOkkend gerjesztés esetén az

y(t) = _ymaxE (ala —0é1) (37)

formulaval szamithato, ahol y,,., a kimeneti jel maximalis értéke. Mindkét Gssze-
fiiggés az AB1 haromszog teriiletével van kapcsolatban, hiszen ezzel a teriilettel
aranyosan né vagy csokken a felkapcsolt hiszteronok szama. A vizsgalt (aq, 1) pont
csak akkor keriil be ténylegesen a 1épcsGs gorbét reprezentdldé maéatrixba, hogyha
az valédi fordulopont, tehat abban az esetben, ha a gerjesztés iranya megvaltozik.
Ekkor a 3.7. 4bran lathat6 modon a visszatérd gorbére keriiliink.

Y4 Y4
1
21
u(;) u(;)
*2
14
Aﬁ Aﬁ
B /
C 2
A = A _
a a
ol
R 1
N
(a) Csokkend gerjesztés (b) Novekvé gerjesatés

3.7. 4bra. Visszatér6 gorbe

A visszatérd gorbén torténd mozgas esetén az elgzéekben targyalt (o, 51) pont
a lépcsds gorbét reprezentald méatrixba keriil, az ideiglenes pontot pedig az (az, 52)
pont fogja jelenteni. A 3.7.(a) dbran a lépcsGs gorbe a csokkend gerjesztés miatt
fentrdl lefelé mozog, igy a as = «y, mig a 3.7.(b) abra esetében a lépcsss fiiggvény
balrol jobbra valtozik, tehat B = 81 = —ay. Eppen ezért a pozitiv elsé magnesezési
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gbrbéhez tartozo visszatérd ag esetén az

L= [0‘1 0‘1] (3.8)

—Qg 52

méatrix reprezentalja a lépcsés fiiggvényt, és a modell kimenete az
Y(8) = Ymar | — B (a1, =) + 2(E (a1, —ar) = B (a1, 52) )| (3.9)

Osszefiiggéssel szamithato. A képlet tulajdonképpen az AB1 és CB2 haromszogek
kiilonbségét reprezentalja, melynek fizikai jelentéstartalma, hogy az els6 magnesezési
gorbe szamitasa soran felkapcsolt hiszteronok egy részét a csokkend gerjesztés miatt
le kell kapcsolni. Negativ els§ magnesezési gorbe esetén a forduldpontokat tarold
matrix

L= [0‘1 a2 ] (3.10)

—Qp —aq

alakt, a modell kimenete pedig az
y(t) = Ymazx [E (041, —041) - 2(E (041, —061) - E (0427 —041) )] (3-11)

formulaval adhato meg, mely a felkapcsolasra keriil6 hiszteronokat tartalmazo C2B
haromszog pozitiv teriiletének szuperpozicidjat jelenti a lekapcsolt hiszteronokat
reprezentalo, negativ elGjelii A1B haromszog teriiletével. A gerjesztés iranyvaltozasa
esetén a 3.8. abran lathaté modon egy minor hurokra jutunk.

()4 y()4
1

u(;) u(;)
56—,
1e 7
Aﬁ Aﬁ
B /
D /
C 2
A 3 . A s
‘a C ‘a
D, 3
B 2 1
//% 41 //QE
S S
(a) Novekvs gerjesztés (b) Csokkend gerjesztés

3.8. 4bra. Minor hurok nyitasa

A porzitiv elsd magnesezési gorbéhez tartozoé minor hurok kezelése (3.8.(a) abra)
az eddig ismertetett kimenetszamitasi eljarasokkal teljesen analog, a haromszogoén
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beliil taldlhato, a lépcsés fiiggvény fordulopontjai altal meghatarozott részhéaromszo-
gek segitségével konnyen megérthets. Ezattal az A,D,3,2 és 1 pontok altal megha-
tarozott sikidom teriiletét kell meghatarozni, amely az egyenstlyi allapothoz képest
névekményt jelent a felkapcsolt hiszteronok szamara. Ez a részharomszogek teriile-
tével kifejezve: Tapy — Tcope + Teops. A 1épess fliggvényt reprezentald métrix

S 612

alakt, a modell kimenete pedig az
Y(t) = Ymax [ — E (o, —a1) + 2(E (a1, —ou) — E (a1, B2) + E (a3, 52) )} (3.13)
Osszefiiggéssel hatarozhaté meg. A negativ elsé magnesezési gdrbéhez tartozé minor

hurok (3.8.(b) abra) esetén a meghatérozando teriilet a részharomszogekkel felirva:
—Ta1B + Tcop — Tesp. A lépes6s gorbét leird matrix

—Q; —0q 53

I — { Qaq Q2 042} : (3.14)
a vélaszjel az

() = Ymas [E (a1, —an) — 2(E (a1, —) — E (g, —n) + E (az, Bs) )} (3.15)

modon szamithatd. A harmadrend minor hurok esetére a 3.9. dbra mutat példat.

Y4 Y4
1
2, @ 3
// _ _
u(t) u(t)
3'@,2
14 o
Aﬂ Aﬁ
B /
D /
C Y 12
A 3 _ A _
. a C a
E
D 3 .
Bi/ 49 g1
//% ~d1 //%
& &
(a) Csokkend gerjesztés (b) Novekvs gerjesztés

3.9. d4bra. Harmadrendd minor hurok nyitasa
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Pozitiv els6 magnesezési gorbe esetén (3.9.(a) abra) a meghatarozando teriilet a
részharomszogek segitségével a

Tapr — Tesz + Teps — Toar (3.16)

alakban irhatoé fel, a forduléopontokbol akotott matrix

_ |6 ap a3 Qg
L= [—al B, B 54] (3.17)

formaban adodik, a valaszjel pedig az
y(t) = Ymazx |: - K (ala _al) + 2(E (alv _al) —F (ala 62) +

(3.18)
+ E (as, f2) — E (as, B4) )}

Osszefliggés segitségével szamithato. A formuldk negativ els6 magnesezési gorbe
esetén:

—TaB + Teos — Tasp + Trap, (3.19)
aq Qg Qg Oy

L= 3.20

{—061 —a P ﬁj ( )

Y(t) = Ymaz [E (a1, —a1) = 2(E (a1, —ou) — E (a2, —aq) +

+ E (g, B3) — E (o, B3) )} :

A lépesds fiiggvény dinamikus kezelése soran a gorbét reprezentalé matrixbol a ger-
jesztés aktualis értékétsl fiiggGen torolni kell bizonyos oszlopokat, tarolt fordulo-
pontokat. Ha az n-edik lépésben a gerjesztés aktualis (normalizalt) értéke wu,, ak-
kor novekve gerjesztés esetén azokat az oszlopokat kell torélni, melyekre igaz, hogy
u, > o, mig csokkend gerjesztés esetén az u,, < f; feltételnek eleget tevd oszlopokat
kell eltavolitani, amennyiben az L méatrix k oszloppal rendelkezik, és j € [1,2, ..., k].

(3.21)

3.5. A modell verifikacidja

A modell implementéalasa utan sziikséges és célszerd meggy6zédni arr6l, hogy az
megfelel6en miikodik, kimenetként adott értékei rendre — jo kozelitéssel — egyezést
mutatnak a mért eredményekkel. A modell helyességének ellenérzése verifikacio-
val tehet6 meg [21]. Az ellenérzés soran azt vizsgaltam meg, hogy a néhany —
véletlenszertien kivalasztott — koncentrikus hurok esetén, azonos gerjesztés mellett
vizsgalva a modell kimenete kvantitative egyezik-e a mért mégneses indukcioval,
valamint megvizsgaltam a hiszterézis veszteség értékeét is.

A hiszterézises tulajdonsagbol adodé veszteség a vizsgalt hurok alatti teriilettel
ekvivalens, értékének meghatarozasihoz a magneses térergsség fiiggvényét a mag-
neses indukcio szerint sziikséges egy periddusra integralni. Az Osszefiiggés altalanos
alakja:

w = fﬁ -dB. (3.22)
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Mivel a két fiiggvény a szimulacios eljaras soran diszkrét idejd jel formajaban all
rendelkezésre, ezért az integral a trapezioid-szabaly alapjan [22] a

w3 (Bli+ 1) —B[i])H[i]+f[i+1] (3.23)

formulaval kozelithetd, ahol N az egyetlen periddusban vett diszkrét mintak szama.
Az eredmények a 3.10. abran tanulmanyozhatok. Lathatod, hogy a mért és a szi-
mulélt eredmények a modell kimenetének és a veszteség értékének tekintetében is jo
kozelitéssel megegyeznek, igy a megvalositott modell megfelelGen miikodik.
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3.10. bra. Mérés és szimulacio 6sszevetése (mért: —, szimulalt: -, o)
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4. fejezet

A Maxwell-egyenletek teljes
rendszere

4.1. Bevezetés

James Clerck Mazwell (1831-1879) a tizenkilencedik szazad kivalo elméleti fizikusa,
matematikusa volt ("A legalaposabb és legtermékenyebb fizikus volt Newton dta."
— Einstein), életének legfontosabb tevékenysége az elektromossaghoz kothets. Ki-
emelked6 kozremiikdése abban all, hogy kiterjesztette és matematikai forméba 6n-
totte a kordbbi fizikusok (példaul Michael Faraday és André-Marie Ampére) kisér-
leti tapasztalatait, és egy Osszekapcsolodo, egységes parcialis differencidlegyenlet-
rendszerbe foglalta azokat. Az egyenleteket Maxwell 1861-ben publikilta elGszor az
On Physical Lines of Force cimi cikkében [23].

4.1. abra. James Clerk Maxwell [24] és Oliver Heaviside [25]

Maxwell egyenletrendszere hiisz egyenletet és htsz valtoz6 mennyiséget tartal-
mazott. A Maxwell-egyenletek mai formajat egy oridsi formatumi, kiemelkedd, de
méltatlanul elfelejtett autodidakta angol villamosmérnoknek, Oliver Heaviside-nak
(1850-1925) koszonhetjiik, aki munkaja soran kifejlesztette és a villamosmeérnoki gya-
korlatba iiltette a vektoranalizist, a rotacié és a divergencia operatorok segitségével
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tizenkét egyenletet atalakitott, igy az egyenletrendszert négy egyenletté redukalta
négy valtozéoval.

4.2. A Maxwell-egyenletek

A Maxwell-egyenletek segitségével a tér barmely pontjaban barmely térjellemzé (le-
gven az akar elektromos, akir mégneses) meghatarozhato. Az egyenletek tehat
Osszefliggést teremtenek a gerjeszté mennyiségek (toltés, aram), a térintenzitasok
(elektromos térerdsség, magneses indukeio) és a gerjesztettségi mennyiségek (elekt-
romos eltolas, magneses térerGsség) kozott. A négy Maxwell-egyenlet integralis alak-

ban: .
j{ﬁ-di‘: / (f+ %—?) -dA, (4.1)

l A
7{ B.di— / _5_5(1;, (4.2)
l A
%B’ .dA =0, (4.3)
A

]{ﬁ-djz/pdv. (4.4)
A \%

Az els6 Maxwell-egyenlet (4.1) az Ampére-féle gerjesztési torvény, fizikai jelenté-
se, hogy az aram és az elektromos tér valtozasa mégneses teret kelt (értelemszertien
a két mennyiség egyszerre is létrehozhatja a teret, de kiilon-kiilon is képesek mégne-
ses teret kelteni). A masodik egyenlet (4.2) a Faraday-féle indukcios torvény, fizikai
jelentése, hogy a magneses tér valtozasa elektromos teret kelt. A harmadik egyenlet
(4.3) a magneses Gauss-torvény, jelentése, hogy az indukcidvonalak forrasmentesek,
onmagukban zarodnak. A negyedik egyenlet (4.4) az elektrosztatika Gauss torvénye,
jelentése, hogy a elektromos tér forrasos, er6vonalai toltéseken kezdGdnek, toltéseken
végzddnek.

A konstittcios relaciok munkam soran felhasznalt, ferromagneses anyagok esetén
érvényes formuléai:

B=x {ﬁ} , (4.5)
D =¢E, (4.6)
J=0 (E’ + E,,) . (4.7)

Az egyenletek igy teljesek és ellentmondasmentesek. Integralis alakjuk fizikailag
szemléletes, de a numerikus szamitiasok soran ebben a forméaban alkalmazni Gket
nehéz, koriilményes. Az egyenletek atirhatok differencidlis alakba a Stokes-tétel:

fﬁ-df:/vXﬁ.dA’, (4.8)
A

l
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és a Gauss-Osztrogradszkij-tétel segitségével [22]:

fﬁ-dfi’:/v-adv, (4.9)
14

A

ahol V az ugynevezett nabla vektoroperator, mely segitségével egy ¥ (7,t) =
€xVz(t) + €yv,(t) + €,v,(t) alakban felirhato vektor rotacioja és divergenciaja kife-
jezhetd Descartes-féle koordinata-rendszerben:

0
o
G
V=g 410
% (1.10)
0z
P
Vxgmcn@)-[E £ §|-a (2o
v vy v s (4.11)
B e_, avz _ 81}1 I e_’ % B 8Um
Y a.% aZ Z 8x ay )
V.5 = div (5) = 2% 4 Q| O o

T oy o
A kifejezések alapjan belathato, hogy a rotacio alkalmazasa vektorbol vektort, mig
a divergencia vektoroperator vektorbdl skalart eredményez.

A Maxwell-egyenletek differencialis alakja az eddigieket felhasznalva:

-~ - 0D
H=J+== 4.1
V x J+ TR (4.13)
- 0B
E=-"—" 4.14
V x 5 ( )
V-B=0, (4.15)
V-D=p. (4.16)

Az Osszefiiggésekben H a magneses térerdsséget jeloli, dimenzi6ja %, J az aram-
stirtiség, dimenzidja %, D az elektromos eltolds, dimenzidja %, E az elektromos
térerdsség, dimenzidja %, B a magneses indukcio, dimenzidja T, p a toltésstiriség,
dimenzidja % A konstitucios relaciokban pg jeloli a vakuum permeabilitasat, ér-
téke és dimenzidja 4w - 1077 X—;, €o a vakuum permittivitasa, értéke és dimenzidja
8,854 - 1071 &= o pedig az anyag vezetSképességét jelli.

Az egyenletek segitségével papiron, analitikus, zart formaban csak igen kevés
példa oldhato meg, melyek esetében jellegiikbdl, elrendezésiikbél adodoan jelents-
sen egyszertisodnek az itt bemutatott dsszefiiggések (tipikusan ilyen a toroid transz-
formétor esete is). Az elektrodinamika alapegyenleteibdl levezetett, a késGbbiek
soran altalam is bemutatasra keriil§ parcialis differencidlegyenlet-rendszerek megol-
déasa altalaban kiilonbo6z6 kozelité modszerekkel, numerikus technikak segitségével
torténik.
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5. fejezet

A végeselem-modszer

5.1. Torténeti Attekintés

A végeselem-modszer (angolul Finite Element Method, r6viden FEM) olyan nume-
rikus modszer parcialis differencialegyenletek kozelité megoldasara, amely az eredeti
differencidlegyenletet algebrai egyenletrendszerre képezi le. Torténete egészen a mult
szézad elejére vezethetd vissza: bar a modszer elméleti hatterének megalapozéasa méar
ekkor megtortént, csak a szdzad mésodik felében, a szamitoégépek megjelenésével valt
igazan fontossa (nagyjabol az 1960-as évektdl kezdve). Kezdetben mechanikai prob-
lémak megoldasara alkalmaztak, de késébb gyakorlatilag a fizika minden teriiletén
elterjedt. A kovetkezSkben altalanosan igyekszem bemutatni a modszer alapjait,
fontosabb l1épéseit.

5.2. A moédszer alapelve

5.2.1. A probléma absztrahalasa, peremfeltételek

Vizsgaljunk meg egy () problématartoményt, melyet két perem, I'p és I'y hatarol.
Az ) problématéren értelmezziink egy tetszéleges, < PDE >-vel jelolt, n-ed rendd
parcialis differencidlegyenletet (az ismeretlen vektorfiiggvény legyen A (7,t)), mely-
nek partikuldris megoldésat keressiik a tartomanyon beliil. Ezt szemlélteti az 5.1.
abra.

5.1. 4bra. Egy sematikus problématér
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A megoldashoz a kétféle peremen kétféle peremfeltételt sziikséges definialni:

Ty: A=A, (5.1)
0A .
FNZ %:f(’r‘,t) (52)

Dirichlet-peremr6l és peremfeltételrsl (I'p, (5.1)) beszélhetiink abban az esetben,
ha a keresett A (7, t) vektorfiiggvény értékét a peremen direkt modon elGirjuk,
Neumann-peremrél és peremfeltételrsl (T'y, (5.2)) beszéliink akkor, ha a peremen a
keresett A (7,¢) vektorfiiggvény normalis iranyt derivaltjat hatéarozzuk meg.

5.2.2. A silyozott maradék elve, gyenge alak

A moédszer alkalmazésa sordan az eredeti < PDE > helyett egy altalanosabb, a
kiindulasi differencidlegyenletbdl szarmaztathaté integralos alak keriil megoldasra.
Ezt az alakot dgy kapjuk, hogy a < PDE >-t nullara rendezziik, egy tetsz6leges W;
stlyozofiiggvénnyel megszorozzuk, majd integraljuk a teljes problématartoményra

[9]:
/<PD€>-WZ~dQ:O Y, € W. (5.3)
Q

Amennyiben a keresett fiiggvény vektorfiiggvény (vektorpotencial), tigy a silyo-
zasra is vektorfiiggvényt hasznalunk, mig skalarpotencial esetén W is skalarfiiggvény
kell, hogy legyen. Abban az esetben, ha az integralos alak nullat ad, agy az eredeti
differencidlegyenletnek is nulldt kell adnia, igy azt mondhatjuk, hogy az integra-
los formula tobbé-kevésbé ekvivalens az eredeti < PDE >-vel. Fontos megjegyezni,
hogy az ekvivalencia nem teljesiil {2 bizonyos részein, ahol a differencidlegyenlet ope-
ratorai nem értelmezettek. Tipikusan ilyenek a kozeghatarok, ahol a térjellemzéknek
ugrasuk van. Az sulyozott maradék elvének alkalmazasa ezen esetekben is megol-
dasra vezet, ezért azt allithatjuk, hogy az egyenlet ezen alakja joval altalanosabb.
A stlyozott maradék elvének masik nagy el6nye, hogy alkalmazaséaval kikiiszobol-
hetSk az eredeti egyenletekben gyakran el6forduld masodrendii derivaltak is [10]. A
silyozott maradék elvének segitségével felirt integralegyenletet hivjuk — bizonyos, a
kovetkezSkben targyalasra keriilg feltételek mellett — a parcialis differencidlegyen-
let tigynevezett gyenge alakjanak, mely a szimuldcié soran ténylegesen kiszamitasra
kertil.

5.2.3. A problématér diszkretizilasa

A végeselem-modszer alkalmazéasa soran a vizsgalt problématartomanyt diszkrét sza-
mu, véges nagysagu elemre kell bontani, mely elemek tipusat a probléma jellegétél
és a szimulacidhoz hasznélt modelltdl fiiggden kell megvalasztani. Munkdm soran
egydimenzids és kétdimenzios szimulacidokat végeztem. Az elsd esetben szakaszokra
osztottam fel a problémateret, mig kétdimenzidés modellezés esetén haromszogeket
alkalmaztam.

A szimulaciok soran csomoponti végeselemeket alkalmaztam, azaz a vektor-, il-
letve skalarpotencial értékeit az elemek csomopontjaiban értelmeztem, szamoltam
ki. A diszkretizalas modja az 5.2. abran lathato. Egydimenzios szakaszok esetén
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egyetlen elemet ketts, kétdimenzioban egy héromszoget értelemszertien harom cso-
mopont hataroz meg. Egy csomopontot a dimenziok szaméatol fiiggsen egy (P, (x,,)),
illetve kett6 (P,(zn,ys)) sikkoordinata hataroz meg. A szamitasok soran ismert és
felhasznaland6 a szakasz hossza, valamint a haromszog teriilete.

YA

5.2. 4bra. Diszkretizdlas egy- és kétdimenzioban

Egydimenzios modell esetén kézzel végeztem el a diszkretizalast, mig kétdimenzi-
s esetben GMSH [26] szoftver racsgenerald moduljat alkalmaztam, mely segitségével
gyorsan elGallithatok azok az input fajlok, melyek a szimulacidkhoz sziikségesek.
Ezek: Nodes, Connect, Dirichlet, Fxc. A Nodes nevi fajlban taroltam el a csomo-
pontok koordinatait. Ez egydimenzids esetben egy sorvektor, kétdimenzids esethen
egy matrix, melynek két oszlopa és annyi sora van, ahany csomoépont. A Connect
rendeli 6ssze a csomopontokat elemmé, azok sorszamai alapjan. Egydimenziés eset-
ben definidlasa felesleges, hiszen a vektor szomszédos elemei alkotnak egy-egy elemet,
kétdimenzioban viszont fontos és sziikséges a hasznélata. Ekkor harom oszlopa és
annyi sora van, ahany elem a értelmezésre keriilt problématartomanyon. A Dirich-
let vektor azon csomoépontok sorszamat tartalmazza, amelyekre a megoldas soran
a Dirichlet-tipusi peremfeltételt alkalmazni kell. Amennyiben a feladat megkivan-
ja, gy azonositani kell azon csomopontokat és/vagy elemeket, melyekre valamilyen
gerjesztést kivinunk megadni. Erre szolgal az Exc nevi fajl.

5.2.4. Asszemblalas, megoldas

Miként azt mar a bevezet6ben emlitettem, a végeselemes szimulacid soran az eredeti
differencidlegyenletet algebrai egyenletrendszerre képezziik le. Megoldaskor az adott
problémara érvényes gyenge alakot kell minden elemre felirni. Az egyetlen elemre
felirt egyenletrendszer egyiitthatoit a probléma komplexitasatol fiiggben egy vagy
tobb matrixba kell asszemblalni, amely folyamat olyan egyiitthatomatrixot eredmé-
nyez, melynek elemei tobbnyire zérusok. Az ilyen tipust méatrixot ritka matrixnak,
angolul sparse matriz-nak nevezziik [27]. A szimulaci6 soran felirt egyenletrendszer
altalanosan a

K-u=b (5.4)
alakban irhato fel, ahol K az egyilitthatomatrix, u az ismeretleneket tartalmazo
oszlopvektor, b pedig a gerjesztést, a peremfeltételeket, illetve id6fiiggs probléma
esetén az el6z6 id6lépést magaban foglald vektort jelenti. A feladat megoldasa a

u=K"'-b (5.5)
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egyenlet kiszamitasaval torténik. A szimulécio kritikus lépése az egyiitthatoméatrix
invertalasa, amely komplex, sok ismeretlent tartalmazé feladatok esetén rendkiviil
idGigényes miivelet.

5.3. Formafiiggvények

A szimulaciok soran a keresett potencialértéket (legyen az skalar- vagy vektorpo-
tencial) formafiiggvények segitségével kozelitjiik. Mivel munkam sorén kizarolag
vektorpotenciallal és nodalis végeselemekkel dolgoztam, ezért a tovabbiakban csak
ezen esetek bemutatasara szoritkozom. Csomoéponti elemekrél beszéliink abban az
esetben, ha a vizsgélt potencialértékek kizarolag az elemek csomépontjaiban értel-
mezettek. TetszGleges A (7,t) vektorpotencial értéke kozelithets az

N
A~ Ap+ Y Wil (5.6)

=1

Osszefiiggés alapjan, ahol N jeloli a csomopontok szamat, és WZ a kozelitésre hasz-
nalt formafiiggvény [9]. A végeselem-modszer fontos jellemzGje, hogy a szimulacio
soran az 5.2.2. alszakaszban bevezetett IW; stulyozofiiggvény és a formafiiggvény meg-
egyezik (ez az ugynevezett Galjorkin-mddszer [28]), igy a felépitendd egyenletrend-
szer szimmetrikus és négyzetes lesz. Ez a 1épés megtehetd, hiszen W, tetszélegesen
megvalaszthato. Bar (5.6) vektorialis formafiiggvényt jelez, de a késGbbiekben be-
mutatott szimuldciok soran a gerjesztés irdnya minden esetben a szimulacio6 sikjara
meréleges, ezért elegendé a skalaris formafiiggvények alkalmazasa, igy a tovabbiak-
ban a skalaris formafiiggvények bemutatasaval foglalkozom.

A szimuléciok soran alkalmazott skalaris, csomoponti formafiiggvények altalano-
san a kovetkezGképpen definialhatok:

W, — { 1 azi-edik csomopontban, (5.7)

0 az Osszes tOobbiben.

A definicié ebben a forméban nem tesz kikotést a formafiiggvények viselkedésére a
csomopontok kozotti teriileten. Ettél a paramétertsl fliggéen megkiilonbdztethetiink
lineéris, valamint magasabb foku formafiiggvényeket — munkdm soran kizarolag
linearis fiiggvényeket alkalmaztam. Az egydimenziés formafiiggvényt az 5.3. abra
mutatja.

X, X,
5.3. dbra. Egydimenzios, linearis formafiiggvény

Ezen formafiiggvények az egyenes egyenletének segitségével felirhatok:

To — T Tr — T

W1<£L’> = WQ({E) =

352—1717 $2—$1'
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A kétdimenzios szimulaciok soran alkalmazott skalaris, linearis formafiiggvények be-
vezetéséhez a baricentrikus koordindta-rendszer ismerete sziikséges, mely az 5.4.
abran lathato. A haromszog cstcsainak koordinatai segitségével a sikidom teriilete

(3,5)

(.3,
5.4. 4bra. Baricentrikus koordinatak

szamithato a

1 1z wn
A=-|1 T2 Yo (59)
2
1 z3 ys

determinans segitségével, ahol (z,,y,) a haromszog csticsainak koordinatéi az ora-
mutaté jarasaval ellenkezd iranyban felvéve. A haromszog belsejében kijelolt tetszé-
leges (x,y) pont segitségével harom kiillonb6z4 teriiletfiiggvény definialhato [8):

LA LR LI
Ar==|1 z9 yo|, Ao==|1 =z yl|, As==1|1 x5 ysl. (5.10)
2 2 2
I x3 ys 1 x5 ys I =z y

A kétdimenzids, linearis formafiiggvényeket leir6 egyenlet ezek alapjan:

A.
W, = XZ i=1,2,3. (5.11)

5.4. A szimulacio lépései

Egy végeselemes szimulacio altalanos lépései az 5.5. abran lathatok. A modell
specifikicidja soran at kell gondolni, hogy pontosan milyen problémat, elektromég-
neses jelenséget, milyen geometriai elrendezést szeretnénk vizsgalni, a jelenséget mi-
lyen parcialis differencidlegyenletek irjék le, a kozeghatarokon milyen peremfeltéte-
leket kell kielégiteni, a térjellemz6 mennyiségek kozott milyen kapcsolat definialhato
(linearis-nemlinearis probléma), illetve érdemes mar itt szem elGtt tartani, hogy jel-
leg és nagysagrend tekintetében milyen végeredményt varunk. Az eléfeldolgozas so-
ran pontosan definialasra keriil a gerjesztés tipusa (ha van) és az anyagparaméterek,
majd a szimulalt geometria diszkretizalasa, a racsstruktira eltarolasa kovetkezik.
A szamitési fazis tartalmazza az elemegyenlet felirdsat a gyenge alak alapjan, a
K egyiitthatomatrix feltoltését és a b vektor aktualizalasat a gerjesztés és az el6z6
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id6lépés alapjan, amennyiben id&fiiggé a probléma. A szimulacié kritikus 1épése
az egylitthatomatrix invertalasat magaban foglalo megold6 fazis. Amennyiben idé-
fiige6 a probléma, illetve nemlinearis anyagtulajdonsig keriil szimulalasra, igy a
szamitasi lépéseket annyiszor kell elvégezni, ahany id6lépés van, idélépésenként pe-
dig annyiszor, ahdnyszor a kés6bbiek soran bemutatott, nemlinearitas szimuldlasara
hasznalt iteracios technika megfelel§ pontossaggal kozeliti a valos eredményt. Ezt
koveti az utofeldolgozas, az eredmények kiértékelése, mely soran véltoztathatunk a
kiindulaskor specifikilt modellen, amennyiben sziikség van ra.

. A modell specifikacidja
_________________ El(’)’feldolgozés;
Adatok 0sszegy(jtése
Racsgeneralas
N3
Q‘ L mmmmmmmmmmmem—emme—me——e———————— o [ -~
1 i Szamitas
G / /
gl = Elemegyenlet felirasa
< =
N N
TU (‘g \
T Asszemblalas
o, n
O 2 v
E Megoldas
E
q‘) .................
Z

Utofeldolgozas

5.5. dbra. Végeselemes szimulacio 1épései
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6. fejezet

Nemlinearitas implementacidja
végeselemes kornyezetben

Ebben a fejezetben altaldnosan bemutatom az implementéacié soran hasznélt fixpon-
tos iteracios sémat, illetve felvazolom a magneses térerGsség és a magneses indukcio
kozotti nemlinearis, hiszterézises kapcsolat megvalositasi lehet&ségeit, modszereinek
lépéseit a numerikus térszamitasban.

6.1. Fixpontos iteraciés séma

A fixpontos iteracios technika elve abban &ll, hogy az

= f(2) (6.1)

alakban felirt nemlinearis egyenlet ismert xx(k = 0,1, ...,n) kozelits értékeinek fel-
hasznalasaval tovabbi kozelits értékek sorozatat képezziik, amelyek 1épésrél-lépésre
az egyenlet valodi gyokéhez tartanak. Ha az egyenlet (6.1) alakban adott, akkor a
kézenfekvs iteracios eljaras:

Tt = [ (x) (n=0,1,2,...; xq adott) . (6.2)

Ezt az iteracios eljarast szukcessziv approximécionak (magyarul sorozatos kozelités-
nek) [22] nevezziik. Az x,, sorozat ¢ = f(c) fixponthoz, tehat az x = f(z) egyenlet
megoldasidhoz konvergal, ha c-nek van olyan I kérnyezete, ahol

f(x) = f(c)

‘ < K <1 (K = konstans) (6.3)
r—c

és az iteracio x kezdeti értéke ebben a I kérnyezetben fekszik.
Amennyiben f(x) folytonosan differencialhato, ugy a megfelels feltétel:

| f(z1) — f(z2)]

|21 — 2o

<1l Vuax,z el (6.4)

Ezen formula alapjan megfogalmazhato a kontraktiv leképzés definicioja [8] is:

[f(x1) = f(z2)| S K|z1 — 22| Va,x €l (6.5)
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y=f(x)

X, X x,

Ky

6.1. abra. Fixpontos iteracié kontraktiv, konvergens leképzés esetén

amennyiben 0 < K < 1. Ebben az esetben az f(z) leképzést kontraktiv leképzésnek
hivjuk, mert csokkenti az x; és x5 pontok kozotti tavolsidgot. Ez a leképzés a 6.1.
abran lathato konvergens eljarast eredményezi, mely az = = f(z) egyenlet megolda-
sahoz konvergal. Ha ez a feltétel nem teljesiil, igy az iteracié divergens. Tetszéleges
F(z) = 0 alaki egyenlet felirhato « = f(x) alakban a kovetkezSképpen [8]:

Tpr1 = Ty — AF(z,) = f(zn), n=0,1,2,..., (6.6)

ahol A\ paraméter megvalasztasaval az f(x) fiiggvény kontraktivitdsa biztosithato.

6.2. A polarizaci6s formula

A magneses indukcid (E) fiiggvénye a 6.2. abran lathatd6 modon két komponensre
bonthato fel [8]:
B=uH+ R, (6.7)

ahol i, konstans, igy az els6 tag kizarolag H magneses térerdsség linearis fiiggvénye,
R pedig az anyagra jellemz§ nemlinearis komponenst jeloli. A formula felirhato

R=B—uH (6.8)

alakban is, melybdl kiindulva — direkt hiszterézis karakterisztika alkalmazisaval —
a kovetkezd Osszefiiggés adodik:

—

R=% {ﬁ} ~uH. (6.9)

Ez a leképzés kontraktiv p optimalis megvéalasztasa esetén:

Lo = Hmaz + Hmin
o 9 .

Az eddigiekkel teljesen analég modon irhato fel egyenlet a magneses térerGsségre:

(6.10)

H=yv,B+T, (6.11)
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ahol v konstans, igy v,B linearis, T pedig az adott anyagra jellemz6 nemlinearis
rezidual:

—_ — —
I=-H—-v,B. (6.12)
Ba L. ..
nemlinearis karakterisztika :
4
4
4
4
4
4
4
4
4
"
R ¢
4
4 . s . . e
R4 linearis 0sszetevo
"
K/
4
4
4
(4
(4
4
(4
'0
0 nH
4
4
4
K4
4
4
'O
(4 »
Lt
e H

6.2. Abra. A magneses indukci6 két komponensre bontésa

A magneses térerdsség és a magneses indukcié kozotti direkt kapcsolatot leird
karakterisztikat felhasznalva

f:ﬁ—yo,%’{ﬁ} (6.13)

adodik, mely leképzés v, optimalis megvalasztasa esetén szintén kontraktiv:

92 1 1
_ Hmin Pmin
Vo= 3 1 (6.14)
Hmin Hmax

6.3. Nemlinearis formalizmusok megvalositasa

6.3.1. Séma a magneses térerdsségre épitve

Az alabbiakban Gsszefoglalom a fixpontos iteracié 1épéseit abban az esetben, amely-
ben a megvalositott potencidlformalizmus a magneses térerGsségre keriil felirasra,
tehdt a szimulacié kimenete maga a H mégneses térerGsségvektor [8]. Az iteracios
sorozat yu optimalis megvalasztasara épit (6.10). Az iteracio tetszSleges R(© értékbol
indithato. Az n-edik lépésben a kovetkezdket kell végrehajtani [8] (T.F.H. : n > 0):

1. H™ méagneses térerdsség meghatarozasa R(®=1) alapjan a potenciélformaliz-
mus segitségével, tehat: H™ = #{R"V},

2. B™ méagneses indukci6 a direkt modell segitségével meghatarozhato, tehat:
B™ = {H™},
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3. R nemlinearis rezidual értéke javithato:

R™ = B™ _ , A™ = (™} — 1, H™; (6.15)

Az el6z6 1épéseket addig kell ismételni, amig az eljards nem konvergal megfelelg
mértékben. A feltétel megfogalmazhato:

‘ ’ BM™ _ Bn—1)

‘ <e, (6.16)

ahol € egy megfelelGen kis kiiszobindex.

6.3.2. Séma a magneses indukcioéra épitve

A maéagneses indukciora épitett iteracioés sorozat v optimalis megvalasztasara épit
(6.14). Az iteracio tetszéleges I'® értékbél indithaté. Az n-edik lépésben a kovet-
kezSket kell végrehajtani 8] (T.F.H.:n > 0):

1. B™ mégneses indukcié meghatarozasa =1 alapjan a potencialformalizmus
segitségével, tehat: B(™ = # {1},

2. H™ magneses térerdsség a kovetkezs formulaval becsiilhetd B™ alapjan:
Ay, B 4 i), (6.17)
3. I'™ nemlinearis rezidual értéke javithato:

™ — 5™ — y,{H™}, (6.18)

Az el6z6 lépéseket addig kell ismételni, amig az eljards nem konvergal megfeleld
mértékben. A feltétel megfogalmazhato:

HfW - f("—l)H < (6.19)

ahol € egy megfelelGen kis kiiszobindex.
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7. fejezet

Egydimenziés probléma szimulacioja

7.1. A probléma definidlasa

Klasszikus elektrodinamikai problémanak tekinthet§ a 7.1. abran lathato valtakozo
magneses térbe helyezett vezets lemez. A vizsgalodas targyat képezs lemez hosszi-
saga sokszorosa a szélességének, ezért gyakorlati szemponthol végteleniil hossztinak
tekinthetd (I >> 2a) [29].

A
2 YR

7.1. 4bra. Vezetd lemez magneses térben

A szimulacié soran a 2a vastagsaghoz viszonyitva végtelennek tekintett [ lemez-
hosszisag miatt elenged6 csupén a vizsgalt probatest x = 2a tartoméanyéanak vizs-
galata, amely a vizsgalodas mélységének megfelelGen leirja a lemez belsejében ki-
alakul6 mégneses teret. A végeselemes diszkretizdlas soran ezt az x-iranyt szakaszt
osztottam egydimenzios elemekre a [—a; +a| intervallumon beliil.
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7.2. A problémat leir6 egyenletek

A szimulacié soran megoldasra keriil6 differencidlegyenlet levezetéséhez a Maxwell-
egyenletek kvazistacionarius alakjai, illetve a hiszterézist is magukban foglalé kons-
titucios relaciok sziikségesek [13]:

Vx H=1J, (7.1)
. 0B

E-_22 2

V X ETR (7.2)

V- -B=0, (7.3)

B=.H+R, (7.4)

J=oE. (7.5)

Felhasznalva (7.1) és (7.5) egyenleteket, majd az eredményt atrendezve a kovet-
kezG egyenlet adodik:

— 1 —
E=-VxH. (7.6)
o
Ezt visszahelyettesitve (7.2) egyenletbe a
OB

Osszefiiggés irhato fel. Felhasznalva (7.4) egyenletet, illetve azt a tényt, hogy a o
anyagparamétert a vizsgalt tartoméanyon beliil konstansnak tekinthetjiik,

VXVXﬁ:—U% (uﬁ+ﬁ> (7.8)

irhato fel, melyet atrendezve a probléméra felirhatd differencidlegyenlet végleges
alakjat kapjuk:

OH OR
VXVXH—FMU 8t ——O'E. (79)

7.3. Gyenge alak levezetése

Az eddigiek alapjan a megoldando gyenge alakot tgy kapjuk, hogy (7.9) ésszefiigge-
sét egy tetszéleges W siilyozofiiggvénnyel megszorozzuk, majd integraljuk a teljes
problématartomanyra. Igy az

/W VXVXHdQ+W/W :—J/W—dQ (7.10)

Osszefliggés adodik. Az egyenldség bal oldalan masodrendii derivalt talalhato, mely
kikiiszObolhets a
V- (Ux0)=¥-Vxud—u-VxU (7.11)

azonossag felhasznalasaval, amennyiben a kovetkez§ valasztassal éliink:

T=W, d=V xH. (7.12)
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Az Osszefiiggés felhasznalasa utan az integralegyenlet az

/v VxHxW dQ+/V><H VdoQJr/w/W 8—HdQ_
Q

:—U/W —dQ

(7.13)

alakba irhaté at, mely egyenlet bal oldalanak els§ tagja egy vektormezd diverge-
nidjanak térfogati integralja, mely a Gauss-Osztrogradszkij-tétel segitségével (4.9)
atirhato a térfogatot hatarolo feliiletre vett korintegralra. Ezek alapjan a gyenge
alak:

H
%VXHXW ndF—i—/VXH V><Wd§2+,w/W 8—dQ—

“ (7.14)

:—O'/W —dQ

Egy- és kétdimenzios szimulaciok esetén az els§ korintegral értéke zérus, igy ezzel a
taggal az implementacié soran nem kell foglalkozni. A differencidlegyenlet gyenge
alakja tehat a kovetkezs formaban adodik:

/VXﬁ-VXWdQ—i—MU/W —dQ——o/W aR . (7.15)

Q Q

7.4. Végeselemes implementacid

A vizsgalt probléma esetén H mégneses térergsség olyan vektormennyiség, amelynek
kizarolag z-irdnyd komponense van, de csak az x térdimenziotol fiigg. Igy tehat
H = H.(z)e, = He, (7.16)
irhato fel. Mivel a magneses térerGsség ezek alapjan kezelhetd skalaris mennyiség-
ként, valamint az el6irasra keriil6 gerjesztés a szimuléicid sikjara mer6leges lesz, H
kozelitése W skalaris, egydimenziés formafiiggvények segitségével torténik:
Np
H=H=) WH, (7.17)
i=1
Az Osszefiiggésben N, a vizsgalt csomopontok szama. Végeselem-modszer alkalma-
zasa esetén — a korabban targyaltak szerint — a gyenge alak silyfiiggvénye megegye-
zik a potencial approximéciojahoz hasznalt formafiiggvénnyel, tovibba az altalanos
rotacio operatorok gradiensekké egyszertisodnek, (7.15) atirhato az
NP

/VZWH VW, dQ+ua/W ZWaH dQ =

Q =1

OR; .
— —a/W]—ZWiW dQ j=1,..,N,
Q 1=1

(7.18)
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Osszefiiggésre, mely atalakithato az

ad ol OH,
Z/VWZ--VWJ- dQHi+uaZ/WjWZ- dn—= =

=1 Q =1 0 at
N (7.19)
. OR;
_ —UZ/VI/jm A== j =1, N,
=1 Q

alakra. Ez a formula egyetlen elemre felirva:

J (8]t o)l (1]t ) ]
|

(7.20)

v

szerd kiilon-kiilon targyalni.

7.4.1. Az els6 integral

Az els6 integral tartalmazza a csomoponti formafiiggvények gradienseit és a mag-
neses térerGsséget, mint ismeretlent. Linearis formafiiggvények mellett egy-egy vé-
geselem felett konstans gradiensek adédnak, ami lényegesen megkonnyiti az integrél
kiértékelését. Egydimenzios esetben a gradiensek a

Vledi{xQ_x}:— 1 7
A To — T
1 . i ! (7.21)
VW2:_{93 zl}:
de | 29 — 23 To — T1

alakot oltik, az ) elemen torténd integralas pedig lényegében nem mas, mint a
szakasz hosszaval torténd szorzas, igy (7.20) alapjan az elsé integral:

{[g%ﬂ VWL VIV } (|25 — 1)) {gj _

_ {[vwlvwl VW1VW2] } (12 — 1) {Hl} | (7.22)

VWQVW1 VWQVWQ H2

Az elemhosszal szorzott 2 x 2-es matrix elemei asszemblalaskor a K egyiitthato-
matrix megfelel§ helyeihez adédnak hozza, a mégneses térerdsség keresett értékeit
tartalmazé oszlopvektor elemeit pedig u megfelels elemei reprezentaljak.

7.4.2. A masodik és harmadik integral

A két masik integral kiértékelése hasonlé modon zajlik, igy most csak a masodik
integralt fogom bemutatni, a harmadik, az egyenlet jobb oldalan talalhato kifejezés
kiértékelése az itt leirtakkal teljesen analég modon tehets meg.
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Fontos eltérés az eddigiekhez képest, hogy a kifejezésekben nem a formafiiggvé-
nyek gradiensei, hanem maguk a fiiggvények szerepelnek, tehat nem konstans érté-
ki fliggvényt kell integralni egy-egy végeselem felett. A kiértékeléshez numerikus
integralas, Gauss-kvadrattra sziikséges, amivel dolgozatom a késébbiek soran fog
foglalkozni. A masik lényeges kiilonbség, hogy a kifejezések az ismeretlen magneses
térerdsség és R rezidual id§ szerinti derivaltjat tartalmazzék, ami azt jelenti, hogy
ezen kifejezéseket két részre kell bontani. Ehhez elGszor be kell vezetni a numerikus
differencialas fogalmat [22]:

of f(t2)_f(t1)'

2
ot to — 11 (7 3)
A masodik integral ezek alapjan felirhat6 a
WiWy WiW, Bt
/,LU/ [szl W2W2:| dQ |:H2d}t120ld (724)
Q
alakban. A kifejezés elsé tagja,a
WiW, WiWsy o
o [ ) gl -

tartalmazza H, és H, ismeretleneket, igy ez a tag a K egyilitthatomaéatrix és u vektor
részét fogja képezni, mig

WiWy WiW, L
— dQ | gt 7.26
o [ i) on o

az el6z6 idGlépés H-értékeit tartalmazza, igy a megoldando linearis algebrai egyenlet-
rendszer masik, gerjesztési oldalara, a by, linearis komponenst tartalmazo vektorba
fog keriilni.

A harmadik, a magneses indukci6 rezidualis komponensének derivaltjat tartal-
mazo6 integral értelmezése és megvalositasa az itt leirtakkal teljesen analog. Mivel az
integral nem tartalmaz ismeretlen H potencidlértéket, ezért kizérolag a gerjesztési
oldalon fog szerepni a b,.s rezidudlis gerjesztési vektorkomponensben. A felirdsra
keriil6 egyenletrendszer az eddigiek alapjan:

K - u = by, + byes. (7.27)

7.5. Gauss-kvadratira

A Gauss-kvadratire numerikus modszer hatarozott integralok kozelité meghatéaro-
zasara. Abban az esetben, ha egy elemen az integralando fiiggvény nem konstans,
hanem a helynek valamilyen fiiggvénye, gy az elem felett értelmezett integral kisza-
mitasara kozelité modszert, Gauss-kvadratirat sziikséges hasznalni. A Gauss-tipust
kvadtatiaraképletek kozépeérték-formulak [22]:

b

/f(l‘) de ~ > e, Y = flagw), (7.28)
v=1

a
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ahol ¢, és x, a formula silyai és pontjai, a szamitas soran mindketté szabad pa-
raméter, értékeiket tgy célszerd megvélasztani, hogy a kozelités minél pontosabb
legyen. Amennyiben az [a; b] = [—1; 1] valasztassal éliink, tgy egy els6foki polinom
integralja az intervallumon beliil a

1
:Ug,l = T = Co = 17

\{g (7.29)
Tgo = + Cc1 = 1

V3’
silyokkal és pontokkal kozelithets. Ebben a fejezetben kizarolag az egydimenzios
esetet mutatom be, a kétdimenzios Gauss-kvadraturat dolgozatom a késGbbiek fo-
lyaméan targyalja. Mivel az egydimenzios formafiiggvények els6fokuak, igy az itt

bemutatott stlyokkal és pontokkal kiértékelhet§ az integral. Mivel az integralast
nem a [—1; 1] intervallumon, hanem egy végeselem [z1; x5] intervalluman kell végre-

hajtani, igy az
b
/f(a:) dz ~

transzformacioval kell élni [22]. A kvadratira lépései egydimenzios szimuldcio esetén
(7.25) egyiitthatojan bemutatva:

W T2 Ig:xx S oy
M/ij - WQ}} dQ:MU/{t{_ﬂ [z z”l]} da
Q

x1

b— b
o f < 2 s+ %) (7.30)

v=1

Q

2 To—Tpy
fL‘2 - 3712 : To—11 ) [mg—mnu mpﬂ,—:cl} -
Lp,v —x1 ro—I1 ro—T1 v
v=1 T2—T1
_ T2—Tp,1 T2—Tp,2
o l‘2 le To—T1 . ngxpyl Tp,1—1 c + To—1T1 | T2=Tp,2 Tp2—T1 c
- Zp,1—T1 (EQ—xl To—T1 1 Lp,2— 71 T2—T1 T2—T1 2(>
Tro—T1 Tr2—T1
(7.31)
ahol:
Lo — X1 T, + Zo
Tp1 = Ta1
D, 2 9, 2 ’
(7.32)
. To — X1 T + i)
xp72 - 2 :Eg>2 2 °

7.6. Diszkretizalas, peremfeltételek

Miként azt mar emlitettem, a diszkretizalast egydimenzioban, z-iranyban, [—a; al-n
végeztem el. Ez a lehetd legegyszertibb eset, racsgenerald szoftver hasznalata nélkiil,
Matlab-kornyezetben két parancs segitségével végrehajthato:

N
X

100;
[-a:(2%a)/N:a]l;
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Ebben az esetben N = 100 végeselem adodik 101 csomoéponttal. A megoldashoz a
lemez két oldalara eld kell irni direkt moédon a magneses térerdsség idéfiiggvényét.
Ez ebben az esetben egy egyszerti Dirichlet-peremfeltételt jelent, ami azt jelenti,

hogy az x = —a ¢és az x = a csomoOpontok térerGsség-értékét kell elirni:
H(z = —a,t) = Hysin (27 ft)
(= ~a.t) = Hosin (2r 1) -
H(x = a,t) = Hysin (27 ft) .

7.7. Eredmények kiértékelése

A szimulécids eredmények bemutatasa, valamint a szimulacié soran alkalmazott pa-
raméterek értékeinek pontos megadéasa az A. filiggelékben taldlhato. Abbol kifo-
lyolag, hogy a probléma az id6tartomanyban keriil megoldasra, a megold6é program
futtatasa elején egy gyorsan lecsengé tranziens jelenség figyelheté meg. Az dtmene-
ti jelenség megsziinése utan a magneses térerGsség és a magneses indukcié kézotti
kapcsolat az els6 magnesezési gérbén mozog, melynek linearis szakaszan a két fiigg-
vény kvalitative megegyezik egyméssal. A lineéris szakaszt a szaturacio koveti: bar
H helyfiiggvénye ekkor lathatéan nemlinearis, B értéke a lemez teljes szélességében
konstans, megegyezik a telitési értékkel.

A csokkend gerjesztés kovetkeztében a lemezen beliil is csokkenni kezd a méag-
neses térerdsség értéke, ekkor a B — H-kapcsolat letér az els6 magnesezési gorbérdl,
igy abban az esetben, ha egy csomopont H-értéke eléri a zérust, a remanencia je-
lenségébdl kifolydlag B értéke nullatol eltérs, pozitiv lesz. Ez figyelheté meg a 7.2.
abran. Az egyes csomoépontok remanencidja ezen a szakaszon a modellnek meg-

2000 T T T T T T T 15

1500

1h d
1000 1
0.5
500 1
ot d

-500

H [A/m]
o
B[T]

-1000

-1t
-1500

~2000 I I I I I I I -15 I I I I I I I
-15 -1 -0.5 0 0.5 1 15 -15 -1 -0.5 0 0.5 1 15

X[m] x10° X[m] x107

(a) Magneses térerdsség (b) Méagneses indukcio

7.2. 4bra. A remanencia jelensége a t = 1 ms id&pillanatban

felel6en negativ koercitiv térrel sziintetheté meg, majd innen a negativ szaturacio
és a negativ remanencia kovetkezik. Az A. filiggelékben jol nyomon kovethetd a
gyenge alak megoldasanak segitségével meghatarozott magneses térersség ids- és
helyfiiggése, valamint az ebbdl fixpontos modszer és skalar Preisach-modell segitsé-
gével meghatarozott magneses indukci6. Az analitikus megoldas [29] és a hiszterézis
karakterisztika ismeretében kijelenthets, hogy mind a végeselem-moddszer, mind az
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annak kimenetét felhasznalo Preisach-modell az elvartnak megfelelGen mikodik, a
valos fizikai jelenséget tiikrozi.

A 7.3. abra a konvergencidhoz sziikséges fixpontos 1épések szaméat abrazolja az
id6lépések fliggvényében két eltérs e kiiszobindex esetén. Megfigyelhetd, hogyha a

70 T T T T 100

IS
S

Fixpontos lépések szama
w
o

Fixpontos lépések szama

16 [5]

x10° 15 [s] x10°

(a) e =102 (b) e =1073
7.3. abra. Fixpontos lépések szama

pontossagot tizszeresére noveljiik (¢ = 1072 — ¢ = 1073), gy a fixpontos lépések
szama nem aranyosan tizszeresére, de mérhetGen novekszik. Az egy periddusra fel-
vett konvergenciagorbék jellegébdl lathato, hogy a fixpontos lépések szama bizonyos
szakaszokon ndvekvs-, més szakaszokon csokkend-, vagy impulzusszeriien csdkkend
tendenciat mutat. A tovabbi magyarazhathoz fontos megjegyezni, hogy a fixpontos
iteraciot idslépésenként mindig az el6z6 id6lépés kimeneti értékébdl inditottam (a
modszer targyalasa sordn mar emlitettem, hogy az iteracios tetszéleges kezdGérték-
kel is konvergens). A kezdeti rovid tranzienst leszamitva a fiiggvény négy szakaszra
bonthato:

1. Az els6 szakasz a zérusrol ndvekvs méagneses térerGsség szakasza. Fzen a szaka-
szon a fixpontos 1épések szama id6lépésenként nG, melynek oka, hogy a modell
karakterisztikdja egyre hatarozottabban kezd elszakadni a linearis szakasztol,
a rezidual értéke jelentGsen csokken, hogy a modell kimenetének megfelelGen
kompenzalja a linearis komponenst. Mivel a fixpontos lépések a rezidudl ak-
tudlis értékének javitasat szolgaljak egészen a kiiszobindexig, ezért a szamitas
egyre tobb iteracios 1épést igényel a megkivant konvergencidhoz;

2. A maximum elérése utan a lépések szama impulzusszertien lecsokken, melynek
oka, hogy a magneses indukci6 eléri a szaturacios értéket, igy néhany idéleé-
pésen keresztiil az indukci6 értéke valtozatlan, konstans, igy nincs sziikség a
rezidudl értékének lényeges javitasara;

3. A kovetkez6 szakaszon a térerdsség és a magneses indukeié is csokken, a modell
egy, a kezdetihez hasonlo lineéris szakaszra ér, mely soran a rezidudal értékét
folyamatosan javitani kell a negativ értékektsl egészen a nullaig;
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4. Amennyiben a modell visszatér a linearis szakaszra, agy a rezidual értéke kozel
nulla, igy nincs sziikséges lényeges mennyiségi fixpontos lépésre annak javi-
tasdhoz. Ez lényegében azt jelenti, hogy a modell kimenetét megkozelitéleg a
line4ris komponens hatarozza meg.

A kovetkez6 szakaszok az itt leirtakkal teljesen analég moédon magyarazhatok. El-
mondhato tehat, hogy a kévetkezs impulzusszerii 1épésszamvisszaesés a negativ sza-
turacié konstans méagneses indukciojanak, mig a kevésbé meredek visszazuhanas a
kvézi-linearis szakaszra torténd attérésnek koszonhetd.
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8. fejezet

Kétdimenziés probléma szimulacioja

8.1. Vezetd lemez magneses térben

Az el6z6 fejezetben bemutatott differencidlegyenlet alkalmazhato kétdimenzios prob-

v

lemez, melynek vastagsaga elhanyagolhaté a t6bbi geometriai paraméteréhez képest.
A szimmetriat kihasznélva elegendd csupan a lemez egynegyedének vizsgalata. A

Iy
b T T, | b
sz Q D b/2
a FSZ
Y al2
X

8.1. dbra. A vizsgélt lemez

vizsgalt 0 problémateret (8.1. abra) I'p és I'y, perem hatérolja; el6bbi az erede-
ti lemez valodi pereme, utobbi pedig az egyszerisitésbdl adodod szimmetriaperem.
['p csomopontjain Dirichlet-peremfeltételt kell el6irni, hiszen a lemeznek ez a széle
kozvetlen kapcsolatban all az alkalmazott kiilsé periodikus magneses térerGsséggel.
['sz szimmetriaperem kezelése kényelmes, hiszen ezekre a csomépontokra semmilyen
peremfeltételt sem kell alkalmazni.
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8.2. Racsgeneralas

Munkam sorédn az adott geometridra két racsot is felhasznéltam: az egyiket kézzel
készitettem, mig a masikat a GMSH [26] szoftver racsgeneralé moduljanak segitségével
generaltam. El6bbi mddszerrel egy szimmetrikus racsot vettem fel, majd métrixok
forméajaban, manualisan vittem be az adatokat a programkodba, utébbival egy gya-
korlatiasabb, aszimmetrikus racsot generaltam, és az adatokat fajlokbol olvastam
be a szimulaciohoz. A 8.2. dbran tanulményozhatoak a lényeges kiilonbségek.

0.18 0.18

0.16 0.16

0.14

0.12

0.1

y [m]
y [m]

0.08

0.06

0.04

0.02

0 001 002 003 004 005 006 002 003 004 005 006
x[m] x[m]

8.2. dbra. Kézzel és GMSH-val generalt racs

A konkrét példa két raccsal térténé szimulacioja nem kizardlag a fizikai tarta-
lom szempontjabol fontos (elméletileg teljesen mindegy, hogy a megoldot melyik
végeselem-racson futtatom le, megegyez6 eredményt kell, hogy kapjak), hanem egy
érdekes szimulaciotechnologiai problémara is felhivja a figyelmet.

8.3. Végeselemes implementacio

Kétdimenzios probléma vizsgalata soran hiromszogeket hasznalva egy elemet ha-
rom csomopont definial egyértelmtien, ami azt jelenti, hogy egyetlen elemen Gsszesen
harom formafiiggvény (W5, W, Ws) értelmezett. Miként azt bemutattam, a véges-
elemes implementaci6 soran sziikség van a formafiiggvények gradienseire is, amely
kétdimenzios esetben formafiiggvényenként ketts tagid, hiszen a fliggvény mind z-
valtozo, mind y-valtozo szerint parcidlisan differencidlhato. Ezek (5.9) és (5.10)
jeloléseit konzekvensen felhasznalva:

oWy 0wy S(ye—ys) 3 (xs—x2)

VWt W = ey s T A
oWy  OWy  3(ys—w1) 3 (x1—w3)

p— p— pu— 8.]_
o o oWy  OWs o % (11 — y2) % (22 — 21)
VWg = gW3m -+ gW3y = 8ZE + ay = A + A .
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Az eddigiek alapjan (7.19) egyetlen elemre felirva:

VWl Hl
/ VWy| - [VWy VW, VW] 5 dQ | Hy| +
o LLVWs Hs
W, e
t
+ po / Wol - [Wh Wy Wi] g dQ |22 = (8.2)
W. iy
Q 3 t
Wi wih
=—0 / Wol - [Wh Wo W3] p dQ |2
o \LWs G

Mivel az els6 integral ismét konstans fliggvényeket tartalmaz egy-egy végeselem fe-
lett, ezért az egydimenzios példahoz hasonléan az integralas a végeselem teriiletével
valé szorzassa egyszeriisodik. A kifejezést kifejtve, atirva, tovabbé elvégezve a be-
szorzasokat

ng:v ngy
gWas ‘[QWM gWas 9W3x]+ gWay '[9W1y gWay 9W3y] A+
gW, 9W3y
WiW, WiW, WiWs o
+ po / WoW, WoW, WoWs| p dQ |22 = (8.3)
o LLWsWy WaWa WsWs o3
WAWy WiWa, WiWs o5
=—0 / WoWy WalW, WoWs| o dQ |22
o U WsWy Wy, WalVs 2%

adodik, ahol a masodik és harmadik integral kiértékeléséhez (mivel az integrandus
nem konstans fiiggvény a tartomanyon beliil) ismét numerikus integralasi technika
hasznalata sziikséges.

8.4. Numerikus integralas haromszog felett

Egy tetszoleges kétvaltozos f(z,y) fliggvény haromszog feletti integralja kozelithetd
[31]:

A S

/f(fb} y) dQ ~ 3 Z flar& + bimi + c1, a2 + bam; + c2) - Vs, (8.4)
A 1

1=

ahol &; és n; a kvadratira pontjait, ©J; pedig a stlyait jeloli. Megvélasztéasuk a pontos
kozelités érdekében a kovetkezGképpen torténik:

1 1 1

= - = — 19 = -

fl 67 M 67 1 37

1 2 1
S =2 P9, == 8.5
52 67 Up) 37 2 37 ( )

2 1 1

— = e

&3 3’ 3 6’ 3 3
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A tovabbi paraméterek a haromszog csicsainak koordinataibol szamithatoak:

ay =1y — 11, b =1z3—11, C1 =711, (8.6)
ag=yY2—y1, ba=ys—uyi, c2=1u.

Az eddigiek alapjan a haromszog felett integralandé formafiiggvények a kovet-
kez6képpen irhatoak fel:

1 ai& +bimi + 1 aéi + bam; + ¢
2|1 To Yo
Ay 1 x3 Y3
Wi=71= A ’
1 1 Y1
511 @& +bimi+ 1 axg +bams + ¢ (8.7)
W, — Ay _ 1 x3 Y3
A A ’
1 1 Y1
% 1 x2 Y2
W — As I ai& +bimi + 1 adi + bam + ¢
TA A '

8.5. Eredmények, kiértékelés

A szimulaciés eredmények bemutatasa, valamint a paraméterek pontos értékei a B.
fiiggelékben taldlhatok. Az eredmény jellege, a magneses térerdsség és a magneses
indukcio alakulasa Gsszevethetd az egydimenzios szimulacio esetén tapasztalttakkal,
hiszen a kétdimenziés lemez minden z-irdnyt metszetén tulajdonképpen az egydi-
menzids, a teljes z-iranyt atfogd szimuldcidonak a felét tanulményozhatjuk. A kézzel
rajzolt, szabdlyos racson lefutattott, és a GMSH-val generalt stirtibb racson elvégzett
szimulacio kozotti kiilonbség a 8.3. abran tanulmanyozhato. A szimulédciés hiba

BIT]
=

B [A/m]
)

8.3. abra. Szimulaci6s hiba a ritkdbb, szimmetrikus racsbol adédoan

oka, hogy az anyag belsejében felvett végeselem-méret dsszemérhets az ott terjedd
elektromagneses hullam hullamhosszaval és behatolasi mélységével, emiatt az elemek
kozotti valtozas olyan mértéki, ami mar szimulaciés hibat okoz. A hiba elkeriilésé-
nek érdekében célszert tehat a végeselem-halot kellGen stirtire felvenni.
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9. fejezet

Kétdimenzids szimulaci6é a magneses
indukcioéra épitve

Ebben a fejezetben bemutatom a nemlinearis, érvényaramu A-formalizmus egyen-
leteit, gyenge alakjanak levezetését és a végeselemes implementacidot egy konkrét
példan keresztiil.

9.1. A probléma definidlasa

A formalizmus segitségével vizsgalt probléma altalanositva a 9.1. abran lathaté. Az
adott magneses permeabilitasfiiggvénnyel és vezetSképességgel rendelkezé €2 problé-
materet harom kiilénboz6 tipusa perem hatéarolja. A Dirichlet-tipust peremen (I'p)
a keresett A vektorpotencidl értéke direkt modon keriil el6irdsra, mig a Neumann-
tipust peremen (I'y) A normélis iranyt derivaltja keriil meghatérozasra, tovabba
I'vk az a kiilon perem, ahol a gerjesztés, a K feliileti 4ram keriil elgirdsra. Fontos
megjegyezni, hogy ['yg is egy Neumann-tipusi perem, pusztdn a konnyebb mate-
matikai kezelhet&ség miatt keriil kiilon bevezetésre I'y mellett. Fontos megjegyezni,

Iy

14,0

S |

9.1. abra. A vizsgalt probléma altalanositva

hogy I'nyk is egy Neumann-tipusti perem, pusztdn a kénnyebb matematikai kezelhe-
tGség miatt keriil kiilon bevezetésre I'y mellett.
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9.2. A problémat leir6 egyenletek

A probléméat leiro differencidlegyenlet levezetéséhez a Maxwell-egyenletek kvazista-
cionérius alakjai, illetve a nemlinearitist is figyelembe vevd konstitticids relaciok
sziikségesek:

Vx H=J, (9.1)
. 0B
E=-"" 9.2
V x 5 (9.2)
V-B=0, (9.3
H=vB+T, (9.4)
J=oE. (9.5)

A probléméhoz tartozé peremfeltétel:

—

Hxi=K, Tyg-n (9.6)

Mivel (9.3) alapjan a magneses indukciovektor divergenciamentes [9], A vektorpo-

tencial bevezthetd
B=VxA (9.7)

alapjan, mert: . .
V-VxA=0, VA(¥1). (9.8)

A vektormez6 divergenciajat is meg kell hatarozni, ebben az esetben a valasztas:
V- A = 0. Ez az ugynevezett Coulomb-mérték, ami kétdimenzios szimuléci6 esetén
automatikusan teljesiil [9]. Igy tehat (9.2) atirhato (9.7) segitségével:

VXﬁz—%<vXj) (9.9)

Nem mozg6 koordinata-rendszerben az id6- és a hely szerinti derivalas felcserélhetd,

ezért (9.9) felirhato
. 0A
Vx |[E+ | = 1
><< + 875) 0 (9.10)

alakban. Az E+0A /Ot rotacidmentes vektormez6 altalanos esetben szarmaztathato
a V elektromos skaladrpotenciélbdl a

VxVV =0, VV(t) (9.11)
Osszefiiggés alapjan:
-  0A
E+—=-VV. 9.12
tor =V (9.12)
Amennyiben VV = 0 valasztassal éliink, agy
. 04
E=—— 9.13
5 (9.13)
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adodik. A gerjesztési torvény (9.1) felirhato (9.4), (9.5), (9.7) és (9.13) segitségével,
igy a problémat leir6 egyenlet a

V x <VVX£+I) :—008—? (9.14)

alakban adodik. A peremfeltétel (9.4) és (9.7) segitségével kifejezve:

(VVXX+f)xﬁ:I?. (9.15)

9.3. Gyenge alak levezetése

A levezetés elss lepése (9.14) és (9.15) dsszeadasa, megszorzasa egy tetszGleges W
formafiiggvénnyel és integralasa a problématartomanyra:

/W- Vx(nyE+f>}dQ+/W~{(quE+f>xﬁ}-ﬁdF:

vk
_A’ — —
— - K dI'.
/ ot /
Q NK

Felbontva az els6 integrandus zaréjelét, tovabba atrendezve az egyenletet az

(9.16)

/W~nyvdeQ+a/W~%—‘?dQ+

+/W-{(uv“ﬁf)xﬁ}-ﬁdr:—/W-vadm (9.17)

+/W~I€d

I'nk

=

formula adodik. Az egyenlet mindkét oldalanak els6 integrandusa a
V- (UxV)=0-Vxud—u-V x4V (9.18)

azonossagot felhasznalva felbonthaté a bal oldalon ¥ = V_V, U = vV X A: a jobb
oldalon ¥ = W, @ = I megvalasztassal. A felbontéas elvégzése utdn a kévetkezd
egyenlet irhato fel:

/v nyAxW) dQ+/uV><A VdoQ+J/W %dm
Q

+/W-{(quA+I)xﬁ}-ﬁdF:—/V-<fo) a0—

TNk Q

—/f~VdoQ+/W-I2df.

Q I'nk

(9.19)
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Egy vektormezd divergenciajanak teljes problématérre vett integralja (4.9) értel-
mében atirhatd a térfogatot hatarolo feliiletre vett korintegralra, igy a kovetkezd
formula adodik:

—

Lo . . . 0A
7{ (quAxW)-ﬁdF+/quA-VdoQ+a/W-aa—tdQ+
I'puUl'n (9] 0
/W~{(W><E+f>xﬁ}.ﬁdr_— jf Ix W @ dl—
I'ni I'pul'y
_/f.vadm/w.Izdf_

Q I'nk

(9.20)

A vegyes szorzat
(a x b) &= (Gx @) b= (Ex 5) L&, Ya@t), b1, &Ft)  (9.21)
tulajdonsigat felhasznalva az egyenlet bal oldalanak elsé integralja felbonthato:

7{ (ijxvf/‘).ﬁdr:f(Wxﬁ).quA’dH

I'pUul'ny I'p

(9.22)
+7§(ﬁxvaA>.Wdr.
'y
Mivel I'p-n a vektorpotenciél kozelitése a
A~ Ap+) Wil (9.23)

formula segitségével ugy torténik, hogy W, = 0, ezért az elsG tag zérus, kiesik, és a
Neumann-perem integralja atirhato:

f{ﬁx (ﬁ_f)}wdr:]{(mﬁ)wdr_ (7% I) - W . (9.24)
I'n Ty I'n

Mivel I'y peremen nem folyik dram, a kifejezés elsd tagja kiesik, (9.20) jobb oldala-
nak elsd integrédlja az el6zGekkel teljesen anal6g modon felbonthato:

- f fxv*v.ﬁdr:_f(wxﬁ).fdr_]{(mf)wdr, (9.25)

I'pul'y I'p 'y

valamint (9.20) bal oldalanak negyedik integralja atirhato a

/W-(ﬁxﬁ)-<quA’+f) dr (9.26)

'nk
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alakba, ami 7 x 7 miatt zérus, kiesik. Az eddigiek alapjan (9.20) a kovetkez6 alakot
olti:

= —

/I/VXA VdoQ+a/W aAdQ 7{ ﬁ’xI) W dr =
¢ (9.27)

— —

:]{<ﬁxf)-WdF—/f~VdoQ+ W . K df.
I'n Q I'nk

A T'n-re vett korintegral kiesik, hiszen mindkét oldalon egyforméan szerepel, igy
adodik a ténylegesen implementalasra keriil6 gyenge alak:

. - - 0A - - . o
/VVXA-VXW dQ+a/W-8a—t dQ = —/I-VXW dQ+/ WK dT. (9.28)

Q Q Q I'nk

9.4. Végeselemes implementacid

A magneses vektorpotencial a vizsgalt pédaban olyan vektormennyiség, amelynek
csak z-irAnyu komponense van, de kizarolag (z, y)-térdimenzioktol és az id6tél fligg:

A= A (z,y)- €, =A-€;,. (9.29)
A vektorpotencial emiatt automatikusan kielégiti a Coulomb-mértéket, hiszen:

. 0A
V-A=—-=0. (9.30)

A vektorpotencial kozelitése W skalaris, linearis formafiiggvények segitségével tor-
ténik:

A~ Z W, A;. (9.31)

Az implementécio alapjait tekintve megegyezik az eddig targyaltakkal, ezért a részle-
tes bemutatastol ezuttal eltekintek, csupan az eddigiektdl eltérd gerjesztés megvalo-
sitdsat és a megoldas mechanizmusat, 1épéseit kivinom bemutatni. A tovabbiakban
n jeloli a kétdimenzios diszkretizalas soran létrejott csomopontok szamét, m pe-
dig az elemek szamat. A szimulacié soran a K egyiitthatomatrix (n x n) mérett,
u és b ismeretleneket és a peremfeltételeket tartalmazo oszlopvektor n-méreti. A
szimulécio lépései a kovetkezok:

1. K egyiitthatomatrix asszemblalasa (9.28) els6 és masodik integraljanak egytitt-
hatoi alapjan (n x n);

2. B egyiitthatoméatrix asszemblalasa (9.28) méasodik integralja alapjan, hiszen
ez a tag az ismeretlen vektorpotencial id6 szerinti derivaltjat tartalmazza, igy
valamilyen modon el§ kell allitani agq egyiitthatoit is (n x n);
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3. b oszlopvektor beyxe-komponensének elgallitasa (9.28) negyedik integralja alap-
jan. Az elGallitas soran egy dimenziot vissza kell 1épni, hiszen ez a tag egy felii-
leti integral, a feliilet pedig szakaszokkal diszkretizalhato. Ez egyetlen elemre:

/W-I'{’df:m.f(%, (9.32)

I'nk
ahol dl a szakasz hosszat jeloli. beg. (n x 1) méreti;

4. b oszlopvektor bagqg¢-komponensének elGallitasa B egyiitthatomatrix és agiq
alapjan:
bAdt =B- Aold (933)

baas (n X 1) méret;
5. Fixpontos iteracié inditdsa addig, amig ¢ kiiszobindex kellGen kis értékiire

csOkken. Az els6 1épésnél by és by, oszlopvektorok kinullazéasra keriilnek, mé-
retiik (n x 1)-es. Egyetlen fixpontos 1épésben a kiovetkeziket kell végrehajtani:

(a) b (n x 1) elsallitasa:
b - bexc + bAdt - (be + ny); (934)

(b) Dirichlet-peremfeltétel érvényesitése, tehat K és b megfelels elemeinek
explicit értékadasa;
(c) a kiszamitasa:
a=K'.b, (9.35)
a ebben az esetben a vektorpotencial értékeit tartalmazza. Mivel csomo-

ponti végeselemekkel dolgoztam, ezért a kiszamitas utdn minden csomo-
pontban rendelkezésre all egy-egy vektorpotencidl-érték;

(d) B = V x A kiszamitasa. Ez azt jelenti, hogy minden egyes végeselem-
re ki kell szdmitani az elemet alkoté csomoépontokban rendelkezésre allo
vektorpotencial-értékekbdl egy B, és egy B, indukciéértéket. Igy jon
letre két (m x 1) méreti vektor, By és By;

(e) H, és H, approximalésa:

Hx = VBx + Ixolda

9.36
Hy = VBy + Iyold; ( )
H, és Hy, (m x 1)-méretii vektorok;
(f) I, és I, szamitasa:
I, — H, — v2{H,),
v {H} (9.37)

I, =H, - V%{Hy}a

I és I, (m x 1)-méretii vektorok;

(g) bix és by, feltoltése (9.28) harmadik integralja szerint;
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e = [T - Loall; (9.38)
(i)
Ixold = IX7 Iyold = Iy; (939)
6.
dold — a. (940)

9.5. A vizsgalt geometria

A szimulalt geometriai elrendezést a 9.2. abra mutatja. Az adott v, reciprok per-
meabilitasfiiggvénnyel és oy vezet&képességel rendelkezé vasanyagon a szaggatott
vonallal jelolt szakaszon &dramjarta vezetét feltételeziink, ami a lemezek teljes ke-
resztmetszetére van feltekercselve. A feltekercselt vasanyagot vy és o, paraméterek-
kel rendelkezd levegs veszi koriil. A szimulacio soran 'y peremen az dramjarta
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9.2. 4bra. A szimulalt geometriai elrendezés

vezetGt reprezentalod K feliileti aramstriiséget sziikséges elGirni, ami a tekercselés
iranyabol adododan a lemez egyik oldalan pozitiv, a masik oldaldn negativ elGjellel
keriil elGirdsra. I'p Dirichlet-peremen a csomoéponti potencidlértékek kinulldzasra
keriilnek, hiszen ez a vizsgalodas tényleges hatarfeliilete. Az eredmények a C. fiig-
gelékben tanulméanyozhatok.
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Konklizi6, jovobeli tervek

Dolgozatomban bemutattam a ferromagneses hiszterézis fizikai magyarazatat, okat,
ismertettem a magneses térerdsség és a magneses indukcié kézott definidlhatd nem-
lineéris, tobbértéki kapcsolat mérésének elvét, valamint az elvégzett mérési ered-
ményeket. Felvazoltam a skalaris hiszterézis modellezésére alkalmazhatéd skalar
Preisach-modell miikédésének elvét, kimenetének numerikus meghatarozasat, tovab-
ba az Everett-fliggvény mérési eredményekbdl torténd identifikacidjanak segitségével
ismerettem a modell illesztésének modjat, érintve a modell verifikiciojat is. Be-
mutattam a Maxwell-egyenletek teljes rendszerét, ismerettem a végeselem-modszer
alapelvét, legfontosabb jellemzgit.

Betekintést adtam azokba az eljardsokba, amelyek a nemlineéris anyagtulajdon-
sagok implementaldsadhoz sziikségesek végeselem-modszer esetén. Ismertettem a po-
larizacios formulat, tovabba az iteracios 1épéseket két kiilonb6z6 formalizmus esetére.
Felvazoltam a magneses térerdsségre épiilé formalizmus alapegyenleteit, levezettem
a problémat leir6 differencidlegyenletet, a gyenge alakot, valamint annak megva-
lositasat végeselem-modszer segitségével. Az eredmények alapjan lathato, hogy a
direkt H-ra épiil6 formalizmus eredménye jol kezelhetd, fixpontos megoldés mellett
is viszonylag gyorsan konvergél, hatranya viszont, hogy peremfeltételek megadasa
esetén direkt médon a méagneses térerdsséget kell elGirni, ami kevésbé gyakorlatias
megoldas.

Egy 4altalanos és egy konkrét probléméan keresztiil bemutattam az 6rvényaramai,
nemlinedris A-formalizmus alapegyenleteit, levezettem a megoldasra keriils differen-
cidlegyenletet, bemutattam a peremfeltételeket, levezettem a gyenge alakot, felva-
zoltam a megoldéas sordn asszemblalasra keriil6 matrixokat és vektorokat, valamint
az iteracios lépések sorrendjét, a megoldas mechanizmusat, végiil ismertettem az
eredményeket. Az eredmények alapjan megfogalmazhato, hogy az A-formalizmus
implementalasa Osszetettebb, komplexebb feladat, a direkt modell illesztése a szimu-
laciohoz nehezebb, a fixpontos iteracié konvergencidja bar itt is biztositott, de sokkal
lassabb, mint a mégneses térerésségre épiils feladat esetén. A moédszer nagy elénye,
hogy sokkal gyakorlatiasabb, hiszen a feliileti aram peremfeltételként elGirhato, mint
gerjesztés.

Legfontosabb jovébeli tervem, hogy az itt bemutatott, Matlab script formaja-
ban implementalt megoldokat kereskedelmi forgalomban is kaphato, az iparban is
alkalmazott szimulacios szoftverrel, szoftverekkel ellenérizzem. A jovében foglalkoz-
ni kivinok a megoldok futasi idejének csokkentésével is, melynek részeként célom
azok implementalasa gépkozeli programozasi nyelvben, de a fliggetlen részek péar-
huzamositasa is fontos, izgalmas kérdés lehet. A fixpontos modszeren kiviil célom
megismerkedni egyéb algoritmusokkal is a nemlinearis egyenletrendszerek megoldéa-
saval kapcsolatban.
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A.

fliiggelék

Szimulacidos eredmények: Vezetd
lemez magneses térben, 1D

A szimulacios eredmények a mérési eredményekbdl identifikalt Everett-fliggvénnyel
mkodé skalar Preisach-modellel, 2a = 0,35 mm széles lemez feltételezése mellett
(a = 0,175 mm) keriilnek bemutatasra. A lemez szélére Dirichlet-tipust peremfelté-
telként elGirt gerjesztés (magneses térerdsség) frekvenciaja f = 500 Hz, periodusideje
t = 2 ms, amplitadoja Hy = 2000 % (a vizsgalt csomopont az n = 10-es, valamint

e=10"3T).
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B. fuggelék

Szimulacidos eredmények: Vezetd
lemez magneses térben, 2D

A szimulacios eredmények a mérési eredményekbdl identifikalt Everett-fliggvénnyel
miik6ds skalar Preisach-modellel, § = 0,015 m lemezszélesség (a = 0,03 m) és
b = 0,15 m lemezhosszisag (b = 0,3 m) mellett keriilnek bemutatasra. A le-
mez szélére Dirichlet-tipust peremfeltételként elGirt gerjesztés (magneses térerds-
ség) frekvencidja f = 1 Hz, amplitudoja Hy = 2000 %. Az anyag vezetGképessége

o =2,22-10° &, a vizsgélt csomopont az n = 88-as, e = 107° T.
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C. fuggelék

Szimulacios eredmények:
Orvényaramua A-formalizmus, 2D

A szimulacios eredmények a mérési eredményekbdl identifikalt Everett-fliggvénnyel
miikodd skalar Preisach-modellel, 0,003 m széles, 0,015m hosszi lemez feltételezése
mellett keriilnek bemutatésra. A lemezek szélésre Neumann-tipusi peremfeltétel-
ként eloirt feliileti aram amplitadoja 1500 %, frekvencidja 1 Hz, periodusideje 1

., o1 2 ) - 6 A
masodperc, a lemezek vezetSképessége o = 2,22 - 10°-.
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D. fuggelék

Preisach-modell

D.1. Preisach.m

function [Bk,Lkmil,Inck]

Preisach(alpha,beta,E,mu_0,Mmax,Hmax,Lkmi, Inck,Hkm1,Hk)

hkmi = Hkml / Hmax; hk = Hk / Hmax;
Lk = Lkml; Inckml = Inck; n = size(Lk,2);

if abs(hk) >= 1 jTeljes kivezérlés esete
Lk = [1;-1];
elseif hk > hkml %N&vekvd térerdsség

if Inckml == 1 %Eddig is ndévekedett a H

Inck = 1;
elseif Inckml == 0 %Eddig csékkent a H
if n == %Csak (1;-1) pont van tarolva

Lk = [Lk, [abs(hkml);-abs(hkm1)]];
else %Mar nem csak az (1;-1) pont van tarolva
Lk = [Lk,[Lk(1,n);hkm1]]; %Az \alpha-koordinata fog ekkor megegyezni
end
end
%Novekvs magneses térerdsségnél azokat a pontokat kell tdrdlni
%a lépcsds figgvénybdl, melyek \alpha-koordinataja nagyobb vagy

%egyenld az aktualis hk-val

j=1
while j <= size(Lk,2)

if hk > Lk(1,j) || abs(hk-Lk(1,j)) < 1e-3
Lk(:,3) = [I;
else
j= 3+
end
end

Inck = 1;
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elseif hk < hkml %Csdkkend térerdsség

if Inckml == 0 %Eddig is csdkkent a H

Inck = 0;
elseif Inckml == 1 %Eddig novekedett a H
if n == 1 YCsak (1;-1) pont van tarolva

Lk = [Lk, [abs(hkml);-abs(hkm1)]1];
else %Mar nem csak az (1;-1) pont van tarolva
Lk = [Lk, [hkm1;Lk(2,n)]]; %A \beta-koordinata fog ekkor megegyezni
end
end
%Csokkend magneses térerdsségnél azokat a pontokat kell térdlni
%a lépcsds fiiggvénybdl, melyek \beta-koordinataja kisebb vagy

%egyenld az aktualis hk-val

=1
while j <= size(Lk,2)

if hk < Lk(2,j) |l abs(hk-Lk(2,j)) < le-3
Lk(:,j) = [I;
else
3= 3+
end
end
Inck = 0;
end
#%Dinamikus L-kezelés
if hk >= 1 %Teljes kivezérlés esete
elseif size(Lk,2) == 1 %Nincs tarolva forduldpont
Lk = [Lk, [abs(hk);-abs(hk)]];
elseif size(Lk,2) > 1 YMar van fordulépont
if hk > hkml %N&vekszik a térerdsség értéke
Lk = [Lk, [hk;Lk(2,size(Lk,2))]]; %Az \alpha-koorinata valtozik
elseif hk < hkml %Csokken a térerdsség értéke
Lk = [Lk,[Lk(1,size(Lk,2));hk]]; %A \beta-koordinata valtozik
end
end
%Szamitas
if size(lk,2) == 2 }Elsd magnesezési gdrbe
if hk > hkmil

sign = 1;
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else
sign = -1;
end
Mk = sign * interp2(alpha,beta,E,Lk(1,2),Lk(2,2),’spline’);
else %Nem az elsd magnesezési gdrbén vagyunk
if Lk(1,3) > -Lk(2,3) % Az alpha = -beta-egyenes felett vagyunk
sum = 0;
for k = 3:size(Lk,2)
if k == 3

sum = sum + (interp2(alpha,beta,E,Lk(1,k-1),Lk(2,k-1),’spline’)
- interp2(alpha,beta,E,Lk(1,k),Lk(2,k), ’spline’));

elseif Lk(2,k) == Lk(2,k-1)
sum = sum + interp2(alpha,beta,E,Lk(1,k),Lk(2,k),’spline’);
elseif Lk(1,k) == Lk(1,k-1)
sum = sum - interp2(alpha,beta,E,Lk(1,k),Lk(2,k),’spline’);
end
end
Mk = -interp2(alpha,beta,E,Lk(1,2),Lk(2,2),’spline’) + 2*sum;
elseif Lk(1,3) < -Lk(2,3) %Az alpha = -beta egyenes alatt vagyunk
sum = 0;
for k = 3:size(Lk,2)

if == 3

sum = sum + (interp2(alpha,beta,E,Lk(1,k-1),Lk(2,k-1),’spline’)

- interp2(alpha,beta,E,Lk(1,k),Lk(2,k),’spline’));
elseif Lk(1,k) == Lk(1,k-1)
sum = sum + interp2(alpha,beta,E,Lk(1,k),Lk(2,k), spline’);
elseif Lk(2,k) == Lk(2,k-1)
sum = sum - interp2(alpha,beta,E,Lk(1,k),Lk(2,k), spline’);
end
end

Mk = interp2(alpha,beta,E,Lk(1,2),Lk(2,2),’spline’) - 2%sum;
end

end
Bk = mu_0 * (Mk*Mmax + hk*Hmax);
%Ideiglenes pont toérlése
Lk(:,size(Lk,2)) = [1;

Lkml = Lk; n = size(Lk,2);

10



E. fuggelék
Megoldok

E.1. vezeto lemez FEM Preisach.m

%Vezetd lemez magneses térben
%Skalar Preisach-modellel

clear;
clc;

%Geometria, végeselemes felosztas
a = 0.175e-3; %-a...+a

N = 100;
X [-a:(2xa)/N:al;

%Anyagparaméterek /Lsd: script.m/
mu_min = 6.6480e-05;

mu_max = 0.0052;

mu0 = (mu_min + mu_max) / 2;

sigma = 2.22e6;

%Everett-fiiggvény

alpha = load(’alpha’);
beta load(’beta’);
E load(’E’);

%Mért B-H karakterisztika
BH = load(’BH3000m.lvm’); Hmert = BH(:,1); Bmert = BH(:,2);
%Max imum

mu_0 = (4#pi)#*le-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);

%Gerjesztés

HO = 2000;

£ = 500;

t = linspace(0,(2/£f),140);
dt = t(2) - t(1);

Hperem = HO * sin(2*pi*f*t);
%Inicializalas

%Lépcsos fliggvény

for i = 1:(N+1)

eval([’Lkmi_’ num2str(i) ’=[1;-11;°1);
end

11
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VecInck = ones(1,N+1);
hh
Gaussp = [-1/sqrt(3) 1/sqrt(3)];

Gausss = [1 1];
th = 0.5;
K = zeros(N+1);

Blin = zeros(N+1);
Bres = zeros(N+1);

for i = 1:N
x1 = x(1);
x2 = x(i+1);

gt = -1/(x2-x1);
gu2 = 1/(x2-x1);

Ke = ([gN1l;gN2]*[gN1 gN2]) * (x2-x1);
Be = zeros(2);

for j = 1:length(Gaussp)

xgp = (((x2-x1)*Gaussp(j))+(x2+x1))/2;

N1 = (-xgp+x2)/(x2-x1);

N2 = (xgp-x1)/(x2-x1);

Be = Be + ([N1;N2]*[N1 N2]) * Gausss(j) * ((x2-x1)/2);
end
K(i,i) = K(i,1i) + th * Ke(1,1) * dt / sigma + Be(1,1)
K(i,i+1) = K(i,i+1) + th * Ke(1,2) * dt / sigma + Be(1,2)
K(i+1,1i) = K(i+1,1) + th * Ke(2,1) * dt / sigma + Be(2,1)
K(i+1,i+1) = K(i+1,i+1) + +th * Ke(2,2) * dt / sigma + Be(2,2)
Blin(i,i) = Blin(i,i) - (1-th) * Ke(1,1) * dt / sigma
Blin(i,i+1) = Blin(i,i+1) - (1-th) * Ke(1,2) * dt / sigma
Blin(i+1,1i) = Blin(i+1,i) - (1-th) * Ke(2,1) * dt / sigma
Blin(i+1,i+1) = Blin(i+1,i+1) - (1-th) * Ke(2,2) * dt / sigma
Bres(i,i) = Bres(i,i) + Be(1,1);
Bres(i,i+1) = Bres(i,i+1) + Be(1,2);
Bres(i+1,1i) = Bres(i+1,i) + Be(2,1);
Bres(i+1,i+1) = Bres(i+1,i+1) + Be(2,2);

end
%K peremf.

K(1,:) = 0;
K(1,1) =1
K(N+1,:)

+

0;
K(N+1,N =

1) 1;

iK = inv(K);
Hregi = zeros(N+1,1);

Rregi = zeros(N+1,1);
R zeros(N+1,1);

for i = 1:length(t)

hiba = 1;
step = 0;

while (hiba > le-2)

12
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step = step + 1;
Blin * Hregi + Bres * (R-Rregi);

o’
]

b(1)

= Hperem(i);
b(N+1) =

Hperem(i);

H = iK * b;
Rutolso = R;

%Modell-function meghivasa
for j = 1:(N+1)
Lkml

Inck
Hkm1

eval([’Lkml_’ num2str(j)l);
VecInck(j);
Hregi(j); Hk = H(j);

[B(j,1),tmp_Lkml,VecInck(j)] = Preisach(alpha,beta,E,mu_0,Mmax,
Hmax,Lkm1,Inck,Hkmil,Hk) ;

eval([’Lkml_’ num2str(j) ’=tmp_Lkml;’]);

end
R =B - mu0 * H;
hiba = norm(R-Rutolso)

end

]

Hregi
Rregi

H;
R;

disp([step hibal);

figure(4)

axis square;
plot(x,H);
axis([-a,a,-HO,H0]);
xlabel(’x [m]?);
ylabel(’H [A/m]’);

figure(2)

axis square;
plot(x,B);
axis([-a,a,-1.5,1.5]);
xlabel(’x [m]’);
ylabel(’B [T]’);

figure(1)
hold on;
axis square;
plot(H(10),B(10),°r.%);
xlabel(’H [A/m]’);
ylabel(’B [T]’);

end

E.2. vezeto lemez ketdim.m
%Lemez, 2D, FEM, Preisach-modellel

clear;
clc;

load(’Nodes.txt?);

load(’Connect.txt?);
load(’Dirichlet.txt’);

13
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figure(1)

axis square;

hold all;

pdeplot(Nodes’, [],Connect’, ’mesh’,’on’);
xlabel(’x [m]’); ylabel(’y [m]’); axis square;
% axis([0 0.06 0 0.18]);

hh

%Anyagjellemzdk

LS e s

mu_min = 6.6480e-05;
mu_max = 0.0052;
mu0 = (mu_min + mu_max) / 2;

sigma = 2.22e6;

hGerjesztés

HO = 2000;

f =1;

t = linspace(0,(1/£),200);
dt = t(2) - t(1);

Hperem = HO * sin(2*pixf*t);

%Everett-fiiggvény

alpha = load(’alpha’);
beta load(’beta’);
E load(’E’);

%Mért B-H karakterisztika
BH = load(’BH3000m.lvm’); Hmert = BH(:,1); Bmert = BH(:,2);
%Maximum
mu_0 = (4*pi)*le-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);
%Lépcsds fiiggvény
for 1 = 1:(size(Nodes,1))
eval([’Lkmi_’ num2str(i) ’=[1;-11;°1);
end
VecInck = ones(1l,size(Nodes,1));
Gausss = [1/3 1/3 1/3];

Gaussp = [2/3 1/6 1/6; 1/6 1/6 2/3; 1/6 2/3 1/6;];
th = 1;

K = zeros(size(Nodes,1));
Blin = zeros(size(Nodes,1));
Bres = zeros(size(Nodes,1));
for i = 1:size(Connect,1)

pl = Connect(i,1); p2 = Connect(i,2); p3 = Connect(i,3);

x1 = Nodes(pl,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

T = 0.5 x det( [1 x1 y1;1 x2 y2;1 x3 y3;] );

%Gradiensek

gNix = (0.5%(y2-y3))/T; ghi2x
g1y = (0.5%(x3-x2))/T; g2y

(0.5%(y3-y1))/T; gN3x
(0.5%(x1-x3))/T; gN3y

(0.5%(y1-y2))/T;
(0.5%(x2-x1))/T;

Ke = ( [gNix;gN2x;gN3x;]*[gNix,gN2x,gN3x] + [gNly;gN2y;gN3y;]1*[gNly,gN2y,gN3y]l ) * T;

%Gauss-kvadratira

14
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a = x2-x1; b = x3-x1; ¢ = x1;
d = y2-yl; e = y3-y1; £ = y1;
Be = zeros(3);
for j = 1:3
kszi = Gaussp(j,2); eta = Gaussp(j,3);
x = axkszi + b*eta + c; }Interpolalt x
y = d¥kszi + exeta + f; JInterpolalt y
Tt = 0.5 xdet( [ 1 xy; 1x2y2; 1x3y31) ;
T2 = 0.5 * det( [ 1 x1 y1; 1 xy; 1 x3y31) ;
T3 = 0.5 x det( [ 1 x1 y1; 1 x2y2; 1 xy1) ;
N1 = T1/T;
N2 = T2/T;
N3 = T3/T;
Be = Be + ( [N1;N2;N3] * [N1,N2,N3] ) * Gausss(j) * T/3;
end
K(pl,p1) = K(pl,pl) + th * Ke(1,1) * dt / sigma + Be(1,1) * muO; K(pl,p2)

= K(p1,p2) + th * Ke(1,2) * dt / sigma + Be(1,2) * muO; K(p1,p3) = K(p1,p3) + ...
th * Ke(1,3) * dt / sigma + Be(1,3) * muO;

K(p2,p1) = K(p2,p1) + th * Ke(2,1) * dt / sigma + Be(2,1) * muO; K(p2,p2)

= K(p2,p2) + th * Ke(2,2) * dt / sigma + Be(2,2) * mu0; K(p2,p3) = K(p2,p3) + ...
th * Ke(2,3) x dt / sigma + Be(2,3) * muO;

K(p3,p1) = K(p3,pl) + th * Ke(3,1) * dt / sigma + Be(3,1) * mu0;
K(p3,p2) = K(p3,p2) + th * Ke(3,2) * dt / sigma + Be(3,2) * mu0;
K(p3,p3) = K(p3,p3) + th * Ke(3,3) * dt / sigma + Be(3,3) * mu0;

Blin(pl,p1) = Blin(pil,pl) - (1-th) * Ke(1,1) * dt / sigma + Be(1,1) * muO; Blin(pl,p2)

= Blin(pl,p2) - (1-th) * Ke(1,2) * dt / sigma + Be(1,2) * mu0; Blin(pl,p3) = Blin(pl,p3)
- (1-th) * Ke(1,3) * dt / sigma + Be(1,3) * muO;
Blin(p2,p1) = Blin(p2,p1) - (1-th) * Ke(2,1) * dt / sigma
= Blin(p2,p2) - (1-th) * Ke(2,2) * dt / sigma + Be(2,2) *
- (1-th) * Ke(2,3) * dt / sigma + Be(2,3) * mu0;

+ Be(2,1) * muO; Blin(p2,p2)
mu0; Blin(p2,p3) = Blin(p2,p3)

+ Be(3,1) * mu0;

Unger Tamés Istvan

Blin(p3,pl) =
Blin(p3,p2) =
Blin(p3,p3) =

Blin(p3,p1)
Blin(p3,p2)
Blin(p3,p3)

- (1-th) * Ke(3,1) * dt / sigma
(1-th) * Ke(3,2) * dt / sigma
(1-th) * Ke(3,3) * dt / sigma

+ Be(3,2) * mu0;
+ Be(3,3) * mu0;

Bres(pl,pl) = Bres(pl,pl) + Be(1,1); Bres(pl,p2) = Bres(pl,p2) + Be(1,2);
Bres(p1l,p3) = Bres(pl,p3) + Be(1,3);
Bres(p2,pl) = Bres(p2,pl) + Be(2,1); Bres(p2,p2) = Bres(p2,p2) + Be(2,2);
Bres(p2,p3) = Bres(p2,p3) + Be(2,3);
Bres(p3,pl) = Bres(p3,pl) + Be(3,1); Bres(p3,p2) = Bres(p3,p2) + Be(3,2);
Bres(p3,p3) = Bres(p3,p3) + Be(3,3);

end

Hregi = zeros(size(Nodes,1),1);

Rregi = zeros(size(Nodes,1),1);

R = zeros(size(Nodes,1),1);

for i = 1:length(t)
hiba = 1;
step = 0;

while ( hiba > le-3 )

step = step + 1;
b = Blin * Hregi + Bres * (R-Rregi);

%Peremfeltétel

for j = 1:length(Dirichlet)

K(Dirichlet(j),:) = K(Dirichlet(j),:) * O;
K(Dirichlet(j),Dirichlet(j)) = 1;

15
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b(Dirichlet(j)) = Hperem(i);
end

H=ZK\ b;
Rutolso = R;
%Modell-function meghivasa

for j = l:size(Nodes,1)

Lkml = eval([’Lkml_’ num2str(j)]1);
Inck = VecInck(j);
Hkml = Hregi(j); Hk = H(j);

[B(j,1),tmp_Lkm1,VecInck(j)] = Preisach(alpha,beta,E,mu_0O,
Mmax ,Hmax,Lkml, Inck,Hkml,Hk) ;

eval([’Lkml_’ num2str(j) ’=tmp_Lkml;’]);

end
R =B - mu0 * H;
hiba = norm(R-Rutolso)
end
disp([step hibal);
%Ertékatadas

Hregi = H;
Rregi = R;

figure(1)

axis square;

pdeplot(Nodes’, [],Connect’, ’xydata’,H, ’zdata’,H, >colormap’,’jet’);
axis([0 0.06 0 0.16 -HO HO1);

caxis([-HO HO]);

xlabel(’x [m]’);

ylabel(’y [m]?);

zlabel(’H [A/m]’);

figure(2)

axis square;

pdeplot(Nodes’, [],Connect’, ’xydata’,B,’zdata’,B, ’colormap’,’jet’);
caxis([-1.4 1.4]);

axis([0 0.06 0 0.16 -1.4 1.4]1);

xlabel(’x [m]?);

ylabel(’y [m]’);

zlabel(’B [T]?);

end

E.3. epstein nemlin Preisach.m

%Epstein-keret, 2D, &rvényarami A, nemlinearis, Preisach-modell

clear;

clc;

tic;

Nodes = load(’Nodes.txt’) / 1000;
Connect = load(’Connect.txt’);

16
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Dirichlet = load(’Dirichlet.txt?’);
Exc = load(’Exc.txt?);

hh

%Mesh

figure(l)

axis square;

pdeplot(Nodes’, [],Connect(:,2:4)’,’mesh’,’on’);
xlabel(’x [m]’);

ylabel(’y [m]’);

=S S s

%Anyagjellemzdk

mu_min = 0;
mu_max = 0.007418265782302;
mu0 = (mu_min + mu_max) / 2;

nu_max = 1 / mu_min;
nu_min = 1 / mu_max;
nu_lev =1 / (4xpixle-T7);

sigma_vas = 2.22e6;
sigma_lev 0;

% nu_opt = (2*nu_max*nu_min) / (nu_max+nu_min);
nu_opt = 2 / mu_max + mu_min;

%Lépcsos fiiggvény
for i = 1:(size(Connect,1))

eval([’Lkmix_’ num2str(i) ’=[1;-1]1;°1);
end

for i = 1:(size(Connect,1))
eval ([’Lkmly_’ num2str(i) ’=[1;-11;°1);

end

VecInckx = ones(1l,size(Connect,1));
VecIncky = ones(1,size(Connect,1));

%Everett-fiiggvény

alpha = load(’alpha’);
beta load(’beta’);
E load(’E’);

%Mért B-H karakterisztika

BH = load(’BH3000m.lvm’); Hmert = BH(:,1); Bmert = BH(:,2);

%Maximum

mu_0 = (4*pi)*le-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);
%Gerjesztés

freq =1;

t = linspace(0,(1/freq),150);

dt = t(2) - t(1);

KO = 1500;
Kexc = KO * sin(2+pixfreqg*t);

Gausss = [1/3 1/3 1/3];
Gaussp = [2/3 1/6 1/6; 1/6 1/6 2/3; 1/6 2/3 1/6;];

K = zeros(size(Nodes,1));
B = zeros(size(Nodes,1));

for i = 1:size(Connect,1)

pl = Connect(i,2); p2 = Connect(i,3); p3 = Connect(i,4);

17
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x1
yi

T =
%Gra

gNix
glity

if C

else

end
K_1

%Gau.

end

K(p1l
+ K_
K(p2
+ K_
K(p3
+ K_

B(p1
B(p2
B(p3

end

b_exc =
b_Adt

bIx
bly

Aold

x2
y2

x3
y3

Nodes(p1,1);
Nodes(p1,2);

Nodes(p2,1);
Nodes(p2,2);

0.5 * abs(det([1 x1

diensek

(0.5%(y2-y3))/T; gh2x
(0.5%(x3-x2))/T; gN2y

onnect(i,1) == 1 JLevegd-tartomany

nu
sigma

= nu_lev;
sigma_lev;

if Connect(i,1) == %Vas-tartomany

nu
sigma

nu_opt;
sigma_vas;

ss-kvadratira

x2-x1; b = x3-x1; c = x1;

y2-yl; e = y3-y1; £ = y1;

= zeros(3);

j =1:3

kszi = Gaussp(j,2); eta = Gaussp(j,3);

X axkszi + bxeta + c;

(0.5%(y3-y1))/T; gh3x
(0.5%(x1-x3))/T; gN3y

Nodes(p3,1);
Nodes(p3,2);

yi; 1 x2 y2; 1 x3 y31));

(0.5%x(y1-y2))/T;
(0.5%(x2-x1))/T;

nu * ( [gNix;gN2x;gN3x;]*[gNlx,gN2x,gN3x] + [gNly;gN2y;gN3y;]*[gNly,gN2y,gN3y] ) * T;

y = dxkszi + exeta + f;

T1 = 0.5 * abs(det( [1 x y; 1 x2 y2; 1 x3 y3] ));
T2 = 0.5 * abs(det( [1 x1 y1; 1 x y; 1 x3 y3] ));
T3 = 0.5 * abs(det( [1 x1 y1; 1 x2 y2; 1 x y1 ));
N1 = T1/T;

N2 = T2/T;

N3 = T3/T;

K_2 = K_2 + sigma /dt * ( [N1;N2;N3]*[N1 N2 N3] ) * Gausss(j) * T;

,p1) = K(p1l,pl) + K_1(1,1) + K_2(1,1);
2(1,2); K(p1,p3) = K(p1,p3) + K_1(1,3)
,p1) = K(p2,p1) + K_1(2,1) + K_2(2,1);
2(2,2); K(p2,p3) = K(p2,p3) + K_1(2,3)
,pl) = K(p3,p1) + K_1(3,1) + K_2(3,1);
2(3,2); K(p3,p3) = K(p3,p3) + K_1(3,3)

,pl) = B(pl,pl) + K_2(1,1); B(pl,p2) =
,p1) = B(p2,pl) + K_2(2,1); B(p2,p2) =
,pl) = B(p3,pl) + K_2(3,1); B(p3,p2) =

zeros(size(Nodes,1),1);
zeros(size(Nodes,1),1);
zeros(size(Nodes,1),1);
zeros(size(Nodes,1),1);
zeros(size(Nodes,1),1);

zeros(size(Nodes,1),1);

K(p1,p2) = K(pl,p2) + K_1(1,2)...
+ K_2(1,3);

K(p2,p2) = K(p2,p2) + K_1(2,2)...
+ K_2(2,3);

K(p3,p2) = K(p3,p2) + K_1(3,2)...
+ K_2(3,3);

B(p1,p2) + K_2(1,2); B(p1,p3) =
B(p2,p2) + K_2(2,2); B(p2,p3)
B(p3,p2) + K_2(3,2); B(p3,p3)

18
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Ixold = zeros(size(Connect,1),1);
Iyold = zeros(size(Connect,1),1);

Preisachx = zeros(size(Connect,1),1);
Preisachy = zeros(size(Connect,1),1);

Hxold = zeros(size(Connect,1),1);
Hyold = zeros(size(Connect,1),1);

for i = 1:length(t)
%Gerjesztés megadasa

for j = 1:size(Exc,1)

if(Exc(j,1) == 3) %y iranyd, pozitiv gerjesztési
sign = 1; CoordIndex = 2;

elseif (Exc(j,1) == 4) %y iranyna, negativ gerjesztésil
sign = -1; CoordIndex = 2;

elseif (Exc(j,1) == 5) ¥%x iranya, pozitiv gerjesztésil
sign = 1; CoordIndex = 1;

elseif (Exc(j,1) == 6) ¥x iranya, negativ gerjesztésil

sign = -1; CoordIndex = 1;

end

pl = Exc(j,2); p2 = Exc(j,3);

Coordl = Nodes(pl,CoordIndex); Coord2 = Nodes(p2,CoordIndex);

dl = abs(Coord2 - Coordl);

b_exce = [1;1;] * Kexc(i) * 0.5 * dl * sign;

b_exc(pl) = b(pl) + b_exce(l); b_exc(p2) = b(p2) + b_exce(2);

end

%E16z8 id&lépés A-ja alapjan
b_Adt = B * Aold;

%Indul a fixpont-moéka

eps = 4;

step = 0;

while(eps > 3)

step = step + 1;

bfp = b_exc + b_Adt - (bIx+bIy)

%Dirichlet-perem

for j = 1:length(Dirichlet)

end

K(Dirichlet(j),:) = K(Dirichlet(j),:) * 0;

K(Dirichlet(j),Dirichlet(j)) = 1;

bfp(Dirichlet(j)) = 0;
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%A szamitasa
A = K \ bfp;
%Bx és By szamitasa (rotd)

pl = Connect(:,2); p2 = Connect(:,3); p3 = Connect(:,4);

x1 = Nodes(pl,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

D = 0.5 * abs( (x1-x3).*(y3-y2) - (y1-y3).*(x3-x2) );

ghix = 0.5 * (y2-y3) ./ D; gNly = 0.5 * (x3-x2) ./ D;
gN2x = 0.5 * (y3-y1) ./ D; gN2y = 0.5 * (x1-x3) ./ D;
ghN3x = 0.5 * (y1-y2) ./ D; gN3y = 0.5 * (x2-x1) ./ D;

Bx = A(pl,:).*gNly + A(p2,:).*gN2y + A(p3,:).*gN3y;
By = -A(pl,:).*gNix - A(p2,:).*xgN2x - A(p3,:).*gN3x;

%Hx é&s Hy saccoléasa Ixold és Iyold segitségével

Hx nu_opt * Bx + Ixold;
Hy = nu_opt * By + Iyold;

%Modell-function meghivasa (x-iranyra)

for j = 1:size(Connect,1)

Lkml = eval([’Lkmlx_’ num2str(j)]);
Inck = VecInckx(j);
Hkml = Hxold(j); Hk = Hx(j);

[Preisachx(j,1),tmp_Lkmlx,VecInckx(j)] = Preisach(alpha,beta,E,mu_0,...
Mmax ,Hmax,Lkm1,Inck,Hkml,Hk);

eval([’Lkmix_’ num2str(j) ’=tmp_Lkmix;’]);

end
%Modell-function meghivasa (y-iranyra)
for j = 1:size(Connect,1)

Lkml = eval([’Lkmly_’ num2str(j)]);

Inck = VecIncky(j);
Hkmi = Hyold(j); Hk = Hy(j);

[Preisachy(j,1),tmp_Lkmly,VecIncky(j)] = Preisach(alpha,beta,E,mu_0,...
Mmax ,Hmax,Lkm1,Inck,Hkml,Hk);

eval([’Lkmly_’ num2str(j) ’=tmp_Lkmly;’]1);

end
%Ix é&s Iy saccolasa

Ix = Hx - nu_opt * Preisachx;
Iy = Hy - nu_opt * Preisachy;

%bIx és bly feltdltése

bIx = zeros(size(Nodes,1),1);
bly = zeros(size(Nodes,1),1);

for j = 1:size(Connect,1)

pl Connect(j,2); p2 = Connect(j,3); p3 = Connect(j,4);

x1 Nodes(pl,1); =x2 Nodes(p2,1); x3 Nodes(p3,1);
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yl = Nodes(pl,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);
T = 0.5 *% abs(det([1 x1 y1; 1 x2 y2; 1 x3 y31));

%Gradiensek

(0.5x(y1-y2))/T;
(0.5%(x2-x1))/T;

gNix
ghly

(0.5%(y2-y3))/T; gh2x
(0.5%(x3-x2))/T; g2y

(0.5%(y3-y1))/T; gN3x
(0.5%(x1-x3))/T; gN3y

bIxelem = [gNly;gN2y;gN3y;] * Ix(j) * T;
bIyelem = -[gNix;gN2x;gN3x;] * Iy(j) * T;

bIx(pl) = bIx(pl) + bIxelem(1); bIx(p2)
bIx(p3) + blIxelem(3);

bIy(pl) = bIy(pl) + blyelem(1); bIy(p2)
bIy(p3) + blyelem(3);

bIx(p2) + bIxelem(2); bIx(p3)

bIy(p2) + bIyelem(2); bIy(p3)

end

eps = abs(max(abs(Ix)) - max(abs(Ixold)))

Ixold = Ix;

Iyold = Iy;

end

Aold = A;

Hxold = Hx;

Hyold = Hy;
figure(1)

axis square;

pdeplot(Nodes’,[],Connect(:,2:4)’, xydata’,Bx+By, ’colormap’,’jet’,’mesh’,’on’);
caxis([-1.2 1.2]);

xlabel(’x [m]?);

ylabel(’y [m]®);

ylabel(colorbar,’B [T]’);

figure(2)

axis square;

pdeplot(Nodes’, []1,Connect(:,2:4)’, xydata’ ,Hx+Hy, ’colormap’,’jet’,’mesh’,’on’);
caxis([-2000 2000]);

xlabel(’x [m]?);

ylabel(’y [m]’);

ylabel(colorbar,’H [A/m]?);

figure(3)
hold on;
plot(Hx(1468) ,Bx(1468),°r+’);

% figure(3)

% axis square;

% pdeplot(Nodes’, [],Connect(:,2:4)’, xydata’,A, ’contour’,’on’);
% xlabel(’x [m]?);

% ylabel(’y [ml’);

% ylabel(colorbar,’A [Vs/m]’);

end

toc;

21



