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1. fejezet

Bevezetés, köszönetnyilvánítás

Dolgozatom az alacsonyfrekvenciás elektromágneses térszimuláció témakörében író-
dott. A számítástechnika rohamos fejl®désének, valamint az ipari használatra fejlesz-
tett szimulációs szoftverek térnyerésének köszönhet®en napjainkban már alapvet®
feladat és elvárás a kutatási és fejlesztési területen a különböz® anyagparaméterek
jellemz®inek modellezése, szimulációja és az adott feladathoz optimalizálása. Az
elmúlt évek, évtizedek során az elektromágneses terek numerikus analízise fontos,
integrált részévé vált a villamosmérnöki és informatikai tudományoknak. Érteke-
zésem ezen sokszín¶ és rendkívül széles tudományterületen belül a ferromágneses
anyagok alacsonyfrekvenciás viselkedésének mérésével, modellezésével és szimuláci-
ójával foglalkozik végeselem-módszer segítségével.

A villamos gépek, motorok és transzformátorok tervezése során különösen fontos
az adott felhasználási területhez illeszked® (például kis veszteséggel rendelkez®) vas-
anyag kiválasztása. Az elektromágneses szempontból értelmezett anyagparaméterek
optimalizálását numerikus térszámítással, így végeselem-módszerrel is hatékonyan
lehet segíteni. Dolgozatom els® részében a hiszterézis elméleti áttekintését követ®en
bemutatom a mágneses térer®sség és a mágneses indukció között értelmezett skalá-
ris hiszterézis mérésének módját, továbbá ismertetem az általam elvégzett mérések
eredményeit is. A második egységben felvázolom az általam implementált, a hisz-
terézis modellezésére használt skalár Preisach-modell elméletét, m¶ködését, megva-
lósítását, validációját, valamint kapcsolatát a mérési eredményekkel. A harmadik
részben bemutatom az elektromágneses tér jellemz® mennyiségei között összefüggést
teremt® Maxwell-egyenletek teljes rendszerét, kitérve a hiszterézises kapcsolatot is
magában foglaló konstitúciós relációkra is. A negyedik egységben összefoglalom a
végeselem-módszer elméletét, alkalmazási lehet®ségeit a villamosmérnöki gyakorlat-
ban, továbbá felvázolom az implementált Preisach-modell numerikus térszimuláció-
val történ® összekapcsolására felhasznált �xpontos technikát és polarizációs formulát
is. Dolgozatom ötödik részében bemutatom a munkám során vizsgált problématere-
ket, valamint a hozzájuk kapcsolódó, a szimuláció során megoldásra kerül® parciális
di�erenciálegyenleteket és levezetésüket, végül felvázolom az elvégzett szimulációkat,
eredményeket.

Dolgozatomat a Széchenyi István Egyetem Automatizálási Tanszékének Elektro-
mágneses Terek Laboratóriumában írtam, mely munkaközösségnek 2012 januárjától
2014 szeptemberéig voltam aktív tagja. Szeretném köszönetemet kifejezni Prof. Dr.
habil. Kuczmann Miklósnak, az Elektromágneses Terek Laboratórium laborveze-
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t®jének, konzulensemnek és mentoromnak, továbbá Budai Tamás, Friedl Gergely,
Kovács Gergely, Marcsa Dániel, Pólik Zoltán és Prukner Péter kollégámnak azért
a folyamatos, felbecsülhetetlen érték¶ szakmai és emberi támogatásért, melyet az
elmúlt évek során kaptam.

Munkám a TÁMOP-4.2.2.A-11/1/KONV-2012-0012: Hibrid és elektromos jár-
m¶vek fejlesztését megalapozó kutatások projekt keretében, a Magyar Állam és az
Európai Unió támogatásával, az Európai Szociális Alap társ�nanszírozásával való-
sult meg. Dolgozatomat LATEX szövegszerkeszt®ben szerkesztettem.
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2. fejezet

A mágneses hiszterézis

2.1. Rendszerelméleti megközelítés

A hiszterézis, mint jelenség általános megértéséhez els® közelítésben érdemes abszt-
rahálni a problémát: de�niáljunk egy Γ{·} operátorával egyértelm¶en jellemezhet®
egy bemenet¶, egy kimenet¶ rendszert, mely a bemenetére érkez® u(t) folytonos ide-
j¶, folytonos értékkészlet¶ gerjeszt®jelet y(t) folytonos idej¶, folytonos értékkészlet¶
válaszjellé képezi le, mely leképzés a rendszeroperátor segítségével az

y(t) = Γ{u(t)} (2.1)

alakban írható fel [1]. El®fordulhat továbbá, hogy a rendszer bemenete id®függ®
vektor, ebben az esetben a kimenet hasonlóképpen id®függ® vektor formájában adó-
dik, és a gerjesztés-válasz kapcsolat vektoriális operátor segítségével fejezhet® ki:
~y(t) = ~Γ{~u(t)}.

Abban az esetben, ha az operátor által végzett leképzés, tehát u(t) és y(t) kap-
csolata nemlineáris és többérték¶, továbbá y(t) válaszjel értéke egy tetsz®leges τ
id®pillanatban függ u(t) és y(t) t ≤ τ , illetve t < τ id®pontbeli értékeit®l, egy-
szer¶bben fogalmazva a rendszer el®életét®l, akkor hiszterézissel bíró rendszerr®l
beszélhetünk [2]. Egy ilyen rendszer, valamint annak sematikus gerjesztés-válasz
kapcsolata látható a 2.1. ábrán, ahol a feltüntetett nyilak az id®t reprezentálják.

y(t)

u(t)

u(t) y(t)

2.1. ábra. A rendszermodell és egy lehetséges gerjesztés-válasz karakterisztika

Az ilyen karakterisztikával jellemzett rendszerek memóriával rendelkeznek: úgy
is mondhatjuk, hogy a válaszjel aktuális értéke dönt®en függ attól, hogy a rendszer
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a vizsgálódás pillanatát megel®z®en milyen állapotban volt. Ezen általános de�-
níció segítségével a tudomány különböz® területeinek jelenségei tárgyalhatók attól
függ®en, hogy u(t) és y(t) milyen elgondolás alapján kerül megválasztásra.

A mérnöki tudományterülett®l elszakadt, de kiváló demonstrációs példa a köz-
gazdaságtan által tárgyal export hiszterézissel bíró id®függése [3]: egy ország gazda-
ságának áttérése az exporttermelésre id®igényes és nehézkes, de ha az átállás sikerült,
már nem igényel különösebb er®feszítést az állapot fenntartása. A jelenség szerepe
a villamosmérnöki gyakorlatban is kiemelked®: a dolgozatom témájául szolgáló fer-
romágneses hiszterézisen túl jelent®s szerepe van az elektronikában a hiszterézises
komparátornak is [4].

2.2. A ferromágneses hiszterézis

Ferromágneses hiszterézisr®l beszélhetünk akkor, ha a tárgyalt rendszermodell be-
menete általánosan ~u(t) = ~H(t) mágneses térer®sség, kimeneti pedig ~y(t) = ~M (t)
mágnesezési vektor [5]. A jelenség okának tárgyalását az anyagok mágneses tulaj-
donságának kialakulásától célszer¶ kezdeni. A mágnesesség egyik lehetséges forrása
az atomok különböz® energiaszinteken történ® mozgása az anyagok atomi struktúrá-
jában [6]. A �zikai atommodellekben az elektronok pályamenti mozgása és forgása
értelmezhet® elemi áramhurkok, valamint a hozzájuk kapcsolódó mágneses dipólus
fogalmának segítségével. Az elemi áramhurok ~mi mágneses momentuma de�niálja
az áramhurok által lérehozott mágneses mez®t [7]:

~mi = Ii · d~si, (2.2)

ahol Ii az elemi áramhurok árama, d~si a hurok által által körülzárt felület. Mág-
neses atomoknak nevezzük az olyan atomokat, melyek kompenzálatlan mágneses
momentummal rendelkeznek az elektronjaik mozgásából fakadóan. Egy ilyen atom
teljes mágneses momentuma az elemi áramhurkok által létrehozott momentumok
vektoriális összegeként, szuperpozíciójaként számítható. Ha egy ∆V térfogat n da-
rab mágneses atomot tartalmaz, és ezen atomok ~mi momentummal rendelkeznek
(i = 1, 2, ..., n), akkor a vektoriális összegb®l adódó mágneses momentum:

~m =
n∑
i=1

~mi. (2.3)

Ezen mágneses momentum térfogati s¶r¶ségét nevezzük ~M mágnesezettségi vektor-
nak [6]:

~M = lim
∆V→0

(
1

∆V

n∑
i=1

~mi

)
. (2.4)

~B mágneses indukció hatására az ~m momentummal rendelkez® mágneses dipólusra
ható ~τ forgatónyomaték az indukció és a mágneses momentum vektoriális szorzata-
ként de�niálható:

~τ = ~m× ~B. (2.5)

Ugyanezen mágneses dipólus energiája az indukció és a mágneses momentum vekto-
riális szozatának mínusz egyszeresével lesz ekvivalens [6]. ~B mágneses indukcióvek-
tor két összetev®re bontható: µ0

~H a szabad tér mágneses indukciója (µ0 a vákuum
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permeabilitása, értéke 4π ·10−7 Vs
Am

), µ0
~M a mágnesezettségi vektorból adódó induk-

ciókomponens, amely a vizsgált anyag mágneses tulajdonságának függvénye [6]. Az
indukcióvektor tehát

~B = µ0

(
~H + ~M

)
(2.6)

alakban írható fel, ahol

~H =
~B

µ0

− ~M (2.7)

az úgynevezett mágneses térer®sség. Ferromágneses anyagok esetén ~M és ~H kap-
csolata egy, a 2.1.-ben tárgyalt nemlineáris, többérték¶ kapcsolat:

~M = H { ~H}. (2.8)

A mágneses térer®sség és a mágneses indukció kapcsolatát egy másik, hasonlóan
hiszterézises tulajdonságot reprezentáló operátor fejezi ki [8]:

~B = µ0

(
~H + H { ~H}

)
, (2.9)

~B = B{ ~H}. (2.10)

2.3. A jelenség oka

A ferromágneses anyagok esetén tapasztalható nemlineáris, többérték¶ ~M - ~H össze-
függés �zikai magyarázatát mutatja be a 2.2. ábra. Az ilyen típusú anyagok esetén

H

M

A

B

C

H = 0 Ha

Hb Hc

2.2. ábra. Az els® mágnesezési görbe és a doménstruktúra alakulása

a küls® elektronhéjon jelent®s mennyiség¶ kompenzálatlan spin¶ elektron találha-
tó, melyek egymással kölcsönhatásban állnak, úgynevezett doméneket hozva így
létre [6]. Amennyiben az anyag nem volt még mágneses térben, úgy a mágneses
er®vonalak egy doméncsoporton belül záródnak [11]. Ekkor az anyag a legkisebb
energiájú állapotban van, kifelé nem rendelkezik mágneses tulajdonsággal. Ha az
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anyagot mágneses térbe helyezzük, azok a domének, melyek mágnesezettsége ere-
dend®en a küls® tér irányába mutat, n®ni kezdenek a többi domén rovására. Ezen
doménfal-elmozdulások irreverzibilisek, amely irreverzibilitás megmagyarázza, hogy
miért rendelkeznek az ilyen típusú anyagok mágneses szempontból memóriával.

A 2.2. ábra lényegében az ered® mágneses momentumot, vagy az ezzel ará-
nyos mágnesezettséget adja meg a mágneses térer®sség függvényében. Ez az úgy-
nevezett els® mágnesezési görbe, mely három szakaszra bontható: a nemlineáris
(A) szakasz a reverzibilis faleltolódásokkal, a közel lineáris (B) szakasz az irrever-
zibilis faleltolódásokkal, a telítési vagy szaturációs (C) szakasz pedig a momentu-
mok elfordulásával magyarázható [6]. Ferromágneses közegben ~M >> ~H , így
~B = µ0

(
~H + ~M

)
≈ µ0

~M , így a B − H-görbe és az M − H-görbe jó közelítéssel

megegyezik. A teljes hiszterézishurok a 2.3. ábrán látható.

H

B

Hm

Bm

-Hm

-Bm

Br

-Br

-Hc Hc H

M

Hm

Mm

-Hm

-Mm

Mr

-Mr

-Hc Hc

2.3. ábra. A teljes hiszterézishurok

A ~H = ~B = ~M = 0 pont de�niálja az úgynevezett lemágnesezett állapotot.
Ha a mágneses térer®sséget növeljük, az anyag mágnesezettsége (és természetesen
az indukció is) n®ni fog. A görbe ezen szakasza az eddig is tárgyalt els® mág-
nesezési görbe (sz¶zgörbe). Ha a mágneses térer®sséget kritikus szintig növeljük,
akkor telítésbe jutunk: ett®l a ponttól kezdve a növekv® térer®sség ellenére sem
fog változni a mágneses indukció értéke. Ezen nevezetes pont a szaturációs pont
( ~Hm, ~Mm, ~Bm) [12].

Az irreverzibilis faleltolódások megmagyarázzák, hogy csökken® térer®sség ese-
tén a mágnesezettség alakulása miért nem követi a sz¶zgörbét. Csökken® mágneses
térer®sség esetén a megváltozott doménstruktúra miatt az indukció bár csökkenni
kezd, de nem az el®z® esetben tapasztalt függvény szerint. Zérusra csökkentett mág-
neses térer®sség esetén nem fogunk zérus mágnesezettséget tapasztalni, maradni fog
valamekkora ~M r, ~Br remanencia. Az anyag lemágnesezéséhez negatív térer®sséget
szükséges létrehozni: ez a − ~Hc koercitív mágneses térer®sség, ekkor ~M = ~B = 0.
~H csökkentése esetén negatív szaturációba kerülünk, az innen növekv® mágneses tér-
er®sség negatív remanenciát hagy, és a lemágnesezés pozitív koercitív teret igényel.
A ~H = ~B = ~M = 0 állapot ezen a görbén nem érhet® el [9].
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2.4. Skalárhiszterézis mérése

Munkám során kizárólag a skaláris hiszterézis vizsgálatával foglalkoztam, azaz a
mágneses térer®sségnek és a mágneses indukciónak kizárólag a hosszát, nagyságát
vizsgáltam, az általuk bezárt szöget nem. Az ilyen jelleg¶ vizsgálatok esetén esetén
ki kell kötni, hogy ~H és ~B egymással párhuzamos. A skaláris összefüggés mérésére
a legelterjedtebb elrendezés a toroid transzformátoros mérés, melynek sematikus
vázlata a 2.4. ábrán látható.

Np Nsz

R1

R2

Rk

2.4. ábra. Toroid transzformátor

A transzformátor elkészítéséhez egy adott típusú anyagból kör alakú próbatestet
választottam, amelyet megfelel® módon feltekercseltem. A mérés során egy kiváló
min®ség¶, kis veszteség¶, villamos gépbe tervezett mágneses vasanyagot vizsgáltam.
A méréshez egy primer-, valamint egy szekunder oldali tekercselést vezettem rá
a próbatestre. A primer oldalt árammal gerjesztettem, mely hatására feszültség
indukálódott, amit a szekunder oldali, a primer tekercselést®l gondosan elszeparált
tekercselésen tudtam visszamérni. A visszamért feszültségb®l a mágneses indukció
értéke számítható.

A 2.4. ábrán Np jelöli a primer-, Nsz a szekunder oldali tekercselés menetszámát.
R1 és R2 a küls®, valamint a bels® sugár, mely értékekb®l Rk közepes sugár értéke

Rk =
R1 +R2

2
(2.11)

összefüggéssel számítható, amib®l a próbatest közepes hossza (kerülete): lk = 2Rkπ.
A méréshez szükséges alapösszefüggések a Maxwell-egyenletek segítségével levezet-
het®k. A Maxwell-egyenletek teljes rendszerével dolgozatom külön fejezetben foglal-
kozik, itt csak a szükséges egyenletek alkalmazását mutatom be az adott problémával
kapcsolatban.

Az ismert áramgerjesztés és a mágneses térer®sség között a kvázistacionárius
gerjesztési törvény, más néven az I. Maxwell-egyenlet redukált alakja teremt kapcso-
latot [13]: ∮

l

~H · d~l =

∫
A

~J · d ~A. (2.12)

A mérési elrendezés el®nyeit kihasználva az integrálok skaláris szorzattá egyszer¶-
södnek:

H(t)2Rkπ = NpI(t). (2.13)
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Az összefüggést a mágneses térer®sségre rendezve látható, hogy a H pillanatnyi
értéke a primer oldali menetszám, a pillanatnyi gerjeszt®áram és a közepes sugár
ismeretében számítható:

H(t) =
NpI(t)

2Rkπ
. (2.14)

A mágneses indukció meghatározásához a Faraday-féle indukciós törvényb®l (II.
Maxwell-egyenlet) szükséges kiindulni:∮

l

~E · d~l = −
∫
A

∂ ~B

∂t
· d ~A. (2.15)

Mivel a mágneses indukció felületi integrálja megadja a felületen áthaladó �uxust,
illetve az elektromos térer®sség vonalmenti integrálja az indukált feszültséggel lesz
ekvivalens, ezért (2.15) átalakítható:

ui(t) = −Nsz
∂

∂t
B(t)A, (2.16)

B(t) = B0 +
1

NszA

t∫
0

ui(τ) dτ. (2.17)

A formulában A a toroid keresztmetszete, B0 a kezdeti értéket megadó konstans.
A mérést a 2.5. ábrán látható toroid transzformátoron, LabVIEW [14] mér®rendszer
segítségével végeztem el [30]. A számítógépes mér®rendszer segítségével egy áram-

2.5. ábra. A vizsgált transzformátor és a mér®rendszer

generátort vezéreltem, mely áramgenerátor a primer oldali gerjesztést szolgáltatta.
A rendszer a szekunder oldali indukált feszültséget mérte vissza és dolgozta fel szá-
mítógépes úton. Az adatgy¶jtés és a vezérlés egy NI-DAQ [15] adatgy¶jt® kártya
segítségével történt.

2.5. Mérési eredmények

Munkám során nem vizsgáltam a próbatest B −H-kapcsolatának frekvenciafüggé-
sét, kizárólag a kés®bbiekben bemutatott Preisach-modell implementálásához szük-
séges koncentrikus görbéket vettem fel, amit a gerjeszt®áram aplitúdójának foko-
zatos növelésével tettem meg. A méréshez használt toroid transzformátor paramé-
terei: Np = 197;Nsz = 139;R2 = 23, 5 mm;R1 = 28, 5 mm;Rk = 26 mm; lk =
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163, 3628 mm;A = 10−5 m2. A mérési eredmények a 2.6. ábrán láthatók, ahol az x-
tengely a maximális mágneses térer®sség értékére (Hmax), az y-tengely a maximális
mágneses indukció értékére (Bmax) került normalizálásra (Hmax = 3213, 8 A

m
,Bmax =

1, 1632 T). A mérést 40 mA és 3 A között olyan osztásközzel végeztem el, hogy a
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

H [A/m]

B
 [T

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H [A/m]

B
 [

T
]

2.6. ábra. Mért, normalizált koncentrikus görbék

normálásra használt, a legnagyobb gerjeszt®áramhoz tartozó görbe megfelel® s¶r¶-
séggel kerüljön "érintésre", "mintavételezésre" a koncentrikus görbék (Hmax, Bmax)
pontjai által, ami a szimulációhoz használt modell felépítése során fontos kritérium,
különös tekintettel arra a szakaszra, ahol a B(H)-függvény deriváltja a legnagyobb.
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3. fejezet

A skalár Presiach-modell

3.1. Történeti áttekintés

Preisach Ferenc (1905-1943) magyar származású villamosmérnök, a legelterjedtebb
és legjelent®sebb hiszterézismodell megalkotója. Diplomáját 1927-ben, a Zürichi
M¶szaki Egyetemen szerezte, doktorátusát H. Barkhausen [17] vezetése alatt vé-
gezte, dolgozatának címe: A Barkhausen-jelenség vizsgálata. 1943-ig, a nácik ki-
utasításáig a Siemens & Halske laboratórium, kés®bb a magyar Egyesült Izzó Ku-
tató Laboratórium munkatársa [16]. Halála után számtalan matematikus, �zikus
és villamosmérnök fejlesztette tovább a Preisach eredeti ötletét, ennek eredménye,
hogy napjainkban a Preisach-modell nem kizárólag egyetlen hiszterézismodell, ha-
nem azonos alapokon nyugvó, de egymástól többé-kevésbé eltér® hiszterézismodellek
gy¶jt®neve.

3.2. A modell de�niálása

H. Barkhausen 1919-ben fedezte fel empirikus úton a 3.1. ábrán látható jelenséget,
miszerint a mágnesezési folyamat során a mágnesezettség apró ugrások során válto-
zik, és ezzel alátámasztotta azt az elméleti elgondolást, miszerint a doménszerkezet
ténylegesen létezik. Az ugrásszer¶ változás jelenségét a szakirodalom Barkahusen-

e�ektusnak nevezi, melyet kés®bb a felfedez® doktorandusza, Preisach Ferenc elemi
operátorok fel- és lekapcsolásaként értelmezett. A Preisach-modell a skaláris, sta-

H

M

H

M

3.1. ábra. Az els® mágnesezési görbe és annak egy kinagyított részlete
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tikus hiszterézis jelenségét képes leírni, modellezni, ahol a hiszterézis nem függ a
változás sebességét®l [16].

A modell kimenete de�níció szerint végtelen számú relé-típusú karakterisztikával
(hiszteron) rendelkez® rendszer válaszának súlyozott szuperpozíciójaként áll el® az

y(t) = Γ{u(t)} =

∫∫
α≥β

µ (α, β) γ̂ (α, β)u(t) dαdβ (3.1)

formula alapján, melyben Γ{·} a skaláris hiszterézist reprezentáló operátor, µ (α, β)
a mérési adatokból identi�kálható, a 3.2. ábrán látható γ̂ (α, β) elemi hiszteronokat
súlyozó Preisach-eloszlásfüggvény [8]. Fontos megjegyezni, hogy a modell általános

u

γ(α,β)u

αβ

+1

-1

u(t)

∏

∏

∏

μ(α,β)

μ(α,β)

μ(α,β)

∫
y(t)

3.2. ábra. Egy hiszteron karakterisztikája és a modellt reprezentáló jelfolyam-hálózat

bemutatása során u(t) gerjeszt®jel ferromágneses hiszterézis vizsgálata esetén nem
más, mint H(t) mágneses térer®sség, továbbá y(t) válaszjel M(t) mágnesezettséggel
lesz ekvivalens.

A hiszteron α érték¶ bemenetre kapcsolódik fel, valamint β érték¶ bemenetre
kapcsolódik le, továbbá mindig igaz, hogy α ≥ β. A kimeneti függvény értékkészlete
γ̂ (α, β) = ±1. A rendszer bemenete sokszor valamilyen értékkel, például a bemeneti
jel maximális értékével normalizált. A modell m¶ködését de�niáló (3.1) összefüggés
reprezentálható egy, a 3.2. ábrán látható, az eloszlásfüggvénnyel súlyozott elemi
hiszterozonok párhuzamos kapcsolásából álló jelfolyam típusú hálózattal is [18].

3.3. A Preisach-háromszög és az Everett-függvény

A jelfolyam típusú hálózat párhuzamos ágaiban az egyes hiszteronokra jellemz® α
és β értékek rendre máshogy alakulnak, ami egyszer¶en leírható az úgynevezett
Preisach-háromszög fogalmának bevezetésével [19]. A Preisach-háromszög a maxi-
mális bemeneti értékre normalizált α−β sík azon része, melyre igaz, hogy α ≥ β, te-
hát a de�níciós integrál tartója, mely felett a kiértékelést el kell végezni. A Preisach-
háromszögön belül a rendszer el®életét az L(t) lépcs®s függvény reprezentálja, mely
balról jobbra mozog, ha a rendszer gerjesztése növekszik, és fentr®l lefelé, ha a ger-
jesztés csökken. A lépcs®s függvény bemeneti jelt®l függ® id®tartománybeli mozgása
kapcsolja be vagy ki a háromszögön belül található elemi hiszteronokat, így hatá-
rozva meg a kimenet aktuális értékét. A lépcs®s függvény két tartományra bontja
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fel a Preisach-háromszöget: a görbe alatti részterületen a felkapcsolt hiszteronok ta-
lálhatók (itt γ̂ = +1), a görbe felett pedig a lekapcsolt hiszteronok foglalnak helyet
(γ̂ = −1).

Alaphelyzetben a két résztartomány területe egyenl®, a fel- és lekapcsolt hiszte-
ronok egyensúlyt tartanak egymással. Ekkor a lépcs®s függvény egy szakasz, amely
az origót az (+1,-1) ponttal köti össze a síkon. A lépcs®s függvény sarkait, for-
dulópontjait a bemenet maximumai és minimumai alakítják ki, így valósítva meg
a rendszer memóriáját. A 3.3. ábrán a gerjesztés-válasz kapcsolat függvényében
tanulmányozható a lépcs®s görbe alakulása a Preisach-háromszögön.

α

β

u(t)

y(t)
+1

-1

1

2
3

4

5

6

1

2

3

4
5

6

α
β

=

3.3. ábra. A lépcs®s függvény és a karakterisztika alakulása

Mivel a (3.1) kett®s integrál kiértékelése bonyolult és id®igényes m¶velet, ezért
munkám során nem ezt az összefüggést, valamint nem a µ (α, β) Preisach-eloszlást
használtam, hanem a bel®le származtatható E (α, β) Everett-függvényt, és az ahhoz
rendelt numerikus megvalósítási lehet®séget [9]. Az Everett-függvény és a Preisach-
eloszlás kapcsolata:

E (α, β) =

∫∫
α≥β

µ (α′, β′) dα′dβ′ → µ (α, β) =
∂2

∂α∂β
E (α, β) . (3.2)

Az Everett-függvény egyik legnagyobb el®nye, hogy segítségével a modell kimenete
sokkal takarékosabban el®állítható. A szakirodalom [6,8, 9, 20] az

y(t) = −E (α0, β0) + 2
K∑
i=1

[E (αi, βi−1)− E (αi, βi)] (3.3)

összefüggést de�niálja (3.1) és (3.2) alapján, ahol K a lépcs®s függvény forduló-
pontjainak száma. Az ismert összefüggést kiindulási alapként felhasználtam és ki-
egészítettem a modell implementációja során, így ezzel a kérdéssel dolgozatom külön
részben foglalkozik.

Az Everett-függvény használatának másik legfontosabb el®nye, hogy az közvetlen
kapcsolatban áll a mérési eredményekkel, így kikerülhet® a mért görbéken történ®
összetett matematikai m¶veletek (numerikus integrálás, di�erenciálás) alkalmazása,
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amely minimálisan zajos függvények esetén is jelent®s hibát okozna. A Preisach-
háromszög felett értelmezett függvény származtatható a mért koncentrikus görbék-
b®l a 3.4. ábrán látható módon [8].

A függvény felépítése során a mért értékeket a legnagyobb amplitúdójú áram-
gerjesztéshez tartozó maximális mágneses térer®sség (Hmax), valamint a legnagyobb
mágneses indukciós (Bmax) értékére kell normalizálni. Az Everett-függvény érték-

u(t)

y(t)

α = 1

α1
α2

y α β1,

y α β2,

α

β

α

β
=

α = 1

α

β
=

-

α1

α2

y α β,

3.4. ábra. Az Everett-függvény felépítése a koncentrikus görbékb®l

készlete meghatározható az

E (α, β) =
yαi − yαiβj

2
(3.4)

összefüggés segítségével, ahol yαi az i-edik normalizált koncentrikus görbéhez tartozó
maximális indukció értéke, yαiβj az i-edik normalizált görbe j-edik függvényértéke a
csökken® mágneses térer®sséghez (csökken® β-hoz) tartozó függvényrészen.

A koncentrikus görbék használata miatt (3.4) összefüggésével az Everett-
függvény csak az α = −β-egyenes feletti értelmezési tartományon számítható köz-
vetlen módon, az egyenes alatti tartomány a függvény E (αi, βj) = E (−βj,−αi)
tulajdonságának ismeretében adható meg. A felépített függvény a 3.5. ábrán látha-
tó.
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3.5. ábra. A koncentrikus görbékb®l felépített Everett-függvény
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Az Everett-függvény felépítése során szem el®tt kell tartani, hogy a mért kon-
centrikus hurkok száma közvetlenül determinálja függvény diszkrét értelmezési tar-
tományának felosztási �nomságát. Amennyiben n darab koncentrikus hurok áll
rendelkezésre, úgy a függvény (n+ 1) · (n+ 1) pontban adható meg, ahol

α, β ∈ [−1,−α1,−α2, ...,−αn−1, 0, αn−1, ..., α2, α1, 1] , (3.5)

így az yαiβj -értékek is ezen diszkrét pontokban értelmezhet®k.

3.4. A modell kimenetének számítása

Mint már említettem, a skalár Preisach-modell implementálása során bár a (3.3)
összefüggést használtam fel kiindulási pontként, de a kimenet el®állítása közelebbr®l
nézve nem ilyen egyszer¶, ezért célszer¶ áttekinteni, hogy milyen eseteket és hogyan
szükséges kezelni a szimuláció során. Munkámban két, egymástól eltér® számítási
módszert valósítottam meg attól függ®en, hogy kezdetben növekszik, vagy éppen
csökken a gerjesztés értéke. Az els® mágnesezési görbét és a hozzá tartozó lépcs®s
függvényt a 3.6. ábra mutatja.
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β
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β
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(a) Növekv® gerjesztés
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(b) Csökken® gerjesztés

3.6. ábra. Els® mágnesezési görbe

A kezdeti, lemágnesezett állapotban tehát a lépcs®s függvény nem más, mint az
origót a (+1,-1) ponttal összeköt® szakasz, ekkor a felkapcsolt és a lekapcsolt hisz-
teronokat reprezentáló részháromszögek területe megegyezik, azok egyensúlyt tarta-
nak egymással. A lépcs®s függvényt leíró, a fordulópontokat tároló mátrix (L) ekkor
üres, eltárolt értéket nem tartalmaz, hiszen a rendszer még nem rendelkezik el®élet-
tel. A lemágnesezett állapotból növekv® és csökken® gerjesztés esetén egyaránt az
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els® mágnesezési görbére kerülünk, a lépcs®s függvényt mindkét esetben az ideigle-

nesen eltárolt (α1, β1) pont reprezentálja, ahol β1 = −α1 (L =

[
α1

−α1

]
). Lényeges

különbség, hogy míg növekv® gerjesztés esetén a lépcs®s görbe balról jobbra, addig
csökken® esetben fentr®l lefelé mozog, így választva ketté a Preisach-háromszöget.

Növekv® gerjesztés esetén a modell kimenete az

y(t) = ymaxE (α1,−α1) , (3.6)

csökken® gerjesztés esetén az

y(t) = −ymaxE (α1,−α1) (3.7)

formulával számítható, ahol ymax a kimeneti jel maximális értéke. Mindkét össze-
függés az AB1 háromszög területével van kapcsolatban, hiszen ezzel a területtel
arányosan n® vagy csökken a felkapcsolt hiszteronok száma. A vizsgált (α1, β1) pont
csak akkor kerül be ténylegesen a lépcs®s görbét reprezentáló mátrixba, hogyha
az valódi fordulópont, tehát abban az esetben, ha a gerjesztés iránya megváltozik.
Ekkor a 3.7. ábrán látható módon a visszatér® görbére kerülünk.
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3.7. ábra. Visszatér® görbe

A visszatér® görbén történ® mozgás esetén az el®z®ekben tárgyalt (α1, β1) pont
a lépcs®s görbét reprezentáló mátrixba kerül, az ideiglenes pontot pedig az (α2, β2)
pont fogja jelenteni. A 3.7.(a) ábrán a lépcs®s görbe a csökken® gerjesztés miatt
fentr®l lefelé mozog, így a α2 = α1, míg a 3.7.(b) ábra esetében a lépcs®s függvény
balról jobbra változik, tehát β2 = β1 = −α1. Éppen ezért a pozitív els® mágnesezési
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görbéhez tartozó visszatér® ág esetén az

L =

[
α1 α1

−α1 β2

]
(3.8)

mátrix reprezentálja a lépcs®s függvényt, és a modell kimenete az

y(t) = ymax

[
− E (α1,−α1) + 2

(
E (α1,−α1)− E (α1, β2)

)]
(3.9)

összefüggéssel számítható. A képlet tulajdonképpen az AB1 és CB2 háromszögek
különbségét reprezentálja, melynek �zikai jelentéstartalma, hogy az els® mágnesezési
görbe számítása során felkapcsolt hiszteronok egy részét a csökken® gerjesztés miatt
le kell kapcsolni. Negatív els® mágnesezési görbe esetén a fordulópontokat tároló
mátrix

L =

[
α1 α2

−α1 −α1

]
(3.10)

alakú, a modell kimenete pedig az

y(t) = ymax

[
E (α1,−α1)− 2

(
E (α1,−α1)− E (α2,−α1)

)]
(3.11)

formulával adható meg, mely a felkapcsolásra kerül® hiszteronokat tartalmazó C2B
háromszög pozitív területének szuperpozícióját jelenti a lekapcsolt hiszteronokat
reprezentáló, negatív el®jel¶A1B háromszög területével. A gerjesztés irányváltozása
esetén a 3.8. ábrán látható módon egy minor hurokra jutunk.
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(b) Csökken® gerjesztés

3.8. ábra. Minor hurok nyitása

A pozitív els® mágnesezési görbéhez tartozó minor hurok kezelése (3.8.(a) ábra)
az eddig ismertetett kimenetszámítási eljárásokkal teljesen analóg, a háromszögön
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belül található, a lépcs®s függvény fordulópontjai által meghatározott részháromszö-
gek segítségével könnyen megérthet®. Ezúttal az A,D,3,2 és 1 pontok által megha-
tározott síkidom területét kell meghatározni, amely az egyensúlyi állapothoz képest
növekményt jelent a felkapcsolt hiszteronok számára. Ez a részháromszögek terüle-
tével kifejezve: TAB1 − TCB2 + TCD3. A lépcs®s függvényt reprezentáló mátrix

L =

[
α1 α1 α3

−α1 β2 β2

]
(3.12)

alakú, a modell kimenete pedig az

y(t) = ymax

[
− E (α1,−α1) + 2

(
E (α1,−α1)− E (α1, β2) + E (α3, β2)

)]
(3.13)

összefüggéssel határozható meg. A negatív els® mágnesezési görbéhez tartozó minor
hurok (3.8.(b) ábra) esetén a meghatározandó terület a részháromszögekkel felírva:
−TA1B + TC2B − TC3D. A lépcs®s görbét leíró mátrix

L =

[
α1 α2 α2

−α1 −α1 β3

]
, (3.14)

a válaszjel az

y(t) = ymax

[
E (α1,−α1)− 2

(
E (α1,−α1)− E (α2,−α1) + E (α2, β3)

)]
(3.15)

módon számítható. A harmadrend¶ minor hurok esetére a 3.9. ábra mutat példát.
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3.9. ábra. Harmadrend¶ minor hurok nyitása
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Pozitív els® mágnesezési görbe esetén (3.9.(a) ábra) a meghatározandó terület a
részháromszögek segítségével a

TAB1 − TCB2 + TCD3 − TD4E (3.16)

alakban írható fel, a fordulópontokból akotott mátrix

L =

[
α1 α1 α3 α3

−α1 β2 β2 β4

]
(3.17)

formában adódik, a válaszjel pedig az

y(t) = ymax

[
− E (α1,−α1) + 2

(
E (α1,−α1)− E (α1, β2) +

+ E (α3, β2)− E (α3, β4)
)] (3.18)

összefüggés segítségével számítható. A formulák negatív els® mágnesezési görbe
esetén:

−TA1B + TC2B − TC3D + TE4D, (3.19)

L =

[
α1 α2 α2 α4

−α1 −α1 β3 β3

]
(3.20)

y(t) = ymax

[
E (α1,−α1)− 2

(
E (α1,−α1)− E (α2,−α1) +

+ E (α2, β3)− E (α4, β3)
)]
.

(3.21)

A lépcs®s függvény dinamikus kezelése során a görbét reprezentáló mátrixból a ger-
jesztés aktuális értékét®l függ®en törölni kell bizonyos oszlopokat, tárolt forduló-
pontokat. Ha az n-edik lépésben a gerjesztés aktuális (normalizált) értéke un, ak-
kor növekv® gerjesztés esetén azokat az oszlopokat kell törölni, melyekre igaz, hogy
un ≥ αj, míg csökken® gerjesztés esetén az un ≤ βj feltételnek eleget tev® oszlopokat
kell eltávolítani, amennyiben az L mátrix k oszloppal rendelkezik, és j ∈ [1, 2, ..., k].

3.5. A modell veri�kációja

A modell implementálása után szükséges és célszer¶ meggy®z®dni arról, hogy az
megfelel®en m¶ködik, kimenetként adott értékei rendre − jó közelítéssel − egyezést
mutatnak a mért eredményekkel. A modell helyességének ellen®rzése veri�káció-
val tehet® meg [21]. Az ellen®rzés során azt vizsgáltam meg, hogy a néhány −
véletlenszer¶en kiválasztott − koncentrikus hurok esetén, azonos gerjesztés mellett
vizsgálva a modell kimenete kvantitatíve egyezik-e a mért mágneses indukcióval,
valamint megvizsgáltam a hiszterézis veszteség értékét is.

A hiszterézises tulajdonságból adódó veszteség a vizsgált hurok alatti területtel
ekvivalens, értékének meghatározásához a mágneses térer®sség függvényét a mág-
neses indukció szerint szükséges egy periódusra integrálni. Az összefüggés általános
alakja:

w =

∮
~H · d ~B. (3.22)
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Mivel a két függvény a szimulációs eljárás során diszkrét idej¶ jel formájában áll
rendelkezésre, ezért az integrál a trapezioid-szabály alapján [22] a

w ≈
N−1∑
i=1

(B[i+ 1]−B[i])
H[i] +H[i+ 1]

2
(3.23)

formulával közelíthet®, ahol N az egyetlen periódusban vett diszkrét minták száma.
Az eredmények a 3.10. ábrán tanulmányozhatók. Látható, hogy a mért és a szi-
mulált eredmények a modell kimenetének és a veszteség értékének tekintetében is jó
közelítéssel megegyeznek, így a megvalósított modell megfelel®en m¶ködik.
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3.10. ábra. Mérés és szimuláció összevetése (mért: −, szimulált: ·, ◦)
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4. fejezet

A Maxwell-egyenletek teljes
rendszere

4.1. Bevezetés

James Clerck Maxwell (1831-1879) a tizenkilencedik század kiváló elméleti �zikusa,
matematikusa volt ("A legalaposabb és legtermékenyebb �zikus volt Newton óta."

− Einstein), életének legfontosabb tevékenysége az elektromossághoz köthet®. Ki-
emelked® közrem¶ködése abban áll, hogy kiterjesztette és matematikai formába ön-
tötte a korábbi �zikusok (például Michael Faraday és André-Marie Ampére) kísér-
leti tapasztalatait, és egy összekapcsolódó, egységes parciális di�erenciálegyenlet-
rendszerbe foglalta azokat. Az egyenleteket Maxwell 1861-ben publikálta el®ször az
On Physical Lines of Force cím¶ cikkében [23].

4.1. ábra. James Clerk Maxwell [24] és Oliver Heaviside [25]

Maxwell egyenletrendszere húsz egyenletet és húsz változó mennyiséget tartal-
mazott. A Maxwell-egyenletek mai formáját egy óriási formátumú, kiemelked®, de
méltatlanul elfelejtett autodidakta angol villamosmérnöknek, Oliver Heaviside-nak
(1850-1925) köszönhetjük, aki munkája során kifejlesztette és a villamosmérnöki gya-
korlatba ültette a vektoranalízist, a rotáció és a divergencia operátorok segítségével
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tizenkét egyenletet átalakított, így az egyenletrendszert négy egyenletté redukálta
négy változóval.

4.2. A Maxwell-egyenletek

A Maxwell-egyenletek segítségével a tér bármely pontjában bármely térjellemz® (le-
gyen az akár elektromos, akár mágneses) meghatározható. Az egyenletek tehát
összefüggést teremtenek a gerjeszt® mennyiségek (töltés, áram), a térintenzitások
(elektromos térer®sség, mágneses indukció) és a gerjesztettségi mennyiségek (elekt-
romos eltolás, mágneses térer®sség) között. A négy Maxwell-egyenlet integrális alak-
ban: ∮

l

~H · d~l =

∫
A

(
~J +

∂ ~D

∂t

)
· d ~A, (4.1)

∮
l

~E · d~l =

∫
A

−∂
~B

∂t
· d ~A, (4.2)

∮
A

~B · d ~A = 0, (4.3)

∮
A

~D · d ~A =

∫
V

ρ dV. (4.4)

Az els® Maxwell-egyenlet (4.1) az Ampére-féle gerjesztési törvény, �zikai jelenté-
se, hogy az áram és az elektromos tér változása mágneses teret kelt (értelemszer¶en
a két mennyiség egyszerre is létrehozhatja a teret, de külön-külön is képesek mágne-
ses teret kelteni). A második egyenlet (4.2) a Faraday-féle indukciós törvény, �zikai
jelentése, hogy a mágneses tér változása elektromos teret kelt. A harmadik egyenlet
(4.3) a mágneses Gauss-törvény, jelentése, hogy az indukcióvonalak forrásmentesek,
önmagukban záródnak. A negyedik egyenlet (4.4) az elektrosztatika Gauss törvénye,
jelentése, hogy a elektromos tér forrásos, er®vonalai töltéseken kezd®dnek, töltéseken
végz®dnek.

A konstitúciós relációk munkám során felhasznált, ferromágneses anyagok esetén
érvényes formulái:

~B = B
{
~H
}
, (4.5)

~D = ε~E, (4.6)

~J = σ
(
~E + ~Eb

)
. (4.7)

Az egyenletek így teljesek és ellentmondásmentesek. Integrális alakjuk �zikailag
szemléletes, de a numerikus számítások során ebben a formában alkalmazni ®ket
nehéz, körülményes. Az egyenletek átírhatók di�erenciális alakba a Stokes-tétel:∮

l

~v · d~l =

∫
A

∇× ~v · d ~A, (4.8)
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és a Gauss-Osztrogradszkij-tétel segítségével [22]:∮
A

~v · d ~A =

∫
V

∇ · ~v dV, (4.9)

ahol ∇ az úgynevezett nabla vektoroperátor, mely segítségével egy ~v (~r, t) =
~exvx(t) + ~eyvy(t) + ~ezvz(t) alakban felírható vektor rotációja és divergenciája kife-
jezhet® Descartes-féle koordináta-rendszerben:

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 , (4.10)

∇× ~v = curl (~v) =

∣∣∣∣∣∣
~ex ~ey ~ez
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣ = ~ex

(
∂vz
∂y
− ∂vy

∂z

)
−

− ~ey
(
∂vz
∂x
− ∂vx

∂z

)
+ ~ez

(
∂vy
∂x
− ∂vx

∂y

)
,

(4.11)

∇ · ~v = div (~v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

. (4.12)

A kifejezések alapján belátható, hogy a rotáció alkalmazása vektorból vektort, míg
a divergencia vektoroperátor vektorból skalárt eredményez.

A Maxwell-egyenletek di�erenciális alakja az eddigieket felhasználva:

∇× ~H = ~J +
∂ ~D

∂t
, (4.13)

∇× ~E = −∂
~B

∂t
, (4.14)

∇ · ~B = 0, (4.15)

∇ · ~D = ρ. (4.16)

Az összefüggésekben ~H a mágneses térer®sséget jelöli, dimenziója A
m
, ~J az áram-

s¶r¶ség, dimenziója A
m2 , ~D az elektromos eltolás, dimenziója C

m2 , ~E az elektromos

térer®sség, dimenziója V
m
, ~B a mágneses indukció, dimenziója T , ρ a töltéss¶r¶ség,

dimenziója C
m3 . A konstitúciós relációkban µ0 jelöli a vákuum permeabilitását, ér-

téke és dimenziója 4π · 10−7 Vs
Am

, ε0 a vákuum permittivitása, értéke és dimenziója
8, 854 · 10−12 As

Vm
, σ pedig az anyag vezet®képességét jelöli.

Az egyenletek segítségével papíron, analitikus, zárt formában csak igen kevés
példa oldható meg, melyek esetében jellegükb®l, elrendezésükb®l adódóan jelent®-
sen egyszer¶södnek az itt bemutatott összefüggések (tipikusan ilyen a toroid transz-
formátor esete is). Az elektrodinamika alapegyenleteib®l levezetett, a kés®bbiek
során általam is bemutatásra kerül® parciális di�erenciálegyenlet-rendszerek megol-
dása általában különböz® közelít® módszerekkel, numerikus technikák segítségével
történik.
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5. fejezet

A végeselem-módszer

5.1. Történeti áttekintés

A végeselem-módszer (angolul Finite Element Method, röviden FEM) olyan nume-
rikus módszer parciális di�erenciálegyenletek közelít® megoldására, amely az eredeti
di�erenciálegyenletet algebrai egyenletrendszerre képezi le. Története egészen a múlt
század elejére vezethet® vissza: bár a módszer elméleti hátterének megalapozása már
ekkor megtörtént, csak a század második felében, a számítógépek megjelenésével vált
igazán fontossá (nagyjából az 1960-as évekt®l kezdve). Kezdetben mechanikai prob-
lémák megoldására alkalmazták, de kés®bb gyakorlatilag a �zika minden területén
elterjedt. A következ®kben általánosan igyekszem bemutatni a módszer alapjait,
fontosabb lépéseit.

5.2. A módszer alapelve

5.2.1. A probléma absztrahálása, peremfeltételek

Vizsgáljunk meg egy Ω problématartományt, melyet két perem, ΓD és ΓN határol.
Az Ω problématéren értelmezzünk egy tetsz®leges, < PDE >-vel jelölt, n-ed rend¶
parciális di�erenciálegyenletet (az ismeretlen vektorfüggvény legyen ~A (~r, t)), mely-
nek partikuláris megoldását keressük a tartományon belül. Ezt szemlélteti az 5.1.
ábra.

Γ
D

Γ
N

Ω

n

5.1. ábra. Egy sematikus problématér
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A megoldáshoz a kétféle peremen kétféle peremfeltételt szükséges de�niálni:

Γd : ~A = ~A0, (5.1)

ΓN :
∂ ~A

∂n
= ~f (~r, t) . (5.2)

Dirichlet-peremr®l és peremfeltételr®l (ΓD, (5.1)) beszélhetünk abban az esetben,
ha a keresett ~A (~r, t) vektorfüggvény értékét a peremen direkt módon el®írjuk,
Neumann-peremr®l és peremfeltételr®l (ΓN , (5.2)) beszélünk akkor, ha a peremen a
keresett ~A (~r, t) vektorfüggvény normális irányú deriváltját határozzuk meg.

5.2.2. A súlyozott maradék elve, gyenge alak

A módszer alkalmazása során az eredeti < PDE > helyett egy általánosabb, a
kiindulási di�erenciálegyenletb®l származtatható integrálos alak kerül megoldásra.
Ezt az alakot úgy kapjuk, hogy a < PDE >-t nullára rendezzük, egy tetsz®leges Wi

súlyozófüggvénnyel megszorozzuk, majd integráljuk a teljes problématartományra
[9]: ∫

Ω

< PDE > ·Wi dΩ = 0 ∀Wi ∈ W. (5.3)

Amennyiben a keresett függvény vektorfüggvény (vektorpotenciál), úgy a súlyo-
zásra is vektorfüggvényt használunk, míg skalárpotenciál eseténW is skalárfüggvény
kell, hogy legyen. Abban az esetben, ha az integrálos alak nullát ad, úgy az eredeti
di�erenciálegyenletnek is nullát kell adnia, így azt mondhatjuk, hogy az integrá-
los formula többé-kevésbé ekvivalens az eredeti < PDE >-vel. Fontos megjegyezni,
hogy az ekvivalencia nem teljesül Ω bizonyos részein, ahol a di�erenciálegyenlet ope-
rátorai nem értelmezettek. Tipikusan ilyenek a közeghatárok, ahol a térjellemz®knek
ugrásuk van. Az súlyozott maradék elvének alkalmazása ezen esetekben is megol-
dásra vezet, ezért azt állíthatjuk, hogy az egyenlet ezen alakja jóval általánosabb.
A súlyozott maradék elvének másik nagy el®nye, hogy alkalmazásával kiküszöböl-
het®k az eredeti egyenletekben gyakran el®forduló másodrend¶ deriváltak is [10]. A
súlyozott maradék elvének segítségével felírt integrálegyenletet hívjuk − bizonyos, a
következ®kben tárgyalásra kerül® feltételek mellett − a parciális di�erenciálegyen-
let úgynevezett gyenge alakjának, mely a szimuláció során ténylegesen kiszámításra
kerül.

5.2.3. A problématér diszkretizálása

A végeselem-módszer alkalmazása során a vizsgált problématartományt diszkrét szá-
mú, véges nagyságú elemre kell bontani, mely elemek típusát a probléma jellegét®l
és a szimulációhoz használt modellt®l függ®en kell megválasztani. Munkám során
egydimenziós és kétdimenziós szimulációkat végeztem. Az els® esetben szakaszokra
osztottam fel a problémateret, míg kétdimenziós modellezés esetén háromszögeket
alkalmaztam.

A szimulációk során csomóponti végeselemeket alkalmaztam, azaz a vektor-, il-
letve skalárpotenciál értékeit az elemek csomópontjaiban értelmeztem, számoltam
ki. A diszkretizálás módja az 5.2. ábrán látható. Egydimenziós szakaszok esetén
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egyetlen elemet kett®, kétdimenzióban egy háromszöget értelemszer¶en három cso-
mópont határoz meg. Egy csomópontot a dimenziók számától függ®en egy (Pn(xn)),
illetve kett® (Pn(xn, yn)) síkkoordináta határoz meg. A számítások során ismert és
felhasználandó a szakasz hossza, valamint a háromszög területe.

P x1 1( ) P x2 2( )

P x y1 1 1( , )
P x y2 2 2( , )

P x y3 3 3( , )

x

y

5.2. ábra. Diszkretizálás egy- és kétdimenzióban

Egydimenziós modell esetén kézzel végeztem el a diszkretizálást, míg kétdimenzi-
ós esetben GMSH [26] szoftver rácsgeneráló modulját alkalmaztam, mely segítségével
gyorsan el®állíthatók azok az input fájlok, melyek a szimulációkhoz szükségesek.
Ezek: Nodes, Connect, Dirichlet, Exc. A Nodes nev¶ fájlban tároltam el a csomó-
pontok koordinátáit. Ez egydimenziós esetben egy sorvektor, kétdimenziós esetben
egy mátrix, melynek két oszlopa és annyi sora van, ahány csomópont. A Connect

rendeli össze a csomópontokat elemmé, azok sorszámai alapján. Egydimenziós eset-
ben de�niálása felesleges, hiszen a vektor szomszédos elemei alkotnak egy-egy elemet,
kétdimenzióban viszont fontos és szükséges a használata. Ekkor három oszlopa és
annyi sora van, ahány elem a értelmezésre került problématartományon. A Dirich-

let vektor azon csomópontok sorszámát tartalmazza, amelyekre a megoldás során
a Dirichlet-típusú peremfeltételt alkalmazni kell. Amennyiben a feladat megkíván-
ja, úgy azonosítani kell azon csomópontokat és/vagy elemeket, melyekre valamilyen
gerjesztést kívánunk megadni. Erre szolgál az Exc nev¶ fájl.

5.2.4. Asszemblálás, megoldás

Miként azt már a bevezet®ben említettem, a végeselemes szimuláció során az eredeti
di�erenciálegyenletet algebrai egyenletrendszerre képezzük le. Megoldáskor az adott
problémára érvényes gyenge alakot kell minden elemre felírni. Az egyetlen elemre
felírt egyenletrendszer együtthatóit a probléma komplexitásától függ®en egy vagy
több mátrixba kell asszemblálni, amely folyamat olyan együtthatómátrixot eredmé-
nyez, melynek elemei többnyire zérusok. Az ilyen típusú mátrixot ritka mátrixnak,
angolul sparse matrix -nak nevezzük [27]. A szimuláció során felírt egyenletrendszer
általánosan a

K · u = b (5.4)

alakban írható fel, ahol K az együtthatómátrix, u az ismeretleneket tartalmazó
oszlopvektor, b pedig a gerjesztést, a peremfeltételeket, illetve id®függ® probléma
esetén az el®z® id®lépést magában foglaló vektort jelenti. A feladat megoldása a

u = K−1 · b (5.5)
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egyenlet kiszámításával történik. A szimuláció kritikus lépése az együtthatómátrix
invertálása, amely komplex, sok ismeretlent tartalmazó feladatok esetén rendkívül
id®igényes m¶velet.

5.3. Formafüggvények

A szimulációk során a keresett potenciálértéket (legyen az skalár- vagy vektorpo-
tenciál) formafüggvények segítségével közelítjük. Mivel munkám során kizárólag
vektorpotenciállal és nodális végeselemekkel dolgoztam, ezért a továbbiakban csak
ezen esetek bemutatására szorítkozom. Csomóponti elemekr®l beszélünk abban az
esetben, ha a vizsgált potenciálértékek kizárólag az elemek csomópontjaiban értel-
mezettek. Tetsz®leges ~A (~r, t) vektorpotenciál értéke közelíthet® az

~A ≈ ~AD +
N∑
i=1

~WiAi (5.6)

összefüggés alapján, ahol N jelöli a csomópontok számát, és ~Wi a közelítésre hasz-
nált formafüggvény [9]. A végeselem-módszer fontos jellemz®je, hogy a szimuláció
során az 5.2.2. alszakaszban bevezetettWi súlyozófüggvény és a formafüggvény meg-
egyezik (ez az úgynevezett Galjorkin-módszer [28]), így a felépítend® egyenletrend-
szer szimmetrikus és négyzetes lesz. Ez a lépés megtehet®, hiszen Wi tetsz®legesen
megválasztható. Bár (5.6) vektoriális formafüggvényt jelez, de a kés®bbiekben be-
mutatott szimulációk során a gerjesztés iránya minden esetben a szimuláció síkjára
mer®leges, ezért elegend® a skaláris formafüggvények alkalmazása, így a továbbiak-
ban a skaláris formafüggvények bemutatásával foglalkozom.

A szimulációk során alkalmazott skaláris, csomóponti formafüggvények általáno-
san a következ®képpen de�niálhatók:

Wi =

{
1 az i-edik csomópontban,
0 az összes többiben.

(5.7)

A de�níció ebben a formában nem tesz kikötést a formafüggvények viselkedésére a
csomópontok közötti területen. Ett®l a paramétert®l függ®en megkülönböztethetünk
lineáris, valamint magasabb fokú formafüggvényeket − munkám során kizárólag
lineáris függvényeket alkalmaztam. Az egydimenziós formafüggvényt az 5.3. ábra
mutatja.

x1 x2

W x1( ) W x2( )

1

5.3. ábra. Egydimenziós, lineáris formafüggvény

Ezen formafüggvények az egyenes egyenletének segítségével felírhatók:

W1(x) =
x2 − x
x2 − x1

, W2(x) =
x− x1

x2 − x1

. (5.8)
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A kétdimenziós szimulációk során alkalmazott skaláris, lineáris formafüggvények be-
vezetéséhez a baricentrikus koordináta-rendszer ismerete szükséges, mely az 5.4.
ábrán látható. A háromszög csúcsainak koordinátái segítségével a síkidom területe

( , )x y1 1

( , )x y2 2

( , )x y3 3

( , )x y

∆1

∆2

∆3

5.4. ábra. Baricentrikus koordináták

számítható a

∆ =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ (5.9)

determináns segítségével, ahol (xn, yn) a háromszög csúcsainak koordinátái az óra-
mutató járásával ellenkez® irányban felvéve. A háromszög belsejében kijelölt tetsz®-
leges (x, y) pont segítségével három különböz® területfüggvény de�niálható [8]:

∆1 =
1

2

∣∣∣∣∣∣
1 x y
1 x2 y2

1 x3 y3

∣∣∣∣∣∣ , ∆2 =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x y
1 x3 y3

∣∣∣∣∣∣ , ∆3 =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x y

∣∣∣∣∣∣ . (5.10)

A kétdimenziós, lineáris formafüggvényeket leíró egyenlet ezek alapján:

Wi =
∆i

∆
i = 1, 2, 3. (5.11)

5.4. A szimuláció lépései

Egy végeselemes szimuláció általános lépései az 5.5. ábrán láthatók. A modell
speci�kációja során át kell gondolni, hogy pontosan milyen problémát, elektromág-
neses jelenséget, milyen geometriai elrendezést szeretnénk vizsgálni, a jelenséget mi-
lyen parciális di�erenciálegyenletek írják le, a közeghatárokon milyen peremfeltéte-
leket kell kielégíteni, a térjellemz® mennyiségek között milyen kapcsolat de�niálható
(lineáris-nemlineáris probléma), illetve érdemes már itt szem el®tt tartani, hogy jel-
leg és nagyságrend tekintetében milyen végeredményt várunk. Az el®feldolgozás so-
rán pontosan de�niálásra kerül a gerjesztés típusa (ha van) és az anyagparaméterek,
majd a szimulált geometria diszkretizálása, a rácsstruktúra eltárolása következik.

A számítási fázis tartalmazza az elemegyenlet felírását a gyenge alak alapján, a
K együtthatómátrix feltöltését és a b vektor aktualizálását a gerjesztés és az el®z®
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id®lépés alapján, amennyiben id®függ® a probléma. A szimuláció kritikus lépése
az együtthatómátrix invertálását magában foglaló megoldó fázis. Amennyiben id®-
függ® a probléma, illetve nemlineáris anyagtulajdonság kerül szimulálásra, úgy a
számítási lépéseket annyiszor kell elvégezni, ahány id®lépés van, id®lépésenként pe-
dig annyiszor, ahányszor a kés®bbiek során bemutatott, nemlinearitás szimulálására
használt iterációs technika megfelel® pontossággal közelíti a valós eredményt. Ezt
követi az utófeldolgozás, az eredmények kiértékelése, mely során változtathatunk a
kiinduláskor speci�kált modellen, amennyiben szükség van rá.

Előfeldolgozás

Számítás

O
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A modell specifikációja

Adatok összegyűjtése

Rácsgenerálás

Elemegyenlet felírása

Asszemblálás

Megoldás

Utófeldolgozás

5.5. ábra. Végeselemes szimuláció lépései
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6. fejezet

Nemlinearitás implementációja
végeselemes környezetben

Ebben a fejezetben általánosan bemutatom az implementáció során használt �xpon-
tos iterációs sémát, illetve felvázolom a mágneses térer®sség és a mágneses indukció
közötti nemlineáris, hiszterézises kapcsolat megvalósítási lehet®ségeit, módszereinek
lépéseit a numerikus térszámításban.

6.1. Fixpontos iterációs séma

A �xpontos iterációs technika elve abban áll, hogy az

x = f (x) (6.1)

alakban felírt nemlineáris egyenlet ismert xk(k = 0, 1, ..., n) közelít® értékeinek fel-
használásával további közelít® értékek sorozatát képezzük, amelyek lépésr®l-lépésre
az egyenlet valódi gyökéhez tartanak. Ha az egyenlet (6.1) alakban adott, akkor a
kézenfekv® iterációs eljárás:

xn+1 = f (xn) (n = 0, 1, 2, ...;x0 adott) . (6.2)

Ezt az iterációs eljárást szukcesszív approximációnak (magyarul sorozatos közelítés-
nek) [22] nevezzük. Az xn sorozat c = f(c) �xponthoz, tehát az x = f(x) egyenlet
megoldásához konvergál, ha c-nek van olyan I környezete, ahol∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ ≤ K < 1 (K = konstans) (6.3)

és az iteráció x0 kezdeti értéke ebben a I környezetben fekszik.
Amennyiben f(x) folytonosan di�erenciálható, úgy a megfelel® feltétel:

|f(x1)− f(x2)|
|x1 − x2|

< 1 ∀ x1, x2 ∈ I. (6.4)

Ezen formula alapján megfogalmazható a kontraktív leképzés de�níciója [8] is:

|f(x1)− f(x2)| ≤ K |x1 − x2| ∀ x1, x2 ∈ I, (6.5)
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x

y

y x=

y f x= ( )

x0
x

1
x

2c

c f c= ( )

6.1. ábra. Fixpontos iteráció kontraktív, konvergens leképzés esetén

amennyiben 0 < K < 1. Ebben az esetben az f(x) leképzést kontraktív leképzésnek
hívjuk, mert csökkenti az x1 és x2 pontok közötti távolságot. Ez a leképzés a 6.1.
ábrán látható konvergens eljárást eredményezi, mely az x = f(x) egyenlet megoldá-
sához konvergál. Ha ez a feltétel nem teljesül, úgy az iteráció divergens. Tetsz®leges
F (x) = 0 alakú egyenlet felírható x = f(x) alakban a következ®képpen [8]:

xn+1 = xn − λF (xn) ≡ f(xn), n = 0, 1, 2, ..., (6.6)

ahol λ paraméter megválasztásával az f(x) függvény kontraktivitása biztosítható.

6.2. A polarizációs formula

A mágneses indukció ( ~B) függvénye a 6.2. ábrán látható módon két komponensre
bontható fel [8]:

~B = µo ~H + ~R, (6.7)

ahol µo konstans, így az els® tag kizárólag ~H mágneses térer®sség lineáris függvénye,
~R pedig az anyagra jellemz® nemlineáris komponenst jelöli. A formula felírható

~R = ~B − µo ~H (6.8)

alakban is, melyb®l kiindulva − direkt hiszterézis karakterisztika alkalmazásával −
a következ® összefüggés adódik:

~R = B
{
~H
}
− µo ~H . (6.9)

Ez a leképzés kontraktív µ optimális megválasztása esetén:

µo =
µmax + µmin

2
. (6.10)

Az eddigiekkel teljesen analóg módon írható fel egyenlet a mágneses térer®sségre:

~H = νo ~B + ~I, (6.11)
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ahol ν konstans, így νo ~B lineáris, ~I pedig az adott anyagra jellemz® nemlineáris
reziduál:

~I = ~H − νo ~B. (6.12)

H

B

lineáris összetevő

nemlineáris karakterisztika

μH

R

6.2. ábra. A mágneses indukció két komponensre bontása

A mágneses térer®sség és a mágneses indukció közötti direkt kapcsolatot leíró
karakterisztikát felhasználva

~I = ~H − νoB
{
~H
}

(6.13)

adódik, mely leképzés νo optimális megválasztása esetén szintén kontraktív:

νo =
2 1
µmin

1
µmin

1
µmin

+ 1
µmax

. (6.14)

6.3. Nemlineáris formalizmusok megvalósítása

6.3.1. Séma a mágneses térer®sségre építve

Az alábbiakban összefoglalom a �xpontos iteráció lépéseit abban az esetben, amely-
ben a megvalósított potenciálformalizmus a mágneses térer®sségre kerül felírásra,
tehát a szimuláció kimenete maga a ~H mágneses térer®sségvektor [8]. Az iterációs
sorozat µ optimális megválasztására épít (6.10). Az iteráció tetsz®leges ~R(0) értékb®l
indítható. Az n-edik lépésben a következ®ket kell végrehajtani [8] (T.F.H. : n > 0):

1. ~H(n) mágneses térer®sség meghatározása ~R(n−1) alapján a potenciálformaliz-
mus segítségével, tehát: ~H(n) = M {~R(n−1)};

2. ~B(n) mágneses indukció a direkt modell segítségével meghatározható, tehát:
~B(n) = B{ ~H(n)};
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3. ~R nemlineáris reziduál értéke javítható:

~R(n) = ~B(n) − µo ~H(n) = B{ ~H(n)} − µo ~H(n); (6.15)

Az el®z® lépéseket addig kell ismételni, amíg az eljárás nem konvergál megfelel®
mértékben. A feltétel megfogalmazható:∣∣∣∣∣∣~R(n) − ~R(n−1)

∣∣∣∣∣∣ < ε, (6.16)

ahol ε egy megfelel®en kis küszöbindex.

6.3.2. Séma a mágneses indukcióra építve

A mágneses indukcióra épített iterációs sorozat ν optimális megválasztására épít
(6.14). Az iteráció tetsz®leges ~I(0) értékb®l indítható. Az n-edik lépésben a követ-
kez®ket kell végrehajtani [8] (T.F.H. : n > 0):

1. ~B(n) mágneses indukció meghatározása ~I(n−1) alapján a potenciálformalizmus
segítségével, tehát: ~B(n) = M {~I(n−1)};

2. ~H(n) mágneses térer®sség a következ® formulával becsülhet® ~B(n) alapján:

~H(n) = νo ~B
(n) + ~I(n−1); (6.17)

3. ~I(n) nemlineáris reziduál értéke javítható:

~I(n) = ~H(n) − νoB{ ~H(n)}; (6.18)

Az el®z® lépéseket addig kell ismételni, amíg az eljárás nem konvergál megfelel®
mértékben. A feltétel megfogalmazható:∣∣∣∣∣∣~I(n) − ~I(n−1)

∣∣∣∣∣∣ < ε, (6.19)

ahol ε egy megfelel®en kis küszöbindex.
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7. fejezet

Egydimenziós probléma szimulációja

7.1. A probléma de�niálása

Klasszikus elektrodinamikai problémának tekinthet® a 7.1. ábrán látható váltakozó
mágneses térbe helyezett vezet® lemez. A vizsgálódás tárgyát képez® lemez hosszú-
sága sokszorosa a szélességének, ezért gyakorlati szempontból végtelenül hosszúnak
tekinthet® (l >> 2a) [29].

x

z

y

l

2a

b

H 0

(
t)

ω

sin

H 0

(
t)

ω

sin

7.1. ábra. Vezet® lemez mágneses térben

A szimuláció során a 2a vastagsághoz viszonyítva végtelennek tekintett l lemez-
hosszúság miatt elenged® csupán a vizsgált próbatest x = 2a tartományának vizs-
gálata, amely a vizsgálódás mélységének megfelel®en leírja a lemez belsejében ki-
alakuló mágneses teret. A végeselemes diszkretizálás során ezt az x-irányú szakaszt
osztottam egydimenziós elemekre a [−a; +a] intervallumon belül.
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7.2. A problémát leíró egyenletek

A szimuláció során megoldásra kerül® di�erenciálegyenlet levezetéséhez a Maxwell-
egyenletek kvázistacionárius alakjai, illetve a hiszterézist is magukban foglaló kons-
titúciós relációk szükségesek [13]:

∇× ~H = ~J , (7.1)

∇× ~E = −∂
~B

∂t
, (7.2)

∇ · ~B = 0, (7.3)

~B = µ ~H + ~R, (7.4)

~J = σ ~E. (7.5)

Felhasználva (7.1) és (7.5) egyenleteket, majd az eredményt átrendezve a követ-
kez® egyenlet adódik:

~E =
1

σ
∇× ~H . (7.6)

Ezt visszahelyettesítve (7.2) egyenletbe a

∇× 1

σ
∇× ~H = −∂

~B

∂t
(7.7)

összefüggés írható fel. Felhasználva (7.4) egyenletet, illetve azt a tényt, hogy a σ
anyagparamétert a vizsgált tartományon belül konstansnak tekinthetjük,

∇×∇× ~H = −σ ∂
∂t

(
µ ~H + ~R

)
(7.8)

írható fel, melyet átrendezve a problémára felírható di�erenciálegyenlet végleges
alakját kapjuk:

∇×∇× ~H + µσ
∂ ~H

∂t
= −σ∂

~R

∂t
. (7.9)

7.3. Gyenge alak levezetése

Az eddigiek alapján a megoldandó gyenge alakot úgy kapjuk, hogy (7.9) összefüggé-
sét egy tetsz®leges ~W súlyozófüggvénnyel megszorozzuk, majd integráljuk a teljes
problématartományra. Így az∫

Ω

~W · ∇ ×∇× ~H dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ = −σ

∫
Ω

~W · ∂
~R

∂t
dΩ (7.10)

összefüggés adódik. Az egyenl®ség bal oldalán másodrend¶ derivált található, mely
kiküszöbölhet® a

∇ · (~u× ~v) = ~v · ∇ × ~u− ~u · ∇ × ~v (7.11)

azonosság felhasználásával, amennyiben a következ® választással élünk:

~v = ~W , ~u = ∇× ~H . (7.12)
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Az összefüggés felhasználása után az integrálegyenlet az∫
Ω

∇ ·
(
∇× ~H × ~W

)
dΩ +

∫
Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ =

= −σ
∫
Ω

~W · ∂
~R

∂t
dΩ

(7.13)

alakba írható át, mely egyenlet bal oldalának els® tagja egy vektormez® diverge-
niájának térfogati integrálja, mely a Gauss-Osztrogradszkij-tétel segítségével (4.9)
átírható a térfogatot határoló felületre vett körintegrálra. Ezek alapján a gyenge
alak:∮

Γ

∇× ~H × ~W · ~n dΓ +

∫
Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ =

= −σ
∫
Ω

~W · ∂
~R

∂t
dΩ.

(7.14)

Egy- és kétdimenziós szimulációk esetén az els® körintegrál értéke zérus, így ezzel a
taggal az implementáció során nem kell foglalkozni. A di�erenciálegyenlet gyenge
alakja tehát a következ® formában adódik:∫

Ω

∇× ~H · ∇ × ~W dΩ + µσ

∫
Ω

~W · ∂
~H

∂t
dΩ = −σ

∫
Ω

~W · ∂
~R

∂t
dΩ. (7.15)

7.4. Végeselemes implementáció

A vizsgált probléma esetén ~H mágneses térer®sség olyan vektormennyiség, amelynek
kizárólag z-irányú komponense van, de csak az x térdimenziótól függ. Így tehát

~H = Hz(x)~ez = H ~ez (7.16)

írható fel. Mivel a mágneses térer®sség ezek alapján kezelhet® skaláris mennyiség-
ként, valamint az el®írásra kerül® gerjesztés a szimuláció síkjára mer®leges lesz, ~H
közelítése W skaláris, egydimenziós formafüggvények segítségével történik:

~H = H =

Np∑
i=1

WiHi. (7.17)

Az összefüggésben Np a vizsgált csomópontok száma. Végeselem-módszer alkalma-
zása esetén − a korábban tárgyaltak szerint − a gyenge alak súlyfüggvénye megegye-
zik a potenciál approximációjához használt formafüggvénnyel, továbbá az általános
rotáció operátorok gradiensekké egyszer¶södnek, (7.15) átírható az∫

Ω

∇
Np∑
i=1

WiHi · ∇Wj dΩ + µσ

∫
Ω

Wj

Np∑
i=1

Wi
∂Hi

∂t
dΩ =

= −σ
∫
Ω

Wj

Np∑
i=1

Wi
∂Ri

∂t
dΩ j = 1, ..., Np

(7.18)
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összefüggésre, mely átalakítható az

Np∑
i=1

∫
Ω

∇Wi · ∇Wj dΩHi + µσ

Np∑
i=1

∫
Ω

WjWi dΩ
∂Hi

∂t
=

= −σ
Np∑
i=1

∫
Ω

WjWi dΩ
∂Ri

∂t
j = 1, ..., Np.

(7.19)

alakra. Ez a formula egyetlen elemre felírva:∫
Ω

{[
∇W1

∇W2

]
·
[
∇W1 ∇W2

]}
dΩ

[
H1

H2

]
+ µσ

∫
Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ

[
∂H1

∂t
∂H2

∂t

]
=

= −σ
∫
Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ

[
∂R1

∂t
∂R2

∂t

]
.

(7.20)

Ez az egyetlen három integrált tartalmaz, melyek numerikus implementációját cél-
szer¶ külön-külön tárgyalni.

7.4.1. Az els® integrál

Az els® integrál tartalmazza a csomóponti formafüggvények gradienseit és a mág-
neses térer®sséget, mint ismeretlent. Lineáris formafüggvények mellett egy-egy vé-
geselem felett konstans gradiensek adódnak, ami lényegesen megkönnyíti az integrál
kiértékelését. Egydimenziós esetben a gradiensek a

∇W1 =
d

dx

{
x2 − x
x2 − x1

}
= − 1

x2 − x1

,

∇W2 =
d

dx

{
x− x1

x2 − x1

}
=

1

x2 − x1

(7.21)

alakot öltik, az Ω elemen történ® integrálás pedig lényegében nem más, mint a
szakasz hosszával történ® szorzás, így (7.20) alapján az els® integrál:{[

∇W1

∇W2

]
·
[
∇W1 ∇W2

]}
(|x2 − x1|)

[
H1

H2

]
=

=

{[
∇W1∇W1 ∇W1∇W2

∇W2∇W1 ∇W2∇W2

]}
(|x2 − x1|)

[
H1

H2

]
.

(7.22)

Az elemhosszal szorzott 2 × 2-es mátrix elemei asszembláláskor a K együttható-
mátrix megfelel® helyeihez adódnak hozzá, a mágneses térer®sség keresett értékeit
tartalmazó oszlopvektor elemeit pedig u megfelel® elemei reprezentálják.

7.4.2. A második és harmadik integrál

A két másik integrál kiértékelése hasonló módon zajlik, így most csak a második
integrált fogom bemutatni, a harmadik, az egyenlet jobb oldalán található kifejezés
kiértékelése az itt leírtakkal teljesen analóg módon tehet® meg.
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Fontos eltérés az eddigiekhez képest, hogy a kifejezésekben nem a formafüggvé-
nyek gradiensei, hanem maguk a függvények szerepelnek, tehát nem konstans érté-
k¶ függvényt kell integrálni egy-egy végeselem felett. A kiértékeléshez numerikus
integrálás, Gauss-kvadratúra szükséges, amivel dolgozatom a kés®bbiek során fog
foglalkozni. A másik lényeges különbség, hogy a kifejezések az ismeretlen mágneses
térer®sség és R reziduál id® szerinti deriváltját tartalmazzák, ami azt jelenti, hogy
ezen kifejezéseket két részre kell bontani. Ehhez el®ször be kell vezetni a numerikus
di�erenciálás fogalmát [22]:

∂f

∂t
≈ f(t2)− f(t1)

t2 − t1
. (7.23)

A második integrál ezek alapján felírható a

µσ

∫
Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1−H1old

dt
H2−H2old

dt

]
(7.24)

alakban. A kifejezés els® tagja,a

µσ

∫
Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1

dt
H2

dt

]
(7.25)

tartalmazza H1 és H2 ismeretleneket, így ez a tag a K együtthatómátrix és u vektor
részét fogja képezni, míg

−µσ
∫
Ω

[
W1W1 W1W2

W2W1 W2W2

]
dΩ

[
H1old

dt
H2old

dt

]
(7.26)

az el®z® id®lépésH-értékeit tartalmazza, így a megoldandó lineáris algebrai egyenlet-
rendszer másik, gerjesztési oldalára, a blin lineáris komponenst tartalmazó vektorba
fog kerülni.

A harmadik, a mágneses indukció reziduális komponensének deriváltját tartal-
mazó integrál értelmezése és megvalósítása az itt leírtakkal teljesen analóg. Mivel az
integrál nem tartalmaz ismeretlen H potenciálértéket, ezért kizárólag a gerjesztési
oldalon fog szerepni a bres reziduális gerjesztési vektorkomponensben. A felírásra
kerül® egyenletrendszer az eddigiek alapján:

K · u = blin + bres. (7.27)

7.5. Gauss-kvadratúra

A Gauss-kvadratúra numerikus módszer határozott integrálok közelít® meghatáro-
zására. Abban az esetben, ha egy elemen az integrálandó függvény nem konstans,
hanem a helynek valamilyen függvénye, úgy az elem felett értelmezett integrál kiszá-
mítására közelít® módszert, Gauss-kvadratúrát szükséges használni. A Gauss-típusú
kvadtatúraképletek középérték-formulák [22]:

b∫
a

f(x) dx ≈
n∑
ν=1

cνyν , yν = f(xg,ν), (7.28)
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ahol cν és xν a formula súlyai és pontjai, a számítás során mindkett® szabad pa-
raméter, értékeiket úgy célszer¶ megválasztani, hogy a közelítés minél pontosabb
legyen. Amennyiben az [a; b] = [−1; 1] választással élünk, úgy egy els®fokú polinom
integrálja az intervallumon belül a

xg,1 = − 1√
3
, c0 = 1,

xg,2 = +
1√
3
, c1 = 1

(7.29)

súlyokkal és pontokkal közelíthet®. Ebben a fejezetben kizárólag az egydimenziós
esetet mutatom be, a kétdimenziós Gauss-kvadratúrát dolgozatom a kés®bbiek fo-
lyamán tárgyalja. Mivel az egydimenziós formafüggvények els®fokúak, így az itt
bemutatott súlyokkal és pontokkal kiértékelhet® az integrál. Mivel az integrálást
nem a [−1; 1] intervallumon, hanem egy végeselem [x1;x2] intervallumán kell végre-
hajtani, így az

b∫
a

f(x) dx ≈ b− a
2

n∑
ν=1

cνf

(
b− a

2
xg,ν +

a+ b

2

)
(7.30)

transzformációval kell élni [22]. A kvadratúra lépései egydimenziós szimuláció esetén
(7.25) együtthatóján bemutatva:

µσ

∫
Ω

{[
W1

W2

]
·
[
W1 W2

]}
dΩ = µσ

x2∫
x1

{[ x2−x
x2−x1
x−x1
x2−x1

]
·
[
x2−x
x2−x1

x−x1
x2−x1

]}
dx ≈

≈ µσ
x2 − x1

2

2∑
ν=1

{[x2−xp,ν
x2−x1
xp,ν−x1
x2−x1

]
·
[x2−xp,ν
x2−x1

xp,ν−x1
x2−x1

]}
cν =

= µσ
x2 − x1

2

{[
x2−xp,1
x2−x1
xp,1−x1
x2−x1

]
·
[
x2−xp,1
x2−x1

xp,1−x1
x2−x1

]
c1 +

[
x2−xp,2
x2−x1
xp,2−x1
x2−x1

]
·
[
x2−xp,2
x2−x1

xp,2−x1
x2−x1

]
c2

}
,

(7.31)

ahol:

xp,1 =
x2 − x1

2
xg,1 +

x1 + x2

2
,

xp,2 =
x2 − x1

2
xg,2 +

x1 + x2

2
.

(7.32)

7.6. Diszkretizálás, peremfeltételek

Miként azt már említettem, a diszkretizálást egydimenzióban, x-irányban, [−a; a]-n
végeztem el. Ez a lehet® legegyszer¶bb eset, rácsgeneráló szoftver használata nélkül,
Matlab-környezetben két parancs segítségével végrehajtható:

N = 100;

x = [-a:(2*a)/N:a];
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Ebben az esetben N = 100 végeselem adódik 101 csomóponttal. A megoldáshoz a
lemez két oldalára el® kell írni direkt módon a mágneses térer®sség id®függvényét.
Ez ebben az esetben egy egyszer¶ Dirichlet-peremfeltételt jelent, ami azt jelenti,
hogy az x = −a és az x = a csomópontok térer®sség-értékét kell el®írni:

H(x = −a, t) = H0 sin (2πft) ,

H(x = a, t) = H0 sin (2πft) .
(7.33)

7.7. Eredmények kiértékelése

A szimulációs eredmények bemutatása, valamint a szimuláció során alkalmazott pa-
raméterek értékeinek pontos megadása az A. függelékben található. Abból kifo-
lyólag, hogy a probléma az id®tartományban kerül megoldásra, a megoldó program
futtatása elején egy gyorsan lecseng® tranziens jelenség �gyelhet® meg. Az átmene-
ti jelenség megsz¶nése után a mágneses térer®sség és a mágneses indukció közötti
kapcsolat az els® mágnesezési görbén mozog, melynek lineáris szakaszán a két függ-
vény kvalitatíve megegyezik egymással. A lineáris szakaszt a szaturáció követi: bár
H helyfüggvénye ekkor láthatóan nemlineáris, B értéke a lemez teljes szélességében
konstans, megegyezik a telítési értékkel.

A csökken® gerjesztés következtében a lemezen belül is csökkenni kezd a mág-
neses térer®sség értéke, ekkor a B −H-kapcsolat letér az els® mágnesezési görbér®l,
így abban az esetben, ha egy csomópont H-értéke eléri a zérust, a remanencia je-
lenségéb®l kifolyólag B értéke nullától eltér®, pozitív lesz. Ez �gyelhet® meg a 7.2.
ábrán. Az egyes csomópontok remanenciája ezen a szakaszon a modellnek meg-
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7.2. ábra. A remanencia jelensége a t = 1 ms id®pillanatban

felel®en negatív koercitív térrel szüntethet® meg, majd innen a negatív szaturáció
és a negatív remanencia következik. Az A. függelékben jól nyomon követhet® a
gyenge alak megoldásának segítségével meghatározott mágneses térer®sség id®- és
helyfüggése, valamint az ebb®l �xpontos módszer és skalár Preisach-modell segítsé-
gével meghatározott mágneses indukció. Az analitikus megoldás [29] és a hiszterézis
karakterisztika ismeretében kijelenthet®, hogy mind a végeselem-módszer, mind az
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annak kimenetét felhasználó Preisach-modell az elvártnak megfelel®en m¶ködik, a
valós �zikai jelenséget tükrözi.

A 7.3. ábra a konvergenciához szükséges �xpontos lépések számát ábrázolja az
id®lépések függvényében két eltér® ε küszöbindex esetén. Meg�gyelhet®, hogyha a
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(b) ε = 10−3

7.3. ábra. Fixpontos lépések száma

pontosságot tízszeresére növeljük (ε = 10−2 → ε = 10−3), úgy a �xpontos lépések
száma nem arányosan tízszeresére, de mérhet®en növekszik. Az egy periódusra fel-
vett konvergenciagörbék jellegéb®l látható, hogy a �xpontos lépések száma bizonyos
szakaszokon növekv®-, más szakaszokon csökken®-, vagy impulzusszer¶en csökken®
tendenciát mutat. A további magyarázhathoz fontos megjegyezni, hogy a �xpontos
iterációt id®lépésenként mindig az el®z® id®lépés kimeneti értékéb®l indítottam (a
módszer tárgyalása során már említettem, hogy az iterációs tetsz®leges kezd®érték-
kel is konvergens). A kezdeti rövid tranzienst leszámítva a függvény négy szakaszra
bontható:

1. Az els® szakasz a zérusról növekv® mágneses térer®sség szakasza. Ezen a szaka-
szon a �xpontos lépések száma id®lépésenként n®, melynek oka, hogy a modell
karakterisztikája egyre határozottabban kezd elszakadni a lineáris szakasztól,
a reziduál értéke jelent®sen csökken, hogy a modell kimenetének megfelel®en
kompenzálja a lineáris komponenst. Mivel a �xpontos lépések a reziduál ak-
tuális értékének javítását szolgálják egészen a küszöbindexig, ezért a számítás
egyre több iterációs lépést igényel a megkívánt konvergenciához;

2. A maximum elérése után a lépések száma impulzusszer¶en lecsökken, melynek
oka, hogy a mágneses indukció eléri a szaturációs értéket, így néhány id®lé-
pésen keresztül az indukció értéke változatlan, konstans, így nincs szükség a
reziduál értékének lényeges javítására;

3. A következ® szakaszon a térer®sség és a mágneses indukció is csökken, a modell
egy, a kezdetihez hasonló lineáris szakaszra ér, mely során a reziduál értékét
folyamatosan javítani kell a negatív értékekt®l egészen a nulláig;
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4. Amennyiben a modell visszatér a lineáris szakaszra, úgy a reziduál értéke közel
nulla, így nincs szükséges lényeges mennyiség¶ �xpontos lépésre annak javí-
tásához. Ez lényegében azt jelenti, hogy a modell kimenetét megközelít®leg a
lineáris komponens határozza meg.

A következ® szakaszok az itt leírtakkal teljesen analóg módon magyarázhatók. El-
mondható tehát, hogy a következ® impulzusszer¶ lépésszámvisszaesés a negatív sza-
turáció konstans mágneses indukciójának, míg a kevésbé meredek visszazuhanás a
kvázi-lineáris szakaszra történ® áttérésnek köszönhet®.
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8. fejezet

Kétdimenziós probléma szimulációja

8.1. Vezet® lemez mágneses térben

Az el®z® fejezetben bemutatott di�erenciálegyenlet alkalmazható kétdimenziós prob-
léma szimulációjára is. Legyen adott egy szimmetrikus, a szélesség¶ és b hosszúságú
lemez, melynek vastagsága elhanyagolható a többi geometriai paraméteréhez képest.
A szimmetriát kihasználva elegend® csupán a lemez egynegyedének vizsgálata. A

a

b
b/2

a/2

Ω ГD

ГD

Гsz

Гsz

x

y

8.1. ábra. A vizsgált lemez

vizsgált Ω problémateret (8.1. ábra) ΓD és Γsz perem határolja; el®bbi az erede-
ti lemez valódi pereme, utóbbi pedig az egyszer¶sítésb®l adódó szimmetriaperem.
ΓD csomópontjain Dirichlet-peremfeltételt kell el®írni, hiszen a lemeznek ez a széle
közvetlen kapcsolatban áll az alkalmazott küls® periodikus mágneses térer®sséggel.
Γsz szimmetriaperem kezelése kényelmes, hiszen ezekre a csomópontokra semmilyen
peremfeltételt sem kell alkalmazni.
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8.2. Rácsgenerálás

Munkám során az adott geometriára két rácsot is felhasználtam: az egyiket kézzel
készítettem, míg a másikat a GMSH [26] szoftver rácsgeneráló moduljának segítségével
generáltam. El®bbi módszerrel egy szimmetrikus rácsot vettem fel, majd mátrixok
formájában, manuálisan vittem be az adatokat a programkódba, utóbbival egy gya-
korlatiasabb, aszimmetrikus rácsot generáltam, és az adatokat fájlokból olvastam
be a szimulációhoz. A 8.2. ábrán tanulmányozhatóak a lényeges különbségek.
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8.2. ábra. Kézzel és GMSH-val generált rács

A konkrét példa két ráccsal történ® szimulációja nem kizárólag a �zikai tarta-
lom szempontjából fontos (elméletileg teljesen mindegy, hogy a megoldót melyik
végeselem-rácson futtatom le, megegyez® eredményt kell, hogy kapjak), hanem egy
érdekes szimulációtechnológiai problémára is felhívja a �gyelmet.

8.3. Végeselemes implementáció

Kétdimenziós probléma vizsgálata során háromszögeket használva egy elemet há-
rom csomópont de�niál egyértelm¶en, ami azt jelenti, hogy egyetlen elemen összesen
három formafüggvény (W1,W2,W3) értelmezett. Miként azt bemutattam, a véges-
elemes implementáció során szükség van a formafüggvények gradienseire is, amely
kétdimenziós esetben formafüggvényenként kett® tagú, hiszen a függvény mind x-
változó, mind y-változó szerint parciálisan di�erenciálható. Ezek (5.9) és (5.10)
jelöléseit konzekvensen felhasználva:

∇W1 = gW1x + gW1y =
∂W1

∂x
+
∂W1

∂y
=

1
2

(y2 − y3)

∆
+

1
2

(x3 − x2)

∆
,

∇W2 = gW2x + gW2y =
∂W2

∂x
+
∂W2

∂y
=

1
2

(y3 − y1)

∆
+

1
2

(x1 − x3)

∆
,

∇W3 = gW3x + gW3y =
∂W3

∂x
+
∂W3

∂y
=

1
2

(y1 − y2)

∆
+

1
2

(x2 − x1)

∆
.

(8.1)
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Az eddigiek alapján (7.19) egyetlen elemre felírva:

∫
Ω


∇W1

∇W2

∇W3

 · [∇W1 ∇W2 ∇W3

] dΩ

H1

H2

H3

+

+ µσ

∫
Ω


W1

W2

W3

 · [W1 W2 W3

] dΩ

∂H1

∂t
∂H2

∂t
∂H3

∂t

 =

= −σ
∫
Ω


W1

W2

W3

 · [W1 W2 W3

] dΩ

∂R1

∂t
∂R2

∂t
∂R3

∂t

 .
(8.2)

Mivel az els® integrál ismét konstans függvényeket tartalmaz egy-egy végeselem fe-
lett, ezért az egydimenziós példához hasonlóan az integrálás a végeselem területével
való szorzássá egyszer¶södik. A kifejezést kifejtve, átírva, továbbá elvégezve a be-
szorzásokat

gW1x

gW2x

gW3x

 · [gW1x gW2x gW3x

]
+

gW1y

gW2y

gW3y

 · [gW1y gW2y gW3y

]∆+

+ µσ

∫
Ω


W1W1 W1W2 W1W3

W2W1 W2W2 W2W3

W3W1 W3W2 W3W3

 dΩ

∂H1

∂t
∂H2

∂t
∂H3

∂t

 =

= −σ
∫
Ω


W1W1 W1W2 W1W3

W2W1 W2W2 W2W3

W3W1 W3W2 W3W3

 dΩ

∂R1

∂t
∂R2

∂t
∂R3

∂t


(8.3)

adódik, ahol a második és harmadik integrál kiértékeléséhez (mivel az integrandus
nem konstans függvény a tartományon belül) ismét numerikus integrálási technika
használata szükséges.

8.4. Numerikus integrálás háromszög felett

Egy tetsz®leges kétváltozós f(x, y) függvény háromszög feletti integrálja közelíthet®
[31]: ∫

Ω

f(x, y) dΩ ≈ ∆

3

3∑
i=1

f(a1ξi + b1ηi + c1, a2ξi + b2ηi + c2) · ϑi, (8.4)

ahol ξi és ηi a kvadratúra pontjait, ϑi pedig a súlyait jelöli. Megválasztásuk a pontos
közelítés érdekében a következ®képpen történik:

ξ1 =
1

6
, η1 =

1

6
, ϑ1 =

1

3
,

ξ2 =
1

6
, η2 =

2

3
, ϑ2 =

1

3
,

ξ3 =
2

3
, η3 =

1

6
, ϑ3 =

1

3
.

(8.5)
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A további paraméterek a háromszög csúcsainak koordinátáiból számíthatóak:

a1 = x2 − x1, b1 = x3 − x1, c1 = x1,

a2 = y2 − y1, b2 = y3 − y1, c2 = y1.
(8.6)

Az eddigiek alapján a háromszög felett integrálandó formafüggvények a követ-
kez®képpen írhatóak fel:

W1 =
∆1

∆
=

1
2

∣∣∣∣∣∣
1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
∆

,

W2 =
∆2

∆
=

1
2

∣∣∣∣∣∣
1 x1 y1

1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

1 x3 y3

∣∣∣∣∣∣
∆

,

W3 =
∆3

∆
=

1
2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 a1ξi + b1ηi + c1 a2ξi + b2ηi + c2

∣∣∣∣∣∣
∆

.

(8.7)

8.5. Eredmények, kiértékelés

A szimulációs eredmények bemutatása, valamint a paraméterek pontos értékei a B.
függelékben találhatók. Az eredmény jellege, a mágneses térer®sség és a mágneses
indukció alakulása összevethet® az egydimenziós szimuláció esetén tapasztalttakkal,
hiszen a kétdimenziós lemez minden x-irányú metszetén tulajdonképpen az egydi-
menziós, a teljes x-irányt átfogó szimulációnak a felét tanulmányozhatjuk. A kézzel
rajzolt, szabályos rácson lefutattott, és a GMSH-val generált s¶r¶bb rácson elvégzett
szimuláció közötti különbség a 8.3. ábrán tanulmányozható. A szimulációs hiba

8.3. ábra. Szimulációs hiba a ritkább, szimmetrikus rácsból adódóan

oka, hogy az anyag belsejében felvett végeselem-méret összemérhet® az ott terjed®
elektromágneses hullám hullámhosszával és behatolási mélységével, emiatt az elemek
közötti változás olyan mérték¶, ami már szimulációs hibát okoz. A hiba elkerülésé-
nek érdekében célszer¶ tehát a végeselem-hálót kell®en s¶r¶re felvenni.
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9. fejezet

Kétdimenziós szimuláció a mágneses
indukcióra építve

Ebben a fejezetben bemutatom a nemlineáris, örvényáramú ~A-formalizmus egyen-
leteit, gyenge alakjának levezetését és a végeselemes implementációt egy konkrét
példán keresztül.

9.1. A probléma de�niálása

A formalizmus segítségével vizsgált probléma általánosítva a 9.1. ábrán látható. Az
adott mágneses permeabilitásfüggvénnyel és vezet®képességgel rendelkez® Ω problé-
materet három különböz® típusú perem határolja. A Dirichlet-típusú peremen (ΓD)
a keresett ~A vektorpotenciál értéke direkt módon kerül el®írásra, míg a Neumann-
típusú peremen (ΓN) ~A normális irányú deriváltja kerül meghatározásra, továbbá
ΓNK az a külön perem, ahol a gerjesztés, a ~K felületi áram kerül el®írásra. Fontos
megjegyezni, hogy ΓNK is egy Neumann-típusú perem, pusztán a könnyebb mate-
matikai kezelhet®ség miatt kerül külön bevezetésre ΓN mellett. Fontos megjegyezni,

ΓD

ΓN

Ω

nΓNK

μ,σ

9.1. ábra. A vizsgált probléma általánosítva

hogy ΓNK is egy Neumann-típusú perem, pusztán a könnyebb matematikai kezelhe-
t®ség miatt kerül külön bevezetésre ΓN mellett.
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9.2. A problémát leíró egyenletek

A problémát leíró di�erenciálegyenlet levezetéséhez a Maxwell-egyenletek kvázista-
cionárius alakjai, illetve a nemlinearitást is �gyelembe vev® konstitúciós relációk
szükségesek:

∇× ~H = ~J , (9.1)

∇× ~E = −∂
~B

∂t
, (9.2)

∇ · ~B = 0, (9.3)

~H = ν ~B + ~I, (9.4)

~J = σ ~E. (9.5)

A problémához tartozó peremfeltétel:

~H × ~n = ~K, ΓNK−n. (9.6)

Mivel (9.3) alapján a mágneses indukcióvektor divergenciamentes [9], ~A vektorpo-
tenciál bevezthet®

~B = ∇× ~A (9.7)

alapján, mert:
∇ · ∇ × ~A = 0, ∀ ~A(~r, t). (9.8)

~A vektormez® divergenciáját is meg kell határozni, ebben az esetben a választás:
∇ · ~A = 0. Ez az úgynevezett Coulomb-mérték, ami kétdimenziós szimuláció esetén
automatikusan teljesül [9]. Így tehát (9.2) átírható (9.7) segítségével:

∇× ~E = − ∂

∂t

(
∇× ~A

)
. (9.9)

Nem mozgó koordináta-rendszerben az id®- és a hely szerinti deriválás felcserélhet®,
ezért (9.9) felírható

∇×

(
~E +

∂ ~A

∂t

)
= 0 (9.10)

alakban. Az ~E+∂ ~A/∂t rotációmentes vektormez® általános esetben származtatható
a V elektromos skalárpotenciálból a

∇×∇V = 0, ∀V (~r, t) (9.11)

összefüggés alapján:

~E +
∂ ~A

∂t
= −∇V. (9.12)

Amennyiben ∇V = 0 választással élünk, úgy

~E = −∂
~A

∂t
(9.13)
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adódik. A gerjesztési törvény (9.1) felírható (9.4), (9.5), (9.7) és (9.13) segítségével,
így a problémát leíró egyenlet a

∇×
(
ν∇× ~A+ ~I

)
= −σ∂

~A

∂t
(9.14)

alakban adódik. A peremfeltétel (9.4) és (9.7) segítségével kifejezve:(
ν∇× ~A+ ~I

)
× ~n = ~K. (9.15)

9.3. Gyenge alak levezetése

A levezetés els® lépése (9.14) és (9.15) összeadása, megszorzása egy tetsz®leges ~W
formafüggvénnyel és integrálása a problématartományra:∫

Ω

~W ·
{
∇×

(
ν∇× ~A+ ~I

)}
dΩ +

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ =

= −σ
∫
Ω

~W · ∂
~A

∂t
dΩ +

∫
ΓNK

~W · ~K d~Γ.

(9.16)

Felbontva az els® integrandus zárójelét, továbbá átrendezve az egyenletet az∫
Ω

~W · ∇ × ν∇× ~A dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ+

+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∫
Ω

~W · ∇ × ~I dΩ+

+

∫
ΓNK

~W · ~K d~Γ

(9.17)

formula adódik. Az egyenlet mindkét oldalának els® integrandusa a

∇ · (~u× ~v) = ~v · ∇ × ~u− ~u · ∇ × ~v (9.18)

azonosságot felhasználva felbontható a bal oldalon ~v = ~W , ~u = ν∇ × ~A, a jobb
oldalon ~v = ~W , ~u = ~I megválasztással. A felbontás elvégzése után a következ®
egyenlet írható fel:∫

Ω

∇ ·
(
ν∇× ~A× ~W

)
dΩ +

∫
Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ+

+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∫
Ω

∇ ·
(
~I × ~W

)
dΩ−

−
∫
Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(9.19)
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Egy vektormez® divergenciájának teljes problématérre vett integrálja (4.9) értel-
mében átírható a térfogatot határoló felületre vett körintegrálra, így a következ®
formula adódik:∮

ΓD∪ΓN

(
ν∇× ~A× ~W

)
· ~n dΓ +

∫
Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ+

∫
ΓNK

~W ·
{(
ν∇× ~A+ ~I

)
× ~n

}
· ~n dΓ = −

∮
ΓD∪ΓN

~I × ~W · ~n dΓ−

−
∫
Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(9.20)

A vegyes szorzat(
~a×~b

)
· ~c = (~c× ~a) ·~b =

(
~b× ~c

)
· ~a, ∀~a (~r, t) , ~b (~r, t) , ~c (~r, t) (9.21)

tulajdonságát felhasználva az egyenlet bal oldalának els® integrálja felbontható:∮
ΓD∪ΓN

(
ν∇× ~A× ~W

)
· ~n dΓ =

∮
ΓD

(
~W × ~n

)
· ν∇× ~A dΓ+

+

∮
ΓN

(
~n× ν∇× ~A

)
· ~W dΓ.

(9.22)

Mivel ΓD-n a vektorpotenciál közelítése a

~A ≈ ~AD +
∑
i

~WiAi (9.23)

formula segítségével úgy történik, hogy ~Wi = 0, ezért az els® tag zérus, kiesik, és a
Neumann-perem integrálja átírható:∮
ΓN

{
~n×

(
~H − ~I

)}
· ~W dΓ =

∮
ΓN

(
~n× ~H

)
· ~W dΓ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ. (9.24)

Mivel ΓN peremen nem folyik áram, a kifejezés els® tagja kiesik, (9.20) jobb oldalá-
nak els® integrálja az el®z®ekkel teljesen analóg módon felbontható:

−
∮

ΓD∪ΓN

~I × ~W · ~n dΓ = −
∮

ΓD

(
~W × ~n

)
· ~I dΓ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ, (9.25)

valamint (9.20) bal oldalának negyedik integrálja átírható a∫
ΓNK

~W · (~n× ~n) ·
(
ν∇× ~A+ ~I

)
dΓ (9.26)
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alakba, ami ~n×~n miatt zérus, kiesik. Az eddigiek alapján (9.20) a következ® alakot
ölti: ∫

Ω

ν∇× ~A · ∇ × ~W dΩ + σ

∫
Ω

~W · ∂
~A

∂t
dΩ−

∮
ΓN

(
~n× ~I

)
· ~W dΓ =

=

∮
ΓN

(
~n× ~I

)
· ~W dΓ−

∫
Ω

~I · ∇ × ~W dΩ +

∫
ΓNK

~W · ~K d~Γ.

(9.27)

A ΓN -re vett körintegrál kiesik, hiszen mindkét oldalon egyformán szerepel, így
adódik a ténylegesen implementálásra kerül® gyenge alak:∫

Ω

ν∇× ~A·∇× ~W dΩ+σ

∫
Ω

~W ·∂
~A

∂t
dΩ = −

∫
Ω

~I ·∇× ~W dΩ+

∫
ΓNK

~W · ~K d~Γ. (9.28)

9.4. Végeselemes implementáció

A mágneses vektorpotenciál a vizsgált pédában olyan vektormennyiség, amelynek
csak z-irányú komponense van, de kizárólag (x, y)-térdimenzióktól és az id®t®l függ:

~A = Az(x, y) · ~ez = A · ~ez. (9.29)

A vektorpotenciál emiatt automatikusan kielégíti a Coulomb-mértéket, hiszen:

∇ · ~A =
∂ ~A

∂z
= 0. (9.30)

A vektorpotenciál közelítése W skaláris, lineáris formafüggvények segítségével tör-
ténik:

A ≈
Np∑
i=1

WiAi. (9.31)

Az implementáció alapjait tekintve megegyezik az eddig tárgyaltakkal, ezért a részle-
tes bemutatástól ezúttal eltekintek, csupán az eddigiekt®l eltér® gerjesztés megvaló-
sítását és a megoldás mechanizmusát, lépéseit kívánom bemutatni. A továbbiakban
n jelöli a kétdimenziós diszkretizálás során létrejött csomópontok számát, m pe-
dig az elemek számát. A szimuláció során a K együtthatómátrix (n × n) méret¶,
u és b ismeretleneket és a peremfeltételeket tartalmazó oszlopvektor n-méret¶. A
szimuláció lépései a következ®k:

1. K együtthatómátrix asszemblálása (9.28) els® és második integráljának együtt-
hatói alapján (n× n);

2. B együtthatómátrix asszemblálása (9.28) második integrálja alapján, hiszen
ez a tag az ismeretlen vektorpotenciál id® szerinti deriváltját tartalmazza, így
valamilyen módon el® kell állítani aold együtthatóit is (n× n);
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3. b oszlopvektor bexc-komponensének el®állítása (9.28) negyedik integrálja alap-
ján. Az el®állítás során egy dimenziót vissza kell lépni, hiszen ez a tag egy felü-
leti integrál, a felület pedig szakaszokkal diszkretizálható. Ez egyetlen elemre:∫

ΓNK

~W · ~K d~Γ =

[
1
1

]
·K · dl

2
, (9.32)

ahol dl a szakasz hosszát jelöli. bexc (n× 1) méret¶;

4. b oszlopvektor bAdt-komponensének el®állítása B együtthatómátrix és aold

alapján:
bAdt = B · aold, (9.33)

bAdt (n× 1) méret¶;

5. Fixpontos iteráció indítása addig, amíg ε küszöbindex kell®en kis érték¶re
csökken. Az els® lépésnél bIx és bIy oszlopvektorok kinullázásra kerülnek, mé-
retük (n×1)-es. Egyetlen �xpontos lépésben a következ®ket kell végrehajtani:

(a) b (n× 1) el®állítása:

b = bexc + bAdt − (bIx + bIy); (9.34)

(b) Dirichlet-peremfeltétel érvényesítése, tehát K és b megfelel® elemeinek
explicit értékadása;

(c) a kiszámítása:
a = K−1 · b, (9.35)

a ebben az esetben a vektorpotenciál értékeit tartalmazza. Mivel csomó-
ponti végeselemekkel dolgoztam, ezért a kiszámítás után minden csomó-
pontban rendelkezésre áll egy-egy vektorpotenciál-érték;

(d) ~B = ∇ × ~A kiszámítása. Ez azt jelenti, hogy minden egyes végeselem-
re ki kell számítani az elemet alkotó csomópontokban rendelkezésre álló
vektorpotenciál-értékekb®l egy Bx és egy By indukcióértéket. Így jön
létre két (m× 1) méret¶ vektor, Bx és By;

(e) Hx és Hy approximálása:

Hx = νBx + Ixold,

Hy = νBy + Iyold,
(9.36)

Hx és Hy (m× 1)-méret¶ vektorok;

(f) Ix és Iy számítása:

Ix = Hx − νB{Hx},
Iy = Hy − νB{Hy},

(9.37)

Ix és Iy (m× 1)-méret¶ vektorok;

(g) bIx és bIy feltöltése (9.28) harmadik integrálja szerint;
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(h)
ε = ||I− Iold|| ; (9.38)

(i)
Ixold = Ix, Iyold = Iy; (9.39)

6.
aold = a. (9.40)

9.5. A vizsgált geometria

A szimulált geometriai elrendezést a 9.2. ábra mutatja. Az adott ν2 reciprok per-
meabilitásfüggvénnyel és σ2 vezet®képességel rendelkez® vasanyagon a szaggatott
vonallal jelölt szakaszon áramjárta vezet®t feltételezünk, ami a lemezek teljes ke-
resztmetszetére van feltekercselve. A feltekercselt vasanyagot ν1 és σ1 paraméterek-
kel rendelkez® leveg® veszi körül. A szimuláció során ΓNK peremen az áramjárta

ΓD

ΓD

ΓNK
ΓNK

σ ν1, 1

σ ν1, 1

σ ν2 2,

−0.01 −0.005 0 0.005 0.01 0.015
0

0.005

0.01

0.015

0.02

0.025

x [m]

y
 [

m
]

9.2. ábra. A szimulált geometriai elrendezés

vezet®t reprezentáló ~K felületi árams¶r¶séget szükséges el®írni, ami a tekercselés
irányából adódóan a lemez egyik oldalán pozitív, a másik oldalán negatív el®jellel
kerül el®írásra. ΓD Dirichlet-peremen a csomóponti potenciálértékek kinullázásra
kerülnek, hiszen ez a vizsgálódás tényleges határfelülete. Az eredmények a C. füg-
gelékben tanulmányozhatók.
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Konklúzió, jöv®beli tervek

Dolgozatomban bemutattam a ferromágneses hiszterézis �zikai magyarázatát, okát,
ismertettem a mágneses térer®sség és a mágneses indukció között de�niálható nem-
lineáris, többérték¶ kapcsolat mérésének elvét, valamint az elvégzett mérési ered-
ményeket. Felvázoltam a skaláris hiszterézis modellezésére alkalmazható skalár
Preisach-modell m¶ködésének elvét, kimenetének numerikus meghatározását, továb-
bá az Everett-függvény mérési eredményekb®l történ® identi�kációjának segítségével
ismerettem a modell illesztésének módját, érintve a modell veri�kációját is. Be-
mutattam a Maxwell-egyenletek teljes rendszerét, ismerettem a végeselem-módszer
alapelvét, legfontosabb jellemz®it.

Betekintést adtam azokba az eljárásokba, amelyek a nemlineáris anyagtulajdon-
ságok implementálásához szükségesek végeselem-módszer esetén. Ismertettem a po-
larizációs formulát, továbbá az iterációs lépéseket két különböz® formalizmus esetére.
Felvázoltam a mágneses térer®sségre épül® formalizmus alapegyenleteit, levezettem
a problémát leíró di�erenciálegyenletet, a gyenge alakot, valamint annak megva-
lósítását végeselem-módszer segítségével. Az eredmények alapján látható, hogy a
direkt ~H-ra épül® formalizmus eredménye jól kezelhet®, �xpontos megoldás mellett
is viszonylag gyorsan konvergál, hátránya viszont, hogy peremfeltételek megadása
esetén direkt módon a mágneses térer®sséget kell el®írni, ami kevésbé gyakorlatias
megoldás.

Egy általános és egy konkrét problémán keresztül bemutattam az örvényáramú,
nemlineáris ~A-formalizmus alapegyenleteit, levezettem a megoldásra kerül® di�eren-
ciálegyenletet, bemutattam a peremfeltételeket, levezettem a gyenge alakot, felvá-
zoltam a megoldás során asszemblálásra kerül® mátrixokat és vektorokat, valamint
az iterációs lépések sorrendjét, a megoldás mechanizmusát, végül ismertettem az
eredményeket. Az eredmények alapján megfogalmazható, hogy az ~A-formalizmus
implementálása összetettebb, komplexebb feladat, a direkt modell illesztése a szimu-
lációhoz nehezebb, a �xpontos iteráció konvergenciája bár itt is biztosított, de sokkal
lassabb, mint a mágneses térer®sségre épül® feladat esetén. A módszer nagy el®nye,
hogy sokkal gyakorlatiasabb, hiszen a felületi áram peremfeltételként el®írható, mint
gerjesztés.

Legfontosabb jöv®beli tervem, hogy az itt bemutatott, Matlab script formájá-
ban implementált megoldókat kereskedelmi forgalomban is kapható, az iparban is
alkalmazott szimulációs szoftverrel, szoftverekkel ellen®rizzem. A jöv®ben foglalkoz-
ni kívánok a megoldók futási idejének csökkentésével is, melynek részeként célom
azok implementálása gépközeli programozási nyelvben, de a független részek pár-
huzamosítása is fontos, izgalmas kérdés lehet. A �xpontos módszeren kívül célom
megismerkedni egyéb algoritmusokkal is a nemlineáris egyenletrendszerek megoldá-
sával kapcsolatban.
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A. függelék

Szimulációs eredmények: Vezet®
lemez mágneses térben, 1D

A szimulációs eredmények a mérési eredményekb®l identi�kált Everett-függvénnyel
m¶köd® skalár Preisach-modellel, 2a = 0, 35 mm széles lemez feltételezése mellett
(a = 0, 175 mm) kerülnek bemutatásra. A lemez szélére Dirichlet-típusú peremfelté-
telként el®írt gerjesztés (mágneses térer®sség) frekvenciája f = 500 Hz, periódusideje
t = 2 ms, amplitúdója H0 = 2000 A

m
(a vizsgált csomópont az n = 10-es, valamint

ε = 10−3 T).
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(a) Mágneses térer®sség (t = 0, 12 ms)
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(b) Mágneses indukció (t = 0, 12 ms)
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(c) B −H karakterisztika (t = 0, 12 ms)
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(d) Fixpont-lépések száma (t = 0, 12 ms)
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(e) Mágneses térer®sség (t = 0, 5 ms)
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(f) Mágneses indukció (t = 0, 5 ms)
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(g) B −H karakterisztika (t = 0, 5 ms)
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(h) Fixpont-lépések száma (t = 0, 5 ms)
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(i) Mágneses térer®sség (t = 1 ms)
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(j) Mágneses indukció (t = 1 ms)
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(k) B −H karakterisztika (t = 1 ms)
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(l) Fixpont-lépések száma (t = 1 ms)
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(m) Mágneses térer®sség (t = 1, 5 ms)
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(n) Mágneses indukció (t = 1, 5 ms)
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(o) B −H karakterisztika (t = 1, 5 ms)

0 0.5 1 1.5

x 10
−3

0

10

20

30

40

50

60

70

80

90

100

Idõ [s]

F
ix

po
nt

os
 lé

pé
se

k 
sz

ám
a

(p) Fixpont-lépések száma (t = 1, 5 ms)
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(q) Mágneses térer®sség (t = 2, 5 ms)
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(r) Mágneses indukció (t = 2, 5 ms)
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(s) B −H karakterisztika (t = 2, 5 ms)
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(t) Fixpont-lépések száma (t = 2, 5 ms)

A.1. ábra. Szimulációs eredmények
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B. függelék

Szimulációs eredmények: Vezet®
lemez mágneses térben, 2D

A szimulációs eredmények a mérési eredményekb®l identi�kált Everett-függvénnyel
m¶köd® skalár Preisach-modellel, a

2
= 0, 015 m lemezszélesség (a = 0, 03 m) és

b
2

= 0, 15 m lemezhosszúság (b = 0, 3 m) mellett kerülnek bemutatásra. A le-
mez szélére Dirichlet-típusú peremfeltételként el®írt gerjesztés (mágneses térer®s-
ség) frekvenciája f = 1 Hz, amplitúdója H0 = 2000 A

m
. Az anyag vezet®képessége

σ = 2, 22 · 106 A
Vm

, a vizsgált csomópont az n = 88-as, ε = 10−3 T.

(a) Mágneses térer®sség (t = 60 ms) (b) Mágneses indukció (t = 60 ms)

(c) B −H karakterisztika (t = 60 ms) (d) Mágneses térer®sség (t = 246, 2 ms)
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(e) Mágneses indukció (t = 246, 2 ms) (f) B −H karakterisztika (t = 246, 2 ms)

(g) Mágneses térer®sség (t = 750 ms) (h) Mágneses indukció (t = 750 ms)

(i) B −H karakterisztika (t = 750 ms)) (j) Mágneses térer®sség(t = 1100 ms)

(k) Mágneses indukció (t = 1100 ms) (l) B −H karakterisztika (t = 1100 ms)

B.1. ábra. Szimulációs eredmények
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C. függelék

Szimulációs eredmények:
Örvényáramú A-formalizmus, 2D

A szimulációs eredmények a mérési eredményekb®l identi�kált Everett-függvénnyel
m¶köd® skalár Preisach-modellel, 0,003 m széles, 0,015m hosszú lemez feltételezése
mellett kerülnek bemutatásra. A lemezek szélésre Neumann-típusú peremfeltétel-
ként el®írt felületi áram amplitúdója 1500 A

m
, frekvenciája 1 Hz, periódusideje 1

másodperc, a lemezek vezet®képessége σ = 2, 22 · 106 A
Vm

.

(a) Mágneses térer®sség (t = 60 ms) (b) Mágneses indukció (t = 60 ms)

(c) Mágneses vektorpotenciál (t = 60 ms) (d) Mágneses térer®sség (t = 250 ms)
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(e) Mágneses indukció (t = 250 ms) (f) Mágneses vektorpotenciál (t = 250ms)

(g) Mágneses térer®sség (t = 750 ms) (h) Mágneses indukció (t = 750 ms)

(i) Mágneses vektorpotenciál (t = 750
ms))

(j) Mágneses térer®sség(t = 1, 1 s)

(k) Mágneses indukció (t = 1, 1 s) (l) Mágneses vektorpotenciál (t = 1, 1 s)

C.1. ábra. Szimulációs eredmények

7



D. függelék

Preisach-modell

D.1. Preisach.m

function [Bk,Lkm1,Inck] = Preisach(alpha,beta,E,mu_0,Mmax,Hmax,Lkm1,Inck,Hkm1,Hk)

hkm1 = Hkm1 / Hmax; hk = Hk / Hmax;
Lk = Lkm1; Inckm1 = Inck; n = size(Lk,2);

if abs(hk) >= 1 %Teljes kivezérlés esete

Lk = [1;-1];

elseif hk > hkm1 %Növekv® térer®sség

if Inckm1 == 1 %Eddig is növekedett a H

Inck = 1;

elseif Inckm1 == 0 %Eddig csökkent a H

if n == 1 %Csak (1;-1) pont van tárolva

Lk = [Lk,[abs(hkm1);-abs(hkm1)]];

else %Már nem csak az (1;-1) pont van tárolva

Lk = [Lk,[Lk(1,n);hkm1]]; %Az \alpha-koordináta fog ekkor megegyezni

end

end

%Növekv® mágneses térer®sségnél azokat a pontokat kell törölni
%a lépcs®s függvényb®l, melyek \alpha-koordinátája nagyobb vagy
%egyenl® az aktuális hk-val

j = 1;
while j <= size(Lk,2)

if hk > Lk(1,j) || abs(hk-Lk(1,j)) < 1e-3

Lk(:,j) = [];

else

j = j+1;

end

end

Inck = 1;

8
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elseif hk < hkm1 %Csökken® térer®sség

if Inckm1 == 0 %Eddig is csökkent a H

Inck = 0;

elseif Inckm1 == 1 %Eddig növekedett a H

if n == 1 %Csak (1;-1) pont van tárolva

Lk = [Lk,[abs(hkm1);-abs(hkm1)]];

else %Már nem csak az (1;-1) pont van tárolva

Lk = [Lk,[hkm1;Lk(2,n)]]; %A \beta-koordináta fog ekkor megegyezni

end

end

%Csökken® mágneses térer®sségnél azokat a pontokat kell törölni
%a lépcs®s függvényb®l, melyek \beta-koordinátája kisebb vagy
%egyenl® az aktuális hk-val

j = 1;
while j <= size(Lk,2)

if hk < Lk(2,j) || abs(hk-Lk(2,j)) < 1e-3

Lk(:,j) = [];

else

j = j+1;

end

end

Inck = 0;

end
%Dinamikus L-kezelés
if hk >= 1 %Teljes kivezérlés esete

elseif size(Lk,2) == 1 %Nincs tárolva fordulópont

Lk = [Lk,[abs(hk);-abs(hk)]];

elseif size(Lk,2) > 1 %Már van fordulópont

if hk > hkm1 %Növekszik a térer®sség értéke

Lk = [Lk,[hk;Lk(2,size(Lk,2))]]; %Az \alpha-koorináta változik

elseif hk < hkm1 %Csökken a térer®sség értéke

Lk = [Lk,[Lk(1,size(Lk,2));hk]]; %A \beta-koordináta változik

end

end

%Számítás

if size(Lk,2) == 2 %Els® mágnesezési görbe

if hk > hkm1

sign = 1;
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else

sign = -1;

end

Mk = sign * interp2(alpha,beta,E,Lk(1,2),Lk(2,2),'spline');

else %Nem az els® mágnesezési görbén vagyunk

if Lk(1,3) > -Lk(2,3) % Az alpha = -beta-egyenes felett vagyunk

sum = 0;

for k = 3:size(Lk,2)

if k == 3

sum = sum + (interp2(alpha,beta,E,Lk(1,k-1),Lk(2,k-1),'spline') ...
- interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline'));

elseif Lk(2,k) == Lk(2,k-1)

sum = sum + interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline');

elseif Lk(1,k) == Lk(1,k-1)

sum = sum - interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline');

end

end

Mk = -interp2(alpha,beta,E,Lk(1,2),Lk(2,2),'spline') + 2*sum;

elseif Lk(1,3) < -Lk(2,3) %Az alpha = -beta egyenes alatt vagyunk

sum = 0;

for k = 3:size(Lk,2)

if k == 3

sum = sum + (interp2(alpha,beta,E,Lk(1,k-1),Lk(2,k-1),'spline') ...
- interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline'));

elseif Lk(1,k) == Lk(1,k-1)

sum = sum + interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline');

elseif Lk(2,k) == Lk(2,k-1)

sum = sum - interp2(alpha,beta,E,Lk(1,k),Lk(2,k),'spline');

end

end

Mk = interp2(alpha,beta,E,Lk(1,2),Lk(2,2),'spline') - 2*sum;
end

end

Bk = mu_0 * (Mk*Mmax + hk*Hmax);

%Ideiglenes pont törlése

Lk(:,size(Lk,2)) = [];

Lkm1 = Lk; n = size(Lk,2);
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E. függelék

Megoldók

E.1. vezeto_lemez_FEM_Preisach.m
%Vezet® lemez mágneses térben

%Skalár Preisach-modellel

clear;
clc;

%Geometria, végeselemes felosztás

a = 0.175e-3; %-a...+a
N = 100;
x = [-a:(2*a)/N:a];

%Anyagparaméterek /Lsd: script.m/

mu_min = 6.6480e-05;
mu_max = 0.0052;
mu0 = (mu_min + mu_max) / 2;

sigma = 2.22e6;

%Everett-függvény

alpha = load('alpha');
beta = load('beta');
E = load('E');

%Mért B-H karakterisztika

BH = load('BH3000m.lvm'); Hmert = BH(:,1); Bmert = BH(:,2);

%Maximum

mu_0 = (4*pi)*1e-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);

%Gerjesztés

H0 = 2000;
f = 500;
t = linspace(0,(2/f),140);
dt = t(2) - t(1);

Hperem = H0 * sin(2*pi*f*t);

%Inicializálás

%Lépcs®s függvény
for i = 1:(N+1)

eval(['Lkm1_' num2str(i) '=[1;-1];']);
end
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VecInck = ones(1,N+1);
%%
Gaussp = [-1/sqrt(3) 1/sqrt(3)];
Gausss = [1 1];
th = 0.5;

K = zeros(N+1);
Blin = zeros(N+1);
Bres = zeros(N+1);

for i = 1:N

x1 = x(i);
x2 = x(i+1);

gN1 = -1/(x2-x1);
gN2 = 1/(x2-x1);

Ke = ([gN1;gN2]*[gN1 gN2]) * (x2-x1);

Be = zeros(2);

for j = 1:length(Gaussp)

xgp = (((x2-x1)*Gaussp(j))+(x2+x1))/2;

N1 = (-xgp+x2)/(x2-x1);
N2 = (xgp-x1)/(x2-x1);

Be = Be + ([N1;N2]*[N1 N2]) * Gausss(j) * ((x2-x1)/2);
end

K(i,i) = K(i,i) + th * Ke(1,1) * dt / sigma + Be(1,1) * mu0;
K(i,i+1) = K(i,i+1) + th * Ke(1,2) * dt / sigma + Be(1,2) * mu0;
K(i+1,i) = K(i+1,i) + th * Ke(2,1) * dt / sigma + Be(2,1) * mu0;
K(i+1,i+1) = K(i+1,i+1) + th * Ke(2,2) * dt / sigma + Be(2,2) * mu0;

Blin(i,i) = Blin(i,i) - (1-th) * Ke(1,1) * dt / sigma + Be(1,1) * mu0;
Blin(i,i+1) = Blin(i,i+1) - (1-th) * Ke(1,2) * dt / sigma + Be(1,2) * mu0;
Blin(i+1,i) = Blin(i+1,i) - (1-th) * Ke(2,1) * dt / sigma + Be(2,1) * mu0;
Blin(i+1,i+1) = Blin(i+1,i+1) - (1-th) * Ke(2,2) * dt / sigma + Be(2,2) * mu0;

Bres(i,i) = Bres(i,i) + Be(1,1);
Bres(i,i+1) = Bres(i,i+1) + Be(1,2);
Bres(i+1,i) = Bres(i+1,i) + Be(2,1);
Bres(i+1,i+1) = Bres(i+1,i+1) + Be(2,2);

end

%K peremf.

K(1,:) = 0;
K(1,1) = 1;
K(N+1,:) = 0;
K(N+1,N+1) = 1;

iK = inv(K);

Hregi = zeros(N+1,1);
Rregi = zeros(N+1,1);
R = zeros(N+1,1);

for i = 1:length(t)

hiba = 1;
step = 0;

while (hiba > 1e-2)
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step = step + 1;
b = Blin * Hregi + Bres * (R-Rregi);

b(1) = Hperem(i);
b(N+1) = Hperem(i);

H = iK * b;
Rutolso = R;

%Modell-function meghívása

for j = 1:(N+1)

Lkm1 = eval(['Lkm1_' num2str(j)]);
Inck = VecInck(j);
Hkm1 = Hregi(j); Hk = H(j);

[B(j,1),tmp_Lkm1,VecInck(j)] = Preisach(alpha,beta,E,mu_0,Mmax, ...
Hmax,Lkm1,Inck,Hkm1,Hk);

eval(['Lkm1_' num2str(j) '=tmp_Lkm1;']);

end

R = B - mu0 * H;

hiba = norm(R-Rutolso)

end

Hregi = H;
Rregi = R;

disp([step hiba]);

figure(4)
axis square;
plot(x,H);
axis([-a,a,-H0,H0]);
xlabel('x [m]');
ylabel('H [A/m]');

figure(2)
axis square;
plot(x,B);
axis([-a,a,-1.5,1.5]);
xlabel('x [m]');
ylabel('B [T]');

figure(1)
hold on;
axis square;
plot(H(10),B(10),'r.');
xlabel('H [A/m]');
ylabel('B [T]');

end

E.2. vezeto_lemez_ketdim.m
%Lemez, 2D, FEM, Preisach-modellel

clear;
clc;

load('Nodes.txt');
load('Connect.txt');
load('Dirichlet.txt');
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% figure(1)
% axis square;
% hold all;
% pdeplot(Nodes',[],Connect','mesh','on');
% xlabel('x [m]'); ylabel('y [m]'); axis square;
% axis([0 0.06 0 0.18]);
%%
%Anyagjellemz®k

mu_min = 6.6480e-05;
mu_max = 0.0052;
mu0 = (mu_min + mu_max) / 2;

sigma = 2.22e6;

%Gerjesztés

H0 = 2000;
f = 1;
t = linspace(0,(1/f),200);
dt = t(2) - t(1);

Hperem = H0 * sin(2*pi*f*t);

%Everett-függvény

alpha = load('alpha');
beta = load('beta');
E = load('E');

%Mért B-H karakterisztika

BH = load('BH3000m.lvm'); Hmert = BH(:,1); Bmert = BH(:,2);

%Maximum

mu_0 = (4*pi)*1e-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);

%Lépcs®s függvény
for i = 1:(size(Nodes,1))

eval(['Lkm1_' num2str(i) '=[1;-1];']);
end

VecInck = ones(1,size(Nodes,1));

Gausss = [1/3 1/3 1/3];
Gaussp = [2/3 1/6 1/6; 1/6 1/6 2/3; 1/6 2/3 1/6;];
th = 1;

K = zeros(size(Nodes,1));
Blin = zeros(size(Nodes,1));
Bres = zeros(size(Nodes,1));

for i = 1:size(Connect,1)

p1 = Connect(i,1); p2 = Connect(i,2); p3 = Connect(i,3);

x1 = Nodes(p1,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

T = 0.5 * det( [1 x1 y1;1 x2 y2;1 x3 y3;] );

%Gradiensek

gN1x = (0.5*(y2-y3))/T; gN2x = (0.5*(y3-y1))/T; gN3x = (0.5*(y1-y2))/T;
gN1y = (0.5*(x3-x2))/T; gN2y = (0.5*(x1-x3))/T; gN3y = (0.5*(x2-x1))/T;

Ke = ( [gN1x;gN2x;gN3x;]*[gN1x,gN2x,gN3x] + [gN1y;gN2y;gN3y;]*[gN1y,gN2y,gN3y] ) * T;

%Gauss-kvadratúra
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a = x2-x1; b = x3-x1; c = x1;
d = y2-y1; e = y3-y1; f = y1;

Be = zeros(3);

for j = 1:3

kszi = Gaussp(j,2); eta = Gaussp(j,3);

x = a*kszi + b*eta + c; %Interpolált x
y = d*kszi + e*eta + f; %Interpolált y

T1 = 0.5 * det( [ 1 x y; 1 x2 y2; 1 x3 y3 ] ) ;
T2 = 0.5 * det( [ 1 x1 y1; 1 x y; 1 x3 y3 ] ) ;
T3 = 0.5 * det( [ 1 x1 y1; 1 x2 y2; 1 x y ] ) ;

N1 = T1/T;
N2 = T2/T;
N3 = T3/T;

Be = Be + ( [N1;N2;N3] * [N1,N2,N3] ) * Gausss(j) * T/3;
end

K(p1,p1) = K(p1,p1) + th * Ke(1,1) * dt / sigma + Be(1,1) * mu0; K(p1,p2) ...
= K(p1,p2) + th * Ke(1,2) * dt / sigma + Be(1,2) * mu0; K(p1,p3) = K(p1,p3) + ...
th * Ke(1,3) * dt / sigma + Be(1,3) * mu0;
K(p2,p1) = K(p2,p1) + th * Ke(2,1) * dt / sigma + Be(2,1) * mu0; K(p2,p2) ...
= K(p2,p2) + th * Ke(2,2) * dt / sigma + Be(2,2) * mu0; K(p2,p3) = K(p2,p3) + ...
th * Ke(2,3) * dt / sigma + Be(2,3) * mu0;
K(p3,p1) = K(p3,p1) + th * Ke(3,1) * dt / sigma + Be(3,1) * mu0;
K(p3,p2) = K(p3,p2) + th * Ke(3,2) * dt / sigma + Be(3,2) * mu0;
K(p3,p3) = K(p3,p3) + th * Ke(3,3) * dt / sigma + Be(3,3) * mu0;

Blin(p1,p1) = Blin(p1,p1) - (1-th) * Ke(1,1) * dt / sigma + Be(1,1) * mu0; Blin(p1,p2) ...
= Blin(p1,p2) - (1-th) * Ke(1,2) * dt / sigma + Be(1,2) * mu0; Blin(p1,p3) = Blin(p1,p3) ...
- (1-th) * Ke(1,3) * dt / sigma + Be(1,3) * mu0;
Blin(p2,p1) = Blin(p2,p1) - (1-th) * Ke(2,1) * dt / sigma + Be(2,1) * mu0; Blin(p2,p2) ...
= Blin(p2,p2) - (1-th) * Ke(2,2) * dt / sigma + Be(2,2) * mu0; Blin(p2,p3) = Blin(p2,p3) ...
- (1-th) * Ke(2,3) * dt / sigma + Be(2,3) * mu0;
Blin(p3,p1) = Blin(p3,p1) - (1-th) * Ke(3,1) * dt / sigma + Be(3,1) * mu0;
Blin(p3,p2) = Blin(p3,p2) - (1-th) * Ke(3,2) * dt / sigma + Be(3,2) * mu0;
Blin(p3,p3) = Blin(p3,p3) - (1-th) * Ke(3,3) * dt / sigma + Be(3,3) * mu0;

Bres(p1,p1) = Bres(p1,p1) + Be(1,1); Bres(p1,p2) = Bres(p1,p2) + Be(1,2);
Bres(p1,p3) = Bres(p1,p3) + Be(1,3);
Bres(p2,p1) = Bres(p2,p1) + Be(2,1); Bres(p2,p2) = Bres(p2,p2) + Be(2,2);
Bres(p2,p3) = Bres(p2,p3) + Be(2,3);
Bres(p3,p1) = Bres(p3,p1) + Be(3,1); Bres(p3,p2) = Bres(p3,p2) + Be(3,2);
Bres(p3,p3) = Bres(p3,p3) + Be(3,3);

end

Hregi = zeros(size(Nodes,1),1);
Rregi = zeros(size(Nodes,1),1);

R = zeros(size(Nodes,1),1);

for i = 1:length(t)

hiba = 1;
step = 0;

while ( hiba > 1e-3 )

step = step + 1;
b = Blin * Hregi + Bres * (R-Rregi);

%Peremfeltétel

for j = 1:length(Dirichlet)
K(Dirichlet(j),:) = K(Dirichlet(j),:) * 0;
K(Dirichlet(j),Dirichlet(j)) = 1;
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b(Dirichlet(j)) = Hperem(i);
end

H = K \ b;

Rutolso = R;

%Modell-function meghívása

for j = 1:size(Nodes,1)

Lkm1 = eval(['Lkm1_' num2str(j)]);
Inck = VecInck(j);
Hkm1 = Hregi(j); Hk = H(j);

[B(j,1),tmp_Lkm1,VecInck(j)] = Preisach(alpha,beta,E,mu_0, ...
Mmax,Hmax,Lkm1,Inck,Hkm1,Hk);

eval(['Lkm1_' num2str(j) '=tmp_Lkm1;']);

end

R = B - mu0 * H;

hiba = norm(R-Rutolso)

end

disp([step hiba]);

%Értékátadás

Hregi = H;
Rregi = R;

figure(1)
axis square;
pdeplot(Nodes',[],Connect','xydata',H,'zdata',H, 'colormap','jet');
axis([0 0.06 0 0.16 -H0 H0]);
caxis([-H0 H0]);
xlabel('x [m]');
ylabel('y [m]');
zlabel('H [A/m]');

figure(2)
axis square;
pdeplot(Nodes',[],Connect','xydata',B,'zdata',B, 'colormap','jet');
caxis([-1.4 1.4]);
axis([0 0.06 0 0.16 -1.4 1.4]);
xlabel('x [m]');
ylabel('y [m]');
zlabel('B [T]');

end

E.3. epstein_nemlin_Preisach.m
%Epstein-keret, 2D, örvényáramú A, nemlineáris, Preisach-modell

clear;
clc;

tic;

Nodes = load('Nodes.txt') / 1000;
Connect = load('Connect.txt');
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Dirichlet = load('Dirichlet.txt');
Exc = load('Exc.txt');
%%
%Mesh

% figure(1)
% axis square;
% pdeplot(Nodes',[],Connect(:,2:4)','mesh','on');
% xlabel('x [m]');
% ylabel('y [m]');

%Anyagjellemz®k

mu_min = 0;
mu_max = 0.007418265782302;
mu0 = (mu_min + mu_max) / 2;

nu_max = 1 / mu_min;
nu_min = 1 / mu_max;
nu_lev = 1 / (4*pi*1e-7);

sigma_vas = 2.22e6;
sigma_lev = 0;

% nu_opt = (2*nu_max*nu_min) / (nu_max+nu_min);

nu_opt = 2 / mu_max + mu_min;

%Lépcs®s függvény
for i = 1:(size(Connect,1))

eval(['Lkm1x_' num2str(i) '=[1;-1];']);
end

for i = 1:(size(Connect,1))
eval(['Lkm1y_' num2str(i) '=[1;-1];']);

end

VecInckx = ones(1,size(Connect,1));
VecIncky = ones(1,size(Connect,1));

%Everett-függvény

alpha = load('alpha');
beta = load('beta');
E = load('E');

%Mért B-H karakterisztika

BH = load('BH3000m.lvm'); Hmert = BH(:,1); Bmert = BH(:,2);

%Maximum

mu_0 = (4*pi)*1e-7; Mmax = (max(Bmert)/mu_0) - max(Hmert); Hmax = max(Hmert);

%Gerjesztés

freq = 1;
t = linspace(0,(1/freq),150);
dt = t(2) - t(1);

K0 = 1500;
Kexc = K0 * sin(2*pi*freq*t);

Gausss = [1/3 1/3 1/3];
Gaussp = [2/3 1/6 1/6; 1/6 1/6 2/3; 1/6 2/3 1/6;];

K = zeros(size(Nodes,1));
B = zeros(size(Nodes,1));

for i = 1:size(Connect,1)

p1 = Connect(i,2); p2 = Connect(i,3); p3 = Connect(i,4);
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x1 = Nodes(p1,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

T = 0.5 * abs(det([1 x1 y1; 1 x2 y2; 1 x3 y3]));

%Gradiensek

gN1x = (0.5*(y2-y3))/T; gN2x = (0.5*(y3-y1))/T; gN3x = (0.5*(y1-y2))/T;
gN1y = (0.5*(x3-x2))/T; gN2y = (0.5*(x1-x3))/T; gN3y = (0.5*(x2-x1))/T;

if Connect(i,1) == 1 %Leveg®-tartomány

nu = nu_lev;
sigma = sigma_lev;

elseif Connect(i,1) == 2 %Vas-tartomány

nu = nu_opt;
sigma = sigma_vas;

end

K_1 = nu * ( [gN1x;gN2x;gN3x;]*[gN1x,gN2x,gN3x] + [gN1y;gN2y;gN3y;]*[gN1y,gN2y,gN3y] ) * T;

%Gauss-kvadratúra

a = x2-x1; b = x3-x1; c = x1;
d = y2-y1; e = y3-y1; f = y1;

K_2 = zeros(3);

for j = 1:3

kszi = Gaussp(j,2); eta = Gaussp(j,3);

x = a*kszi + b*eta + c;
y = d*kszi + e*eta + f;

T1 = 0.5 * abs(det( [1 x y; 1 x2 y2; 1 x3 y3] ));
T2 = 0.5 * abs(det( [1 x1 y1; 1 x y; 1 x3 y3] ));
T3 = 0.5 * abs(det( [1 x1 y1; 1 x2 y2; 1 x y] ));

N1 = T1/T;
N2 = T2/T;
N3 = T3/T;

K_2 = K_2 + sigma /dt * ( [N1;N2;N3]*[N1 N2 N3] ) * Gausss(j) * T;

end

K(p1,p1) = K(p1,p1) + K_1(1,1) + K_2(1,1); K(p1,p2) = K(p1,p2) + K_1(1,2)...
+ K_2(1,2); K(p1,p3) = K(p1,p3) + K_1(1,3) + K_2(1,3);
K(p2,p1) = K(p2,p1) + K_1(2,1) + K_2(2,1); K(p2,p2) = K(p2,p2) + K_1(2,2)...
+ K_2(2,2); K(p2,p3) = K(p2,p3) + K_1(2,3) + K_2(2,3);
K(p3,p1) = K(p3,p1) + K_1(3,1) + K_2(3,1); K(p3,p2) = K(p3,p2) + K_1(3,2)...
+ K_2(3,2); K(p3,p3) = K(p3,p3) + K_1(3,3) + K_2(3,3);

B(p1,p1) = B(p1,p1) + K_2(1,1); B(p1,p2) = B(p1,p2) + K_2(1,2); B(p1,p3) = B(p1,p3) + K_2(1,3);
B(p2,p1) = B(p2,p1) + K_2(2,1); B(p2,p2) = B(p2,p2) + K_2(2,2); B(p2,p3) = B(p2,p3) + K_2(2,3);
B(p3,p1) = B(p3,p1) + K_2(3,1); B(p3,p2) = B(p3,p2) + K_2(3,2); B(p3,p3) = B(p3,p3) + K_2(3,3);

end

b_exc = zeros(size(Nodes,1),1);
b_Adt = zeros(size(Nodes,1),1);
b = zeros(size(Nodes,1),1);
bIx = zeros(size(Nodes,1),1);
bIy = zeros(size(Nodes,1),1);

Aold = zeros(size(Nodes,1),1);
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Ixold = zeros(size(Connect,1),1);
Iyold = zeros(size(Connect,1),1);

Preisachx = zeros(size(Connect,1),1);
Preisachy = zeros(size(Connect,1),1);

Hxold = zeros(size(Connect,1),1);
Hyold = zeros(size(Connect,1),1);

for i = 1:length(t)

%Gerjesztés megadása

for j = 1:size(Exc,1)

if(Exc(j,1) == 3) %y irányú, pozitív gerjesztés¶

sign = 1; CoordIndex = 2;

elseif(Exc(j,1) == 4) %y irányú, negatív gerjesztés¶

sign = -1; CoordIndex = 2;

elseif(Exc(j,1) == 5) %x irányú, pozitív gerjesztés¶

sign = 1; CoordIndex = 1;

elseif(Exc(j,1) == 6) %x irányú, negatív gerjesztés¶

sign = -1; CoordIndex = 1;

end

p1 = Exc(j,2); p2 = Exc(j,3);

Coord1 = Nodes(p1,CoordIndex); Coord2 = Nodes(p2,CoordIndex);

dl = abs(Coord2 - Coord1);

b_exce = [1;1;] * Kexc(i) * 0.5 * dl * sign;

b_exc(p1) = b(p1) + b_exce(1); b_exc(p2) = b(p2) + b_exce(2);

end

%El®z® id®lépés A-ja alapján

b_Adt = B * Aold;

%Indul a fixpont-móka

eps = 4;

step = 0;

while(eps > 3)

step = step + 1;

bfp = b_exc + b_Adt - (bIx+bIy);

%Dirichlet-perem

for j = 1:length(Dirichlet)

K(Dirichlet(j),:) = K(Dirichlet(j),:) * 0;
K(Dirichlet(j),Dirichlet(j)) = 1;

bfp(Dirichlet(j)) = 0;

end
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%A számítása

A = K \ bfp;

%Bx és By számítása (rotA)

p1 = Connect(:,2); p2 = Connect(:,3); p3 = Connect(:,4);

x1 = Nodes(p1,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

D = 0.5 * abs( (x1-x3).*(y3-y2) - (y1-y3).*(x3-x2) );

gN1x = 0.5 * (y2-y3) ./ D; gN1y = 0.5 * (x3-x2) ./ D;
gN2x = 0.5 * (y3-y1) ./ D; gN2y = 0.5 * (x1-x3) ./ D;
gN3x = 0.5 * (y1-y2) ./ D; gN3y = 0.5 * (x2-x1) ./ D;

Bx = A(p1,:).*gN1y + A(p2,:).*gN2y + A(p3,:).*gN3y;
By = -A(p1,:).*gN1x - A(p2,:).*gN2x - A(p3,:).*gN3x;

%Hx és Hy saccolása Ixold és Iyold segítségével

Hx = nu_opt * Bx + Ixold;
Hy = nu_opt * By + Iyold;

%Modell-function meghívása (x-irányra)

for j = 1:size(Connect,1)

Lkm1 = eval(['Lkm1x_' num2str(j)]);
Inck = VecInckx(j);
Hkm1 = Hxold(j); Hk = Hx(j);

[Preisachx(j,1),tmp_Lkm1x,VecInckx(j)] = Preisach(alpha,beta,E,mu_0,...
Mmax,Hmax,Lkm1,Inck,Hkm1,Hk);

eval(['Lkm1x_' num2str(j) '=tmp_Lkm1x;']);

end

%Modell-function meghívása (y-irányra)

for j = 1:size(Connect,1)

Lkm1 = eval(['Lkm1y_' num2str(j)]);
Inck = VecIncky(j);
Hkm1 = Hyold(j); Hk = Hy(j);

[Preisachy(j,1),tmp_Lkm1y,VecIncky(j)] = Preisach(alpha,beta,E,mu_0,...
Mmax,Hmax,Lkm1,Inck,Hkm1,Hk);

eval(['Lkm1y_' num2str(j) '=tmp_Lkm1y;']);

end

%Ix és Iy saccolása

Ix = Hx - nu_opt * Preisachx;
Iy = Hy - nu_opt * Preisachy;

%bIx és bIy feltöltése

bIx = zeros(size(Nodes,1),1);
bIy = zeros(size(Nodes,1),1);

for j = 1:size(Connect,1)

p1 = Connect(j,2); p2 = Connect(j,3); p3 = Connect(j,4);

x1 = Nodes(p1,1); x2 = Nodes(p2,1); x3 = Nodes(p3,1);
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y1 = Nodes(p1,2); y2 = Nodes(p2,2); y3 = Nodes(p3,2);

T = 0.5 * abs(det([1 x1 y1; 1 x2 y2; 1 x3 y3]));

%Gradiensek

gN1x = (0.5*(y2-y3))/T; gN2x = (0.5*(y3-y1))/T; gN3x = (0.5*(y1-y2))/T;
gN1y = (0.5*(x3-x2))/T; gN2y = (0.5*(x1-x3))/T; gN3y = (0.5*(x2-x1))/T;

bIxelem = [gN1y;gN2y;gN3y;] * Ix(j) * T;
bIyelem = -[gN1x;gN2x;gN3x;] * Iy(j) * T;

bIx(p1) = bIx(p1) + bIxelem(1); bIx(p2) = bIx(p2) + bIxelem(2); bIx(p3) =...
bIx(p3) + bIxelem(3);

bIy(p1) = bIy(p1) + bIyelem(1); bIy(p2) = bIy(p2) + bIyelem(2); bIy(p3) =...
bIy(p3) + bIyelem(3);

end

eps = abs(max(abs(Ix)) - max(abs(Ixold)))

Ixold = Ix;
Iyold = Iy;

end

Aold = A;
Hxold = Hx;
Hyold = Hy;

figure(1)
axis square;
pdeplot(Nodes',[],Connect(:,2:4)','xydata',Bx+By, 'colormap','jet','mesh','on');
caxis([-1.2 1.2]);
xlabel('x [m]');
ylabel('y [m]');
ylabel(colorbar,'B [T]');

figure(2)
axis square;
pdeplot(Nodes',[],Connect(:,2:4)','xydata',Hx+Hy, 'colormap','jet','mesh','on');
caxis([-2000 2000]);
xlabel('x [m]');
ylabel('y [m]');
ylabel(colorbar,'H [A/m]');

figure(3)
hold on;
plot(Hx(1468),Bx(1468),'r+');

% figure(3)
% axis square;
% pdeplot(Nodes',[],Connect(:,2:4)','xydata',A,'contour','on');
% xlabel('x [m]');
% ylabel('y [m]');
% ylabel(colorbar,'A [Vs/m]');

end

toc;
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