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A megoldas az (z (0),y (0), 2 (0))T kezdeti érték, a A1, A2, A3 karakterisztikus
gyokok és az «, B paraméterek fiiggvényében meghatarozhato.
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el a komplex szamsikon. Példaként tekintsiik a leggyakoribb esetet:
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A paraméter numerikusan kozelitett értéke: ap ~ 3,4896.
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a < aq a = aq a > aqg

Bifurkiciés diagramok
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Perioduskett6zd (vagy flip-) bifurkicié soran a differencidlegyenlet-rendszer egy pe-
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peribdusa megkdzelitSleg kétszerese az eredeti periodikus palyaénak.
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Perioduskett6zd (vagy flip-) bifurkicié soran a differencidlegyenlet-rendszer egy pe-
riodikus palyaja kozelében megjelenik egy tj periodikus palya, melynek minimalis
peribdusa megkdzelitSleg kétszerese az eredeti periodikus palyaénak.

Ha mo = —8/7, m1 = —5/7 és § = 16 rdgzitett, és o 8,855 és 9,173 kdz4tt mozog,
akkor a Chua-rendszer peridduskett$z6 bifurkaciok sorozatan megy keresztiil.

Bifurkiciés diagram ag ~ 8, 8557 kornyezetében
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a < az = 8,8557 a2 < a < ag = 9,1080
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a Chua-rendszerben

ag < a<ag~r9,1591

ag < a< aie ~9,1699
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Definicio

(Devaney) Legyen X metrikus tér. Az f: X — X leképezés kaotikus, ha
periodikus pontjainak halmaza strti X-ben,
topologikusan tranzitiv, és

érzékenyen fiigg a kezdeti adatoktol.
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A kaosz definicioja

Definicio

(Devaney) Legyen X metrikus tér. Az f: X — X leképezés kaotikus, ha
periodikus pontjainak halmaza strti X-ben,
topologikusan tranzitiv, és

érzékenyen fiigg a kezdeti adatoktol.

Kaosz differencialegyenlet-rendszerek esetén

Differencidlegyenlet-rendszerek esetén akkor beszélhetiink kdoszrol, ha egy, a
rendszer altal meghatarozott Poincaré-féle visszatérési leképezés kaotikus a fazistér
valamely részhalmazén.
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Kaosz a Chua-rendszerben

A numerikus szimulaciok alapjan a Chua-rendszer az o = 15, 8 = 25, mg = —1,6
és m1 = —0, 8 paraméterek, valamint a (—0.4,0, O)T kezdeti érték mellett
kaotikusan viselkedik.
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Koszonom a figyelmet!
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