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1. fejezet

Bevezetés

A dolgozat els®dleges célkit¶zése a kapcsolódó elmélet tárgyalása mellett, hogy nu-
merikus vizsgálatok segítségével bemutassa a Chua-áramkörben meg�gyelhet® bifur-
kációs jelenségeket. A dolgozat második fejezetében ismertetjük a Chua-áramkört
leíró háromdimenziós di�erenciálegyenlet-rendszert, valamint annak �zikai dimenzi-
óktól mentes alakját, végül tárgyaljuk a rendszer egyensúlyi helyzeteit.

Tekintettel arra, hogy az áramkör viselkedését leíró rendszer a fázistér egyes
tartományain inhomogén, konstans együtthatós, lineáris rendszerekre redukálódik,
a harmadik fejezetben áttekintjük ezen rendszerek elméletét.

A dolgozat negyedik fejezetében megmutatjuk, hogyan térhetünk át az eredeti
háromdimenziós di�erenciálegyenlet-rendszerr®l egy inhomogén, lineáris, harmad-
rend¶, konstans együtthatós egyenletre. Az áttérés után ismertetjük ennek az egyen-
letnek a megoldását, majd tárgyaljuk a rendszer numerikus implementálásának ne-
hézségeit.

Az ötödik fejezetben egy kétdimenziós példán keresztül ismertetjük a Hopf-
bifurkációt, majd numerikus módszerek segítségével példát mutatunk a jelenségre a
Chua-rendszerben.

A hatodik fejezetben tárgyaljuk a perióduskett®z® bifurkációt leképezések és
di�erenciálegyenlet-rendszerek esetében is, végül perióduskett®z® bifurkációk soro-
zatát �gyeljük meg numerikusan a Chua-rendszerben.

A dolgozat utolsó fejezetében de�niáljuk a káoszt, legvégül pedig példát muta-
tunk a Chua-rendszer kaotikus viselkedésére.

1



2. fejezet

A Chua-áramkör

2.1. Az áramkör és egyenletei

Tekintsük a 2.1. ábrán látható, L induktivitásból, C1 és C2 kapacitásokból, G ve-
zet®képességb®l és egy Chua-diódából álló áramkört. A dióda szigorúan monoton
csökken®, szakaszonként lineáris, az egyes szakaszokon rendre Gb, Ga és Gb meredek-
ség¶ áram-feszültség-karakterisztikával jellemezhet®. Az egyes áramköri elemeken a
feltüntetett érték¶ és irányú feszültségek esnek, és a feltüntetett irányú áramok
folynak. Mivel a kapacitásokon és az induktivitáson es® feszültségek és átfolyó ára-

LdiL
dt

iL

Gu2 − u1

iR (u1)

u2

C2
du2
dt

u1

C1
du1
dt

Chua-
dióda

C2

N2 N1

C1L

H

u1

iR

−Bp

Bp

Gb

Ga

Gb

2.1. ábra. Chua-áramkör és a Chua-dióda karakterisztikája

mok közötti összefüggésekben megjelenik az induktivitás iL áramának, valamint a
két kapacitás u1 és u2 feszültségének id® szerinti deriváltja, az áramkör viselkedését
di�erenciálegyenlet-rendszer segítségével írhatjuk le. Ehhez a klasszikus villamos-
ságtan úgynevezett Kirchho�-törvényeit (csomóponti- és huroktörvényeit) szükséges
alkalmazni [1].

Vizsgáljuk el®ször a G vezet®képességt®l jobbra elhelyezked® N1 áramköri cso-
mópontot. A csomóponti törvény értelmében a csomópontba befolyó áramok össze-
ge megegyezik az onnan elfolyó áramok összegével, azaz bármely csomópontra∑

j ij = 0. Felírva az egyetlen befolyó és a két kifolyó áram el®jeles összegét

G (u2 − u1)− C1
du1
dt
− iR = 0 (2.1)

adódik. Átrendezve kapjuk a C1 kapacitás feszültségére vonatkozó di�erenciálegyen-
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letet:
du1
dt

=
G

C1

u2 −
G

C1

u1 −
1

C1

iR. (2.2)

Hasonlóan járunk el a G-t®l balra lév® N2 csomópont esetén:

iL − C2
du2
dt
−G (u2 − u1) = 0, (2.3)

melyb®l a C2 kapacitás feszültségére vonatkozó di�erenciálegyenlet:

du2
dt

=
G

C2

u1 −
G

C2

u2 +
1

C2

iL. (2.4)

Az induktivitás áramára vonatkozó di�erenciálegyenlethez az L induktivitás és a
C2 kapacitás alkotta H hurokra szükséges alkalmazni a huroktörvényt. Ennek értel-
mében bármely zárt hurokban a feszültségek el®jeles összege nulla. Az óramutató
járásával megegyez® hurokkörüljárási irányt felvéve a törvény az

L
diL
dt

+ u2 = 0 ⇐⇒ diL
dt

= − 1

L
u2 (2.5)

alakot ölti. Ezen három di�erenciálegyenlet által alkotott di�erenciálegyenlet-
rendszert az áramkör állapotváltozós leírásának nevezezzük [2]:

du1
dt

=
G

C1

u2 −
G

C1

u1 −
1

C1

iR,

du2
dt

=
G

C2

u1 −
G

C2

u2 +
1

C2

iL,

diL
dt

= − 1

L
u2.

(2.6)

A Chua-dióda áram-feszültség-karakterisztikája a következ®képpen adható meg:

iR (u1) =


Gbu1 + (Gb −Ga)Bp, u1 < −Bp,

Gau1, −Bp ≤ u1 ≤ Bp,

Gbu1 + (Ga −Gb)Bp, u1 > Bp.

(2.7)

2.2. Dimenzió nélküli egyenletek

Vezessük be a következ® jelöléseket:

x =
u1
Bp

, y =
u2
Bp

, z =
iL

BpG,
, τ = t

G

C2

, α =
C2

C1

és β =
C2

LG2
,

valamint tekintsük az u1 feszültség τ szerinti deriváltját:

du1
dτ

=
du1
dt

C2

G
=
C2

C1

(
u2 − u1 −

1

G
iR

)
. (2.8)

Legyen f (x) = 1/ (GBp) iR (u1). Elosztva (2.8) mindkét oldalát Bp-vel és felhasz-
nálva a bevezetett jelöléseket a

dx

dτ
= α (y − x− f (x)) (2.9)
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alakú di�erenciálegyenlet adódik. Hasonlóan járhatunk el az u2 feszültségre vonat-
kozó di�erenciálegyenlettel is. Az eredeti egyenlet mindkét oldalát Bp-vel elosztva,
t helyére τ -t helyettesítve, és felhasználva a jelöléseket (2.6) második egyenlete a

dy

dτ
= x− y + z (2.10)

alakot ölti. Az induktivitás iL áramára vonatkozó di�erenciálegyenletb®l kiindulva,
iL helyére z-t, t helyére pedig τ -t helyettesítve végül

dz

dτ
= − 1

L

C2

G

1

BpG
u2 = −βy (2.11)

adódik. A fenti átalakításokkal az eredeti állapotváltozós leírásból a következ®
di�erenciálegyenlet-rendszerre jutottunk [3]:

dx

dτ
= α (y − x− f (x)) ,

dy

dτ
= x− y + z,

dz

dτ
= −βy.

(2.12)

Az id®, az elektromos áram és -feszültség, valamint a vezet®képesség, a kapacitás és
az induktivitás mértékegységeinek ismeretében könnyen belátható, hogy az így ka-
pott egyenletekben szerepl® együtthatók, függvények és változók mindegyike mentes
a �zikai dimenzióktól.

Az els® egyenletben szerepl® f függvényt a Chua-dióda áram-feszültség-
karakterisztikájából származtattuk 1/ (GBp)-vel történ® szorzással. Bevezetve az

m0 =
Ga

G
és m1 =

Gb

G

jelöléseket a függvény a következ®képpen írható fel:

f (x) =


m1x+m1 −m0, x < −1,

m0x, −1 ≤ x ≤ 1,

m1x+m0 −m1, x > 1.

(2.13)

Vizsgálataink során

α > 0, β > 0, m0 < −1 és − 1 < m1 < 0. (2.14)

Végül pedig de�niáljunk egy, a kés®bbiek folyamán fontos szerepet játszó konstanst
is:

d =


m0−m1

1+m1
, x < −1,

0, −1 ≤ x ≤ 1,
m1−m0

1+m1
, x > 1.

(2.15)

A továbbiakban az itt bevezetett dimenzió nélküli egyenletekkel, a (2.14) feltétellel,
az f függvénnyel és a d konstanssal dolgozunk úgy, hogy τ helyett rendre t-t írunk.
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2.3. Egyensúlyi helyzetek

1. De�níció. Az (x∗, y∗, z∗)T ∈ R3 pont egyensúlyi helyzete (2.12)-nek, ha a konstans

R 3 t 7→ (x∗, y∗, z∗)T ∈ R3

függvény megoldása (2.12)-nek.

1. Állítás. A (2.12) egyenletrendszernek a (2.14) feltétel mellett három egyensúlyi
helyzete van, melyek (d, 0,−d)T alakúak.

Bizonyítás. Az 1. De�níció szerint az (x∗, y∗, z∗)T egyensúlyi helyzetek az
α (y − x− f (x)) = 0,

x− y + z = 0,

−βy = 0

egyenletrendszer megoldásai lesznek. Az egyenletrendszert vizsgálva azonnal látszik,
hogy y∗ = 0, z∗ = −x∗ és f (x∗) = −x∗.

Írjuk fel az f (x∗) = −x∗ egyenletet az x∗ < −1, −1 ≤ x∗ ≤ 1 és x∗ > 1 esetekre.
Az így kapott összefüggéseket x∗-ra rendezve már egyszer¶en megmutatható, hogy
mindhárom esetben (d, 0,−d)T alakú egyensúlyi helyzet adódik.

Azt mondjuk, hogy az (x∗, y∗, z∗)T ∈ R3 egyensúlyi helyzet stabil, ha a közelében
indított megoldások örökre közel maradnak. A pontos de�níció a következ®:

2. De�níció. Az (x∗, y∗, z∗)T ∈ R3 egyensúlyi helyzet stabil, ha bármely ε > 0 esetén
létezik δ > 0 úgy, hogy tetsz®leges (x, y, z)T megoldás és

|x (0)− x∗|+ |y (0)− y∗|+ |z (0)− z∗| < δ

esetén
|x (t)− x∗|+ |y (t)− y∗|+ |z (t)− z∗| < ε, minden t ≥ 0-ra.

Az egyensúlyi helyzet instabil, ha nem stabil.

3. De�níció. Az (x∗, y∗, z∗)T ∈ R3 egyensúlyi helyzet aszimptotikusan stabil, ha
stabil és létezik δ0 > 0 úgy, hogy tetsz®leges (x, y, z)T megoldás és

|x (0)− x∗|+ |y (0)− y∗|+ |z (0)− z∗| < δ0

esetén lim
t→∞

(x (t) , y (t) , z (t))T = (x∗, y∗, z∗)T.
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3. fejezet

Elméleti háttér

Az el®z® fejezetben ismertett, a Chua-áramkör viselkedését leíró di�erenciálegyenlet-
rendszer a fázistér egyes tartományain inhomogén, konstans együtthatós, lineáris
rendszerekre redukálódik. A következ®kben ezért áttekintjük a lineáris rendszerek
elméletét [5].

3.1. Konstans együtthatós, els®rend¶ lineáris rend-

szerek

4. De�níció. Az
Ẋ (t) = AX (t) , A ∈ Rn×n, X (t) ∈ Rn (H1)

egyenletrendszert homogén lineáris egyenletrendszernek nevezzük, melyben
X (t) = (X1 (t) , X2 (t) , ..., Xn (t))T ismeretlen, Ẋ (t) pedig az X (t) id® szerinti els®
deriváltját jelöli.

Megmutatható, hogy bármely X0 ∈ Rn esetén az Ẋ (t) = AX (t), X (0) = X0

kezdetiérték-problémának az egész számegyenesen létezik megoldása. Ezt az állítást
mi most nem igazoljuk.

Igaz a következ® tétel is, amit kés®bb, a Chua-rendszer megoldásainak meghatá-
rozása során felhasználunk.

1. Tétel. (H1) megoldásai a folytonosan di�erenciálható függvények terében egy n-
dimenziós alteret alkotnak, azaz igazak a következ®k:

1. Ha ϕ1, ϕ2 megoldása (H1)-nek, akkor c1ϕ1+c2ϕ2 is megoldás bármely c1, c2 ∈ R
esetén.

2. Létezik ϕ1, ..., ϕn megoldása (H1)-nek, amelyek lineárisan függetlenek, azaz
létezik n-elem¶ alaprendszer (bázis).

3. (H1) bármely ϕ̂ megoldásához létezik ĉ1, ..., ĉn ∈ R, hogy minden t ∈ R esetén
ϕ̂ (t) = ĉ1ϕ1 (t)+ ...+ĉnϕn (t). Ekkor ĉ1ϕ1 + ...+ ĉnϕn neve általános megoldás.

Bizonyítás. A tétel els® része behelyettesítéssel ellen®rizhet® minden t ∈ R-re:

(c1ϕ1 (t) + c2ϕ2 (t))′ = c1ϕ̇1 (t) + c2ϕ̇2 (t) =

= c1Aϕ1 (t) + c2Aϕ2 (t) = A (c1ϕ1 (t) + c2ϕ2 (t)) .
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Az n-elem¶ alaprendszer létezésének igazolásához tekintsük az Rn-beli
e1, ..., en ∈ Rn standard bázist, és tekintsük az

(k.é.p.)i

{
Ẋ (t) = AX (t) ,

X (0) = ei

kezdetiérték-problémát minden i ∈ {1, 2, ..., n} esetén. Jelölje ϕi : R → R minden
i ∈ {1, 2, ..., n} esetén (k.é.p.)i megoldását.

Igazoljuk a ϕ1, ..., ϕn megoldások függetlenségét indirekt módon: tegyük fel, hogy
ϕ1, ..., ϕn lineárisan függ®. Ekkor létezik

c1, ..., cn ∈ R, c21 + ...+ c2n > 0

úgy, hogy
c1ϕ1 (t) + ...+ cnϕn (t) = 0 bármely t ∈ R esetén.

Amennyiben t = 0, úgy éppen az Rn-beli standard bázis lineáris kombinációját
kapjuk, ami nem lehet nulla, ezért ellentmondásra jutunk:

c1ϕ1 (0) + ...+ cnϕn (0) = 0,

c1e1 + ...+ cnen = 0. E

A tétel harmadik állítása az, hogy (H1) összes ϕ̂ megoldása el®áll a ϕ1, ..., ϕn
alaprendszer lineáris kombinációjaként. Létezik ĉ1, ..., ĉn úgy, hogy

ϕ̂ (0) = ĉ1e1 + ...+ ĉnen.

Legyen
ψ (t) = ĉ1ϕ1 (t) + ...+ ĉnϕn (t) ,

amely a tétel els® állítása alapján megoldása (H1)-nek. Világos, hogy

ψ (0) = ĉ1e1 + ...+ ĉnen = ϕ̂ (0) .

A Picard-Lindelöf-féle unicitástétel [7] értelmében, ha ϕ̂ és ψ megoldások, és
ψ (0) = ϕ̂ (0), akkor ϕ̂ ≡ ψ, ami már maga után vonja a 3. állítást.

3.2. Inhomogén rendszerek

5. De�níció. Az

Ẋ (t) = AX (t) + b, A ∈ Rn×n, X (t) , b ∈ Rn (IH1)

egyenletrendszert inhomogén lineáris egyenletrendszernek nevezzük, melyben
X (t) = (X1 (t) , X2 (t) , ..., Xn (t))T ismeretlen.

2. Állítás. Ha ψ1 és ψ2 megoldásai (IH1)-nek, akkor ϕ = ψ1−ψ2 megoldása (H1)-nek.

Bizonyítás. Az állítás egyszer¶ behelyettesítéssel ellen®rizhet®:

ϕ̇ (t) = ψ̇1 (t)− ψ̇2 (t) = Aψ1 (t) + b− Aψ2 (t)− b = A (ψ1 (t)− ψ2 (t)) = Aϕ (t) .
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2. Tétel. Az (IH1) egyenlet általános megoldása

X (t) = c1ϕ1 (t) + ...+ cnϕn (t)︸ ︷︷ ︸
(H1) általános megoldása

+ ϕ̃ (t)︸︷︷︸
(IH1) partikuláris megoldása

, t ∈ R, (MO)

alakú.

Bizonyítás. El®ször behelyettesítéssel igazoljuk, hogy az ilyen alakú függvények
megoldásai (IH1)-nek, azaz bármely c1, ..., cn ∈ R esetén c1ϕ1 + ...+ cnϕn + ϕ̃ meg-
oldása (IH1)-nek. Elvégezve a behelyettesítést,

(c1ϕ1 (t) + ...+ cnϕn (t) + ϕ̃ (t))′ = c1ϕ̇1 (t) + ...+ cnϕ̇n (t) + ˙̃ϕ (t) =

= c1Aϕ1 (t) + ...+ cnAϕn (t) + (Aϕ̃ (t) + b) =

= A (c1ϕ1 (t) + ...+ cnϕn (t) + ϕ̃ (t))︸ ︷︷ ︸
X(t)

+b,

adódik, X (t) tehát megoldás.
Most pedig megmutatjuk, hogy minden megoldás (MO)-alakban áll el®, azaz

(IH1) bármely ψ̂ (t) megoldása esetén létezik ĉ1, ..., ĉn ∈ R úgy, hogy minden valós t
esetén

ψ̂ (t) = ĉ1ϕ1 (t) + ...+ ĉnϕn (t) + ϕ̃ (t) .

Mivel tudjuk, hogy ψ̂ − ϕ̃ megoldása (H1)-nek, így az 1. Tétel 3. pontja szerint

ψ̂ (t)− ϕ̃ (t) = ĉ1ϕ1 (t) + ...+ ĉnϕn (t)

valamely ĉ1, ..., ĉn ∈ R konstansokkal. Azonnal látszik, hogy

ψ̂ (t) = ĉ1ϕ1 (t) + ...+ ĉnϕn (t) + ϕ̃ (t) .

3.3. Konstans együtthatós, n-edrend¶ lineáris egyen-

letek

6. De�níció. Az

Y (n) + a1Y
(n−1) + ...+ anY = 0, a1, ..., an ∈ R (H2)

egyenletet homogén, n-edrend¶, lineáris, konstans együtthatós egyenletnek, az

Y (n) + a1Y
(n−1) + ...+ anY = s, a1, ..., an, s ∈ R (IH2)

egyenletet pedig inhomogén, n-edrend¶, lineáris, konstans együtthatós egyenletnek
nevezzük, ahol Y = Y (t) ismeretlen függvény, Y (i) pedig Y i-edik deriváltját jelöli,
i ∈ {1, 2, ..., n}.

8
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Vegyük észre, hogy (IH1) és (IH2) ekvivalensek. Ehhez alkalmazzuk a következ®
megfeleltetést:

X =


X1

X2
...
Xn

 =


Y
Y ′

...
Y (n−1)

 ,

így az 
X ′1 = X2

X ′2 = X3

...

X ′n = −a1Xn − a2Xn−1 − ...− anX1 + s

egyenletrendszerre jutunk. Ez éppen (IH1)-alakú úgy, hogy

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1

 és b = (0, 0, ..., 0, s)T .

Az ekvivalencia miatt a 2. Tételb®l azonnal adódik az alábbi állítás.

3. Tétel. (IH2) általános megoldása

Ψ (t) = c1Ψ1 (t) + ...+ cnΨn (t) + Ψ̃ (t) , t ∈ R,

alakú, ahol Ψ1, ...,Ψn lineárisan független megoldásai (H2)-nek, Ψ̃ pedig partikuláris
megoldása (IH2)-nek. A Ψ1, ...,Ψn függvényeket alaprendszernek hívjuk.

Megjegyezzük, hogy Ψi itt nem más, mint 2. Tételben szerepl® ϕi els® kompo-
nense. A továbbiakban n = 3-ra szorítkozva megmutatjuk, hogyan lehetséges az
alaprendszer, azaz 3 darab lineárisan független megoldás meghatározása. Ehhez az

Y (3) + a1Y
(2) + a2Y

(1) + a3Y = 0 (H3)

homogén egyenletet vizsgáljuk.
Vegyük észre, hogy Y (t) = eλt-t behelyettesítve, majd eλt-vel egyszer¶sítve a

λ3 + a1λ
2 + a2λ+ a3 = 0 (3.1)

karakterisztikus egyenletet kapjuk, melynek gyökeit sajátértékeknek nevezzük.
Azonnal látszik, hogy λ akkor és csak akkor gyöke (3.1)-nek, ha eλt megoldása
(H3)-nak. Tudjuk továbbá, hogy a karakterisztikus egyenletnek C felett 3 gyöke
van: λ1, λ2 és λ3.

3. Állítás. Négy esetet különböztetünk meg attól függ®en, hogy λ1, λ2, λ3 ∈ C sa-
játértékek hogyan helyezkednek el a komplex számsíkon:

a. Ha λ1, λ2, λ3 ∈ R páronként különböz®k, akkor
{
eλ1t, eλ2t, eλ3t

}
alaprendszer;

b. Ha λ1 = λ2 6= λ3 ∈ R, akkor
{
eλ1t, teλ1t, eλ3t

}
alaprendszer;

9
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c. Ha λ1 = λ2 = λ3 = λ ∈ R, akkor
{
eλt, teλt, t2eλt

}
alaprendszer;

d. Ha λ1 = γ + iω, λ2 = γ − iω, γ, ω ∈ R, ω 6= 0, λ3 ∈ R, akkor{
eγt cosωt, eγt sinωt, eλ3t

}
alaprendszer.

Bizonyítás. Az els® három esetben behelyettesítéssel könnyen ellen®rizhet®, hogy
az egyes függvényrendszerek komponensei valóban megoldásai (H3)-nak, valamint
lineárisan függetlenek is, ezért alaprendszerek.

Komplex konjugált sajátértékpár esetén (d.) tudjuk, hogy

eλ1t = e(γ+iω)t = eγt (cosωt+ i sinωt) és eλ2t = e(γ−iω)t = eγt (cosωt− i sinωt)

megoldásai (H3)-nak, ezért tetsz®leges lineáris kombinációjuk is megoldás, tehát

eλ1t + eλ2t

2
= eγt cosωt és

eλ1t − eλ2t

2i
= eγt sinωt

valós megoldásai (H3)-nak. Könnyen belátható, hogy lineárisan függetlenek is, ezért
az
{
eγt cosωt, eγt sinωt, eλ3t

}
függvényrendszer valóban alaprendszer.
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4. fejezet

A Chua-rendszer explicit megoldása
és numerikus implementálása

Ebben a fejezetben megmutatjuk, hogy a Chua-áramkört leíró di�erenciálegyenlet-
rendszerr®l hogyan térhetünk át egy inhomogén, lineáris, harmadrend¶, konstans
együtthatós egyenletre. Meghatározzuk az ekvivalens probléma megoldásait a pa-
raméterek és a kezdeti értékek függvényében, végül tárgyaljuk a numerikus imple-
mentáció során fellép® technikai nehézségeket.

4.1. Az ekvivalens probléma, harmadrend¶ egyenlet

Tekintsük a (2.12) egyenletrendszert, valamint vegyük észre, hogy f szakaszonként
f (x) = mx− d (1 +m), m ∈ {m0,m1} alakú. Szorozzuk be (2.12) harmadik egyen-
letét −1/β-val és deriváljuk mindkét oldalt:

y = − 1

β
z(1), y(1) = − 1

β
z(2). (4.1)

Behelyettesítve y-t és y(1)-t (2.12) második egyenletébe az alábbiakat kapjuk x-re és
x(1)-ra:

x = −
(

1

β
z(2) +

1

β
z(1) + z

)
, x(1) = −

(
1

β
z(3) +

1

β
z(2) + z(1)

)
.

Az így kapott összefüggéseket (2.12) els® egyenletébe helyettesítve

−
(

1

β
z(3) +

1

β
z(2) + z(1)

)
= −α

β
z(1) + α (1 +m)

(
1

β
z(2) +

1

β
z(1) + z

)
+ α (1 +m) d

adódik. Végül, β-val szorozva, az alábbi harmadrend¶ egyenletet kapjuk:

z(3) + (1 + α + αm) z(2) + (β + αm) z(1) + αβ (1 +m) z + αβ (1 +m) d = 0. (*)

4. Állítás. A z = −d partikuláris megoldása (*)-nak.

Bizonyítás. Az állítás egyszer¶ behelyettesítéssel ellen®rizhet®:

z = −d =⇒ z(1) = z(2) = z(3) = 0, ezért αβ (1 +m) (−d) + αβ (1 +m) d = 0.

Megjegyezzük, hogy az állítás következik abból is, hogy a (*)-al ekvivalens (2.12)
rendszernek az 1. Állítás szerint (d, 0,−d)T egyensúlyi helyzete.
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4.2. A megoldás meghatározása

Tekintsük most (*) karakterisztikus egyenletét:

λ3 + (1 + α + αm)λ2 + (β + αm)λ+ αβ (1 +m) = 0,

melynek gyökei λ1, λ2, λ3 ∈ C. Következ® lépésként meghatározzuk a megoldást
az (x (0) , y (0) , z (0))T kezdeti érték, a λ1, λ2, λ3 karakterisztikus gyökök és az α, β
paraméterek függvényében. A 3. Állítás szerint négy eset kezelése szükséges:

a. Ha λ1, λ2, λ3 ∈ R páronként különböz®, akkor a 3. Tétel értelmében

z (t) = c1e
λ1t + c2e

λ2t + c3e
λ3t − d, c1, c2, c3 ∈ R.

Az ismeretlen együtthatók meghatározásához szükségünk van z-re, valamint an-
nak els® és második deriváltjára t = 0-ban. Elvégezve a deriválásokat, behelyet-
tesítve t = 0-át, továbbá (4.1)-et és (2.12) második egyenletét felhasználva

z (0) = c1 + c2 + c3 − d,
z(1) (0) = λ1c1 + λ2c2 + λ3c3 = −βy (0) ,

z(2) (0) = λ21c1 + λ22c2 + λ23c3 = −βy(1) (0) = −β [x (0)− y (0) + z (0)]

adódik. Ez c1, c2, c3-ra nézve egy lineáris egyenletrendszer:c1c2
c3

 =

 1 1 1
λ1 λ2 λ3
λ21 λ22 λ23

−1 z (0) + d
−βy (0)

−β [x (0)− y (0) + z (0)]

 .

b. Ha λ1 = λ2 6= λ3 ∈ R, akkor

z (t) = c1e
λ1t + c2te

λ1t + c3e
λ3t − d,

ezért

z (0) = c1 + c3 − d,
z(1) (0) = λ1c1 + c2 + λ3c3 = −βy (0) ,

z(2) (0) = λ21c1 + 2λ1c2 + λ23c3 = −β [x (0)− y (0) + z (0)] ,

és c1c2
c3

 =

 1 0 1
λ1 1 λ3
λ21 2λ1 λ23

−1 z (0) + d
−βy (0)

−β [x (0)− y (0) + z (0)]

 .

c. Ha λ1 = λ2 = λ3 = λ ∈ R, akkor

z (t) = c1e
λt + c2te

λt + c3t
2eλt − d,

ezért

z (0) = c1 − d,
z(1) (0) = λc1 + c2 = −βy (0) ,

z(2) (0) = λ2c1 + 2λc2 + 2c3 = −β [x (0)− y (0) + z (0)] ,
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és c1c2
c3

 =

 1 0 0
λ 1 0
λ2 2λ 2

−1 z (0) + d
−βy (0)

−β [x (0)− y (0) + z (0)]

 .

d. Ha λ1 = γ + iω, λ2 = γ − iω, γ, ω ∈ R, ω 6= 0, λ3 ∈ R, akkor

z (t) = c1e
γt cosωt+ c2e

γt sinωt+ c3e
λ3t − d,

ezért

z (0) = c1 + c3 − d,
z(1) (0) = c1γ + c2ω + c3λ3 = −βy (0) ,

z(2) (0) = c1
(
γ2 − ω2

)
+ c22γω + c3λ

2
3 = −β [x (0)− y (0) + z (0)] ,

és c1c2
c3

 =

 1 0 1
γ ω λ3

(γ2 − ω2) 2γω λ23

−1 z (0) + d
−βy (0)

−β [x (0)− y (0) + z (0)]

 .

4.3. Numerikus implementálás, nehézségek

Az el®z® szakaszban ismertettük a megoldás meghatározására szolgáló esetkezelé-
ses eljárást. Ez alapján már lehet®ségünk nyílik a Chua-rendszer viselkedésének,
pályáinak numerikus meghatározására és vizsgálatára. Ehhez Matlab-kódot [6] ké-
szítettünk, amely megtalálható a dolgozat Függelékében.

A program folyamatosan vizsgálja, hogy x pillanatnyi értéke melyik tartományba
esik (x < −1, −1 ≤ x ≤ 1 vagy x > 1), és ez alapján tekinti a megfelel® lineáris
rendszert.

Ha a numerikusan meghatározott pálya átlép két tartomány határán (ekkor x = 1
vagy x = −1), akkor új kezdeti értékként a törésponthoz tartozó (x, y, z)T értéket
kell alkalmazni. Ennek minél pontosabb meghatározására van szükségünk, melyre
számos iteratív numerikus technika létezik.

Mivel a program megvalósítása során a Bolzano-tételen alapuló felez® módszert
alkalmaztuk, ezért a tétel kimondása után egy példán megmutatjuk az algoritmus
m¶ködését.

4. Tétel. (Bolzano) Ha f : [a, b] 7→ R korlátos és zárt (kompakt) intervallumon
értelmezett folytonos függvény, és f (a) f (b) < 0, akkor létezik c ∈ (a, b) úgy, hogy
f (c) = 0.

A tétel tananyag, ezért a bizonyítást nem közöljük, az számos könyvben, jegy-
zetben (pl. [8]-ben) megtalálható.

Az alábbi példán megmutatjuk, hogyan alkalmazható a felez® módszer a Chua-
rendszer esetében a határátlépések esetén szükséges új kezdeti értékek meghatáro-
zására.

1. Példa. Tegyük fel, hogy valamely i ∈ N id®lépésre létezik

(xi, yi, zi)
T és (xi+1, yi+1, zi+1)

T úgy, hogy xi < −1 = xvárt < xi+1.
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Ekkor tudjuk, hogy átléptünk az x < −1 tartományból a −1 ≤ x ≤ 1 tartomány-
ba. Legyen ε adott. Meghatározandó az új (x̂ (ε) , ŷ (ε) , ẑ (ε))T kezdeti feltétel a
−1 ≤ x ≤ 1 tartományhoz tartozó lineáris rendszerhez.

Legyen ti és ti+1 az id® értéke az i-edik és az i + 1-edik id®lépésben. Kezdet-
ben a0 = ti, b0 = ti+1. A k-adik lépésben (k = 0, 1, 2, ...) járjunk el a következ®,
tetsz®leges tartományátlépés esetén alkalmazható algoritmus szerint:

1. Határozzuk meg (x (ck) , y (ck) , z (ck))
T értékét, ahol ck = (ak + bk) /2, továb-

bá legyen f (ck) = x (ck)− xvárt;

2. Ha |f (ck)| < ε, akkor (x̂ (ε) , ŷ (ε) , ẑ (ε))T = (x (ck) , y (ck) , z (ck))
T és az algo-

ritmus leáll;

3. Ha |f (ck)| ≥ ε, f (ck) < 0 és f (ak) < f (bk), akkor ak+1 = ck és bk+1 = bk;

4. Ha |f (ck)| ≥ ε, f (ck) < 0 és f (ak) > f (bk), akkor ak+1 = ak és bk+1 = ck;

5. Ha |f (ck)| ≥ ε, f (ck) > 0 és f (ak) > f (bk), akkor ak+1 = ck és bk+1 = bk;

6. Ha |f (ck)| ≥ ε, f (ck) > 0 és f (ak) < f (bk), akkor ak+1 = ak és bk+1 = ck.

Könnyen belátható, hogy bármely [ak+1, bk+1] ⊆ [ti, ti+1] intervallum esetén
f (an+1) f (bn+1) < 0, így a Bolzano-tétel miatt a kapott algoritmus tetsz®legesen
kicsi ε mellett véges id®ben lefut.

A gyakorlati tapasztalatok azt mutatják, hogy a numerikus problémák kikü-
szöbölésének érdekében az (x̂ (ε) , ŷ (ε) , ẑ (ε))T kezdeti feltétel lehet® legpontosabb
meghatározására van szükség. Célszer¶ ezért ε értékét minél kisebbre (pl. ε = 10−12)
választani.
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4.1. ábra. Szimulációs eredmények: az x, y, z koordináták t függvényében

Az alábbiakban közlünk néhány szimulációs eredményt, melyek a 4.1., 4.2. és
4.3. ábrákon láthatók. Az eremények a következ® paraméterek mellett adódtak:

C1 = 10 nF, C2 = 156 nF, G = 1 mS, L = 6 mH, Ga = 1, 5G, Gb = −0, 7G,
t ∈ [0, 40] s, az id®lépések száma i = 2000.

A villamos paraméterekb®l származtatott dimenzió nélküli együtthatók és a kez-
deti érték:

α = 15, 6, β = 26, m0 = −1, 5, m1 = −0, 7, (x (0) , y (0) , z (0))T = (−0.7, 0, 0)T.
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Az egyes szakaszokhoz tartozó sajátértékek a következ®k:

λ (α, β,m0) ≈

 9, 0097
−1, 1049 + 4, 6139i
−1, 1049− 4, 6139i

 , λ (α, β,m1) ≈

 −6, 3328
0, 3264 + 4, 3712i
0, 3264− 4, 3712i

 .
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4.2. ábra. Szimulációs eredmények: y és z függése x-t®l
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4.3. ábra. A rendszer pályája
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5. fejezet

Hopf-bifurkáció

Ebben a fejezetben egy kétdimenziós példán keresztül ismertetjük a Hopf-
bifurkációt. Az elméleti áttekintés után numerikus módszerek segítségével mutatunk
példát a jelenségre a dolgozatban vizsgált Chua-rendszerben.

5.1. Elméleti bevezet®

Hopf-bifurkáció során − valamely rendszerparaméter megváltoztatásával − egyen-
súlyi helyzet környezetében periodikus pálya jön létre vagy t¶nik el. Ennek szüksé-
ges feltétele, hogy a rendszer valamely egyensúlyi helyzetében felírt Jacobi-mátrix
komplex konjugált sajátértékeinek valós része a paraméterváltoztatás során el®jelet
váltson.

A jelenség bemutatásához tekintsük a következ® kétdimenziós rendszert, ahol
µ ∈ R paraméter: 

ẋ = µx− y − x
(
x2 + y2

)︸ ︷︷ ︸
g(x,y)

,

ẏ = x+ µy − y
(
x2 + y2

)︸ ︷︷ ︸
h(x,y)

.
(5.1)

Azonnal látszik, hogy (0, 0) tetsz®leges µ esetén egyensúlyi helyzet. A Jacobi-
mátrixhoz tekintsük az alábbi deriváltakat:

∂xg (x, y) = µ− 3x2 − y2, ∂yg (x, y) = −2xy − 1,

∂xh (x, y) = 1− 2xy, ∂yh (x, y) = µ− 3y2 − x2,

melyek alapján a (0, 0)-hoz tartozó Jacobi-mátrix:

J (0, 0) =

(
µ −1
1 µ

)
.

Könnyen megmutatható, hogy J (0, 0) sajátértékei: µ ± i. Világos, hogy ezek a
sajátértékek µ = 0 esetén a képzetes tengelyre esnek, és ha µ áthalad a nullán,
akkor a valós részük el®jelet vált.

Legyen z = x + iy komplex változó. Ekkor ż = ẋ + iẏ. Behelyettesítve (5.1)
egyenleteit, valamint felhasználva, hogy |z|2 = x2 + y2, egyszer¶en ellen®rizhet®,
hogy fennál a

ż = (µ+ i) z − z |z|2
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egyenl®ség. Térjünk át polárkoordinátákra, azaz legyen z = reiϕ, ahol r = |z| és
tanϕ = Im (z) /Re (z). Figyelembe véve, hogy ebben az esetben z, r és ϕ is t
függvénye, a polárkoordinátás formula deriválásával azt kapjuk, hogy

ż = ṙeiϕ + reiϕiϕ̇.

Tegyük egyenl®vé a ż-ra kapott két összefüggést úgy, hogy z helyett annak polárko-
ordinátás alakját használjuk. Így azt kapjuk, hogy

ṙeiϕ + reiϕiϕ̇ = (µ+ i) reiϕ − reiϕr2.

Egyszer¶sítve az eiϕ nemnulla tényez®vel az ṙ + irϕ̇ = (µ+ i) r − r3 összefüggésre
jutunk.

Ez akkor és csak akkor teljesül, ha az egyenlet két oldalán elhelyezked® valós és
képzetes részek megegyeznek, ami az alábbi egyenletrendszerre vezet:{

ṙ = r (µ− r2) ,
ϕ̇ = 1.

A µ paraméter függvényében három esetet szükséges vizsgálni:

1. Ha µ = 0, akkor ṙ = −r3. Tudjuk, hogy r pozitív, hiszen r = |z| > 0, ezért
−r3 < 0, így ṙ < 0, azaz r szigorúan monoton csökken, tehát a (0, 0) egyensúlyi
helyzet stabil. (A konkrét példánál globálisan aszimptotikusan stabil.)

2. Ha µ < 0, akkor bármely r esetén r (µ− r2) < 0, tehát ṙ < 0. Látjuk, hogy r
ebben az esetben is szigorúan monoton csökken, de kis |r| esetén az el®z®nél
gyorsabban.

3. Ha µ > 0, akkor három aleset lehetséges:

• Ha r =
√
µ, akkor ṙ = 0, r konstans, tehát van egy

√
µ sugarú periodikus

pálya;

• Ha r >
√
µ, akkor ṙ negatív, r tehát szigorúan monoton csökken;

• Ha 0 < r <
√
µ, akkor ṙ pozitív, r ezért szigorúan monoton n®.

x

y

µ < 0

x

y

µ = 0

x

y

µ > 0

5.1. ábra. Szuperkritikus Hopf-bifurkáció
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Azt látjuk, hogy µ > 0 esetén a (0, 0) egyensúlyi helyzet instabil, és a periodikus
megoldás orbitálisan aszimptotikusan stabil. Ez azt jelenti, hogy a periodikus pá-
lyához közel indított megoldások örökre közel maradnak, és a periodikus pályának
létezik olyan környezete, hogy az abból indított megoldások a periodikus pályához
konvergálnak.

Ezt a jelenséget szuperkritikus Hopf-bifurkációnak nevezzük. A különböz® para-
méterekhez tartozó fázisképeket az 5.1. ábrán szemléltetjük.

Tekintsük most az alábbi rendszert:{
ẋ = µx− y + x (x2 + y2) ,

ẏ = x+ µy + y (x2 + y2) .
(5.2)

Az el®z® esettel teljesen analóg módon eljárva azt kapjuk, hogy (5.2) ekvivalens az
alábbi rendszerrel: {

ṙ = r (µ+ r2) ,

ϕ̇ = 1.

Ezúttal is három esetet szükséges vizsgálni µ paramétert®l függ®en:

1. Ha µ = 0, akkor ṙ = r3 pozitív, azaz r szigorúan monoton n®, tehát a (0, 0)
egyensúlyi helyzet instabil.

2. Ha µ > 0, akkor bármely r esetén r (µ+ r2) > 0, ezért ṙ pozitív. Látjuk,
hogy r ebben az esetben is szigorúan monoton n®, de kis |r| esetén az el®z®nél
gyorsabban.

3. Ha µ < 0, akkor három aleset lehetséges:

• Ha r =
√
−µ, akkor ṙ = 0, r tehát konstans és van egy

√
−µ sugarú

periodikus pálya;

• Ha r >
√
−µ, akkor ṙ pozitív, r ezért szigorúan monoton n®;

• Ha 0 < r <
√
−µ, akkor ṙ negatív, r tehát szigorúan monoton csökken.

Azt látjuk, hogy ekkor a (0, 0) egyensúlyi helyzet stabil, a periodikus pálya pedig in-
stabil. A rendszer ekkor szubkritikus Hopf-bifurkáción megy keresztül. A különböz®
paraméterekhez tartozó fázisképeket az 5.2. ábra szemlélteti.

x

y

µ < 0

x

y

µ = 0

x

y

µ > 0

5.2. ábra. Szubkritikus Hopf-bifurkáció
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5.2. Hopf-bifurkáció a Chua-rendszerben

Ebben a szakaszban numerikus vizsgálatok segítségével mutatunk példát szuperkri-
tikus Hopf-bifurkációra a Chua-rendszerben. Ehhez tekintsük ismét a (2.12) egyen-
letrendszert. Elvégezve az egyenletek jobb oldalának x-, y- és z-szerinti deriválását
a következ® Jacobi-mátrixot kapjuk:

J (x, y, z) =

−α (1 +m1) α 0
1 −1 1
0 −β 0

 .

Látjuk, hogy a Jacobi-mátrix nem függ az x, y és z változóktól. Olyan α0 és β0
paramétereket keresünk m1 = −0, 7 mellett, hogy ha α áthalad α0-on és β rögzítve
van β0-ban, akkor J komplex konjugált sajátértékeinek valós része el®jelet vált.

Re

Im
×

×

×

α < α0

Re

Im
×

×

×

1, 5991i

−1, 5991i

−2, 0469

α = α0

Re

Im
×

×

×

α > α0

5.3. ábra. A Jacobi-mátrix sajátértékei α0 környezetében

A [3] dolgozat szerint ha d 6= 0 és β0 ∈ (0, 15), akkor létezik ilyen α0 a (0, 5)
intervallumban. Legyen β = β0 = 5 és m1 = −0, 7 rögzített. Ezen feltételeket
�gyelembe véve Matlab-kódot írtunk azon kritikus α = α0 meghatározására, amely
esetén a Jacobi-mátrix komplex konjugált sajátértékei éppen a képzetes tengelyre
esnek. A kódot a dolgozat Függeléke tartalmazza.

2,66

2,67 −2

0

2

·10−3

−2,67

−2,66

x

y

z

α < α0

2,66
2,67 −2

0
2

·10−3

−2,67

−2,66

x

y

z

α = α0

2,5
3 −0,1

0
0,1

−3

−2,5

−2

x
y

z

α > α0

5.4. ábra. Fázisképek különböz® α paraméterek esetén

A szimulációs eredmények alapján a kritikus α-érték a megadott feltételek
mellett α0 ≈ 3, 4896. A Jacobi-mátrix sajátértékeinek viselkedését az 5.3. áb-
rán, a rendszer fázisképeit különböz® α paraméterek és m0 = 1, 5 esetén, az
((m1 −m0) / (1 +m1) , 0, (m0 −m1) / (1 +m1))

T egyensúlyi helyzet környezetében
pedig az 5.4. ábrán szemléltetjük.
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A numerikus vizsgálatok alapján kapott fázisképek azt mutatják, hogy α ≤ α0

esetén az ((m1 −m0) / (1 +m1) , 0, (m0 −m1) / (1 +m1))
T egyensúlyi helyzet stabil,

de α > α0 esetén ez az egyensúlyi helyzet instabil, és megjelenik egy aszimptotikusan
stabil periodikus pálya.

0 2 4

·10−4

0

1

2

3

·10−3

α− α0

A

−0,5 0 0,5 1 1,5 2

·10−3

0

1

2

3

·10−2

α− α0

A

5.5. ábra. Bifurkációs diagramok

Azt látjuk, hogy a Chua-rendszer szuperkritikus Hopf-bifurkáción megy keresz-
tül. A rendszer bifurkációs diagramját, azaz a periodikus pálya A amplitúdóját α
függvényében különböz® tartományok és α > α0 esetén az 5.5. ábra szemlélteti,
az 5.6. ábrán pedig néhány periodikus pálya numerikus közelítése látható.

2,67 2,67 2,67 2,67 2,67 2,67
−5

0

5

·10−4

−2,67

−2,67

−2,66

x

y

z

5.6. ábra. Periodikus pályák
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6. fejezet

Perióduskett®z® (�ip-) bifurkáció

Ebben a fejezetben egy példa segítségével ismertetjük a perióduskett®z® (más né-
ven �ip-) bifurkációt leképezésekre, majd megmutatjuk, mit jelent a periódukett®z®
bifurkáció di�erenciálegyenlet-rendszerek esetén. Az elméleti bevezet®t követ®en
példát mutatunk a jelenségre a Chua-rendszerben.

6.1. Flip-bifurkáció leképezések esetén

A perióduskett®z® (vagy �ip-) bifurkáció bemutatásához tekintsük az

f : R× R 3 (x, α) 7→ − (1 + α)x+ x3 ∈ R

leképezést (0, 0) közelében, és vezessük be az fα (x) = f (x, α) , x ∈ R, jelölést.
7. De�níció. Legyen ϕ : R 7→ R leképezés, és legyen x ∈ R. Azt mondjuk, hogy x a
ϕ leképezés �xpont ja, ha ϕ (x) = x.

Világos, hogy az fα leképezés �xpontjai éppen az x = − (1 + α)x + x3 egyenlet
megoldásai. Azonnal látszik, hogy x = 0 �xpont. Ha x 6= 0, akkor

1 = −1− α + x2 ⇐⇒ 2 + α = x2 ⇐⇒ x = ±
√

2 + α 6≈ 0, ha |α| kicsi,

ezért az x = 0 a leképezés egyetlen origóközeli �xpontja.
Leképezések esetén a bifurkáció szükséges feltétele, hogy a �xpontban vett de-

riváltnak legyen olyan sajátértéke, ami az egységkörre esik. Tekintsük f x-szerinti
deriváltját: f ′x = − (1 + α) + 3x2. Látjuk, hogy f ′x (0, α) = − (1 + α), ezért α = 0
esetén f ′x (0, 0) = −1, ami az egységkörre esik.

Vizsgáljuk most a leképezés második iteráltjának �xpontjait:

f 2
α (x) = fα (fα (x)) = − (1 + α) fα (x) + (fα (x))3 .

Elvégezve a behelyettesítést, valamint �gyelembe véve, hogy |x| kicsi,

f 2
α (x) = (1 + α)2 x−

[
(1 + α) + (1 + α)3

]
x3 +O (x5) = (1 + α)2 x+O (x3)

írható fel. Az világos, hogy x = 0 �xpontja f 2
α-nek is. Megmutatható, hogy f 2

α-
nek csak α > 0 esetén létezik további nemtriviális �xpontja, és belátható az is,
hogy pontosan kett® ilyen van:

√
α és −

√
α. Behelyettesítéssel ellen®rizhet®, hogy

fα (±
√
α) = ∓

√
α, azaz f 2

α �xpontjai éppen fα 2-periodikus pályáját adják.
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x

y
y = x

y = −x

fα

(x0, 0)

(x0, x1)

(x1, x1)

(x1, x2)
(x2, x2)

(x2, x3)

α < 0

x

y
y = x

y = −x
fα

(x0, 0)

(−
√
α,
√
α)

(
√
α,−
√
α)

(x0, x1)(x1, x1)

(x1, x2) (x2, x2)

(x2, x3)(x3, x3)

α > 0

6.1. ábra. Szuperkritikus �ip-bifurkáció (Jelölés: xn+1 = fα (xn) , n ≥ 0)

Vizsgáljuk meg az úgynevezett pókháló-módszer segítségével fα �xpontjának,
valamint 2-periodikus pályájának stabilitását.

A 6.1. ábra alapján α < 0 esetén x = 0 vonzza az x0, x1, x2, ... pályát, ezért
az fα leképezés x = 0 �xpontja aszimptotikusan stabil. Ha α = 0, akkor fα érin-
ti az y = −x egyenest, és a pókháló-módszer segítségével megmutatható, hogy
x = 0 aszimptotikusan stabil. Azt is látjuk, hogy a kicsi, pozitív α esetén kiala-
kuló 2-periodikus megoldás orbitálisan aszimptotikusan stabil, és x = 0 elveszíti a
stabilitását. Ezt a jelenséget szuperkritikus �ip-birufkációnak nevezzük.

x

y

gα

α < 0

x

y

gα
α = 0

x

y

gα
α > 0

6.2. ábra. Szubkritikus �ip-bifurkáció

Hasonlóan vizsgálható a

g : R× R 3 (x, α) 7→ − (1 + α)x− x3 ∈ R

leképezés is az origó közelében. Megmutatható, hogy kizárólag α < 0 esetén létezik
2-periodikus pálya, és ebben az esetben gα

(
±
√
−α
)

= ∓
√
−α. A 6.2. ábrán azt

látjuk, hogy ha α < 0, akkor az x = 0 �xpont stabil, a 2-periodikus pálya pedig
instabil. Ha α ≥ 0, akkor a pókháló-módszer alapján az x = 0 �xpont instabil. Ezt
a jelenséget szubkritikus �ip-bifurkációnak nevezzük.
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Az itt bemutatott példáktól eltér® leképezésekre az alábbi tétel alkalmazható,
melynek bizonyítása megtalálható például a [9] könyvben.

5. Tétel. Tegyük fel, hogy a háromszor folytonosan di�erenciálható f : R× R 7→ R
leképezésre teljesülnek az alábbi feltételek:

1. f (0, 0) = 0;

2. f ′x (0, 0) = −1;

3. 1
2

[f ′′xx (0, 0)]2 + 1
3
f ′′′xxx (0, 0) 6= 0;

4. f ′′xα (0, 0) 6= 0.

Ekkor f perióduskett®z® bifurkáción megy át, ahogy α áthalad a nullán.

6.2. Flip-bifurkáció di�erenciálegyenlet-rendszerek

esetén

Ebben a szakaszban megmutatjuk, mit jelent a perióduskett®z® (�ip-) bifurkáció
di�erenciálegyenlet-rendszerek esetében. Az egyszer¶ség kedvéért csak 3-dimenziós
rendszereket tekintünk.

Tegyük fel, hogy a vizsgált háromdimenziós di�erenciálegyenlet-rendszernek lé-
tezik L0 periodikus pályája. Állítsunk L0-ra transzverzálisan egy síkot valamely

(x, y, z)

P (x, y, z)

L0 U

(
x∗, y∗, z∗

)

L1

U

P1

P2

6.3. ábra. Flip-bifurkáció di�erenciálegyenlet-rendszerek esetén

(x∗, y∗, z∗) pontján keresztül, azaz úgy, hogy az L0 pálya (x∗, y∗, z∗)-ban vett érin-
t®je ne essen bele a síkba. Tekintsük (x∗, y∗, z∗) egy kicsi U környezetét ebben a
síkban. A di�erenciálegyenlet-rendszerek megoldásai folytonosan függenek a kezdeti
feltételekt®l, ezért elég kicsi U környezet esetén a tetsz®leges (x, y, z) ∈ U kezdeti
pontból induló megoldás újra metszeni fogja a síkot.

De�niáljuk a P : U 7→ R3 leképezést úgy, hogy tetsz®leges (x, y, z) ∈ U esetén
P (x, y, z) legyen a sík azon pontja, ahol az (x, y, z) kezdeti pontból induló megoldás
újra metszi a síkot. A P leképezés �xpontjai megfeleltethet®k a di�erenciálegyenlet-
rendszer periodikus pályáinak. Világos, hogy az (x∗, y∗, z∗) pont P �xpontja.

Ha bizonyos paraméterek esetén P perióduskett®z® bifurkáción megy át,
azaz P-nek lesz egy P1, P2, P1, P2, ... periodikus pályája, akkor az eredeti
di�erenciálegyenlet-rendszer L0 periodikus pályája közelében megjelenik egy új, L1

periodikus pálya úgy, hogy ezen pálya minimális periódusa megközelít®leg kétsze-
rese az eredetinek. Di�erenciálegyenlet-rendszerek esetén ezt a jelenséget nevezzük
perióduskett®z® bifurkációnak. A jelenséget a 6.3. ábra szemlélteti.
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6.3. A jelenség meg�gyelése a Chua-rendszerben

Az alábbiakban numerikus vizsgálatok segítségével mutatunk példát periódusket-
t®z® bifurkációkra a Chua-rendszerben. Az ehhez írt Matlab-scriptet a Függelék
tartalmazza. A [3] dolgozat alapján, ha m0 = −8/7, m1 = −5/7 és β = 16 rög-
zített, és α 8, 855 és 9, 173 között mozog, akkor a Chua-rendszer perióduskett®z®
bifurkációk sorozatán megy keresztül.

El®ször vizsgáljuk a rendszert 8, 8557-közeli α paraméterekre. Tekintsük egy pe-
riodikus pálya L0 közelítését α = 8, 855 esetén, és legyen (x0, y0, z0) ∈ L0. Állítsunk
(x0, y0, z0)-ra egy S síkot úgy, hogy az L0-ra nézve transzverzális legyen. Ezt meg-
tehetjük például úgy, hogy S normálvektorát (x̃− x0, ỹ − y0, z̃ − z0)-nak választjuk,
ahol (x̃, ỹ, z̃) ∈ L0 egy tetsz®leges pont (x0, y0, z0) kis környezetében.

−5 · 10−2 0 5 · 10−2 0,1 0,15 0,2 0,25
−1,75

−1,7

−1,65

−1,6

−1,55

α− α2

x

6.4. ábra. Bifurkációs diagram α2 ≈ 8, 8557 környezetében

Az α paraméter növelése esetén minden egyes α értékre egy stabil periodikus
pályát �gyelhetünk meg. A 6.4. ábra azt szemlélteti, hogy mi az x-koordinátája
ezen periodikus pályák és az S sík (x0, y0, z0)-hoz közeli metszéspontjainak. Ez
a szimuláció azt támasztja alá, hogy a rendszer perióduskett®z® bifurkáción megy
keresztül.

Ez azt jelenti, hogy létezik egy kritikus α2 ≈ 8, 8557 paraméter a következ®
tulajdonságokkal: Ha α < α2, és α közel van α2-höz, akkor létezik egy orbitálisan
stabil periodikus megoldás. Ha α > α2 és α− α2 kicsi, akkor azt láthatjuk, hogy ez
a periodikus megoldás elveszíti stabilitását, és a közelében minden α esetén meg�-
gyelhetünk egy olyan másik stabil periodikus pályát, melynek minimális periódusa
megközelít®leg kétszerese az eredeti periodikus megoldásénak. Világos, hogy ezen
periodikus pályáknak és az S síknak (x0, y0, z0) közelében két metszéspontja van.

A 6.4. bifurkációs diagram numerikus el®állítása során számos technikai nehézség-
gel szembesültünk. Az S sík és az α > α2 esetén közelített Lα periodikus megoldások
metszéspontjainak numerikus meghatározása során szükség van egy jól megválasz-
tott ε > 0 küszöbértékre azon (xk, yk, zk) ∈ Lα, k = 1, 2, ... pontok megtalálásához,
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amelyek ε-nál nagyobb pontossággal kielégítik S egyenletét, azaz kielégítik az

|xk (x̃− x0) + yk (ỹ − y0) + zk (z̃ − z0)− d| < ε

egyenl®tlenséget, ahol d = x0 (x̃− x0) + y0 (ỹ − y0) + z (z̃ − z0). A gyakorlati ta-
pasztalatok azt mutatják, hogy az ε = 2 · 10−4 választás megfelel®. Ezt követ®en
ki kell válogatni azokat a pontokat, melyek (x0, y0, z0) közelében találhatók. Ehhez
(x0, y0, z0) és (xk, yk, zk) pontok euklideszi távolságát vizsgáljuk minden k-ra.
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6.5. ábra. x id®függvénye különböz® α-értékek esetén
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6.6. ábra. A rendszer pályája különböz® α-értékek esetén

Az (x0, y0, z0)-közeli pontokat ezután elhelyezkedésük szerint két csoportra kell
osztani. Az utolsó lépés egy-egy pont kiválasztása ezen két csoportból aszerint, hogy
a csoporton belül melyik pont elégíti ki a legpontosabban S egyenletét. A 6.4. ábra
ezen két pont x-koordinátáját szemlélteti α függvényében.

25



Unger Tamás István Szakdolgozat

További szimulációs eredményeket láthatunk a 6.5., 6.6., 6.7. és a 6.8. ábrákon,
amelyek azt támasztják alá, hogy a Chua-rendszerben perióduskett®z® bifurkációk
sorozata történik.

Az α paraméter értékét tovább növelve α4 ≈ 9, 1080 és α8 ≈ 9, 1591 kritikus
értékek közé olyan orbitálisan stabil periodikus megoldásokat �gyelhetünk meg, me-
lyek minimális periódusa megközelít®leg kétszerese az α2 < α < α4 esetén vizsgált
periodikus pályáknak, ezért négyszerese L0 minimális periódusának.

Amennyiben az α paraméter értékét tovább növeljük, úgy azt tapasztaljuk, hogy
bizonyos α2n , n = 1, 2, ... kritikus paraméterek esetén L0 közelében meg�gyelhet®
periodikus megoldások rendre elveszítik stabilitásukat, és kis környezetükben to-
vábbi periodikus megoldások bifurkálódnak, melyek minimális periódusa 2n-szerint
növekszik L0 minimális periódusához képest.
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6.8. ábra. A rendszer pályája különböz® α-értékek esetén
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7. fejezet

Káosz

Hétköznapi értelemben a "káosz" kifejezés egyfajta rendezetlen, szokatlan, megjó-
solhatatlan viselkedésre utal. A matematikában leképezések esetén találkozhatunk
kaotikus viselkedéssel, melynek pontos de�niálása a következ® célunk.

Ebben a fejezetben ismertetjük a káosz de�níciójához szükséges alapfogalmakat,
majd a de�níciót követ®en példát mutatunk káoszra a Chua-rendszerben.

7.1. Alapfogalmak

Tekintsük az X metrikus teret d metrikával, legyen f : X → X folytonos leképezés,
valamint vezessük be az Nε (x) = {y ∈ X | d (x, y) < ε} jelölést. Utóbbit x ε-sugarú
környezetének nevezzük. Az X metrikus tér U ⊆ X részhalmaza nyílt, ha bármely
x ∈ U esetén létezik ε > 0 úgy, hogy Nε (x) ⊂ U . Ha X metrikus tér, x ∈ X és
ε > 0, akkor Nε (x) nyílt.

8. De�níció. A D ⊆ X halmaz s¶r¶ X -ben, ha bármely x ∈ X és ε > 0 esetén
létezik y ∈ D úgy, hogy d (x, y) ≤ ε.

Például az X = R és D = Q választás esetén D s¶r¶ X -ben, mert bármely két
valós szám között között végtelen sok racionális szám található.

9. De�níció. Az f leképezés topologikusan tranzitív, ha bármely nyílt, nemüres
U ,V ⊆ X részhalmazok esetén létezik n ∈ N és x ∈ U úgy, hogy fn (x) ∈ V .
5. Állítás. Ha létezik x0 ∈ X úgy, hogy az f leképezés x0-ból induló pályája s¶r¶
X -ben, akkor f topologikusan tranzitív.

Bizonyítás. Legyen f : X → X leképezés, legyenek U ,V ⊆ X tetsz®leges, nyílt,
nemüres halmazok, és tegyük fel, hogy az f leképezés x0-ból induló pályája s¶r¶ X -
ben. Ebb®l következik, hogy létezik k,m ∈ N úgy, hogy fk (x0) ∈ U és fm (x0) ∈ V .
Ha m ≥ k, akkor készen vagyunk az n = m− k választással.

Amint már említettük, a V halmaz x0 legalább egy iteráltját tartalmazza. Te-
gyük fel V-r®l, hogy x0 véges sok iteráltját tartalmazza. Legyen v ∈ V úgy, hogy v
nem iteráltja x0-nak. Tudjuk, hogy

ε = min {|v − fn (x0)|} > 0,

ezért v ε/2-sugarú környezete nem tartalmaz olyan elemet, amely x0 iteráltja. Ekkor
az x0-ból induló pálya nem s¶r¶ X -ben, ami ellentmondás.
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Ebb®l következik, hogy a V halmaz x0 végtelen sok iteráltját tartalmazza, azaz
létezik m > k úgy, hogy fm (x0) ∈ V . Ha az n = m− k választással élünk, akkor a
bizonyítás kész.

Egy kaotikus leképezést®l elvárt, hogy érzékenyen függjön a kezdeti adatoktól.
Ezt a tulajdonságot pillangóhatásnak is szokás nevezni. A kezdeti adatoktól való
érzékeny függés pontos de�níciója a következ®.

10. De�níció. Az f : X → X folytonos leképezés érzékenyen függ a kezdeti adatoktól,
ha létezik δ > 0 úgy, hogy bármely x ∈ X -hez és bármely ε > 0-hoz létezik y ∈ X
és n ∈ N úgy, hogy d (x, y) < ε és d (fn (x) , fn (y)) > δ.

7.2. A káosz de�níciója

A káosznak számos de�níciója létezik [10]. Az alábbi de�níció R. Devaney amerikai
matematikus nevéhez f¶z®dik, aki 1989-ben publikálta azt el®ször [11].

11. De�níció. (Devaney) Legyen X metrikus tér. Az f : X → X leképezés kaotikus,
ha

(a) periodikus pontjainak halmaza s¶r¶ X -ben,

(b) topologikusan tranzitív, és

(c) érzékenyen függ a kezdeti adatoktól.

Az alábbi tétel szerint, ha X végtelen számosságú, f kaotikus viselkedéséhez
elegend® csak az (a) és (b) feltételeket megkövetelni.

6. Tétel. Legyen f : X → X topologikusan tranzitív, és legyen f periodikus pontja-
inak halmaza s¶r¶ X -ben. Ekkor, ha X végtelen számosságú, f érzékenyen függ a
kezdeti feltételekt®l.

Bizonyítás. Tegyük fel, hogy f : X → X topologikusan tranzitív, és periodikus pont-
jainak halmaza s¶r¶ X -ben. Jelölje Per (f) ezt a halmazt.

El®ször megmutatjuk, hogy megadható δ0 > 0 úgy, hogy minden x ∈ X -hez léte-
zik q ∈ Per (f) a következ® tulajdonsággal: bármely n ∈ N esetén d (x, fn (q)) ≥ δ0.
Ez azt jelenti, hogy bármely x ∈ X legalább δ0 távolságra van f egy periodikus
pályájától.

Legyen p, q ∈ Per (f) különböz® pályájú, és legyen

δ0 = 1
2

min {d (fn (p) , fm (q)) | n,m ∈ N} .

Tudjuk, hogy p és q pályái véges sok pontot tartalmaznak, mert periodikusak, ezért
δ0 > 0. A fenti de�níció szerint p pályájának minden pontja legalább 2δ0 távolságra
van q pályájának összes pontjából. A háromszög-egyenl®tlenség értelmében

2δ0 ≤ d (fn (p) , fm (q)) ≤ d (fn (p) , x) + d (x, fm (q)) ,

tetsz®leges n,m ∈ N esetén. Ez alapján két eset lehetséges:

1. Ha valamely n-re (fn (p) , x) ≤ δ0, akkor bármely m-re d (x, fm (q)) ≥ δ0, vagy

2. ha valamely m-re d (x, fm (q)) ≤ δ0, akkor bármely n-re (fn (p) , x) ≥ δ0,
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ami azt jelenti, hogy bármely x ∈ X legalább δ0 távolságra van vagy p vagy q
periodikus pályájától.

Legyen most δ = δ0/4, és x ∈ X tetsz®leges. Az alábbiakban megmutatjuk,
hogy ez a δ megfelel® a kezdeti adatoktól való érzékeny függés igazolásához, azaz
minden x ∈ X -hez és minden ε > 0-hoz létezik y ∈ X úgy, hogy d (x, y) < ε és
d (fn (x) , fn (y)) > δ valamely n ∈ N esetén. Tekintettel arra, hogy ez a feltétel
csökken® ε esetén egyre szigorúbb, az általánosság megszorítása nélkül feltehetjük,
hogy ε < δ.

Mivel f periodikus pontjainak halmaza s¶r¶ X -ben, ezért létezik olyan
p ∈ Per (f) egy k ∈ N periódussal, hogy d (x, p) < ε. Továbbá a bizonyítás els®
része alapján tudjuk, hogy létezik q ∈ Per (f) úgy, hogy d (q pályája, x) ≥ δ0 = 4δ.
Végül de�niáljunk egy V halmazt a következ®képpen:

V = {x | d (f i (x) , f i (q)) < δ, ∀ 0 ≤ i ≤ k}.

A de�nícióból következik, hogy q ∈ V , valamint megmutatható [10], hogy V nyílt.
Mivel V és Nε (x) nyílt halmazok, továbbá feltettük, hogy f topologikusan tran-

zitív, ezért létezik y ∈ Nε (x) és m ∈ N úgy, hogy fm (y) ∈ V . Legyen j ∈ N olyan,
hogy

m
k
< j ≤ m

k
+ 1⇐⇒ 0 < kj −m ≤ k.

A bizonyítás befejezése el®tt tekintsük át az eddigieket. Az x ∈ X pont tetsz®le-
ges, valamint tudjuk, hogy 0 < ε < δ. Az Nε (x) halmazon belül található az alábbi
három pont: az x, a p periodikus pont k periódussal, valamint az y.

x

ε Nε (x)

y

p

V
fm (y)

q

7.1. ábra. A bizonyításban használt halmazok és elemek elhelyezkedése

A V halmazról tudjuk, hogy V ∩ Nε (x) = ∅. Ez következik V de�níciójából,
és abból, hogy d (x, fn (q)) ≥ δ0 = 4δ minden n-re, valamint abból, hogy ε < δ.
Tudjuk azt is, hogy q ∈ V , valamint ha z ∈ V és i ≤ k, akkor d (f i (z) , f i (q)) < δ,
és fm (y) ∈ V . Ezt mutatja a 7.1. ábra.

Az alábbiakban megmutatjuk, hogy a d
(
fkj (p) , fkj (x)

)
> δ és

d
(
fkj (y) , fkj (x)

)
> δ egyenl®tlenségek közül valamelyik mindig fennáll. Ek-

kor, mivel p és y pontok x-t®l mért távolsága kisebb, mint ε, teljesülnek a kezdeti
adatoktól való érzékeny függés de�níciójában el®írt egyenl®tlenségek.

Mivel y olyan, hogy fm (y) ∈ V , ezért V de�níciója alapján

d( fkj (y)︸ ︷︷ ︸
fkj−m(fm(y))

, fkj−m (q)) < δ, hiszen kj −m ≤ k.

A háromszög-egyenl®tlenség alkalmazásával pedig azt kapjuk, hogy

d
(
x, fkj−m (q)

)
≤ d (x, p) + d

(
p, fkj (y)

)
+ d

(
fkj (y) , fkj−m (q)

)
.
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Egyrészt feltettük, hogy d (x, p) < ε < δ. Másrészt az el®bb megmutattuk, hogy
d
(
fkj (y) , fkj−m (q)

)
< δ, ezért

d
(
x, fkj−m (q)

)
< d

(
p, fkj (y)

)
+ 2δ.

Mivel tudjuk, hogy d
(
x, fkj−m (q)

)
> δ0 = 4δ, ezért az el®z® egyenl®tlenségb®l

az következik, hogy d
(
p, fkj (y)

)
> 2δ. Tudjuk, hogy p-nek k periódusa, ezért

fkj (p) = p, így d
(
fkj (p) , fkj (y)

)
> 2δ. Végül vegyük észre, hogy

2δ < d
(
fkj (p) , fkj (y)

)
≤ d

(
fkj (p) , fkj (x)

)
+ d

(
fkj (x) , fkj (y)

)
,

amib®l következik, hogy d
(
fkj (p) , fkj (x)

)
> δ vagy d

(
fkj (x) , fkj (y)

)
> δ.

7.3. Káosz a Chua-rendszerben

Di�erenciálegyenlet-rendszerek esetén akkor beszélünk káoszról, ha valamely (a dol-
gozat 6.2. szakaszában de�niált) P visszatérési leképezés kaotikus.

A 7.2. ábrán azt láthatjuk, hogy a Chua-rendszer az α = 15, β = 25, m0 = −1, 6
ésm1 = −0, 8 paraméterek, valamint a (−0.4, 0, 0)T kezdeti érték mellett kaotikusan
viselkedik: a numerikus szimulációk alapján úgy t¶nik, hogy ezen megoldás pályája
s¶r¶ a fázistér egy részhalmazában.

A rendszer kaotikus viselkedést mutat a 4.1., 4.2. és 4.3. ábrákon látható szimu-
lációs eredmények esetén is.
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A. függelék

Függelék

A.1. A Chua-rendszer Matlab-kódja

chua_script.m

%Chua-aramkor, ungert, 2019

clear; clc;

%Villamos input

C1 = 10*10^(-9); %10 nF

C2 = 156*10^(-9); % 156 nF

R = 1*10^3; G = 1/R; % 1 kOhm

L = 6*10^(-3); %6 mH

Ga = -1.5*G; Gb = -0.7*G;

%Parameterezes

alpha = C2/C1; beta = C2/(L*G^2);

m0 = Ga/G; m1 = Gb/G;

n = 2000; %Idolepesek

x = zeros(1,n); y = x; z = y;

t = linspace(0,50,n);

dt = t(2) - t(1);

KF = [-0.7 0 0]; %Kezdeti feltetel

x(1) = KF(1); y(1) = KF(2); z(1) = KF(3);

ujszakasz = true; t_1 = 0; t_2 = dt;

for i = 2:n

%%

if (ujszakasz == true) && ((x(i-1) < -1) || (x(i-1) > 1))

m = m1;

%Sajatertekek

SE = roots([1 (1+alpha+alpha*m) (beta+alpha*m) (alpha*beta*(1+m))]);

if (x(i-1) < -1)

d = (m0-m1) / (1+m1);

elseif (x(i-1) > 1)

d = (m1-m0) / (1+m1);

end

elseif (ujszakasz == true)

m = m0;

d = 0;

%Sajatertekek

SE = roots([1 (1+alpha+alpha*m) (beta+alpha*m) (alpha*beta*(1+m))]);

end

%%

%Konstansok meghatarozasa elsokent es minden szakaszatlepeskor

%Harom kulonbozo valos sajatertek

if (ujszakasz == true) && (isreal(SE) == 1) && (SE(1) ~= SE(2)) && ...

(SE(1) ~= SE(3)) && (SE(2) ~= SE(3))

if i == 2

I
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k = inv([1 1 1;SE(1) SE(2) SE(3); SE(1)^2 SE(2)^2 SE(3)^2]) * ...

[z(1) + d;-beta*y(1);-beta*(x(1)-y(1)+z(1))];

else

k = inv([1 1 1;SE(1) SE(2) SE(3); SE(1)^2 SE(2)^2 SE(3)^2]) * ...

[z0 + d;-beta*y0;-beta*(x0-y0+z0)];

end

end

%Valos sajatertekek, ketto azonos

if (ujszakasz == true) && (isreal(SE) == 1) && ...

(((SE(1) == SE(2)) && (SE(2) ~= SE(3))) || ((SE(1) == SE(3)) && (SE(3) ~= SE(2))) ...

|| ((SE(2) == SE(3)) && (SE(3) ~= SE(1))))

if (SE(1) == SE(2)) && (SE(2) ~= SE(3))

lambda12 = SE(1); lambda3 = SE(3);

elseif (SE(1) == SE(3)) && (SE(3) ~= SE(2))

lambda12 = SE(1); lambda3 = SE(2);

elseif (SE(2) == SE(3)) && (SE(3) ~= SE(1))

lambda12 = SE(2); lambda3 = SE(1);

end

if i == 2

k = inv([1 0 1;lambda12 1 lambda3; lambda12^2 2*lambda12 lambda3]) * ...

[z(1) + d;-beta*y(1);-beta*(x(1)-y(1)+z(1))];

else

k = inv([1 0 1;lambda12 1 lambda3; lambda12^2 2*lambda12 lambda3]) * ...

[z0 + d;-beta*y0;-beta*(x0-y0+z0)];

end

end

%Valos sajatertekek, mindharom azonos

if (ujszakasz == true) && (isreal(SE) == 1) && (SE(1) == SE(2)) && ...

(SE(1) == SE(3)) && (SE(2) == SE(3))

lambda = SE(1);

if i == 2

k = inv([1 0 0; lambda 1 0; lambda^2 2*lambda 2]) * ...

[z(1) + d;-beta*y(1);-beta*(x(1)-y(1)+z(1))];

else

k = inv([1 0 0; lambda 1 0; lambda^2 2*lambda 2]) * ...

[z0 + d;-beta*y0;-beta*(x0-y0+z0)];

end

end

%Konjugalt komplex sajatertekek vannak

if (ujszakasz == true) && (isreal(SE) == 0)

if isreal(SE(1)) == 0

gamma = real(SE(1)); omega = abs(imag(SE(1)));

elseif isreal(SE(2)) == 0

gamma = real(SE(2)); omega = abs(imag(SE(2)));

else

gamma = real(SE(3)); omega = abs(imag(SE(3)));

end

if isreal(SE(1)) == 1

lambda3 = SE(1);

elseif isreal(SE(2)) == 1

lambda3 = SE(2);

else

lambda3 = SE(3);

end

if i == 2

k = inv([1 0 1; gamma omega lambda3; gamma^2-omega^2 2*gamma*omega lambda3^2]) ...

* [z(1) + d;-beta*y(1);-beta*(x(1)-y(1)+z(1))];

else

k = inv([1 0 1; gamma omega lambda3; gamma^2-omega^2 2*gamma*omega lambda3^2]) ...

* [z0 + d;-beta*y0;-beta*(x0-y0+z0)];

end

end

%%

%Fuggvenyertekek meghatarozasa minden idolepesben
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if (isreal(SE) == 1) && (SE(1) ~= SE(2)) && (SE(1) ~= SE(3)) && (SE(2) ~= SE(3))

%Harom kulonbozo valos sajatertek

[z(i),y(i),x(i)] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,t_2);

elseif (isreal(SE) == 1) && ... %Valos sajatertekek, ketto azonos

(((SE(1) == SE(2)) && (SE(2) ~= SE(3))) || ((SE(1) == SE(3)) && (SE(3) ~= SE(2))) ...

|| ((SE(2) == SE(3)) && (SE(3) ~= SE(1))))

[z(i),y(i),x(i)] = ValosKettoAzonos(k(1),k(2),k(3),lambda12,lambda3,d,beta,t_2);

elseif (isreal(SE) == 1) && (SE(1) == SE(2)) && ...

(SE(1) == SE(3)) && (SE(2) == SE(3)) %Valos sajatertekek, mindharom azonos

[z(i),y(i),x(i)] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,t_2);

elseif (isreal(SE) == 0) %Konjugalt komplex sajatertekek vannak

[z(i),y(i),x(i)] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,t_2);

end

%%

%Szakaszhatar-atlepes ellorzese

if ((x(i-1) < -1) && (x(i) > -1)) || ((x(i-1) > -1) && (x(i) < -1))

ujszakasz = true;

x_vart = -1;

elseif ((x(i-1) < 1) && (x(i) > 1)) || ((x(i-1) > 1) && (x(i) < 1))

ujszakasz = true;

x_vart = 1;

else

ujszakasz = false;

end

%%

%x0,y0,z0 szakaszhatar-atlepes eseten (Bisection method)

if ujszakasz == true

a = t_1; b = t_2;

epsilon = 100;

while abs(epsilon) > 1*10^(-12)

c = (a+b)/2;

if (isreal(SE) == 1) && (SE(1) ~= SE(2)) && ...

(SE(1) ~= SE(3)) && (SE(2) ~= SE(3)) %Harom kulonbozo valos sajatertek

[z0,y0,x0] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,c);

[za,ya,xa] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,a);

[zb,yb,xb] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,b);

elseif (isreal(SE) == 1) && ... %Valos sajatertekek, ketto azonos

(((SE(1) == SE(2)) && (SE(2) ~= SE(3))) || ((SE(1) == SE(3)) && ...

(SE(3) ~= SE(2))) || ((SE(2) == SE(3)) && (SE(3) ~= SE(1))))

[z0,y0,x0] = ValosKettoAzonos(k(1),k(2),k(3),lambda12,lambda3,d,beta,c);

[za,ya,xa] = ValosKettoAzonos(k(1),k(2),k(3),lambda12,lambda3,d,beta,a);

[zb,yb,xb] = ValosKettoAzonos(k(1),k(2),k(3),lambda12,lambda3,d,beta,b);

elseif (isreal(SE) == 1) && (SE(1) == SE(2)) && (SE(1) == SE(3)) && ...

(SE(2) == SE(3)) %Valos sajatertekek, mindharom azonos

[z0,y0,x0] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,c);

[za,ya,xa] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,a);

[zb,yb,xb] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,b);

elseif (isreal(SE) == 0) %Konjugalt komplex sajatertekek vannak

[z0,y0,x0] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,c);

[za,ya,xa] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,a);

[zb,yb,xb] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,b);
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end

epsilon = x0 - x_vart;

if sign(epsilon) == -1 && sign(xa-x_vart) == -1

a = c;

elseif sign(epsilon) == -1 && sign(xb-x_vart) == -1

b = c;

elseif sign(epsilon) == 1 && sign(xa-x_vart) == 1

a = c;

elseif sign(epsilon) == 1 && sign(xb-x_vart) == 1

b = c;

end

end

end

if ujszakasz == true

t_1 = 0; t_2 = dt;

else

t_1 = t_2; t_2 = t_2 + dt;

end

end

KonjugaltKomplex.m
function [z,y,x] = KonjugaltKomplex(C1,C2,C3,lambda3,gamma,omega,d,beta,t)

%Konjugalt komplex sajatertekek vannak

z = C1*exp(gamma*t)*cos(omega*t) + C2*exp(gamma*t)*sin(omega*t) + C3*exp(lambda3*t) - d;

y = (-1/beta)*(C1*gamma*exp(gamma*t)+C2*omega*exp(gamma*t))*cos(omega*t) + ...

(-1/beta)*(C2*gamma*exp(gamma*t)-C1*omega*exp(gamma*t))*sin(omega*t) + ...

(-1/beta)*C3*lambda3*exp(lambda3*t);

dy = (-1/beta)*exp(gamma*t)*(C1*gamma^2-C1*omega^2+2*C2*gamma*omega)*cos(omega*t) + ...

(-1/beta)*exp(gamma*t)*(C2*gamma^2-C2*omega^2-2*C1*gamma*omega)*sin(omega*t) + ...

(-1/beta)*C3*lambda3^2*exp(lambda3*t);

x = dy + y - z;

end

ValosHaromAzonos.m
function [z,y,x] = ValosHaromAzonos(C1,C2,C3,lambda,d,beta,t)

%Harom valos sajatertek, mindharom azonos

z = C1*exp(lambda*t) + C2*t*exp(lambda*t) + C3*t^2*exp(lambda*t) - d;

y = (-1/beta)*exp(lambda*t)*(C1*lambda + C2 + C2*lambda*t + C3*2*t + C3*lambda*t^2);

dy = (-1/beta)*exp(lambda*t)*(C1*lambda^2 + 2*C2*lambda + C2*lambda^2*t + ...

2*C3 + 4*C3*lambda*t + C3*lambda^2*t^2);

x = dy + y - z;

end

ValosKettoAzonos.m
function [z,y,x] = ValosKettoAzonos(C1,C2,C3,lambda12,lambda3,d,beta,t)

%Harom valos sajatertek, ketto kozuluk azonos

z = C1*exp(lambda12*t) + C2*t*exp(lambda12*t) + C3*exp(lambda3*t) - d;

y = (-1/beta)*(C1*lambda12 + C2 + C2*lambda12*t)*exp(lambda12*t) + ...

(-1/beta)*C3*lambda3*exp(lambda3*t);

dy = (-1/beta)*(C1*lambda12^2+2*C2*lambda12+C2*lambda12^2*t)*exp(lambda12*t) + ...

(-1/beta)*C3*lambda3^2*exp(lambda3*t);
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x = dy + y - z;

end

ValosNemAzonosak.m
function [z,y,x] = ValosNemAzonosak(C1,C2,C3,lambda1,lambda2,lambda3,d,beta,t)

%Harom valos sajatertek, paronkent kulonboznek

z = C1*exp(lambda1*t) + C2*exp(lambda2*t) + C3*exp(lambda3*t) - d;

y = -(1/beta) * (lambda1*C1*exp(lambda1*t) + lambda2*C2*exp(lambda2*t) + ...

lambda3*C3*exp(lambda3*t));

dy = -(1/beta) * (lambda1^2*C1*exp(lambda1*t) + lambda2^2*C2*exp(lambda2*t) + ...

lambda3^2*C3*exp(lambda3*t));

x = dy + y - z;

end

A.2. További Matlab-kódok

HopfKereses.m
%Jacobi-matrix vizsgalata Hopf-bifurkaciohoz a Chua-rendszerben

%ungert, 2019

clear; clc;

m1 = -0.7; beta = 5;

alpha = linspace(3.4,3.6,10000);

SE = zeros(3,length(alpha));

for i = 1:length(alpha)

SE(:,i) = eig([-alpha(i)-alpha(i)*m1 alpha(i) 0;1 -1 1; 0 -beta 0]);

if i>1

for j = 1:3

if isreal(SE(j,i)) == 0

sign_kov = sign(real(SE(j,i)));

end

if isreal(SE(j,i-1)) == 0

sign_elo = sign(real(SE(j,i-1)));

end

end

if sign_kov*sign_elo < 0

alpha0 = 0.5*(alpha(i) + alpha(i-1));

end

end

end

BifDiag.m
%Bifurkacios diagram felvetele ungert 2019

clear; clc;

alpha0 = 3.48961989619896;

beta = 5;

m0 = -1.5;

m1 = -0.7;

alpha = linspace(alpha0-0.0001,alpha0+0.000007,1000);

Ampl = zeros(size(alpha));

for i = 1:length(alpha)

if i == 1
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[t,y] = ode45(@(t,in) chua(t,in,alpha(i),beta,m0,m1),linspace(0,20,10000),...

[(m1-m0)/(1+m1)+1e-7 0 (m0-m1)/(1+m1)]);

else

[t,y] = ode45(@(t,in) chua(t,in,alpha(i),beta,m0,m1),linspace(0,20,10000),...

[x_elozo y_elozo z_elozo]);

end

x_elozo = y(9500,1); y_elozo = y(9500,2); z_elozo = y(9500,3);

for j = 8000:10000

for k = 8000:10000

if sqrt( (y(j,1)-y(k,1))^2 + (y(j,2)-y(k,2))^2 + (y(j,3)-y(k,3))^2 ) > Ampl(i)

Ampl(i) = sqrt( (y(j,1)-y(k,1))^2 + (y(j,2)-y(k,2))^2 + (y(j,3)-y(k,3))^2 );

end

end

end

if (i > 1) && (Ampl(i) < Ampl(i-1))

Ampl(i) = Ampl(i-1);

end

%figure(1)

%hold on;

%plot(alpha(i),Ampl(i),'b.');

%figure(2)

%hold on;

%plot3(y(:,1),y(:,2),y(:,3));

end

chua.m
function out = chua(t,KF,alpha,beta,m0,m1)

x = KF(1);

y = KF(2);

z = KF(3);

h = m1*x+0.5*(m0-m1)*(abs(x+1)-abs(x-1));

xdot = alpha*(y-x-h);

ydot = x - y+ z;

zdot = -beta*y;

out = [xdot ydot zdot]';

BifDiag_pdoub.m
%Perioduskettozo bifurkacio, Chua, ungert, 2019

clear; clc;

alpha0 = 8.9;

beta = 16;

m0 = -8/7;

m1 = -5/7;

alpha = linspace(8.855726163,9.1,8000);

T = zeros(1,size(alpha,2));

n = 10000; %Idolepesek

t = linspace(0,10,n);

KF = [-1.6195 0.2226 2.7174];

nyers1 = zeros(length(alpha),1);

VI



Unger Tamás István Szakdolgozat

nyers2 = zeros(length(alpha),1);

for i = 1:length(alpha)

%CHUA + kezdeti feltetel

[x,y,z] = chua_script(alpha(i),beta,m0,m1,t,n,KF);

KF = [x(0.9*n) y(0.9*n) z(0.9*n)];

if i == 1

spont = [x(3500) y(3500) z(3500)]; %Pont

normvec= [x(3510)-spont(1) y(3510)-spont(2) z(3510)-spont(3)];

d = normvec(1)*spont(1) + normvec(2)*spont(2) + normvec(3)*spont(3); %Sik egyenlete

x_egyper = x; y_egyper= y; z_egyper = z;

end

l = 1;

epsilon = 2e-4;

for j = 1:length(x)

if abs((normvec(1)*x(j) + normvec(2)*y(j) + normvec(3)*z(j)) - d) < epsilon %Sikon van

sikon(l,1) = x(j); sikon(l,2) = y(j); sikon(l,3) = z(j);

l = l+1;

end

end

k = 1;

%Kozeli pontok kivalogatasa

for j = 1:size(sikon,1)

if sqrt((sikon(j,1)-spont(1))^2+(sikon(j,2)-spont(2))^2+(sikon(j,3)-spont(3))^2) < 0.5

kozeli(k,:) = sikon(j,:);

k = k+1;

end

end

%Bal-jobb szetosztas

k = 1; l = 1; m = 1;

for j = 1:size(kozeli,1)

elojel = det([normvec(1) kozeli(j,1)-spont(1) spont(1); ...

normvec(2) kozeli(j,2)-spont(2) spont(2); ...

normvec(3) kozeli(j,3)-spont(3) spont(3)]);

if elojel > 0

bal(k,:) = kozeli(j,:);

k = k+1;

elseif elojel < 0

jobb(l,:) = kozeli(j,:);

l = l+1;

elseif elojel == 0

rajtavan(m,:) = kozeli(j,:);

end

end

%Legkozelebbi kivalasztasa

if k > 1

epsilon = 10;

for j = 1:size(bal,1)

if abs((normvec(1)*bal(j,1) + normvec(2)*bal(j,2) + normvec(3)*bal(j,3)) - d) < epsilon

balpont = bal(j,:);

epsilon = abs((normvec(1)*bal(j,1) + normvec(2)*bal(j,2) + normvec(3)*bal(j,3)) - d);

end

end

end

if l > 1

epsilon = 10;

for j = 1:size(jobb,1)

if abs((normvec(1)*jobb(j,1) + normvec(2)*jobb(j,2) + normvec(3)*jobb(j,3)) - d) < epsilon

jobbpont = jobb(j,:);

epsilon = abs((normvec(1)*jobb(j,1) + normvec(2)*jobb(j,2) + normvec(3)*jobb(j,3)) - d);

end

end

end
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if (k > 1) && (l > 1) && (i > 50)

nyers1(i) = balpont(1);

nyers2(i) = jobbpont(1);

else

nyers1(i) = spont(1);

nyers2(i) = spont(1);

end

%Abrazolas

% plot3(x_egyper,y_egyper,z_egyper);

% hold on;

% plot3(x,y,z);

% plot3(spont(1),spont(2),spont(3),'black+');

% plot3(balpont(1),balpont(2),balpont(3),'r+');

% plot3(jobbpont(1),jobbpont(2),jobbpont(3),'r+');

if i < length(alpha)

clear kozeli sikon bal jobb rajtavan balpont jobbpont;

%close(1);

end

end

j = 1;

for i = 1:length(nyers1)

if i == 1

ag1(j) = nyers1(i);

alfa1(j) = alpha(i);

j = j+1;

elseif (i > 1) && ((nyers1(i)-ag1(j-1)) < -2e-4)

ag1(j) = nyers1(i);

alfa1(j) = alpha(i);

j = j+1;

end

end

k = 1;

for i = 1:length(nyers2)

if i == 1

ag2(k) = nyers2(i);

alfa2(k) = alpha(i);

k = k+1;

elseif (i > 1) && ((nyers2(i)-ag2(k-1)) > 10e-4)

ag2(k) = nyers2(i);

alfa2(k) = alpha(i);

k = k+1;

end

end

figure(1)

hold on;

plot(alfa1,ag1);

plot(alfa2,ag2);

%Eredmenyritkitas

k = 1;

for i = 1:length(x)

if mod(i,40) == 0

xe(k,1) = x(i);

ye(k,1) = y(i);

ze(k,1) = z(i);

te(k,1) = t(i);

k = k+1;

end

end
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