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1. fejezet

Bevezetés

A dolgozat elsédleges célkitlizése a kapcsolodo elmélet targyalasa mellett, hogy nu-
merikus vizsgalatok segitségével bemutassa a Chua-aramkérben megfigyelhets bifur-
kacios jelenségeket. A dolgozat mésodik fejezetében ismertetjiik a Chua-dramkéort
leir6 haromdimenzios differencidlegyenlet-rendszert, valamint annak fizikai dimenzi-
oktol mentes alakjat, végiil targyaljuk a rendszer egyenstlyi helyzeteit.

Tekintettel arra, hogy az aramkor viselkedését leird rendszer a fazistér egyes
tartomanyain inhomogén, konstans egyiitthatos, linedris rendszerekre redukalodik,
a harmadik fejezetben attekintjiik ezen rendszerek elméletét.

A dolgozat negyedik fejezetében megmutatjuk, hogyan térhetiink at az eredeti
haromdimenzios differencidlegyenlet-rendszerrél egy inhomogén, lineéris, harmad-
rendii, konstans egyiitthatos egyenletre. Az attérés utan ismertetjiik ennek az egyen-
letnek a megoldasat, majd targyaljuk a rendszer numerikus implementalasanak ne-
hézségeit.

Az 6todik fejezetben egy kétdimenzids példan keresztiil ismertetjiik a Hopf-
bifurkaciét, majd numerikus modszerek segitségével példat mutatunk a jelenségre a
Chua-rendszerben.

A hatodik fejezetben térgyaljuk a peridoduskettéz6 bifurkaciot leképezések és
differencidlegyenlet-rendszerek esetében is, végiil peridduskett6zé bifurkaciok soro-
zatat figyeljiik meg numerikusan a Chua-rendszerben.

A dolgozat utolso6 fejezetében definidljuk a kaoszt, legvégiil pedig példat muta-
tunk a Chua-rendszer kaotikus viselkedésére.



2. fejezet

A Chua-aramkor

2.1. Az aramkor és egyenletei

Tekintsiik a 2.1. abran lathato, L induktivitasbol, C; és Cy kapacitasokbol, G ve-
zetGképességbdl és egy Chua-diodabol allo dramkort. A didda szigorian monoton
csokkend, szakaszonként lineéris, az egyes szakaszokon rendre Gy, G, és Gy, meredek-
ségli aram-fesziiltség-karakterisztikaval jellemezhets. Az egyes aramkori elemeken a
feltiintetett értékd és iranyd fesziiltségek esnek, és a feltiintetett irdnyd aramok
folynak. Mivel a kapacitasokon és az induktivitason es6 fesziiltségek és atfolyo ara-

GUQ — Up iR
/N I I
. T, L T4 Gh
dug du
1y, T O2W i Cl% i G B
% Lie == luy T |u L
L Cs G Chua- —B,
(H_ dioda iiR (u1) Gy

2.1. abra. Chua-dramkor és a Chua-didda karakterisztikdja

mok kozotti Osszefiiggésekben megjelenik az induktivitas iy araméanak, valamint a
két kapacitas u; és us fesziiltségének id6 szerinti derivaltja, az aramkor viselkedését
differencidlegyenlet-rendszer segitségével irhatjuk le. Ehhez a klasszikus villamos-
sagtan ugynevezett Kirchhoff-térvényeit (csomoponti- és huroktorvényeit) sziikséges
alkalmazni [1].

Vizsgaljuk elGszor a G vezetGképességtsl jobbra elhelyezked§ Ny aramkori cso-
mopontot. A csomoéponti torvény értelmében a csomépontba befolyd aramok Ossze-
ge megegyezik az onnan elfoly6 adramok Osszegével, azaz barmely csomoépontra
> ;15 = 0. Felirva az egyetlen befolyé és a két kifolyo dram elGjeles Osszegét

G(ug—ul)—Clﬁ—iR:[) (21)

adodik. Atrendezve kapjuk a C; kapacitas fesziiltségére vonatkozo differencialegyen-
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letet: p a o .
Uy .
— = — Uy — —U] — —Ip. 2.2
i G o (22)

Hasonloan jarunk el a G-t6l balra 1évé Ny csomopont esetén:

d
iL—Cgﬂ —G<U2—U1> :O, (23)
dt
melybél a Cy kapacitas fesziiltségére vonatkozé differencidlegyenlet:
du G G 1.
2 = —U] — = Uy + —1]. (24)

E C 2 02 02

Az induktivitas draméra vonatkoz6 differencidlegyenlethez az L induktivitas és a
(5 kapacitéas alkotta H hurokra sziikséges alkalmazni a huroktérvényt. Ennek értel-
mében barmely zart hurokban a fesziiltségek elGjeles Gsszege nulla. Az éramutatod
jarasaval megegyez6 hurokkoriiljarasi iranyt felvéve a torvény az

dig, dig, 1

L—L =0 —=_= 2.5
7 + Uy — i Lu2 (2.5)

alakot olti. Ezen harom differencidlegyenlet altal alkotott differencidlegyenlet-
rendszert az aramkor allapotvaltozos leirasanak nevezezziik [2]:

duy G G 1.

— = — Uy — —U] — —1

a o > oo

auvy _ & = 2.6
e 651Q'+'C&ZL7 (2.6)
dip, 1

a L

A Chua-di6da aram-fesziiltség-karakterisztikaja a kovetkezGképpen adhaté meg:
Gbul + (Gb — Ga) Bp, u < —Bp,
iR (ul) = Gauh —Bp < U1 < Bp7 (27)
Gbul + (Ga — Gb) Bp, Uy > Bp.
2.2. Dimenzi6 nélkiili egyenletek

Vezessiik be a kovetkezs jeloléseket:

U1 U9 iL tG CQ b5 5 CQ
r = — - — = — T = —_— o = — [ —
B, Y~ B, T BG, e LG?

valamint tekintsiik az u; fesziiltség 7 szerinti derivaltjat:

du _ dn Gy Co < ! ) (2.8)

= |(u—w — =ig

dr  dt GG G
Legyen f(z) = 1/(GB,)ig (u1). Elosztva (2.8) mindkét oldalat B,-vel és felhasz-
nalva a bevezetett jeldléseket a

dx

%:

aly—z—f(z)) (2.9)
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alaku differencidlegyenlet adodik. Hasonloan jarhatunk el az uy fesziiltségre vonat-
kozo6 differencidlegyenlettel is. Az eredeti egyenlet mindkét oldalat By-vel elosztva,
t helyére 7-t helyettesitve, és felhasznélva a jeloléseket (2.6) masodik egyenlete a
dy
—=x—y+ 2.10
- y+z (2.10)
alakot 6lti. Az induktivitas i; draméra vonatkozé differencidlegyenletbdl kiindulva,
17, helyére z-t, t helyére pedig 7-t helyettesitve végiil

dz 1 02 1

P e BN ek A (211

adodik. A fenti atalakitasokkal az eredeti allapotvaltozos leirdasbol a kovetkezs
differencidlegyenlet-rendszerre jutottunk [3]:

d_x
dr
dy
dr
dz

dr

=a(y—z— f(z)),

=r—y+z (2.12)

= —py.

Az id6, az elektromos aram és -fesziiltség, valamint a vezetSképesség, a kapacitas és
az induktivitas mértékegységeinek ismeretében konnyen beldthato, hogy az igy ka-
pott egyenletekben szerepld egyiitthatok, fliggvények és valtozok mindegyike mentes
a fizikai dimenzioktol.
Az elsG egyenletben szerepls f fiiggvényt a Chua-dibda &aram-fesziiltség-
karakterisztikajabol szarmaztattuk 1/ (G B,)-vel torténd szorzassal. Bevezetve az
G Gy

a ,
mog=—=¢€es my; =

G G

jeloléseket a fliggvény a kovetkezGképpen irhato fel:

mixr +m; —mpg, T < —1,
f(x) =< moz, —-1<x<1, (2.13)

mir +myg —mq, x> 1.
Vizsgalataink soran
a>0, >0 my<—1é —1<my <O0. (2.14)

Végiil pedig definidljunk egy, a késGbbiek folyaméan fontos szerepet jatszé konstanst

1S:
B < —1,

14+mq
d=<0, 1<z <, (2.15)
“}3;2:0, x> 1.

A tovabbiakban az itt bevezetett dimenzi6 nélkiili egyenletekkel, a (2.14) feltétellel,
az f fiiggvénnyel és a d konstanssal dolgozunk gy, hogy 7 helyett rendre ¢-t irunk.

4



Unger Tamés Istvan Szakdolgozat

2.3. Egyensilyi helyzetek
1. Definicio. Az (z*,y*, z*)T € R? pont egyensilyi helyzete (2.12)-nek, ha a konstans
R >t (29, 2")" e R®

fiiggvény megoldasa (2.12)-nek.
1. Allitds. A (2.12) egyenletrendszernek a (2.14) feltétel mellett harom egyensulyi
helyzete van, melyek (d, 0, —d)T alakuak.

Bizonyitds. Az 1. Definici6 szerint az (z*, y*, z*)T egyensilyi helyzetek az

aly—z—f(z) =0,
r—y+z=0,
—By =0

egyenletrendszer megoldésai lesznek. Az egyenletrendszert vizsgalva azonnal latszik,
hogy y* =0, z* = —x* és f (2*) = —x™.

frjuk fel az f (2*) = —2* egyenletet az z* < —1, —1 < 2* < 1 és 2* > 1 esetekre.
Az igy kapott Osszefiiggéseket z*-ra rendezve mar egyszertien megmutathaté, hogy

mindharom esetben (d, 0, —d)T alakt egyenstlyi helyzet adodik. O
Azt mondjuk, hogy az (z*,y*, z*)" € R? egyensilyi helyzet stabil, ha a kdzelében

inditott megoldasok orokre kdzel maradnak. A pontos definici6 a kovetkezs:
2. Definicid. Az (x*,y*, 2*)" € R egyensilyi helyzet stabil, ha barmely ¢ > 0 esetén
letezik § > 0 ugy, hogy tetszdleges (x,y, Z)T megoldas és

|z (0) = &*| + [y (0) — y*| + [2(0) — 27| <6
esetén

|z (t) — 2|+ |y (t) —y*| + |z (t) — 2| < &, minden t > O-ra.

Az egyensiilyi helyzet instabil, ha nem stabil.
3. Definicio. Az (x*,y*, z*)T € R3 egyensilyi helyzet aszimptotikusan stabil, ha
stabil és létezik dp > 0 agy, hogy tetszéleges (x,y, z)" megoldas és

|z (0) — 2*| + [y (0) — y*| + [2(0) — 27| < o

esetén lim (z (t),y (t),z ()" = (z*,y*, 2*)".

t—o0



3. fejezet

Elmélet: hattér

Az el6z6 fejezetben ismertett, a Chua-aramkor viselkedését leiro differencidlegyenlet-
rendszer a fazistér egyes tartomanyain inhomogén, konstans egyiitthatos, linearis
rendszerekre redukalodik. A kovetkezSkben ezért attekintjiik a linearis rendszerek
elméletét [5].

3.1. Konstans egyiitthatds, els6rendii linearis rend-
szerek

4. Definicio. Az

X(t)=AX(t), AcR”™ X (t)eR" (Hy)
egyenletrendszert homogén linedris —egyenletrendszernek nevezziikk, melyben
X ()= (X1 (t), X5 (t), ..., X ()" ismeretlen, X (¢) pedig az X (t) id szerinti els6
derivaltjat jeloli.

Megmutathato, hogy barmely X, € R" esetén az X (t) = AX (1), X (0) = X,
kezdetiérték-problémanak az egész szamegyenesen létezik megoldasa. Ezt az allitast
mi most nem igazoljuk.

Igaz a kovetkez§ tétel is, amit késébb, a Chua-rendszer megoldasainak meghata-
rozasa soran felhasznalunk.

1. Tétel. (H;) megoldasai a folytonosan differencialhato fiiggvények terében egy n-
dimenzids alteret alkotnak, azaz igazak a kovetkezdk:

1. Ha 1, po megoldésa (Hj)-nek, akkor ¢;¢1+4cogs is megoldas barmely ¢q, ¢, € R
esetén.

2. Létezik 1, ..., p, megoldasa (Hip)-nek, amelyek linearisan fiiggetlenek, azaz
letezik n-elemt alaprendszer (bazis).

3. (Hy) barmely ¢ megoldaséhoz létezik ¢4, ..., ¢, € R, hogy minden ¢ € R esetén
& (t) = 11 (t) +...4+Cnpn (t). Ekkor é1¢1 + ... + ¢, neve dltaldnos megoldds.

Bizonyitds. A tétel elsG része behelyettesitéssel ellenérizhetd minden t € R-re:

(c101 (t) + capa (1)) = 1661 (F) + a2 (F) =
= c1Apy (t) + caAps (1) = A(cr1 (t) + cagpa (1)) -

6
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Az n-elemi alaprendszer létezésének igazolasdhoz tekintsiik az R™-beli
€1, ..., e, € R™ standard bazist, és tekintsiik az

o, L0450

kezdetiérték-problémat minden i € {1,2,...,n} esetén. Jelolje ¢;: R — R minden
i€{1,2,...,n} esetén (k.e.p.), megoldasat.

Igazoljuk a ¢q, ..., ¢, megoldasok fiiggetlenségét indirekt modon: tegyiik fel, hogy
©1, ..., P linedrisan fiiggs. Ekkor létezik

G, €ER, B+ ...+ >0

agy, hogy
C11 (t) + ... + Cuion (t) = 0 barmely ¢ € R esetén.

Amennyiben ¢ = 0, Ggy éppen az R"-beli standard bézis linearis kombinécidjat
kapjuk, ami nem lehet nulla, ezért ellentmondasra jutunk:

ce1+ ... +cpe, = 0. ¢

A tétel harmadik allitasa az, hogy (H;) Osszes ¢ megoldéasa elGall a ¢4, ..., o,
alaprendszer linearis kombinaci6jaként. Létezik ¢4, ..., ¢, ugy, hogy

@ (0) == 6161 —+ ...+ énen.

Legyen
amely a tétel elsé allitasa alapjan megoldasa (H;)-nek. Vilagos, hogy

A Picard-Lindelof-féle unicitastétel [7] értelmében, ha ¢ és 1 megoldasok, és
¥ (0) = @ (0), akkor ¢ = 1), ami mar maga utéan vonja a 3. allitast. O

3.2. Inhomogén rendszerek

5. Definicio. Az

X(t)=AX(t)+b, AecR™™, X (),beR" (IH;)

egyvenletrendszert inhomogén linedris egyenletrendszernek nevezziik, melyben
X ()= (X1 (t),X5(t), ..., Xn (t)" ismeretlen.

2. Allitds. Ha 1)y és by megoldasai (IH;)-nek, akkor ¢ = v, —, megoldasa (H;)-nek.
Bizonyitds. Az allitas egyszeri behelyettesitéssel ellenérizhetd:
P (1) =11 (1) = o (t) = Ay (1) +b— Ay (1) = b= A (1 (t) =¥z (1)) = Ap (1).
O
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2. Tétel. Az (IH;) egyenlet altalanos megoldésa

X (t)=cro1(t) + ... +cnipn (t) + @ (t) , teR, (MO)
~ ~ ~—
(H1) altalanos megoldasa (IH;) partikularis megoldasa

alaku.

Bizonyitds. Fl6szor behelyettesitéssel igazoljuk, hogy az ilyen alaku fiiggvények
megoldésai (IH;)-nek, azaz barmely ¢y, ..., ¢, € R esetén c¢1p1 + ... + ¢, + @ meg-
oldasa (IH;)-nek. Elvégezve a behelyettesitést,

(101 (1) 4 oo 4 Caion () + @ (1) = 181 () + oo + cnn () + @ () =
=1 Ay (t) + ... + A, (B) + (AP () +b) =
= A(crpr (t) + o + catpn (t) + ¢ (t)) +D,

- 7/

X(t)

adodik, X (t) tehat megoldas.

Most pedig megmutatjuk, hogy minden megoldas (MO)-alakban &ll el6, azaz
(IHy) barmely ¢ (t) megoldasa esetén létezik ¢4, ..., ¢, € R gy, hogy minden valos ¢
esetén

D (1) = &1 () + o+ apn () + B (D).

Mivel tudjuk, hogy ¢ — ¢ megoldasa (H,;)-nek, igy az 1. Tétel 3. pontja szerint

~

valamely ¢4, ..., ¢, € R konstansokkal. Azonnal latszik, hogy

O () =101 (8) + oo 4 Euipn (1) + 3 (1) -
0

3.3. Konstans egyiitthatos, n-edrendii linearis egyen-
letek

6. Definicio. Az

Y™ 4+ YDy 4+4,Y =0, ai,...,an €R (H,)
egyenletet homogén, n-edrendd, linedris, konstans egytitthatos egyenletnek, az

Y™ 4 YDy +a,Y =s, a,..,a,,s R (IH,)
egyenletet pedig inhomogén, n-edrendd, linedris, konstans egyiitthatds egyenletnek

nevezziik, ahol Y = Y (t) ismeretlen fiiggvény, Y@ pedig Y i-edik derivaltjat jelsli,
ie{l,2,...,n}.
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Vegyiik észre, hogy (IH;) és (IH,) ekvivalensek. Ehhez alkalmazzuk a kovetkezs
megfeleltetést:

X1 Y
Xo Y’
X = . = . )
Xn Y(n—l)
igy az

X{ == X2

Xé == X3

X,;L = —Clan - GQanl — ... ClnXl + s

egyenletrendszerre jutunk. Ez éppen (IH;)-alaka ugy, hogy

0 1 0 ... 0 0
0 0 1 ... 0 0
A= : SRR : | esb=1(0,0,...,0,5)" .
0 0 0o ... 0 1
—ap —Gp-1 —Ap_9 ... —QA9 —0aq

Az ekvivalencia miatt a 2. Tételbdl azonnal adodik az alabbi allitas.

3. Tétel. (IHy) &ltalanos megoldésa
U(t) =0y () + ...+, ¥, (1) + T (1), t €R,

alakt, ahol Wy, ..., ¥, linearisan fiiggetlen megoldasai (Hs)-nek, 0 pedig partikularis
megoldéasa (IHg)-nek. A Wy, ..., W, fiiggvényeket alaprendszernek hivjuk.

Megjegyezziik, hogy W, itt nem mas, mint 2. Tételben szerepls ¢; elsé kompo-
nense. A tovibbiakban n = 3-ra szoritkozva megmutatjuk, hogyan lehetséges az
alaprendszer, azaz 3 darab linearisan fiiggetlen megoldas meghatarozasa. Ehhez az

VO 40, Y® a0, YW 4 a3y =0 (Hs)

homogén egyenletet vizsgaljuk.
Vegyiik észre, hogy Y (t) = e*-t behelyettesitve, majd e-vel egyszertisitve a

/\3+a1)\2+a2/\+a3 :O (31)

karakterisztikus egyenletet kapjuk, melynek gyokeit sajdtértékeknek nevezziik.
Azonnal latszik, hogy \ akkor és csak akkor gydke (3.1)-nek, ha e megoldésa
(Hs)-nak. Tudjuk tovabba, hogy a karakterisztikus egyenletnek C felett 3 gyoke
van: )\1, )\2 és /\3.

3. Allitds. Négy esetet kiilonboztetiink meg attol fiiggden, hogy Ai, Ao, A3 € C sa-
jatértékek hogyan helyezkednek el a komplex szamsikon:

a. Ha A, A2, A3 € R paronként kiilonbézk, akkor {eM!, e, e*s!} alaprendszer;

b. Ha Ay = Xy # A3 € R, akkor {eM?, teM!, '} alaprendszer;

9
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c. Ha A\j = Ay = A3 = X € R, akkor {eM, teM, t?eM} alaprendszer;

d. Ha \y = v+ iw, \y = 77— 1w, v,w € R, w # 0, \3 € R, akkor
{e" coswt, e sinwt, e*3'} alaprendszer.

Bizonyitds. Az els6 harom esetben behelyettesitéssel kdnnyen ellenérizhets, hogy
az egyes fiiggvényrendszerek komponensei valoban megoldasai (Hz)-nak, valamint
linearisan fiiggetlenek is, ezért alaprendszerek.

Komplex konjugalt sajatértékpar esetén (d.) tudjuk, hogy

Mt = et — o (coswi + isinwt) és et = 07 = 7 (coswt — i sinwt)

megoldéasai (Hsz)-nak, ezért tetszéleges linearis kombinéciojuk is megoldas, tehat

e)qt + 6)\215 ot ) €>\1t _ e)\gt
—— = e’"coswt és

- —elginwt
2 21

valos megoldasai (Hz)-nak. Konnyen belathato, hogy linedrisan fiiggetlenek is, ezért
az {e" coswt, e sinwt, e’'} fiiggvényrendszer valoban alaprendszer. O

10



4. fejezet

A Chua-rendszer explicit megoldasa
és numerikus implementalasa

Ebben a fejezetben megmutatjuk, hogy a Chua-aramkort leird differencialegyenlet-
rendszerr6l hogyan térhetiink 4t egy inhomogén, linedris, harmadrendt, konstans
egyiitthatos egyenletre. Meghatarozzuk az ekvivalens probléma megoldasait a pa-
raméterek és a kezdeti értékek fiiggvényében, végiil targyaljuk a numerikus imple-
menticié soran felléps technikai nehézségeket.

4.1. Az ekvivalens probléma, harmadrendi egyenlet

Tekintsiik a (2.12) egyenletrendszert, valamint vegyiik észre, hogy f szakaszonként
f(x) =max —d(1+m), m € {mgy,my} alakia. Szorozzuk be (2.12) harmadik egyen-
letét —1/p-val és derivaljuk mindkét oldalt:

1 1
- M) M = (2)
Yy=—=2"", Yy’ =—=z. 4.1

Behelyettesitve y-t és (-t (2.12) masodik egyenletébe az alabbiakat kapjuk z-re és

ZL‘(l)—I‘aI
1 1 1 1
— 2) ) 1) — ®3) (2) (1)
r=—\|=sz2"+t5z2"+z ), 0 =— |2+ 52+ 2 .
(ﬁ s ) (6 8 )

Az igy kapott Osszefiiggéseket (2.12) els6 egyenletébe helyettesitve

1 1 o 1 1
3) @ 4 M) = (1) (2) 1)
—| 52+ 52+ 2 =——z+a(l+m (—z + -2 —l—z)—I—a 1+m)d
(5 B ) B ( ) B B ( )

adodik. Végiil, f-val szorozva, az alabbi harmadrendd egyenletet kapjuk:

b (1+a+am) 2P+ (B+am)zV +aB(l+m)z+aB(l+m)d=0.| (¥

4. Allitds. A » = —d partikularis megoldasa (*)-nak.
Bizonyitds. Az allitas egyszeri behelyettesitéssel ellenérizhetd:

z=—d= 2 =2 =23 =0, ezért af (1 +m)(—d) +af (1+m)d=0.
Megjegyezziik, hogy az allitas kovetkezik abbol is, hogy a (*)-al ekvivalens (2.12)
rendszernek az 1. Allitas szerint (d, 0, —d)T egyensilyi helyzete. O

11
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4.2. A megoldas meghatarozasa
Tekintsiik most (*) karakterisztikus egyenletét:
N+ (l+at+tam) N+ (B+am)A+aB(1+m)=0,

melynek gyokei A\, Ay, A3 € C. Kovetkezd lépésként meghatérozzuk a megoldast
az (z(0),y(0),z (0))T kezdeti érték, a A, Ay, A3 karakterisztikus gyokok és az «,
paraméterek fliggvényében. A 3. Allitas szerint négy eset kezelése sziikséges:

a. Ha i, Ao, A3 € R paronként kiilonbo6z6, akkor a 3. Tétel értelmében
2 (t) = c1e™ 4 e 4 3™t — d, ¢, ¢o,c3 €R.

Az ismeretlen egyiitthatok meghatarozasahoz sziikségiink van z-re, valamint an-
nak els§ és méasodik derivaltjara ¢ = O-ban. Elvégezve a derivalasokat, behelyet-
tesitve t = 0-at, tovabba (4.1)-et és (2.12) masodik egyenletét felhasznalva

Z(O) :Cl+62+03—d,

Z(l) (0) = )\101 + )\202 + )\3C3 = —ﬁy (0) ,

2@ (0) = Aler + Mea + Ajes = =y (0) = =8 [ (0) — y (0) + = (0)
adodik. Ez ¢y, co, c3-ra nézve egy linearis egyenletrendszer:

1

C1 1 1 1 - ¥4 (0) +d
Cy = )\1 )\2 /\3 _ﬁy (0)
c3 AN A —B [z (0) =y (0) + 2 (0)]

b. Ha \; = Ay 7& A3 € R, akkor

2 (t) = 1M + cote™! 4 et — d,

ezért
2(0)=c1+c3—d,
21 (0) = Miep 4 ¢ + dses = — By (0),
2@ (0) = N2y 4 2M1c0 + Nes = = [z (0) — 3 (0) + 2 (0)],
és )
c 1 0 1\ 2(0) +d
Co = )\1 1 >\3 _ﬁy (0)
e AL 200 A3 =B 12 (0) =y (0) + = (0)]

c. Ha A\ = Ay = A3 = A\ € R, akkor
2 () = c1e™ + coteM + cst’e —d,
ezért
2(0)=c¢ —d,
2V (0) = Aer + ez = =By (0),
22 (0) = Mecy 42Xy + 2c5 = —B[2 (0) —y (0) + 2 (0)],

12
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” ¢ 1 0 o\ ' 2(0)+d
ol=1) 1 0 —By (0)
C3 A2 2\ 2 —B [z (0) =y (0) + 2 (0)]

d. Ha My =v+iw, a=7v—iw, v,weR, w=#0, A3 € R, akkor

2 (t) = c1e? coswt + cpe sinwt + ezt — d,

ezért
2(0) =c¢1 + 3 —d,
2(0) = 1y + caw + e3As = —By (0)
22(0) = 1 (v* = w®) + 29w + 305 = =B [z (0) — y (0) + 2 (0)],
és .
e 1 0 1 2(0) +d
Co | = Y w )\3 _ﬁy (0)
C3 (7 —w?) 2qw A —B [z (0) =y (0) + 2 (0)]

4.3. Numerikus implementalas, nehézségek

Az el6z6 szakaszban ismertettiik a megoldas meghatarozasara szolgalo esetkezelé-
ses eljarast. Ez alapjan mar lehetGségiink nyilik a Chua-rendszer viselkedésének,
palydinak numerikus meghatéarozasara és vizsgalatara. Ehhez Matlab-kodot |6 ké-
szitettiink, amely megtaldlhaté a dolgozat Fiiggelékében.

A program folyamatosan vizsgélja, hogy x pillanatnyi értéke melyik tartoméanyba
esik (r < —1, =1 < 2z < 1 vagy = > 1), és ez alapjan tekinti a megfelel§ linearis
rendszert.

Ha a numerikusan meghatarozott palya atlép két tartoméany hataran (ekkor z = 1
vagy © = —1), akkor 4 kezdeti értékként a torésponthoz tartozo (x,y,z)" értéket
kell alkalmazni. Ennek minél pontosabb meghatarozasara van sziikségiink, melyre
szamos iterativ numerikus technika létezik.

Mivel a program megvalositasa soran a Bolzano-tételen alapuld felezd médszert
alkalmaztuk, ezért a tétel kimondasa utan egy példan megmutatjuk az algoritmus
miikddését.

4. Tétel. (Bolzano) Ha f: [a,b] — R korlatos és zart (kompakt) intervallumon
értelmezett folytonos fiiggvény, és f (a) f (b) < 0, akkor létezik ¢ € (a,b) ugy, hogy
fle)=0.

A tétel tananyag, ezért a bizonyitast nem kozoljiik, az szdmos kdnyvben, jegy-
zetben (pl. [8]-ben) megtalalhato.

Az alabbi példan megmutatjuk, hogyan alkalmazhat6 a felez6 modszer a Chua-
rendszer esetében a hataratlépések esetén sziikséges 1) kezdeti értékek meghatéro-
zAsara.

1. Példa. Tegyiik fel, hogy valamely ¢ € N idGlépésre 1étezik

T T
(T4, Y5, 2)" €S (Tig1, Yiv1, zig1) ULy, hogy o < =1 = Tyapy < Tiqr.

13
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Ekkor tudjuk, hogy atléptiink az x < —1 tartomanybol a —1 < x < 1 tartomany-
ba. Legyen e adott. Meghatarozand6 az 1j (& (¢),7 (¢),2(g))" kezdeti feltétel a
—1 <z <1 tartoményhoz tartozo linearis rendszerhez.

Legyen t; és t;11 az id§ értéke az i-edik és az ¢ + l-edik id6lépésben. Kezdet-
ben ag = t;,bp = t;11. A k-adik lépésben (k = 0,1,2,...) jarjunk el a kovetkezd,
tetszbleges tartomanyatlépés esetén alkalmazhato algoritmus szerint:

1. Hatarozzuk meg ( (cx),y (ci), 2 (cp))" értékét, ahol ¢ = (ag + bg) /2, tovab-
bé legyen f (cx) = = (¢k) — Tyart;

2. Ha |f (cx)| < ¢, akkor (& (¢),4(e),2 ()" = (x (ck),y (cx), 2 (cx))" és az algo-
ritmus leall;

bk y akkor A1 = Ck és bk+1 = bk;
bk y akkor g1 = Qg és bk+1 = Ck;,

( f(bk)
( f [ (br)

5. Ha |f (ex)| > ¢, f > f(bg), akkor agy1 = ¢k és bprq = by;
( f f(br)

6. Ha |f (c)| > &, br), akkor a1 = ap és by 1 = .

Koénnyen belathato, hogy barmely [agi1,bri1] € [ti, tiy1] intervallum esetén
f(ans1) f (bpt1) < 0, igy a Bolzano-tétel miatt a kapott algoritmus tetszélegesen
kicsi € mellett véges id6ben lefut.

A gyakorlati tapasztalatok azt mutatjak, hogy a numerikus problémak kikii-
szobolésének érdekében az (i (g),7 (¢),2 (¢))" kezdeti feltétel lehets legpontosabb
meghatirozasara van sziikség. Célszert ezért e értékét minél kisebbre (pl. e = 10712)
valasztani.

51 : il ]
5 F N
r 0 1Y 0 12 0} :
-5 N
_57\ | || _17\ | L | | |
0 20 40 0 20 40 0 20 40
t t t

4.1. dbra. Szimulacios eredmények: az x,y, z koordinatak ¢ fiiggvényében

Az aldbbiakban koézliink néhany szimulaciés eredményt, melyek a 4.1., 4.2. és
4.3. abrékon lathatok. Az eremények a kovetkezd paraméterek mellett adodtak:

Cy =10nF, Cy =156 nF, G =1 mS, L = 6 mH, G, = 1,5G, G, = —0,7G,
t € [0,40] s, az id6lépések szama i = 2000.

A villamos paraméterekbdl szarmaztatott dimenzié nélkiili egyiitthatok és a kez-
deti érték:

a=15,6, 8 =26, mg=—1,5m; =—0,7, (x(0),y(0),2(0)" =(-0.7,0,0)".

14



Unger Tamés Istvan Szakdolgozat

Az egyes szakaszokhoz tartozo sajatértékek a kdvetkezok:

9,0097 —6,3328
Ao, B,mo) &~ | —1,1049 +4,6139 | , A(a, B,mq) ~ [ 0,3264 +4,3712i | .
—1,1049 — 4, 6139 0,3264 — 4, 3712

1,
05 |
Yy ool .
—0,5}
_1,
| | | | | | | | | |
4 —2 0 2 4 4 —2 0 2 4
i X

4.2. dbra. Szimulacios eredmények: y és z fiiggése x-t6l

P e sy

<SS \// 5

@

4.3. dbra. A rendszer palyaja
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5. fejezet

Hopf-bifurkaci6

Ebben a fejezetben egy kétdimenzios példan keresztiil ismertetjiik a Hopf-
bifurkaciot. Az elméleti attekintés utan numerikus modszerek segitségével mutatunk
példat a jelenségre a dolgozatban vizsgalt Chua-rendszerben.

5.1. Elméleti bevezetd

Hopf-bifurkacié soran — valamely rendszerparaméter megvéltoztatasaval — egyen-
silyi helyzet kornyezetében periodikus pélya jon létre vagy tiinik el. Ennek sziiksé-
ges feltétele, hogy a rendszer valamely egyenstlyi helyzetében felirt Jacobi-méatrix
komplex konjugalt sajatértékeinek valos része a paraméterviltoztatas soran elGjelet
valtson.
A jelenség bemutatésahoz tekintsiik a kovetkezd kétdimenzids rendszert, ahol
i € R paraméter:
j:z;m—y—x(ﬁ—i—gf),
9(z,y)
g=z+py—y @@ +y’). 51)

-~

h(z,y)

Azonnal latszik, hogy (0,0) tetsz6leges p esetén egyensilyi helyzet. A Jacobi-
matrixhoz tekintsiik az alabbi derivaltakat:

0.9 (z,y) = p— 32° — y?, 9,9 (x,y) = —2xy — 1,
Oph (x,y) =1 — 2y, Oyh (z,y) = p — 3y* — 27,

melyek alapjan a (0,0)-hoz tartozé Jacobi-méatrix:

J(0,0) = (’1‘ _Ml)

Koénnyen megmutathatd, hogy J (0,0) sajatértékei: p + 4. Vildgos, hogy ezek a
sajatértékek p = 0 esetén a képzetes tengelyre esnek, és ha p athalad a nullén,
akkor a valos résziik elGjelet valt.

Legyen z = z + iy komplex valtozo. Ekkor Z = & + iy. Behelyettesitve (5.1)
egyenleteit, valamint felhasznalva, hogy |z\2 = 2?2 + 9%, egyszertien ellendrizhetd,
hogy fennél a

b= (pu+1i)z—z|2]
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egyenlGség. Térjiink 4t polarkoordinatakra, azaz legyen z = re'® ahol r = |z]| és
tanyp = Zm(z) /Re(z). Figyelembe véve, hogy ebben az esetben z, r és ¢ is ¢
fiiggvénye, a polarkoordinatas formula derivalasaval azt kapjuk, hogy

z=re"¥ +refip.

Tegyiik egyenlévé a z-ra kapott két Osszefiiggést tigy, hogy z helyett annak polarko-
ordinatas alakjat hasznéljuk. Igy azt kapjuk, hogy

7e +re'fip = (u+ i) re" — re'fr?.

3

Egyszertisitve az €'¥ nemnulla tényez6vel az 7 + irp = (u+14)r — r® dsszefiiggésre

jutunk.
Ez akkor és csak akkor teljesiil, ha az egyenlet két oldalan elhelyezkedé valds és
képzetes részek megegyeznek, ami az alabbi egyenletrendszerre vezet:

{fzr(u—ﬁ),

o =1
A p paraméter fiiggvényében harom esetet sziikséges vizsgalni:

1. Ha pu = 0, akkor 7 = —r3. Tudjuk, hogy r pozitiv, hiszen r = |z| > 0, ezért
—r? < 0, 1igy 7 < 0, azaz r szigortian monoton csokken, tehat a (0, 0) egyensilyi
helyzet stabil. (A konkrét példanal globélisan aszimptotikusan stabil.)

2. Ha p < 0, akkor barmely r esetén r (1 — r?) < 0, tehéat 7 < 0. Latjuk, hogy r
ebben az esetben is szigorian monoton csokken, de kis |r| esetén az eldz6nél
gyorsabban.

3. Ha p > 0, akkor harom aleset lehetséges:

e Har = ,/u, akkor 7 = 0, r konstans, tehat van egy /i sugari periodikus
palya;
e Ha r > /i, akkor 7 negativ, r tehat szigorian monoton csokken;

e Ha 0 <7 < /i, akkor 7 pozitiv, r ezért szigorian monoton ng.

5.1. dbra. Szuperkritikus Hopf-bifurkacio
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Azt 1atjuk, hogy p > 0 esetén a (0, 0) egyensulyi helyzet instabil, és a periodikus
megoldéas orbitalisan aszimptotikusan stabil. Ez azt jelenti, hogy a periodikus péa-
lydhoz kozel inditott megoldasok orokre kozel maradnak, és a periodikus palyanak
létezik olyan kornyezete, hogy az abbol inditott megoldasok a periodikus palyahoz
konvergalnak.

Ezt a jelenséget szuperkritikus Hopf-bifurkdcionak nevezziik. A kiilonb6z6 para-
méterekhez tartozo fazisképeket az 5.1. abran szemléltetjiik.

Tekintsiik most az alabbi rendszert:

{izuw—y+w@”+f% (5.2)

j=x+py+y@®+y?).
Az el6z6 esettel teljesen analog modon eljarva azt kapjuk, hogy (5.2) ekvivalens az
alabbi rendszerrel:
F=r(ptr?),
o =1.
Ezittal is harom esetet sziikséges vizsgalni p paramétertdl fiiggden:

1. Ha u = 0, akkor 7 = 73 pozitiv, azaz r szigortian monoton ndg, tehat a (0,0)
egyensilyi helyzet instabil.

2. Ha pu > 0, akkor barmely r esetén r (u+1r?) > 0, ezért 7 pozitiv. Latjuk,
hogy 7 ebben az esetben is szigorian monoton né, de kis |r| esetén az elgz6nél
gyorsabban.

3. Ha p < 0, akkor harom aleset lehetséges:

e Ha r = /—pu, akkor = 0, r tehat konstans és van egy /—p sugari
periodikus pélya;

e Ha r > /—pu, akkor r pozitiv, r ezért szigorian monoton nd;

e Ha 0 <r < +/—u, akkor 7 negativ, r tehat szigortan monoton csokken.

Azt latjuk, hogy ekkor a (0,0) egyensulyi helyzet stabil, a periodikus palya pedig in-
stabil. A rendszer ekkor szubkritikus Hopf-bifurkdcion megy keresztiil. A kiilonb6z6
paraméterekhez tartozo fazisképeket az 5.2. abra szemlélteti.

Y Y Y

CY :
N N

©w <0 ©w=70 w>0

ﬁ?\
&

5.2. abra. Szubkritikus Hopf-bifurkacio
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5.2. Hopf-bifurkacié a Chua-rendszerben

Ebben a szakaszban numerikus vizsgilatok segitségével mutatunk példat szuperkri-
tikus Hopf-bifurkaciora a Chua-rendszerben. Ehhez tekintsiik ismét a (2.12) egyen-
letrendszert. Elvégezve az egyenletek jobb oldalanak z-, y- és z-szerinti derivalasat
a kovetkezd Jacobi-matrixot kapjuk:

—a(l+my) o 0
J(x,y,z) = 1 -1 1
0 -5 0

Latjuk, hogy a Jacobi-matrix nem fiigg az z, y és z valtozoktol. Olyan o és [y
paramétereket keresiink m; = —0,7 mellett, hogy ha « athalad ag-on és [ rogzitve
van [y-ban, akkor J komplex konjugdlt sajatértékeinek valos része elGjelet valt.

Im m Im

X X X
1,5991%

Re X Re Re
—2,0469

X X X
—1,59917

a < Op a = QO a > Qp

5.3. abra. A Jacobi-matrix sajatértékei ag kdrnyezetében

A [3] dolgozat szerint ha d # 0 és 5y € (0,15), akkor létezik ilyen ap a (0,5)
intervallumban. Legyen 8 = [y = 5 és m; = —0,7 rogzitett. Ezen feltételeket
figyelembe véve Matlab-kodot irtunk azon kritikus o = ay meghatarozasara, amely
esetén a Jacobi-matrix komplex konjugélt sajatértékei éppen a képzetes tengelyre
esnek. A koédot a dolgozat Fiiggeléke tartalmazza.

—2,66

Z _267 z

2,66 .
2,67 —2 1073

a < ap a = «qp a > aqp

5.4. abra. Fazisképek kiilonb6z6 o paraméterek esetén

A szimuléciés eredmények alapjan a kritikus a-érték a megadott feltételek
mellett oy ~ 3,4896. A Jacobi-matrix sajatértékeinek viselkedését az 5.3. ab-
ran, a rendszer fazisképeit kiilonb6z6 o paraméterek és my = 1,5 esetén, az
((my —myg) / (1+my),0,(mg —my) /(14 my))" egyensilyi helyzet kornyezetében
pedig az 5.4. 4bran szemléltetjiik.
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A numerikus vizsgélatok alapjan kapott fazisképek azt mutatjak, hogy a < ap
esetén az ((my — mg) / (1 +my),0, (mg —my) / (1 +mq))" egyensilyi helyzet stabil,
de o > o esetén ez az egyensiilyi helyzet instabil, és megjelenik egy aszimptotikusan
stabil periodikus péalya.

1073 1072

5.5. abra. Bifurkacios diagramok

Azt latjuk, hogy a Chua-rendszer szuperkritikus Hopf-bifurkacion megy keresz-
tiil. A rendszer bifurkacios diagramjat, azaz a periodikus péalya A amplitudéjat o
fiiggvényében kiilonboz6 tartomanyok és o > g esetén az 5.5. abra szemlélteti,
az 5.6. abran pedig néhany periodikus palya numerikus kozelitése lathato.

1071

2,67

2,67

2,67

5.6. 4bra. Periodikus palyak
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6. fejezet

Peri6éduskett6zé (flip-) bifurkacio

Ebben a fejezetben egy példa segitségével ismertetjiik a perioduskett6z6 (mas né-
ven flip-) bifurkaciot leképezésekre, majd megmutatjuk, mit jelent a periodukett§zs
bifurkacié differencidlegyenlet-rendszerek esetén. Az elméleti bevezet6t kovetGen
példat mutatunk a jelenségre a Chua-rendszerben.

6.1. Flip-bifurkaci6 leképezések esetén
A perioduskettszo (vagy flip-) bifurkacié bemutatéséahoz tekintsiik az
fiRxR3 (z,0) —(1+a)r+2°€R

leképezést (0,0) kozelében, és vezessiik be az f, (z) = f (z,a), = € R, jelolést.
7. Definicio. Legyen ¢: R — R leképezés, és legyen z € R. Azt mondjuk, hogy = a
¢ leképezés fizpontja, ha ¢ (z) = x.

Vilagos, hogy az f, leképezés fixpontjai éppen az ¥ = — (1 + ) x + 2® egyenlet
megoldasai. Azonnal latszik, hogy =z = 0 fixpont. Ha x # 0, akkor

l=—1l-a+2*<=2+a=2 <= 1==1V2+a#0, ha |a] kicsi,

ezért az x = 0 a leképezés egyetlen origokdzeli fixpontja.

Leképezések esetén a bifurkacio sziikséges feltétele, hogy a fixpontban vett de-
riviltnak legyen olyan sajatértéke, ami az egységkorre esik. Tekintsiik f x-szerinti
derivaltjat: f. = —(1+ «) + 32?. Latjuk, hogy f.(0,a) = —(1+ a), ezért a = 0
esetén f! (0,0) = —1, ami az egységkorre esik.

Vizsgaljuk most a leképezés masodik iteraltjanak fixpontjait:

F2(@) = fo (fo () = = (14 @) fo (&) + (fu ()
Elvégezve a behelyettesitést, valamint figyelembe véve, hogy |z| kicsi,
fPr)=1+a)’r-[(1+a)+(1+a)’]2®+0(@°) = (1+a)’ v+ 0O (2?)

irhato fel. Az vilagos, hogy = = 0 fixpontja f2-nek is. Megmutathato, hogy f2-
nek csak a > 0 esetén létezik tovabbi nemtrividlis fixpontja, és belathaté az is,
hogy pontosan ketts ilyen van: /o és —/a. Behelyettesitéssel ellendrizhets, hogy
fo (V@) = F/a, azaz f? fixpontjai éppen f, 2-periodikus palyajat adjak.
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6.1. abra. Szuperkritikus flip-bifurkécio (Jelolés: x4 = fo (x,), n > 0)

Vizsgaljuk meg az tgynevezett pokhalo-modszer segitségével f, fixpontjanak,
valamint 2-periodikus palydjanak stabilitasat.

A 6.1. dbra alapjan a < 0 esetén x = 0 vonzza az xg, 1, To,... palyit, ezért
az f, leképezés r = 0 fixpontja aszimptotikusan stabil. Ha o = 0, akkor f, érin-
ti az y = —x egyenest, és a pokhalo-modszer segitségével megmutathatd, hogy
x = 0 aszimptotikusan stabil. Azt is latjuk, hogy a kicsi, pozitiv a esetén kiala-
kul6 2-periodikus megoldéas orbitalisan aszimptotikusan stabil, és x = 0 elvesziti a
stabilitasat. Fzt a jelenséget szuperkritikus flip-birufkdcionak nevezziik.

\
’
Y

6.2. abra. Szubkritikus flip-bifurkéacié

Hasonléan vizsgalhato a
g RxR3(z,0) —(1+a)z—2°cR

leképezés is az origd kozelében. Megmutathato, hogy kizardlag o < 0 esetén létezik
2-periodikus pélya, és ebben az esetben g, (£v/—a) = Fv/—a. A 6.2. abran azt
latjuk, hogy ha a < 0, akkor az x = 0 fixpont stabil, a 2-periodikus palya pedig
instabil. Ha o > 0, akkor a pokhalo-moédszer alapjan az x = 0 fixpont instabil. Ezt
a jelenséget szubkritikus flip-bifurkdcionak nevezziik.
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Az itt bemutatott példaktol eltérs leképezésekre az alabbi tétel alkalmazhato,
melynek bizonyitasa megtalalhato példaul a [9] konyvben.

5. Tétel. Tegyiik fel, hogy a haromszor folytonosan differencidlhato f: R x R — R
leképezésre teljesiilnek az alabbi feltételek:

1. £(0,0) = 0;
3. Lfr (0,0))* + L fm,(0,0) # 0;

4. fr (0,0) # 0.
Ekkor f peridoduskett&zé bifurkacion megy at, ahogy o athalad a nullan.

6.2. Flip-bifurkaci6é differencialegyenlet-rendszerek
esetén

Ebben a szakaszban megmutatjuk, mit jelent a perioduskett6zd (flip-) bifurkacio
differencidlegyenlet-rendszerek esetében. Az egyszertiség kedvéért csak 3-dimenzids
rendszereket tekintiink.

Tegyiik fel, hogy a vizsgalt haromdimenzios differencidlegyenlet-rendszernek lé-
tezik Lo periodikus palyaja. Allitsunk Lg-ra transzverzalisan egy sikot valamely

Ly

6.3. dbra. Flip-bifurkacio differencidlegyenlet-rendszerek esetén

(z*,y*, z*) pontjan keresztiil, azaz ugy, hogy az Ly palya (z*,y*, z*)-ban vett érin-
téje ne essen bele a sikba. Tekintsiik (z*,y*, 2*) egy kicsi U kornyezetét ebben a
sikban. A differencidlegyenlet-rendszerek megoldésai folytonosan fiiggenek a kezdeti
feltételektdl, ezért elég kicsi U kornyezet esetén a tetszéleges (z,y, z) € U kezdeti
pontbol indulé megoldas tjra metszeni fogja a sikot.

Definidljuk a P: U — R? leképezést tgy, hogy tetszdleges (r,y,2) € U esetén
P (z,y, z) legyen a sik azon pontja, ahol az (x,y, z) kezdeti pontbél induldé megoldas
Ujra metszi a sikot. A P leképezés fixpontjai megfeleltethetsk a differencidlegyenlet-
rendszer periodikus palyainak. Vildgos, hogy az (z*,y*, 2*) pont P fixpontja.

Ha bizonyos paraméterek esetén P peridduskettéz6 bifurkicion megy at,
azaz ‘P-nek lesz egy P, P, Py, P, ... periodikus palyaja, akkor az eredeti
differencidlegyenlet-rendszer Ly periodikus palyaja kozelében megjelenik egy 1j, L,
periodikus palya tgy, hogy ezen palya minimalis periddusa megkozelitGleg kétsze-
rese az eredetinek. Differencidlegyenlet-rendszerek esetén ezt a jelenséget nevezziik
perioduskettsz6 bifurkacionak. A jelenséget a 6.3. Abra szemlélteti.
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6.3. A jelenség megfigyelése a Chua-rendszerben

Az aldbbiakban numerikus vizsgalatok segitségével mutatunk példat periddusket-
t6z6 bifurkéciokra a Chua-rendszerben. Az ehhez irt Matlab-scriptet a Fiiggelék
tartalmazza. A [3| dolgozat alapjan, ha my = —8/7, my = —5/7 és [ = 16 rog-
zitett, és a 8,855 és 9,173 kozott mozog, akkor a Chua-rendszer periéduskettzé
bifurkaciok sorozatdn megy keresztiil.

Elgszor vizsgaljuk a rendszert 8, 8557-kdzeli o paraméterekre. Tekintsiik egy pe-
riodikus péalya Lo kozelitését o = 8,855 esetén, és legyen (0, o, 20) € Lo. Allitsunk
(x0, Yo, 20)-ra egy S sikot gy, hogy az Lo-ra nézve transzverzalis legyen. Ezt meg-
tehetjiik példaul ugy, hogy S normalvektorat (& — xo,§ — yo, Z — 20)-nak valasztjuk,
ahol (7,7, 2) € Ly egy tetszbleges pont (xg, Yo, 20) kis kdrnyezetében.

~1,55 | .

~16| i

Y165 |

~1,7} B

—1,75 | | | | L]
—5.10"2 0 5.10"2 0,1 0,15 0,2 0,25

o — (9

1N

6.4. abra. Bifurkacios diagram ay ~ 8, 8557 kornyezetében

Az o paraméter novelése esetén minden egyes « értékre egy stabil periodikus
palyat figyelhetiink meg. A 6.4. dbra azt szemlélteti, hogy mi az x-koordinataja
ezen periodikus palyak és az S sik (zo,yo, 20)-hoz kozeli metszéspontjainak. Ez
a szimulacié azt tamasztja ala, hogy a rendszer peridduskett6zé bifurkacion megy
keresztiil.

Ez azt jelenti, hogy létezik egy kritikus as ~ 8 8557 paraméter a kovetkezd
tulajdonsagokkal: Ha a < aw, és a kozel van as-hoz, akkor létezik egy orbitdlisan
stabil periodikus megoldas. Ha o > ag és o — ap kicsi, akkor azt lathatjuk, hogy ez
a periodikus megoldas elvesziti stabilitasat, és a kozelében minden « esetén megfi-
gyelhetiink egy olyan masik stabil periodikus palyat, melynek minimalis periddusa
megkozelitéleg kétszerese az eredeti periodikus megoldasénak. Vilagos, hogy ezen
periodikus palydknak és az S siknak (zo, yo, z0) kozelében két metszéspontja van.

A 6.4. bifurkacios diagram numerikus elGallitdsa soran szamos technikai nehézség-
gel szembesiiltiink. Az S sik és az a > a5 esetén kozelitett L, periodikus megoldasok
metszéspontjainak numerikus meghatarozisa soran sziikség van egy jol megvélasz-
tott € > 0 kiiszobértékre azon (xy, Y, 2x) € Lo, k = 1,2, ... pontok megtalalasihoz,
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amelyek e-néal nagyobb pontossaggal kielégitik S egyenletét, azaz kielégitik az
2k (T — 20) + y (T — vo) + 21 (2 —20) —d| <¢

egyenlGtlenséget, ahol d = x¢ (T — xo) + yo (¥ — vo) + 2 (£ — 20). A gyakorlati ta-
pasztalatok azt mutatjik, hogy az ¢ = 2 - 107 vélasztas megfelels. Ezt kdvetGen
ki kell valogatni azokat a pontokat, melyek (xo, yo, 20) kozelében talalhatok. Ehhez
(o, Yo, 20) s (T, Yk, zx) pontok euklideszi tavolsagat vizsgaljuk minden k-ra.

0 [ |
—05| i
—05| i
1L i
_]_ [ |
z x
—15+ 1 -15| i
—9| | —9| i
| | | | | | | | | | |
0 2 4 6 8 0O 2 4 6 8 10
t t
a < ag &= 8,8557 ay < a < ayg~9,1080

6.5. dbra. x idéfiiggvénye kiilonb6z6 a-értékek esetén

—1 —0,2 —1 —0,2
a < ag ~ 8,8557 ay < o< ay~9,1080

6.6. abra. A rendszer palyaja kiilonb6z6 a-értékek esetén

Az (g, yo, 20)-kozeli pontokat ezutan elhelyezkedésiik szerint két csoportra kell
osztani. Az utolso6 1épés egy-egy pont kivalasztasa ezen két csoportbol aszerint, hogy
a csoporton beliil melyik pont elégiti ki a legpontosabban S egyenletét. A 6.4. abra
ezen két pont x-koordindtajat szemlélteti o fliggvényében.
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Tovabbi szimulacios eredményeket lathatunk a 6.5., 6.6., 6.7. és a 6.8. abrakon,
amelyek azt tamasztjak ala, hogy a Chua-rendszerben perioduskettézd bifurkaciok
sorozata torténik.

Az o paraméter értékét tovabb novelve ay =~ 9,1080 és ag ~ 9,1591 kritikus
értékek kozé olyan orbitalisan stabil periodikus megoldésokat figyelhetiink meg, me-
lyek minimélis periddusa megkozelitSleg kétszerese az as < a < ay esetén vizsgélt
periodikus palyaknak, ezért négyszerese Ly minimalis periodusanak.

Amennyiben az « paraméter értékét tovabb noveljiik, ugy azt tapasztaljuk, hogy
bizonyos agn, n = 1,2, ... kritikus paraméterek esetén Ly kozelében megfigyelhetd
periodikus megoldasok rendre elveszitik stabilitasukat, és kis kornyezetiikben to-
vabbi periodikus megoldasok bifurkidlédnak, melyek miniméalis periddusa 2"-szerint
novekszik Lo minimalis peribdusahoz képest.

0| 1o :
05| 1 05| 1
71y 12 7L )
15) 1 —15] 1
—9l 1 9 |

| | | | | | | |

0 5) 10 0 5 10 15 20

t t
ay < a<ag~9,1591 ag < a < agg~9,1699

6.7. dbra. x id6fliggvénye kiilonb6z6 a-értékek esetén

—

0
0,2
—9 0
-1 ~0,2 -1 0 —0.2
X Y T
ay < a<ag 91591 ag < a < ajg~9,1699

6.8. abra. A rendszer palyaja kiillonb6z6 a-értékek esetén
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7. fejezet

Kaosz

Hétkoznapi értelemben a "kadosz" kifejezés egyfajta rendezetlen, szokatlan, megjo-
solhatatlan viselkedésre utal. A matematikaban leképezések esetén talalkozhatunk
kaotikus viselkedéssel, melynek pontos definidlasa a kdvetkezd célunk.

Ebben a fejezetben ismertetjiik a kdosz definici6jadhoz sziikséges alapfogalmakat,
majd a definiciot kovetGen példat mutatunk kdoszra a Chua-rendszerben.

7.1. Alapfogalmak

Tekintsiik az X metrikus teret d metrikaval, legyen f: X — X folytonos leképezés,
valamint vezessiik be az N, (x) = {y € X | d(z,y) < €} jelolést. Utobbit x e-sugari
kornyezetének nevezziik. Az X metrikus tér U C X részhalmaza nyilt, ha barmely
x € U esetén létezik e > 0 agy, hogy N, (x) C U. Ha X metrikus tér, x € X és
e > 0, akkor N. (z) nyilt.

8. Definicio. A D C X halmaz sdrii X-ben, ha barmely z € X és ¢ > 0 esetén
letezik y € D ugy, hogy d (z,y) < e.

Példaul az X = R és D = Q valasztas esetén D siird X-ben, mert barmely két
valos szam kozott kozott végtelen sok racionalis szam taldlhato.

9. Definicio. Az f leképezés topologikusan tranzitiv, ha barmely nyilt, nemiires
U,V C X részhalmazok esetén létezik n € N és x € U gy, hogy ™ (z) € V.

5. Allitds. Ha létezik zo € X gy, hogy az f leképezés zo-bol indulo palyaja str
X-ben, akkor f topologikusan tranzitiv.

Bizonyitds. Legyen f: X — X leképezés, legyenek U,V C X tetszbleges, nyilt,
nemiires halmazok, és tegyiik fel, hogy az f leképezés xy-bol indulé palyaja strd A-
ben. Ebbél kovetkezik, hogy létezik k,m € N gy, hogy f* (zo) € U és f™ (zo) € V.
Ha m > k, akkor készen vagyunk az n = m — k valasztéssal.

Amint mar emlitettiik, a V halmaz z( legalabb egy iteraltjat tartalmazza. Te-
gyiik fel V-r6l, hogy xy véges sok iteraltjat tartalmazza. Legyen v € V tgy, hogy v
nem iteraltja xo-nak. Tudjuk, hogy

e =min{|v — f" (x0)|} >0,

ezért v € /2-sugari kornyezete nem tartalmaz olyan elemet, amely x iteraltja. Ekkor
az xo-bol induld palya nem siirti X-ben, ami ellentmondaés.
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Ebbdl kovetkezik, hogy a V halmaz z( végtelen sok iteraltjat tartalmazza, azaz
letezik m > k agy, hogy f™ (x¢) € V. Ha az n = m — k valasztassal éliink, akkor a
bizonyitas kész. O

Egy kaotikus leképezéstdl elvart, hogy érzékenyen fiiggjon a kezdeti adatoktol.
Ezt a tulajdonsagot pillangéhatasnak is szokas nevezni. A kezdeti adatoktol vald
érzékeny fiiggés pontos definicidja a kdvetkezd.

10. Definicio. Az f: X — X folytonos leképezés érzékenyen fiigg a kezdeti adatoktdl,
ha létezik o > 0 ugy, hogy barmely x € X-hez és barmely ¢ > 0-hoz 1étezik y € X
és n € N ugy, hogy d(z,y) <eés d(f"(x), f"(y)) > 6.

7.2. A kadosz definicidja

A kéosznak szamos definicioja létezik [10]. Az alabbi definicié R. Devaney amerikai
matematikus nevéhez fiiz6dik, aki 1989-ben publikalta azt elgszor [11].

11. Definicio. (Devaney) Legyen X metrikus tér. Az f: X — X leképezés kaotikus,
ha

(a) periodikus pontjainak halmaza siiri X'-ben,
(b) topologikusan tranzitiv, és
(c) érzékenyen fiigg a kezdeti adatoktol.

Az alabbi tétel szerint, ha X végtelen szdmossagi, f kaotikus viselkedéséhez
elegendd csak az (a) és (b) feltételeket megkovetelni.

6. Tétel. Legyen f: X — X topologikusan tranzitiv, és legyen f periodikus pontja-
inak halmaza strd X-ben. Ekkor, ha X végtelen szamossagt, f érzékenyen fiigg a
kezdeti feltételektol.

Bizonyitds. Tegyiik fel, hogy f: X — X topologikusan tranzitiv, és periodikus pont-
jainak halmaza stir X-ben. Jelolje Per (f) ezt a halmazt.

El6szor megmutatjuk, hogy megadhato dp > 0 tigy, hogy minden z € X-hez léte-
zik ¢ € Per (f) a kovetkezd tulajdonsaggal: barmely n € N esetén d (x, f™ (q)) > do.
Ez azt jelenti, hogy barmely x € X legaldbb dp tavolsagra van f egy periodikus
palyajatol.

Legyen p, q € Per (f) kiilonboz6 palyaja, és legyen

do = zmin{d (f" (p), f™ (q)) | n,m € N}.

Tudjuk, hogy p és q palyai véges sok pontot tartalmaznak, mert periodikusak, ezért
dp > 0. A fenti definici6 szerint p palydjanak minden pontja legalabb 24, tavolsagra
van ¢ palyajanak 6sszes pontjabol. A haromszog-egyenlGtlenség értelmében

200 < d(f"(p), f"(q)) <d(f*(p),z) +d(z, f"(q)),

tetszbleges n,m € N esetén. Ez alapjan két eset lehetséges:
1. Ha valamely n-re (f" (p),x) < dg, akkor barmely m-re d (z, f™ (q)) > do, vagy

2. ha valamely m-re d (z, f™ (q)) < do, akkor barmely n-re (™ (p),x) > do,
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ami azt jelenti, hogy barmely x € X legalabb ¢§y tavolsigra van vagy p vagy ¢
periodikus palyajatol.

Legyen most 6 = dp/4, és © € X tetszbleges. Az alabbiakban megmutatjuk,
hogy ez a 0 megfelels a kezdeti adatoktol vald érzékeny fiiggés igazolasdhoz, azaz
minden z € X-hez és minden € > 0-hoz létezik y € X ugy, hogy d(z,y) < € és
d(f™(x), f"(y)) > 6 valamely n € N esetén. Tekintettel arra, hogy ez a feltétel
csokkend ¢ esetén egyre szigorubb, az altalanossag megszoritasa nélkiil feltehetjiik,
hogy € < 4.

Mivel f periodikus pontjainak halmaza stirdi X-ben, ezért létezik olyan
p € Per (f) egy k € N periodussal, hogy d(z,p) < e. Tovabba a bizonyités elss
része alapjan tudjuk, hogy létezik g € Per (f) ugy, hogy d (¢ palyaja,x) > 0y = 44.
Végiil definialjunk egy V halmazt a kdvetkez6képpen:

V=Az[d(f (), [ (q)) <6, VO<i<k}
A definiciobol kovetkezik, hogy ¢ € V, valamint megmutathat6 [10], hogy V nyilt.

Mivel V és N. (z) nyilt halmazok, tovabba feltettiik, hogy f topologikusan tran-
zitiv, ezért létezik y € N, (z) és m € N 1agy, hogy f™ (y) € V. Legyen j € N olyan,
hogy

T<y<T+tl=0<kj—m<k

A bizonyitéas befejezése el6tt tekintsiik 4t az eddigieket. Az x € X pont tetszéle-
ges, valamint tudjuk, hogy 0 < ¢ < J. Az N. (x) halmazon beliil taldlhat6 az alabbi
harom pont: az z, a p periodikus pont k periddussal, valamint az y.

N. (z) v

7.1. 4bra. A bizonyitasban hasznalt halmazok és elemek elhelyezkedése

AV halmazrdl tudjuk, hogy V N N. () = (). Ez kovetkezik V definiciojabol,
és abbol, hogy d(z, f"(¢q)) > dp = 40 minden n-re, valamint abbol, hogy ¢ < 4.
Tudjuk azt is, hogy ¢ € V, valamint ha z € V és ¢ < k, akkor d (f*(2), f(¢q)) <,
és f (y) € V. Ezt mutatja a 7.1. abra.

Az alabbiakban megmutatjuk, hogy a d(f" (p),f" (z)) > 0§ és
d(f* (y), f¥ (z)) > & egyenltlenségek koziil valamelyik mindig fennall. Ek-
kor, mivel p és y pontok z-t6l mért tavolsaga kisebb, mint e, teljesiilnek a kezdeti
adatoktol valo érzékeny fiiggés definiciojaban elGirt egyenlGtlenségek.

Mivel y olyan, hogy f™ (y) € V, ezért V definicidja alapjan

d( fM(y) ,f% ™ (q)) <6, hiszen kj —m < k.

~—
JrEI=m(fm(y))

A haromszog-egyenlétlenség alkalmazasaval pedig azt kapjuk, hogy
d(z, fm (q)) < d(x,p) +d (p, f () +d (f¥ (y), 97 (q)) -
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Egyrészt feltettiik, hogy d (z,p) < € < §. Masrészt az el6bb megmutattuk, hogy
d (Y (y), 7" (q)) < 9, ezért

d (z, f¥7m(q)) < d (p, f* (y)) + 2.

Mivel tudjuk, hogy d(x,fkj*m (q)) > 0y = 46, ezért az el6z6 egyenlGtlenségbdl
az kovetkezik, hogy d(p, fhi (y)) > 26. Tudjuk, hogy p-nek k periodusa, ezért
fH(p) = p, igy d (f¥ (p), f* (y)) > 26. Végiil vegyiik észre, hogy

)

20 <d(fY(p), () <d(f(p), f¥ () +d (Y (x), f¥ (y)),
amib¢l kvetkezik, hogy d (f* (p), f* (z)) > & vagy d (f* (z), f¥ (y)) > 6. O

7.3. Kaosz a Chua-rendszerben

Differencidlegyenlet-rendszerek esetén akkor beszéliink kdoszrol, ha valamely (a dol-
gozat 6.2. szakaszaban definialt) P visszatérési leképezés kaotikus.

A 7.2, dbran azt lathatjuk, hogy a Chua-rendszer az o = 15, § = 25, mg = —1,6
és my = —0, 8 paraméterek, valamint a (—0.4, 0, O)T kezdeti érték mellett kaotikusan
viselkedik: a numerikus szimulaciok alapjan tugy ttinik, hogy ezen megoldas palyaja
stirti a fazistér egy részhalmazéaban.

A rendszer kaotikus viselkedést mutat a 4.1., 4.2. és 4.3. abrakon lathat6 szimu-
laciés eredmények esetén is.

5 —1
" Yy
t €10,10]
10
0
z
—10 1
-5 0 _—
Yy
T
t € [0, 50] t €0, 70] t € [0, 80]

7.2. abra. A rendszer palyaja
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A. fuggelék

Fuggelék

A.1. A Chua-rendszer Matlab-kédja

chua_script.m

%Chua-aramkor, ungert, 2019
clear; clc;

%Villamos input

C1 = 10%10~(-9); %10 nF

C2 = 156%10"(-9); % 156 nF

R = 1%10°3; G = 1/R; % 1 kOhm
L = 6%10°(-3); %6 mH

Ga = -1.5%G; Gb = -0.7%G;

%Parameterezes
alpha = C2/Cl; beta = C2/(L*G"~2);
m0 = Ga/G; ml = Gb/G;

n = 2000; %Idolepesek
x = zeros(l,n); y = x; 2 = y;
t = linspace(0,50,n);

dt = t(2) - t(1);

KF = [-0.7 0 0]; %Kezdeti feltetel
x(1) = KF(1); y(1) = KF(2); z(1) = KF(3);

ujszakasz = true; t_1 = 0; t_2 = dt;
for i = 2:n
Hh
if (ujszakasz == true) && ((x(i-1) < -1) || (x(i-1) > 1))
m = ml;
%Sajatertekek
SE = roots([1 (l+alpha+alpha*m) (betatalpha*m) (alphaxbeta*(1+m))]1);
if (x(i-1) < -1)
d = (m0-m1) / (1+ml);
elseif (x(i-1) > 1)
d = (m1-m0) / (1+ml);
end
elseif (ujszakasz == true)
m = m0;
d = 0;
%Sajatertekek
SE = roots([1 (l+alphatalpha*m) (beta+talpha*m) (alpha*beta*(1+m))]);
end
Hh

%Konstansok meghatarozasa elsokent es minden szakaszatlepeskor

%Harom kulonbozo valos sajatertek
if (ujszakasz == true) && (isreal(SE) == 1) && (SE(1) "= SE(2)) && ...
(SE(1) ~= SE(3)) && (SE(2) "= SE(3))
if i ==
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k = inv([1 1 1;SE(1) SE(2) SE(3); SE(1)~2 SE(2)"2 SE(3)"2]) * ...
[z(1) + d;-beta*y(1);-betax(x(1)-y(1)+z(1))];
else
k = inv([1 1 1;SE(1) SE(2) SE(3); SE(1)~2 SE(2)"2 SE(3)"2]) * ...
[z0 + d;-beta*y0;-beta*(x0-y0+z0)];
end
end

%Valos sajatertekek, ketto azomos

if (ujszakasz == true) && (isreal(SE) == 1) && ...
(((SE(1) == SE(2)) && (SE(2) "= SE(3))) || ((SE(1) == SE(3)) && (SE(3) "= SE(2)))
Il ((SE(2) == SE(3)) && (SE(3) "= SE(1))))

if (SE(1) == SE(2)) && (SE(2) "= SE(3))
lambdal2 = SE(1); lambda3 = SE(3);

elseif (SE(1) == SE(3)) && (SE(3) "= SE(2))
lambdal2 = SE(1); lambda3 = SE(2);

elseif (SE(2) == SE(3)) && (SE(3) "= SE(1))
lambdal2 = SE(2); lambda3 = SE(1);

end
if i == 2
k = inv([1 0 1;lambdal2 1 lambda3; lambdal2"2 2*lambdal2 lambda3]) * ...
[z(1) + d;-beta*xy(1l);-beta*x(x(1)-y(1)+2(1))];
else
k = inv([1 0 1;lambdal2 1 lambda3; lambdal2"2 2*lambdal2 lambda3]) * ...
[z0 + d;-beta*y0;-beta*(x0-y0+z0)];
end

end

%Valos sajatertekek, mindharom azonos
if (ujszakasz == true) && (isreal(SE) == 1) && (SE(1) == SE(2)) && ...
(SE(1) == SE(3)) && (SE(2) == SE(3))
lambda = SE(1);

if i == 2
k = inv([1 0 0; lambda 1 0; lambda~2 2*lambda 2]) * ...
[z(1) + d;-beta*xy(1l);-beta*x(x(1)-y(1)+2(1))];
else
k = inv([1 0 0; lambda 1 0; lambda"2 2*lambda 2]) * ...
[z0 + d;-beta*y0;-beta*(x0-y0+z0)];
end
end

%Konjugalt komplex sajatertekek vannak
if (ujszakasz == true) && (isreal(SE) == 0)

if isreal(SE(1)) ==

gamma = real(SE(1)); omega = abs(imag(SE(1)));
elseif isreal(SE(2)) ==

gamma = real(SE(2)); omega = abs(imag(SE(2)));
else

gamma = real(SE(3)); omega = abs(imag(SE(3)));

end

if isreal(SE(1)) ==
lambda3 = SE(1);

elseif isreal(SE(2)) == 1
lambda3 = SE(2);

else
lambda3 = SE(3);

end
if i ==2
k = inv([1 0 1; gamma omega lambda3; gamma~2-omega~2 2*gamma*omega lambda3~2])
*x [z(1) + d;-betaxy(1);-betax(x(1)-y(1)+z(1))]1;
else
k = inv([1 O 1; gamma omega lambda3; gamma~2-omega~2 2*gamma*omega lambda3~2])
* [20 + d;-betaxy0;-beta*(x0-y0+20)];
end

end
he

%Fuggvenyertekek meghatarozasa minden idolepesben

II
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if (isreal(SE) == 1) && (SE(1) "= SE(2)) && (SE(1) "= SE(3)) && (SE(2) "= SE(3))
%Harom kulonbozo valos sajatertek

[z(1),y(i),x(1)] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,t_2);

elseif (isreal(SE) == 1) && ... %Valos sajatertekek, ketto azomos
(((SE(1) == SE(2)) &% (SE(2) "= SE(3))) || ((SE(1) == SE(3)) && (SE(3) "= SE(2)))
Il ((SE(2) == SE(3)) && (SE(3) "= SE(1))))

[z(i),y(1),x(i)] = ValosKettoAzonos(k(1),k(2),k(3),lambdal2,lambda3,d,beta,t_2);

elseif (isreal(SE) == 1) && (SE(1) == SE(2)) && ...
(SE(1) == SE(3)) && (SE(2) == SE(3)) %Valos sajatertekek, mindharom azonos

[z(1),y(1),x(1)] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,t_2);
elseif (isreal(SE) == 0) %Konjugalt komplex sajatertekek vannak

[z(i),y(1),x(1)] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,t_2);
end

hh
%Szakaszhatar-atlepes ellorzese
if ((x(i-1) < -1) && (x(i) > -1)) |l ((x(i-1) > -1) && (x(i) < -1))
ujszakasz = true;
x_vart = -1;
elseif ((x(i-1) < 1) && (x(i) > 1)) || (x@Gi-1) > 1) && (x(1) < 1))
ujszakasz = true;
x_vart = 1;
else
ujszakasz = false;
end
hh
%x0,y0,20 szakaszhatar-atlepes eseten (Bisection method)
if ujszakasz == true

epsilon = 100;
while abs(epsilon) > 1%10°(-12)
c = (a+b)/2;

if (isreal(SE) == 1) && (SE(1) "= SE(2)) && ...
(SE(1) ~= SE(3)) && (SE(2) ~= SE(3)) %Harom kulonbozo valos sajatertek

[z0,y0,x0] ValosNemAzonosak(k(1) ,k(2),k(3),SE(1),SE(2),SE(3),d,beta,c);
[za,ya,xa] ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,a);
[zb,yb,xb] = ValosNemAzonosak(k(1),k(2),k(3),SE(1),SE(2),SE(3),d,beta,b);

elseif (isreal(SE) == 1) && ... %Valos sajatertekek, ketto azonos
(((SE(1) == SE(2)) && (SE(2) ~= SE(3))) || ((SE(1) == SE(3)) && ...
(SE(3) "= SE(2))) || ((SE(2) == SE(3)) && (SE(3) ~= SE(1))))

[z0,y0,x0] ValosKettoAzonos(k(1),k(2),k(3),lambdal2,lambda3,d,beta,c);
[za,ya,xa] = ValosKettoAzonos(k(1),k(2),k(3),lambdal2,lambda3,d,beta,a);
[zb,yb,xb] = ValosKettoAzonos(k(1),k(2),k(3),lambdal2,lambda3,d,beta,b);

elseif (isreal(SE) == 1) && (SE(1) == SE(2)) && (SE(1) == SE(3)) &% ...
(SE(2) == SE(3)) %Valos sajatertekek, mindharom azonos

[z0,y0,x0] ValosHaromAzonos (k(1),k(2),k(3),lambda,d,beta,c);
[za,ya,xa] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,a);
[zb,yb,xb] = ValosHaromAzonos(k(1),k(2),k(3),lambda,d,beta,b);
elseif (isreal(SE) == 0) %Konjugalt komplex sajatertekek vannak

[z0,y0,x0] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,c);
[za,ya,xa] = KonjugaltKomplex(k(1),k(2),k(3),lambda3,gamma,omega,d,beta,a);
[zb,yb,xb] KonjugaltKomplex(k(1),k(2),k(3),lambda3, gamma,omega,d,beta,b);

I1I
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end

epsilon = x0 - x_vart;

if sign(epsilon) == -1 && sign(xa-x_vart) == -
a = c;
elseif sign(epsilon) == -1 && sign(xb-x_vart) == -
b =c;
elseif sign(epsilon) == 1 && sign(xa-x_vart) ==
a = c;
elseif sign(epsilon) == 1 && sign(xb-x_vart) == 1
b =c;
end
end
end
if ujszakasz == true
t_1 =0; t_2 = dt;
else
t_1 =t_2; t_2 = t_2 + dt;
end
end
KonjugaltKomplex.m

function [z,y,x] = KonjugaltKomplex(C1,C2,C3,lambda3,gamma,omega,d,beta,t)
%Konjugalt komplex sajatertekek vannak

= Cl*exp(gamma*t)*cos(omega*t) + C2*exp(gamma*t)+*sin(omegaxt) + C3*exp(lambda3*t) - d;
(-1/beta)*(Clxgamma*exp (gamma*t)+C2*omega*exp (gammaxt) ) *cos (omegaxt) + ...
(-1/beta)* (C2xgamma*exp(gamma*t) -Cl*omega*exp(gammaxt))*sin(omega*t) + ...
(-1/beta)*C3*lambda3*exp(lambda3*t) ;

< N
I

dy = (-1/beta)*exp(gammax*t)*(Cl*gamma~2-Cl*omega~2+2*C2*gamma*omega)*cos (omega*t) + ...
(-1/beta)*exp(gammaxt)* (C2*gamma~2-C2*omega~2-2+Cl*gamma*omega) *sin (omega*t) + ...
(-1/beta)*C3*lambda3~2*exp(lambda3*t);

x=dy +y - z;

end

ValosHaromAzonos.m

function [z,y,x] = ValosHaromAzonos(C1,C2,C3,lambda,d,beta,t)

%Harom valos sajatertek, mindharom azonos

z
y

Cl*exp(lambda*t) + C2#t*exp(lambda*t) + C3*t~2*exp(lambda*t) - d;
(-1/beta)*exp(lambdaxt)*(Cl*lambda + C2 + C2xlambdaxt + C3%2%t + C3*lambda*t~2);

dy = (-1/beta)*exp(lambdaxt)*(Clxlambda~2 + 2*%C2xlambda + C2xlambda~2*t + ...
2xC3 + 4xC3*lambda*t + C3*lambda~2*t~2);

x=dy +y - z;

end

ValosKettoAzonos.m

function [z,y,x] = ValosKettoAzonos(C1,C2,C3,lambdal2,lambda3,d,beta,t)
%Harom valos sajatertek, ketto kozuluk azonos

= Cl*exp(lambdal2+*t) + C2*t*exp(lambdal2#t) + C3*exp(lambda3*t) - d;

= (-1/beta)*(Cl*lambdal2 + C2 + C2+lambdal2*t)*exp(lambdal2*t) + ...
(-1/beta)*C3*lambda3*exp(lambdal3*t) ;

< N
I

dy = (-1/beta)*(Cl*lambdal2~2+2*C2*lambdal2+C2*lambdal2"~2*t)*exp(lambdal2*t) + ...
(-1/beta)*C3*lambda3~2*exp(lambda3*t) ;

IV
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x=dy +y - z;

end

ValosNemAzonosak.m

function [z,y,x] = ValosNemAzonosak(C1,C2,C3,lambdal,lambda2,lambda3,d,beta,t)
%Harom valos sajatertek, paronkent kulonboznek

z = Clxexp(lambdal*t) + C2xexp(lambda2*t) + C3*exp(lambda3*t) - d;

-(1/beta) * (lambdal#Clxexp(lambdal*t) + lambda2+#C2*exp(lambda2*t) + ...
lambda3*C3*exp(lambda3*t)) ;

<
[}

dy = -(1/beta) * (lambdal~2*Clxexp(lambdal*t) + lambda2~2*C2*exp(lambda2xt) + ...
lambda3~2%C3*exp(lambda3*t));

x=dy +y - 2;

end

A.2. Tovabbi Matlab-k6dok

HopfKereses.m

%Jacobi-matrix vizsgalata Hopf-bifurkaciohoz a Chua-rendszerben
%ungert, 2019

clear; clc;

ml = -0.7; beta = 5;
alpha = linspace(3.4,3.6,10000);
SE = zeros(3,length(alpha));

for i = 1:length(alpha)
SE(:,i) = eig([-alpha(i)-alpha(i)#*ml alpha(i) 0;1 -1 1; 0 -beta 0]);
if i>1
for j = 1:3
if isreal(SE(j,1)) ==
sign_kov = sign(real(SE(j,1)));
end
if isreal(SE(j,i-1)) ==
sign_elo = sign(real(SE(j,i-1)));
end
end

if sign_kov*sign_elo < 0
alpha0 = 0.5%(alpha(i) + alpha(i-1));
end
end
end

BifDiag.m

%#Bifurkacios diagram felvetele ungert 2019
clear; clc;

alpha0 = 3.48961989619896;
beta = 5;
m0 = -1.5;
ml = -0.7;

>

alpha = linspace(alpha0-0.0001,alpha0+0.000007,1000);
Ampl = zeros(size(alpha));

for i = 1:length(alpha)

if i ==
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[t,y] = ode4b(@(t,in) chua(t,in,alpha(i),beta,mO,m1),linspace(0,20,10000),...
[(m1-m0)/(1+m1)+1le-7 O (mO-m1)/(1+m1)]1);

else

[t,y] = ode45(@(t,in) chua(t,in,alpha(i),beta,m0,ml),linspace(0,20,10000),...
[x_elozo y_elozo z_elozo]l);

end
x_elozo = y(9500,1); y_elozo = y(9500,2); z_elozo = y(9500,3);

for j = 8000:10000
for k = 8000:10000
if sqre( (y(3,D-y&,1))"2 + (y(3,2)-y&,2))"2 + (y(j,3)-y(,3))°2 ) > Ampl(i)
Ampl (i) = sqrt( (y(j,D-y&x,1)"2 + (y(G,2)-yk,2))"2 + (y(j,3)-y(k,3))"2 );
end
end
end

if (i > 1) && (Ampl(i) < Ampl(i-1))
Ampl(i) = Ampl(i-1);
end

%figure(1)
%hold on;
%plot(alpha(i),Ampl(i),’b.?);

%figure(2)

%hold on;

%plot3(y(:,1),y(:,2),y(:,3));
end

chua.m

function out = chua(t,KF,alpha,beta,m0,ml)

x = KF(1);
y = KF(2);
z = KF(3);
h = m1*x+0.5*%(m0-m1)*(abs(x+1)-abs(x-1));

xdot = alpha*(y-x-h);
ydot X -yt z;
zdot = -betaxy;

out = [xdot ydot zdot]’;

BifDiag_pdoub.m

%Perioduskettozo bifurkacio, Chua, ungert, 2019
clear; clc;

alpha0 = 8.9;

beta = 16;
m0 = -8/7;
ml = -5/7;

alpha = linspace(8.855726163,9.1,8000);
T = zeros(1,size(alpha,2));

10000; %Idolepesek
t = linspace(0,10,n);

KF = [-1.6195  0.2226  2.71741;

nyersl = zeros(length(alpha),1);

VI
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nyers2 = zeros(length(alpha),1);
for i = 1:length(alpha)

%CHUA + kezdeti feltetel
[x,y,2] = chua_script(alpha(i),beta,m0,mi,t,n,KF);
KF = [x(0.9*%n) y(0.9%n) z(0.9*n)];

if i =1
spont = [x(3500) y(3500) z(3500)1; %Pont
normvec= [x(3510)-spont(1l) y(3510)-spont(2) z(3510)-spont(3)];
d = normvec(1)*spont(1) + normvec(2)*spont(2) + normvec(3)*spont(3); %Sik egyenlete
X_egyper = X; y_egyper= y; zZ_egyper = Z;
end

1=1;

epsilon = 2e-4;
for j = 1l:length(x)
if abs((normvec(1)*x(j) + normvec(2)#*y(j) + normvec(3)*z(j)) - d) < epsilon ¥Sikon van
sikon(1,1) = x(j); sikon(1,2) = y(j); sikon(1,3) = z(j);
1 = 1+1;
end
end

k=1;
%Kozeli pontok kivalogatasa
for j = l:size(sikon,1)
if sqrt((sikon(j,1)-spont(1))~2+(sikon(j,2)-spont(2))~2+(sikon(j,3)-spont(3))~2) < 0.5
kozeli(k,:) = sikon(j,:);
k = k+1;
end
end

%Bal-jobb szetosztas
k=1; 1 =1; m=1;
for j = 1l:size(kozeli,1)
elojel = det([normvec(1l) kozeli(j,1)-spont(1l) spont(1);
normvec(2) kozeli(j,2)-spont(2) spont(2);
normvec(3) kozeli(j,3)-spont(3) spont(3)]);
if elojel > O
bal(k,:) = kozeli(j,:);
k = k+1;
elseif elojel < 0
jobb(1l,:) = kozeli(j,:);
1 = 1+1;
elseif elojel ==
rajtavan(m,:) = kozeli(j,:);
end
end

%Legkozelebbi kivalasztasa

ifk>1
epsilon = 10;
for j = 1l:size(bal,l)
if abs((normvec(1)#*bal(j,1) + normvec(2)*bal(j,2) + normvec(3)*bal(j,3)) - d) < epsilon
balpont = bal(j,:);
epsilon = abs((normvec(1)*bal(j,1) + normvec(2)#*bal(j,2) + normvec(3)*bal(j,3)) - d);
end
end
end

if1>1
epsilon = 10;
for j = l:size(jobb,1)
if abs((normvec(1)*jobb(j,1) + normvec(2)*jobb(j,2) + normvec(3)*jobb(j,3)) - d) < epsilon
jobbpont = jobb(j,:);
epsilon = abs((normvec(1)*jobb(j,1) + normvec(2)*jobb(j,2) + normvec(3)*jobb(j,3)) - d);
end
end
end

VII
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if (k> 1) && (1 > 1) && (i > 50)
nyers1(i) = balpont(1);
nyers2(i) = jobbpont(1l);

else
nyersi(i) = spont(1l);
nyers2(i) = spont(1);
end
%Abrazolas
% plot3(x_egyper,y_egyper,z_egyper);
% hold on;
% plot3(x,y,2);
% plot3(spont(1),spont(2),spont(3), ’black+’);
% plot3(balpont (1) ,balpont(2),balpont(3),’r+’);
% plot3(jobbpont (1), jobbpont(2),jobbpont(3),’r+’);

if i < length(alpha)
clear kozeli sikon bal jobb rajtavan balpont jobbpont;

%close(1);
end

end

i=y

for i = 1:length(nyersi)
if i ==
agl(j) = nyersi1(i);
alfal(j) = alpha(i);
3 = 3+
elseif (i > 1) && ((nyers1(i)-agl(j-1)) < -2e-4)
agl(j) = nyersi(i);
alfal(j) = alpha(i);
j =3
end
end

k=1;

for i = 1:length(nyers2)
if i ==
ag2(k) = nyers2(i);
alfa2(k) = alpha(i);
k = k+1;
elseif (i > 1) && ((nyers2(i)-ag2(k-1)) > 10e-4)
ag2(k) = nyers2(i);
alfa2(k) = alpha(i);
k = k+1;
end
end

figure(1)
hold on;
plot(alfal,agl);
plot(alfa2,ag2);
%Eredmenyritkitas
k=1;
for i = 1:length(x)

if mod(i,40) ==

xe(k,1) = x(i);

ye(k,1) = y(i);
ze(k,1) = z(i);
te(k,1) = t(i);
k = k+1;

end
end
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