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KIVONAT. Választott projektmunkám témája a numerikus integrálás. A do-

kumentumban az elméleti áttekintés részeként ismertetem a határozott integrál

fogalmát, valamint általánosan bemutatom a különböz® technikák által használt

közelítési módszerek alapelvét. Bemutatom a Lagrange-féle interpolációs poli-

nomot, ismertetem annak alkalmazását az interpolációs numerikus integrálási

formulák esetén. Ismertetek néhány alapvet® Newton-Cotes formulát. Rövi-

den ismertetem a Gauss-típusú kvadratúrák elméletét, végül pedig bemutatok egy

kubatúra-módszert speciálisan egy négyzet felett, valamint általános téglalapok

felett is.

1. Bevezetés, motivációk

Egy- vagy többváltozós függvények határozott integráljának kiszámításával az
analízis alakalmazásának számos területén találkozhatunk. Mérnöki tanulmá-
nyaim során a különöböz® elektromágneses problémák vizsgálata során szinte
minden esetben elegendhetetlen eszköznek bizonyult, de széleskör¶ használatára
van szükség a �zika egyéb tudományterületein is.

A gyakorlati alkalmazások során sokszor azzal szembesülhetünk, hogy a szük-
séges primitív függvény nem, vagy csak rendkívül nehezen adható meg zárt alak-
ban, ezért az el®tanulmányainkban már megismert Newton-Leibniz-formula sem
alkalmazható. Ilyen esetekben nem is törekszünk a határozott integrál pontos
meghatározására, csupán az integrál értékének egy − valamilyen pontosságú −
meghatározására van szükségünk. Erre szolgálnak a különböz® numerikus integ-
rálási technikák, melynek számos − az adott probléma megoldásához optimális
− változata létezik.

A továbbiakban ezekb®l szeretnék bemutatni a teljesség igénye nélkül né-
hányat, speciálisan az egy- és kétváltozós függvények numerikus integrálására
alkalmazva.

2. A határozott integrál de�níciója

Tekintsünk egy f (x) egyváltozós függvényt, mely egy [a, b] zárt intervallum
minden egyes pontjában értelmezett. Azt mondjuk, hogy ennek az f (x) függ-
vénynek az a-tól b-ig értelmezett határozott integrálja [1]:

I :=

b∫
a

f (x) dx = lim
n→∞

n∑
i=1

∆xif (xi) , (1)
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amely összefüggés tulajdonképpen a Riemann-féle közelít® összegek határértéke.
A de�nícióban ∆xi a teljes [a, b] intervallum felosztásának i-edik részintervallu-
mának hossza (∆xi = xi − xi−1), az f (xi) függvényérték pedig pedig ennek az
i-edik részintervallumnak egy tetsz®legesen kiválasztott pontjához tartozó függ-
vényérték, formálisan leírva: xi ∈ [xi−1, xi]. Világos az is, hogy az xi pontok az
eredeti [a, b] intervallum egy n-t®l függ® úgynevezett felosztását képezik, így

a = x0 < x1 < x2 < ... < xi < ... < xn = b. (2)

Amennyiben az (1) által de�niált határérték létezik, úgy az f (x) függvény in-
tegrálható az [a, b] intervallumon. Klasszikus kalkulus-kurzusokról ismert, hogy
amennyiben f (x) F -fel jelölt primitív függvénye (de�níció szerint: F ′ = f (x))
ismert, úgy alkalmazható a Newton-Leibniz-formula [2]:

b∫
a

f (x) dx := [F ]
b
a = F (b)− F (a) . (3)

Világos, hogy f (x) F primitív függvénye a gyakorlati alkalmazások esetén
sokszor nem, vagy csak nagyon nehezen adható meg zárt alakban. Az ilyen ese-
tekben a Newton-Leibniz-formula sem alkalmazható, így más módszerekhez kell
folyamodnunk. Ezek a módszerek a numerikus integrálási technikák, melyek a
határozott integrál közelít® értékének meghatározására szolgálnak, és amelyek-
nek széleskör¶ gyakorlati alkalmazása ismert.

3. A közelítés alapelve

Jelöljük az f (x) függvény [a, b] intervallumon vett harározott integráljának ér-
tékét I (f)-fel, azaz

I (f) :=

b∫
a

f (x) dx. (4)

Ekkor I (f) egy közelítését a következ®képpen tudjuk meghatározni:

In (f) =

n∑
i=0

cif (xi) , ahol xi ∈ [a, b] . (5)

De�níció szerint az In (f) = In (f, {c0, x0} , {c1, x1} , ..., {cn, xn}) képletet kvad-
ratúraképletnek nevezzük, ci értékeit a kvadratúraképlet súlyainak, xi értékeit
pedig a kvadratúraképlet alappont jainak hívjuk [1].

Vegyük észre, hogy az alapelv az, hogy az eredeti I (f) határozott integrált
In (f) összeggel közelítjük. Világos az is, hogy In (f) értéke és pontossága jelen-
t®sen függ egyrészt a súlyok és alapontok számától, valamint azok megválasz-
tásának módjától is. Az is világos, hogy mivel In (f) közelítés, így szükséges és
érdemes vizsgálni az eltérést I (f) és In (f) között. Mivel a kvadratúraképletek
pontosságának kérdése összetett tudományterület, így ezzel projektfeladatom
csak érint®legesen fog foglalkozni.
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4. Interpolációs képletek, Lagrange-féle interpolá-
ciós polinom

A határozott integrál közelít® meghatározásához tehát az

b∫
a

f (x) dx ≈ In (f) =

n∑
i=0

cif (xi) , xi ∈ [a, b] . (6)

összefüggést alkalmazzuk, ahol ci súlyok egyel®re még ismeretlen együtthatók,
melyeket meg kell határoznunk. Kérdés, hogyan.

Az interpolációs kvadratúraképletek bevezetéséhez és megértéséhez el®ször
is be kell vezetnünk a Lagrange-féle interpolációs polinom fogalmát. Ehhez te-
kintsük az (x0, x1, ..., xn) és (f(x0), f(x1), ..., f(xn)) értékeket, melyek adottak.
A Lagrange-féle interpolációs polinom de�níciója a következ® [3]:

Ln,f (x) :=

n∑
k=0

f(xk)lk(x), ahol lk :=

n∏
j=0,j 6=k

x− xj
xk − xj

(7)

A megértéshez tekintsünk egy egyszer¶ példát, melynek Matlab-kódja [4] a do-
kumentum mellékletében lagrange_inter_pol_xmpl.m néven megtalálható.

Adott 5 darab x-érték (x0, ..., x4) = (−2, 1, 3, 7, 11), valamint a hozzájuk
tartozó 5 darab f függvényérték (f(x0), ..., f(x4)) = (−4, 2.5, 3.7, 10,−1). A
Lagrange-féle interpolációs polinom ebben az esetben az

L4,f (x) = f (x0) l0 (x) + f (x1) l1 (x) + ...+ f (x4) l4 (x) (8)

alakot ölti, ahol lk értékeket kell még kifejtenünk az eredeti összefüggésnek meg-
felel®en. Vizsgáljuk meg példaként l0 alakját, a többi pedig teljesen analóg
módon felírható:

l0(x) =

(
x− 1

−2− 1

)(
x− 3

−2− 3

)(
x− 7

−2− 7

)(
x− 11

−2− 11

)
. (9)

Az 1. ábrán az f (x0) l0 (x) és f (x1) l1 (x) alappolinomok láthatók.
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1. ábra. Alappolinomok: f (x0) l0 (x) és f (x1) l1 (x)

Látható, hogy a polinom tökéletesen illeszkedik az (x0, f(x0)) és (x1, f(x1)),
koordinátákra, míg a többire nem. A további alappolinomokat és a teljes
Lagrange-féle interpolációs polinomot a 2. ábra és a 3. ábra mutatja.
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2. ábra. Alappolinomok: f (x2) l2 (x) és f (x3) l3 (x)
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3. ábra. f (x4) l4 (x) és a teljes Lagrange-féle interpolációs polinom

Visszatérve az eredeti kérdésre: a súlyok meghatározásához helyettesítsük
f -et az xi ∈ [a, b] alappontokra (i = 0, 1, ..., n) támaszkodó Lagrange-féle inter-
polációs polinommal, majd integráljuk azt [1]. Így:

b∫
a

f (x) dx ≈
b∫
a

Ln,f (x) dx (10)

írható fel, amely kifejtve:

b∫
a

Ln,f (x) dx =

b∫
a

n∑
k=0

f(xk)lk(x) =

n∑
k=0

f(xk)

b∫
a

n∏
j=0,j 6=k

x− xj
xk − xj

dx. (11)

Összevetve (6) és (11) összefüggéseket látjuk, hogy ci súlyok a következ®kép-
pen adódnak:

ci =

b∫
a

li (x) dx =

b∫
a

n∏
j=0,j 6=i

x− xj
xi − xj

dx. (12)

Az olyan formulákat, melyekben a súlyokat (együtthatókat) (12) alapján szá-
moljuk, interpolációs formuláknak nevezzük. Nem bizonyítom, de belátható [1],
hogy az ilyen formulák, ha n + 1 pontra támaszkodnak, akkor legalább az n-
edfokú polinomra pontosak.
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Amennyiben a vizsgált tartomány felosztása ekvidisztáns, azaz xk = x0+k·h,
ahol h = b−a

n és k = 0, 1, ..., n, Newton-Cotes kvadratúráknak nevezzük. A
továbbiakban megismerkedünk néhány Newton-Cotes formulával.

5. Érint®formula

Az érint®formula a legegyszer¶bb és legalapvet®bb numerikus integrálási formu-
la. Lényege abban áll, hogy az eredeti [a, b] intervallumot felbontjuk n darab
egyenl® hosszúságú részintervallumra úgy, hogy

[a, b] = [x0 = a, x1 = x0 + h] ∪ [x1, x2 = x1 + h] ∪ ... ∪ [xn−1, xn = b] . (13)

Az egyes részintervallumok tehát [xk, xk + h] alakúak, ahol k = 0, 1, ..., n − 1.
Az osztópontokat az intervallumok középpontjában vesszük fel, azaz általános
esetben a [xk, xk + h] intervallum osztópontja ξk = xk + h

2 . Az eredeti integrált
a Lagrange-féle interpolációs polinommal közelítjük ezen intervallumok felett a
következ®képpen:

xk+h∫
xk

f(x) dx ≈ f (ξk) ·
xk+h∫
xk

l0 (x) dx. (14)

Mivel intervallumonként egyetlen osztópontot vettünk fel, így az összeg is egy-
tényez®s lesz, l0 értéke pedig 1, mert az üresszorzat értéke de�níciószer¶en 1.
Így:

c0 =

xk+h∫
xk

1 dx = [x]
xk+h
xk

= h (15)

adódik. Adott minden, most már fel lehet írni egyetlen intervallumra az érint®-
formula összefüggését:

Ek (f) := f (ξk) · h, (16)

és világos, hogy a függvény közelít® határozott integrálja ezen elemi szakaszok
felett értelmezett határozott integrálok szuperpozíciója lesz:

E :=

n−1∑
k=0

Ek = h

n−1∑
k=0

f (ξk) . (17)

A formula Matlab-kódja a dokumentum mellékletében erintoform_xmpl.m

néven megtalálható. A példában a formula m¶ködését az f (x) = 1
x függvényre

vizsgáltam a [2, 20] intervallum felett.
A példa segítségével a megvalósítás helyessége és a pontos eredményhez tör-

tén® konvergencia is vizsgálható n felosztás�nomság függvényében, hiszen ezt a
határozott integrált pontosan is ki tudjuk számolni:

20∫
2

1

x
dx = [ln |x|]202 = ln 20− ln 2 = ln 10 ≈ 2.3026. (18)

Megvizsgáltam, miként függ az érint®formula által kiszámolt közelít® integrál
értéke n nagyságától, azaz a felosztás �nomságától. Az eredmények a 4. ábrán
láthatók, zöld aszimptotaként az integrál pontos értéke látható.
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4. ábra. Az érint®formula által adott eredmények n függvényében

6. Trapézformula

Klasszikus numerikus integrálási formula az úgynevezett trapézformula. A for-
mula lényege, hogy a vizsgált [a, b] intervallumot − az érint®formulához teljesen
hasonlóan − ismételten egyenl®, h hosszúságú diszjunkt intervallumokra bont-
juk fel, mely szakaszok uniója kiadja az eredeti [a, b] intervallumot, azaz

[a, b] = [x0 = a, x1 = x0 + h] ∪ [x1, x2 = x1 + h] ∪ ... ∪ [xn−1, xn = b] . (19)

Amíg az érint®formula esetén a kvadratúra pontjai az egyes intervallumok köze-
pén helyezkedtek el, addig ezúttal minden egyes intervallumn két pontot veszünk
fel, mégpedig ezek a pontok az egyes részintervallumok kezd®- és végpontjai lesz-
nek. Formálisan: egy általános [xk, xk + h] részintervallum kvadratúrapontjai:
ξk = xk és ξk+1 = xk + h.

Ebben az esetben az a feladatunk, hogy Lagrange-féle interpolációs polino-
mot fektessünk a (ξk, f (ξk)) és (ξk+1, f (ξk+1)) pontokra:

xk+h∫
xk

f (x) dx =

ξk+1∫
ξk

f (x) dx ≈
1∑
i=0

cif (xi) , (20)

ahol a kvadratúra súlyait a következ®képpen számoljuk:

co =

ξk+1∫
ξk

l0 (x) dx, c1 =

ξk+1∫
ξk

l1 (x) dx, (21)

ahol

l0 =
x− x2
x1 − x2

=
x− ξk+1

ξk − ξk+1
l1 =

x− x1
x2 − x1

=
x− ξk

ξk+1 − ξk
. (22)

6



Elvégezve az integrálásokat:

c0 =

ξk+1∫
ξk

x− ξk+1

ξk − ξk+1
dx =

1

ξk − ξk+1

ξk+1∫
ξk

(x− ξk+1) dx =

=
1

ξk − ξk+1

[
x2

2
− ξk+1x

]ξk+1

ξk

=
1

ξk − ξk+1

(
ξ2k+1

2
− ξ2k+1 −

ξ2k
2

+ ξk+1ξk

)
=

=
− 1

2

(
−ξ2k+1 + 2ξ2k+1 + ξ2k − 2ξk+1ξk

)
ξk − ξk+1

= −1

2
(ξk − ξk+1) =

1

2
(ξk+1 − ξk) .

c1 =

ξk+1∫
ξk

x− ξk
ξk+1 − ξk

dx =
1

ξk+1 − ξk

ξk+1∫
ξk

(x− ξk) dx =

=
1

ξk+1 − ξk

[
x2

2
− ξkx

]ξk+1

ξk

=
1

ξk+1 − ξk

(
ξ2k+1

2
− ξkξk+1 −

ξ2k
2

+ ξ2k

)
=

=
1
2

(
ξ2k+1 − 2ξk+1ξk − ξ2k + 2ξ2k

)
ξk+1 − ξk

=
1

2
(ξk+1 − ξk) .

A két súly értéke tehát megegyezik. A trapézformula így a következ®képpen
alakul:

ξk+1∫
ξk

f (x) dx ≈ T (f) =
ξk+1 − ξk

2
(f (ξk) + f (ξk+1)) . (23)

A formula Matlab-kódja a dokumentum mellékletében trapezform_xmpl.m

néven megtalálható. A példában a formula m¶ködését ismét az f (x) = 1
x függ-

vényre vizsgáltam a [2, 20] intervallum felett, hogy a konvergencia módját össze
lehessen hasonlítani az érint®formula esetében tapasztaltakkal. Megvizsgáltam,
miként függ a trapézformula segítségével kiszámolt közelít® integrál értéke n
nagyságától, azaz a felosztás �nomságától. Az eredmények az 5. ábrán látha-
tók, zöld aszimptotaként az integrál pontos értéke látható. Ezúttal meg�gyehe-
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A trapézformula

5. ábra. A trapézformula által adott eredmények n függvényében

t®, hogy ez a formula speciálisan az f (x) = 1
x függvény esetében fels® becslést

ad az integrál pontos értékére, ellentétben a korábban bemutatott érint®formu-
lával.
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7. Simpson-formula

Szintén széleskörben elterjedt formula az úgynevezett Simpson-formula [1] is. A
formula alkalmazásának lényege abban áll, hogy az eredeti [a, b] intervallumun-
kat az eddig megszokott módon diszjunkt, egyenl® h hosszúságú részintervallu-
mokra bontjuk, azaz

[a, b] = [x0 = a, x1 = x0 + h] ∪ [x1, x2 = x1 + h] ∪ ... ∪ [xn−1, xn = b] , (24)

de ez a kvadratúratípus már három pontra támaszkodik. Ezen kvadratúrapon-
tok az egyes részintervallumok két szélén, valamint az intervallumok közepén
helyezkednek el, azaz

ξk = xk, ξk+1 = xk +
h

2
, ξk+2 = xk+1. (25)

Az eddigiek alapján már teljesen világos, hogy a formulát az

S (f) = c0f (ξk) + c1f (ξk+1) + c2f (ξk+2) (26)

alakban keressük, ahol c0, c1 és c2 a kvadratúra meghatározandó súlyai. Világos,
hogy ismét a Lagrange-féle interpolációs polinomhoz kell nyúlni, tehát az egyes
súlyokat a következ®képpen lehet számolni:

c0 =

xk+h∫
xk

l0 (x) dx, c1 =

xk+h∫
xk

l1 (x) dx, c2 =

xk+h∫
xk

l2 (x) dx. (27)

Mivel l0 (x), l1 (x) és l2 (x) polinomfüggvények, integráljuk könnyedén kiszá-
molható a trapézformula esetén már ismertetett módon. A levezetést mell®zé-
sével közlöm a kvadratúra súlyait [1]:

c0 =
(xk+1 − xk)

6
, c1 =

4 (xk+1 − xk)

6
, c2 =

(xk+1 − xk)

6
. (28)
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A Simpson-formula

6. ábra. A Simpson-formula által adott eredmények n függvényében

A Simpson-formula összefüggése tehát − egyváltozós esetben − a követke-
z®képpen alakul:

S (f) =
(xk+1 − xk)

6
(f (ξk) + 4f (ξk+1) + f (ξk+2)) . (29)

8



A formula Matlab-kódja a dokumentum mellékletében simpson_xmpl.m né-
ven megtalálható. A példában a formula m¶ködését az eddig megszokott f (x) =
1
x függvényre vizsgáltam a [2, 20] intervallum felett, hogy a konvergencia módját
össze lehessen hasonlítani az eddigiekkel. Megvizsgáltam, miként függ a trapéz-
formula segítségével kiszámolt közelít® integrál értéke n nagyságától, azaz a fel-
osztás �nomságától. Az eredmények a 6. ábrán láthatók, zöld aszimptotaként
az integrál pontos értéke látható.

8. A Gauss-típusú kvadratúrákról általában

Az eddig ismertett formulák során láttuk, hogy alkalmazásuk csak igen magas
pontszám alkalmazása esetén ad megfelel®en pontos értéket. Közös jellemz®jük
továbbá, hogy csak a kvadratúra súlyait választhattuk meg szabadon, az alap-
pontjait nem. A Gauss-típusú kvadratúrák alkalmazása során ezzel szemben mi
magunk választhatjuk meg nemcsak a súlyokat, de az alappontokat is [1].

A Gauss-típusú kvadratúrák pontos értéket adnak 2n− 1 vagy ennél alacso-
nyabb fokú polinomok esetében az xi alappontok és ci súlyok megfelel® meg-
választása esetén. (i = 1, ..., n). Ennek a pontosságnak a megvalósításához az
alappontoknak és a súlyoknak az alábbi feltételt kell kielégíteniük:

n∑
k=1

ck (xk)
i

=

b∫
a

xi dx, i = 0, 1, ..., 2n− 1. (30)

Legyen

Q (f) :=

b∫
a

w (x) f (x) dx, (31)

ahol w : (a, b) → R folytonos, pozitív, valamint
∫ b
a
w (x) dx létezik, w egy

úgynevezett súlyfüggvény. Amennyiben feltesszük, hogy [a, b] = [−1, 1], úgy w
alakjától függ®en beszélhetünk például Gauss-Legendre-, vagy Gauss-Csebisev-
kvadratúráról is.

Azt mondjuk, hogy az

b∫
a

w (x) f (x) dx ≈
n∑
k=1

ckf (xk) (32)

formula Gauss-kvadratúra, ha az integrál minden p ∈ P2n−1 polinom esetén
pontos.

Példaként tekintsük a Gauss-Legendre-kvadratúra súlyainak és pontjainak
meghatározását [−1, 1] felett, n = 2 esetén. Gauss-Legendre kvadratúráról be-
szélünk akkor, ha a w (x) = 1 választással élünk. Ebben az esetben (30) alapján
a következ® feltételrendszerünk adódik c1, c2 súlyokra és x1, x2 pontokra:
c1 + c2 =

1∫
−1

1 dx = [x]
1
−1 = 2, c1x1 + c2x2 =

1∫
−1
x dx =

[
x2

2

]1
−1

= 0,

c1x
2
1 + c2x

2
2 =

1∫
−1
x2 dx =

[
x3

3

]1
−1

= 2
3 , c1x

3
1 + c2x

3
2 =

1∫
−1
x3 dx =

[
x4

4

]1
−1

= 0.

9



Kaptunk tehát egy − nemlineáris − egyenletrendszert négy egyenlettel és négy
ismeretlennel. Az egyenletrendszer megoldható, könnyen ellen®rizhet®, hogy

c1 = 1, c2 = 1, x1 = − 1√
3
, x2 =

1√
3
. (33)

megoldás. A kvadratúraformula tehát ebben a konkrét esetben:

1∫
−1

f (x) dx ≈ f
(
− 1√

3

)
+ f

(
1√
3

)
. (34)

Ez a formula alkalmas minden, legfeljebb harmadfokú polinom integráljának
pontos meghatározására. Könnyen megmutathatjuk azt is, hogy negyedfokú
polinomokra ez már nem igaz. Tekintsük például az f (x) = x4 függvényt:

1∫
−1

x4 dx =

[
x5

5

]1
−1

=
2

5
, de f

(
− 1√

3

)
+ f

(
1√
3

)
=

2

9
.

Fontos felhívni az olvasó �gyelmét, hogy a Gauss-típusú kvadratúrák elmé-
lete ennél sokkal mélyebb és összetettebb. Projektmunkámnak nem célja, hogy
feltárja a teljes elméleti hátteret. A cél inkább az, hogy megértsük, léteznek
olyan módszerek, amelyek bizonyos el®re meghatározott súlyok és pontok alkal-
mazásával képesek igen kis pont- és súlymennyiség mellett is sokkal pontosabb
eredményt biztosítani, mint az eddig ismertetett formulák.

9. Példa Gauss-típusú kvadratúrára

A Gauss-típusú kvadratúraképletek középérték-képletek [2]:

b∫
a

f (x) dx ≈
k∑
ν=1

cνyν , ahol yν = f (xg,ν) . (35)

A formulában cν a Gauss-kvadratúra súlyait, xg,ν a pontjait, yν pedig az in-
tegrandus xg,ν pontban értelmezett helyettesítési értékét jelöli. Miként azt már
korábban említettük, ebben az esetben nem csak a cν együtthatókat, de az xν
alappontokat is szabad paraméterként kezelhetjük úgy, hogy az integrálközelít®
összefüggésünk minél magasabb fokszámú polinom esetén is pontos lehessen. A
gyakorlati tapasztalatok azt mutatják, hogy a Gauss-típusú kvadraútraképle-
tek többnyire rendkívül pontos közelítést adnak, de ehhez az alappontok igen
speciális megválasztására van szükség.

Amennyiben az integrációs intervallumot úgy választjuk, hogy az [a, b] =
[−1, 1] legyen, az alappontokat pedig az úgynevezett Legendre-polinomok gyö-
kei [2], akkor cν együtthatókat úgy lehet meghatározni, hogy a közelít® képle-
tünk legfeljebb a 2n+ 1-ed fokú polinomok integrálját pontosan adja. A hivat-
kozott Legendre-polinom gyökei az origóra szimmetrikusan helyezkednek el. A
megfelel® súlyok és pontok számos internetesen oldalon elérhet®ek (például [7]),
de generálásukra találhatók számos programozási nyelvre megírt függvények is.
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Ahhoz, hogy az itt de�niált Gauss-kvadraútra segítségével tetsz®leges [a, b]
intervallumra meg tudjuk határozni a függvények határozott integráljának kö-
zelít® értékét, egy egyszer¶ transzformációs eljárásra van szükség. Egyszer¶en
belátható, hogy a t = b−a

2 x + a+b
2 transzformáció az [−1, 1] intervallumnak az

[a, b] intervallumot felelteti meg, így az integrál közelít® értéke:

b∫
a

f (x) dx ≈ b− a
2

k∑
ν=1

cνf

(
b− a

2
xg,ν +

a+ b

2

)
. (36)

A kubatúra Matlab-kódja a dokumentum mellékletében gausskvad_xmpl.m né-
ven megtalálható. A script bemeneti paramétereként szabadon megválasztható,
hogy az hány ponttal és súllyal végezze el az integrál közelítését. A példában
a formula m¶ködését ismét az f (x) = 1

x függvényre vizsgáltam a [2, 20] inter-
vallum felett, hogy az eddigiekkel összehasonlítható eredményt kaphassak. Azt
tapasztaltam, hogy n = 8 súly és pont alkalmazása esetén a tényleges (2.3026) és
a közelít® érték (2.3025) közötti eltérés (0.0038 %) jelent®sen kisebbnek adódott,
mint az eddig tapasztaltak.

10. Kubatúra egyszer¶ téglalap felett

A feladat a következ®: legyen adott egy f (x, y) kétváltozós függvény, amely
értelmezve van egy S téglalap felett, ahol |x| ≤ h és |y| ≤ h, teljesül továbbá
minden olyan feltétel, amely lehet®vé teszi, hogy az∫∫

S

f (x, y) dxdy (37)

integrál létezzen. Ekkor az f (x, y) kétváltozós függvény S feletti integrálja
meghatározható az∫∫

S

f (x, y) dxdy = 4h2

 n∑
j=1

wjf (xj , yj) +R

 (38)

formula segítségével, ahol wj a kvadratúra súlyait, xj , yj ∈ S a kvadratúra
pontjait, R pedig a kvadratúra hibatagját jelöli [5].

Vizsgáljuk meg a kubatúra m¶ködését és megvalósítási módját. Legyen el®-
ször

f (x, y) = x2 + y2, S = [−2, 2]2, (39)

kérdés pedig: ∫∫
S

f (x, y) dxdy =

2∫
−2

2∫
−2

(
x2 + y2

)
dxdy. (40)

A kétváltozós függvény gra�konja a 7. ábrán látható. Mivel ez a kétváltozós
függvény másodfokú, így az eddigiek alapján használhatjuk a négy pontot és
négy súlyt alkalmazó kubatúra-formulát.

Az alkalmazott kubatúra súlyai és pontjai a következ®k [5, 7]:

w1 = w2 = w3 = w4 =
1

4
, (xi, yi) =

(
±1

3

√
3h,±1

3

√
3h

)
,
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ahol h ebben az esetben S de�níciója miatt 2. A kubatúra Matlab-kódja a
dokumentum mellékletében kubaturanegyp_xmpl.m néven megtalálható. Mivel
a választott kétváltozós függvény integrálja analitikus úton meghatározható (a
levezetés mell®zésével az integrál pontos értéke: 128

3 ≈ 42.6667), így könnyen
tudjuk ellen®rizni az eredményt.

0
2

2

1

4

2

f(
x,

y)

y

0
1

6

x

0-1
-1

8

-2 -2

0
2

-2

2

1
-1

4

x
f(

x,
y)

0

y

0

6

-1 1

8

-2 2

7. ábra. Az f(x, y) függvény S felett

A script lefutattása után kapott eredményünk szintén 42.6667-re adódott,
ami azt jelenti, hogy a kubatúra erre a függvény − mindösszesen négy pont
és súly alkalmazásával − az alkalmazott számábrázolásunk mellett megfelel®
eredményt adott.

11. Kubatúra tetsz®leges csúcskoordinátájú tégla-
lapok felett

Felmerülhet a kérdés, hogy miként lehet tetsz®leges csúcskoordinátákkal de�ni-
ált téglalapok felett kvadratúra segítségével kiszámítani kétváltozós függvények
határozott integrálját.

A következ®kben ismeretett formula [6] alkalmas tetsz®leges típusú és tet-
sz®leges csúcspont-koordinátájú négyszög területe (K) felett értelmezett f (x, y)
kétváltozós függvény közelítésére:

I =

∫∫
K

f (x, y) dxdy. (41)

Ez úgy tehet® meg, hogy az általános négyszöget egy szabályos, origó közép-
ponttal rendelkez®, 2 egység oldalhosszúságú négyzetté (R) szükséges transz-
formálni, amely felett már alkalmazható a kétdimenziós Gauss-kvadratúra. A
transzformáció módját a 8. ábra mutatja.

Lényege, hogy az xy-síkon értelmezett eredeti négyszöget csomóponti for-
mafüggvények segítségével a ξη-síkra kell transzformálni, majd a függvény in-
tegrálását ezen a síkon szükséges elvégezni. A csomóponti formafüggvények
legfontosabb tulajdonsága, hogy i-edik sorszámú értéke az i-edik csomópontban
1, az összes többiben nulla. A transzformációhoz az alábbi négy formafüggvényt
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x

y

ξ

η

K R

(-1,1) (1,1)

(-1,-1) (1,-1)P x ,y1 1 1( )
P x ,y2 2 2( )

P x ,y3 3 3( )P x ,y4 4 4( )

8. ábra. Transzformáció a kvadratúrához

alkalmaztam [6]:

N1 =
1

4
(1− ξ) (1− η) ,

N2 =
1

4
(1 + ξ) (1− η) ,

N3 =
1

4
(1 + ξ) (1 + η) ,

N4 =
1

4
(1− ξ) (1 + η) .

(42)

A formafüggvények segítségével végrehajtott transzformációval az eredeti in-
tegrál kiszámítható az∫∫

K

f (x, y) dxdy =

∫∫
R

f (P (ξ, η) , Q (ξ, η)) |det J (ξ, η)| dξdη (43)

összefüggés felhasználásával, ahol P (ξ, η) az eredeti x, Q (ξ, η) pedig az eredeti
y változó helyettesítési értéke, kifejtésük a formafüggvények segítségével:

P (ξ, η) =

4∑
i=1

xiNi (ξ, η) = x1N1 (ξ, η) + x2N2 (ξ, η) + x3N3 (ξ, η) + x4N4 (ξ, η) ,

Q (ξ, η) =

4∑
i=1

yiNi (ξ, η) = y1N1 (ξ, η) + y2N2 (ξ, η) + y3N3 (ξ, η) + y4N4 (ξ, η) .

(44)

A transzformáció Jacobi-mátrixának determinánsához szükség van x és y ξ és
η szerinti deriváltjaira is, hiszen

det J (ξ, η) =
∣∣∣∂(x,y)∂(ξ,η)

∣∣∣ =

∣∣∣∣∣∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣ =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
. (45)
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A deriváltakat analitikus módon határoztam meg:

∂x

∂ξ
=
x1
4

(−1 + η) +
x2
4

(1− η) +
x3
4

(1 + η) +
x4
4

(−1− η) ,

∂x

∂η
=
x1
4

(−1 + ξ) +
x2
4

(−1− ξ) +
x3
4

(1 + ξ) +
x4
4

(1− ξ) ,

∂y

∂ξ
=
y1
4

(−1 + η) +
y2
4

(1− η) +
y3
4

(1 + η) +
y4
4

(−1− η) ,

∂y

∂η
=
y1
4

(−1 + ξ) +
y2
4

(−1− ξ) +
y3
4

(1 + ξ) +
y4
4

(1− ξ) .

(46)

A kvadratúra összefüggése a transzformáció alkalmazásával tehát:

N∑
i=1

N∑
j=1

wiwjf (P (ξi, ηj) , Q (ξi, ηj)) |det J (ξi, ηj)| , (47)

ahol wi, wj a kvadratúra súlyait, ξi, ηj pedig a pontjait jelöli, melyek megtalál-
hatóak például a hivatkozott forráson [7] is.

Az itt bemutatott transzformációs kvadratúrát Matlab-környezetben meg is
valósítottam, a kódja a dokumentum utolsó mellékleteként megtalálható. M¶-
ködését a következ® kett®s integrál kiszámításával teszteltem:

3∫
−3

10∫
6

1√
x2 + y2

dxdy. (48)

Ezen határozott integrál öt tizedesre megadott, kerekített értéke a − bonyolult,
de zárt alakban megadható − primitív függvény felhasználásával (a levezetés
mell®zésével, pl. Wolfram Alpha segítségével könnyen ellen®rizhet®) 2.99049.
Amennyiben n = 7 súly és pont felhasználásával futtatjuk le a scriptet, úgy
az integrál közelít® értéke öt tizedesjegyen 2.99049, azaz megegyezik a primtív
függvény segítségével kiszámított értékkel. A Jacobi-determináns értéke |J | = 6-
ra adódott.

Megvizsgáltam azt is, miként változik ez az eredmény, ha az el®z® fejezetben
ismertetett négypontos módszer segítségével próbáljuk meg közelíteni a határo-
zott integrál értékét. Ebben az esetben az eredmény öt tizedesjegyen ábrázolva
2.99048, amely annak ellenére, hogy az adott számábrázolás mellett ε = 1 ·10−5

hibát eredményez, gyakorlati szempontból szintén megfelel® eredménynek te-
kinthet®.

12. A formulák hibájának vizsgálata

Egyszer¶ kvadratúraformuláknak nevezzük azokat a kvadratúraformulákat, me-
lyek során az eredetileg vizsgált [a, b] intervallum nem kerül feldarabolásra disz-
junkt részintervallumokra, hanem a korábban ismertetett kvadratúraformulák
kizárólagosan egyszer, a teljes [a, b] intervallumra kerülnek felírásra, így közelítve
a függvény határozott integrálját. Ezen egyszer¶ kvadratúraformulák hibakép-
lete a következ®képpen alakul [1]:
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Egyszer¶ érint®formula: Legyen f : [a, b] → R kétszer folytonosan di�e-

renciálható. Ebben az esetben az egyszer¶ érint®formula hibaképlete a következ®:

b∫
a

f (x) dx− Ee (f) =
(b− a)

3

24
· f

′′
(ξ) , ξ ∈ [a, b] . (49)

Egyszer¶ trapézformula: Legyen f : [a, b]→ R kétszer folytonosan di�e-

renciálható. Ebben az esetben az egyszer¶ trapézformula hibaképlete a következ®:

b∫
a

f (x) dx− Te (f) = − (b− a)
3

12
· f

′′
(ξ) , ξ ∈ [a, b] . (50)

Egyszer¶ Simpson-formula: Legyen f : [a, b] → R négyszer folytonosan

di�erenciálható. Ebben az esetben az egyszer¶ Simpson-formula hibaképlete a

következ®:

b∫
a

f (x) dx− Se (f) = − (b− a)
5

2880
· f (4) (ξ) , ξ ∈ [a, b] . (51)

A projektmunkámban ismertetett interpolációs kvadratúraformulák mind-
egyike összetett kvadratúraformula volt. Ezeket a kvadratúraformulákat az egy-
szer¶ formulák pontosítására használjuk, lényege a korábban ismertetett elmé-
leti háttér szerint abban áll, hogy az eredeti intervallumot diszjunkt, egyenl®
hosszúságú, n darab részintervallumokra bontjuk fel, melyek felett elvégezve az
egyszer¶ kvadratúraformulák által adott számításokat, majd végül ezek ered-
ményét összeadva pontosabb eredmént kaphatunk. Pontosságuk miatt világos,
hogy a gyakorlatban ezen formulák az elterjedtebbek. A hibaképletek a követ-
kez®képpen alakulnak [8]:

Összetett érint®formula: Legyen f : [a, b]→ R kétszer folytonosan di�e-

renciálható. Ebben az esetben az összetett érint®formula hibaképlete a következ®:

b∫
a

f (x) dx− E (f) =
(b− a)

3

24n2
· f

′′
(ξ) , ξ ∈ [a, b] . (52)

Összetett trapézformula: Legyen f : [a, b]→ R kétszer folytonosan di�e-

renciálható. Ebben az esetben az összetett trapézformula hibaképlete a következ®:

b∫
a

f (x) dx− T (f) = − (b− a)
3

12n2
· f

′′
(ξ) , ξ ∈ [a, b] . (53)

Összetett Simpson-formula: Legyen f : [a, b] → R négyszer folytonosan

di�erenciálható. Ebben az esetben az összetett Simpson-formula hibaképlete a

következ®:

b∫
a

f (x) dx− S (f) = − (b− a)
5

2880n4
· f (4) (ξ) , ξ ∈ [a, b] . (54)
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Az egyes formulák által adott integrálértékeket n függvényében az 1. táb-
lázat tartalmazza úgy, hogy n értékét kett® hatványaira választottam. Látjuk,
hogy míg az érint®formula az integrál értékét alulról becsli, addig a trapéz- és a
Simpson-formula fels® becslést ad. Ez teljes mértékben összhangban van a hiba-
képletekkel, hiszen a tényleges integrál és a formula által adott érték különbsége
az utóbbi két esetben negatív, míg az els® esetben pozitív el®jel¶.

n E(f) T (f) S(f)
2 1.9653 3.2932 2.4079
4 2.1663 2.6292 2.3206
8 2.2582 2.3977 2.3047
16 2.2902 2.3208 2.3028
32 2.2994 2.3091 2.3026
64 2.3018 2.3042 2.3026
128 2.3024 2.3030 2.3026
256 2.3025 2.3027 2.3026
512 2.3026 2.3026 2.3026
1024 2.3026 2.3026 2.3026
2048 2.3026 2.3026 2.3026
4096 2.3026 2.3026 2.3026
8192 2.3026 2.3026 2.3026

n Eh [%] Th [%] Sh [%]
2 14.6481 43.0218 4.5738
4 5.9187 14.1847 0.7813
8 1.9276 4.1307 0.0914
16 0.5378 0.7910 0.0077
32 0.1383 0.2829 < 0.0006
64 0.0340 0.0701 < 0.0006
128 0.0080 0.0180 < 0.0006
256 0.0036 0.049 < 0.0006
512 0.0006 0.0006 < 0.0006
1024 0.0006 0.0006 < 0.0006
2048 0.0006 0.0006 < 0.0006
4096 0.0006 0.0006 < 0.0006
8192 0.0006 0.0006 < 0.0006

1. táblázat. Az egyes kvadratúraformulák átal adott eredmények n függvényében

Látható, hogy a Simpson-formula segítéségvel a vizsgált példa esetén már 16
részszakaszra történ® felbontás esetén is megfelel® pontosságú eredmény érhe-
t® el, míg az érint®- és trapézformulák esetében hasonló pontosságú eredmény
eléréséhez jelent®sen �nomabb felbontásra van szükség.
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0. Mellékletek: Matlab-kódok

0.1. lagrange_inter_pol_xmpl.m

%Lagrange-fele interpolacios polinom, pelda

clear; clc;

x_pontok = [-2 1 3 7 11]; f_pontok = [-4 2.5 3.7 10 -1]; felbontas = 200;

x = linspace(-2,11,felbontas); L = zeros(1,felbontas);

for k = 1:length(x_pontok)
x_k = x_pontok(k); f_k = f_pontok(k);
l = ones(1,felbontas);
for j = 1:length(x_pontok)

if j ~= k
x_j = x_pontok(j);
for n = 1:length(l)

l(n) = l(n) * (x(n) - x_j) / (x_k - x_j);
end

end
end
L = L + (f_k .* l);

end
figure(k); hold on; plot(x_pontok,f_pontok,'red*'); xlim([-5 15]); ylim([-5 15]);
plot(x,L); xlabel('x'); ylabel('f');

axis square; title('Lagrange-féle interpolációs polinom');

0.2. erintoform_xmpl.m
%Erintoformula alkalmazasa, pelda

clear; clc;

%Felbontas (max.) finomsaga
n = 3;

a = 2; b = 20; h = (b-a)/n; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,b]); xlabel('x'); ylabel('y');

xi = zeros(1,n-1); x_pontok = zeros(1,n+1);
x_pontok(1) = a;

for i = 2:(n+1)
x_pontok(i) = x_pontok(i-1) + h;
xi(i-1) = x_pontok(i-1) + h/2;

end

E = 0;
for i = 1:length(xi)

E = E + h * (1 / xi(i));
end

0.3. trapezform_xmpl.m
%Trapezformula alkalmazasa, pelda

clear; clc;

%Felbontas (max.) finomsaga
n = 3;

a = 2; b = 20; h = (b-a)/n; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,b]); xlabel('x'); ylabel('y');

17



xi = zeros(1,n-1); x_pontok = zeros(1,n+1);
x_pontok(1) = a;

for i = 2:(n+1)
x_pontok(i) = x_pontok(i-1) + h;

end

T = 0;

for i = 1:(length(x_pontok)-1)
T = T + ((x_pontok(i+1)-x_pontok(i)) / 2) * ...

( (1 / x_pontok(i)) + (1 / x_pontok(i+1)) );
end

0.4. simpson_xmpl.m
%Simpson-formula alkalmazasa, pelda

clear; clc;

%Felbontas (max.) finomsaga
n = 10;

a = 2; b = 20; h = (b-a)/n; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,b]); xlabel('x'); ylabel('y');

xi = zeros(1,2*n+1);

for i = 1:length(xi)
if i == 1

xi(i) = a;
else

xi(i) = xi(i-1) + 0.5*h;
end

end

xi_k = xi(1); xi_kp1 = xi(2); xi_kp2 = xi(3);
S = 0;

S = S + ((xi_kp2 - xi_k) / 6) * ...
((1/xi_k)+4*(1/xi_kp1)+(1/xi_kp2));

for i = 2:n
xi_k = xi(2*i-1);
xi_kp1 = xi(2*i);
xi_kp2 = xi(2*i+1);
S = S + ((xi_kp2 - xi_k) / 6) * ...

((1/xi_k)+4*(1/xi_kp1)+(1/xi_kp2));
end

0.5. gausskvad_xmpl.m
%Gauss-kvadratura, 1D

clear; clc;

Gaussp = load('./Gaussp_1D.txt'); Gausss = load('./Gausss_1D.txt');

a = 2; b = 20; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,b]); xlabel('x'); ylabel('y');

G = 0; bmap2 = ((b-a)/2);

for i = 1:length(Gaussp)
G = G + bmap2*Gausss(i)*(1/(bmap2*Gaussp(i)+((a+b)/2)));

end

0.6. kubaturanegyp_xmpl.m
%Kubatura teglalap felett, negy ponttal pelda
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clear; clc;

h = 2;
x = linspace(-h,h,100); y = linspace(h,-h,100); [X,Y] = meshgrid(x,y);
f = zeros(length(x));

for i = 1:length(x)
for j = 1:length(y)

f(i,j) = X(i,j)^2+Y(i,j)^2;
end

end

figure(1); hold on; surf(X,Y,f); xlabel('x'); ylabel('y'); zlabel('f(x,y)');

I_negyp = 0; sulyok = [1/4 1/4 1/4 1/4];
pontok_x = [1/3*sqrt(3)*h -1/3*sqrt(3)*h 1/3*sqrt(3)*h -1/3*sqrt(3)*h];
pontok_y = [1/3*sqrt(3)*h -1/3*sqrt(3)*h -1/3*sqrt(3)*h 1/3*sqrt(3)*h];

for i = 1:length(pontok_x)
I_negyp = I_negyp + 4*h^2*sulyok(i) * (pontok_x(i)^2+ ...

pontok_y(i)^2);
end

0.7. kubatura_transzformacioval.m
%Kubatura transzformacioval, pelda

clear; clc;

Gaussp_x = load('./Gaussp_x.txt'); Gausss = load('./Gausss.txt');
Gaussp_y=load('./Gaussp_y.txt');

%Teglalap megadasa a koordinataival
x = [6 10 10 6];
y = [-3 -3 3 3]; I = 0;

for o = 1:length(Gaussp_x)
for p = 1:length(Gaussp_y)

N_1 = 0.25*(1-Gaussp_x(p))*(1-Gaussp_y(o));
N_2 = 0.25*(1+Gaussp_x(p))*(1-Gaussp_y(o));
N_3 = 0.25*(1+Gaussp_x(p))*(1+Gaussp_y(o));
N_4 = 0.25*(1-Gaussp_x(p))*(1+Gaussp_y(o));

P = x(1)*N_1+x(2)*N_2+x(3)*N_3+x(4)*N_4;
Q = y(1)*N_1+y(2)*N_2+y(3)*N_3+y(4)*N_4;

dx_dkszi = 0.25*x(1)*(-1+Gaussp_y(o)) + 0.25*x(2)*(1-Gaussp_y(o)) + ...
0.25*x(3)*(1+Gaussp_y(o)) + 0.25*x(4)*(-1-Gaussp_y(o));

dx_deta = 0.25*x(1)*(-1+Gaussp_x(p)) + 0.25*x(2)*(-1-Gaussp_x(p)) + ...
0.25*x(3)*(1+Gaussp_x(p)) + 0.25*x(4)*(1-Gaussp_x(p));

dy_dkszi = 0.25*y(1)*(-1+Gaussp_y(o)) + 0.25*y(2)*(1-Gaussp_y(o)) + ...
0.25*y(3)*(1+Gaussp_y(o)) + 0.25*y(4)*(-1-Gaussp_y(o));

dy_deta = 0.25*y(1)*(-1+Gaussp_x(p)) + 0.25*y(2)*(-1-Gaussp_x(p)) + ...
0.25*y(3)*(1+Gaussp_x(p)) + 0.25*y(4)*(1-Gaussp_x(p));

det_jacobi = dx_dkszi*dy_deta - dy_dkszi*dx_deta;

I = I + Gausss(o)*Gausss(p)* 1/sqrt(P^2+Q^2) * abs(det_jacobi);

end
end
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