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KIVONAT. Vilasztott projektmunkdim témdja a numerikus integrdlds. A do-
kumentumban az elméleti dttekintés részeként ismertetem a hatdrozott integrdl
fogalmadt, valamint dltaldnosan bemutatom a kilénbézd technikdk dltal haszndlt
kozelitési maodszerek alapelvét. Bemutatom a Lagrange-féle interpoldcids poli-
nomot, ismertetem annak alkalmazdsdt az interpoldicids numerikus integrdldsi
formulak esetén. Ismertetek néhdny alapvetd Newton-Cotes formuldt. Révi-
den ismertetem a Gauss-tipusi kvadratirdk elméletét, végiil pedig bemutatok egy
kubatira-maodszert specidlisan eqy négyzet felett, valamint dltalanos téglalapok
felett is.

1. Bevezetés, motivaciok

Egy- vagy tobbvaltozos fliggvények hatarozott integraljanak kiszamitasaval az
analizis alakalmazasanak szamos teriiletén talalkozhatunk. Mérndki tanulma-
nyaim soran a kiilénoboz6 elektromégneses problémék vizsgélata soran szinte
minden esetben elegendhetetlen eszkéznek bizonyult, de széleskord hasznéilatara
van sziikség a fizika egyéb tudoméanyteriiletein is.

A gyakorlati alkalmazasok sorén sokszor azzal szembesiilhetiink, hogy a sziik-
séges primitiv fiiggvény nem, vagy csak rendkiviil nehezen adhaté meg zart alak-
ban, ezért az el§tanulmanyainkban méar megismert Newton-Leibniz-formula sem
alkalmazhaté. Ilyen esetekben nem is toreksziink a hatarozott integral pontos
meghatarozasara, csupan az integral értékének egy — valamilyen pontossaga —
meghatarozaséara van sziikségiink. Erre szolgélnak a kiilonb6z6 numerikus integ-
ralasi technikak, melynek szdmos — az adott probléma megoldasdhoz optimélis
— véltozata létezik.

A tovabbiakban ezekbdl szeretnék bemutatni a teljesség igénye nélkiil né-
héanyat, specidlisan az egy- és kétvaltozos fliggvények numerikus integralasara
alkalmazva.

2. A hatarozott integral definici6ja

Tekintsiink egy f (z) egyvaltozos fliggvényt, mely egy [a,b] zart intervallum
minden egyes pontjaban értelmezett. Azt mondjuk, hogy ennek az f (z) fligg-
vénynek az a-tol b-ig értelmezett hatarozott integralja [1]:

b
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amely Osszefiiggés tulajdonképpen a Riemann-féle kozelits dsszegek hatarértéke.
A definicioban Az; a teljes [a, b] intervallum felosztasanak i-edik részintervallu-
ménak hossza (Azx; = x; — x,-1), az f (T;) fliggvényérték pedig pedig ennek az
i-edik részintervallumnak egy tetszélegesen kivalasztott pontjahoz tartozé fligg-
vényérték, formalisan leirva: T; € [x;_1, z;]. Vilagos az is, hogy az x; pontok az
eredeti [a, b] intervallum egy n-t6l fiiggs tugynevezett felosztasat képezik, igy

a=T9g <1 <2< ...<x; < ...<xp =b. (2)

Amennyiben az (1) 4ltal definialt hatarérték létezik, ugy az f (z) fiiggvény in-
tegralhato az [a, b] intervallumon. Klasszikus kalkulus-kurzusokrol ismert, hogy
amennyiben f (z) F-fel jelolt primitiv fiiggvénye (definicié szerint: F' = f (x))
ismert, ugy alkalmazhaté a Newton-Leibniz-formula [2]:

b
[ @) do =[Pl = F )~ F(a). 3)

Vilagos, hogy f (z) F primitiv fiiggvénye a gyakorlati alkalmazasok esetén
sokszor nem, vagy csak nagyon nehezen adhaté meg zart alakban. Az ilyen ese-
tekben a Newton-Leibniz-formula sem alkalmazhaté, igy mas modszerekhez kell
folyamodnunk. Ezek a moédszerek a numerikus integralési technikdk, melyek a
hatarozott integral kozelits értékének meghatarozasara szolgélnak, és amelyek-
nek széleskord gyakorlati alkalmazésa ismert.

3. A kozelités alapelve

Jeloljiikk az f (z) fiiggvény [a, b] intervallumon vett hararozott integraljanak ér-
tékét I (f)-fel, azaz

b
Iuwszu>m. (4)

Ekkor I (f) egy kozelitését a kovetkezsképpen tudjuk meghatarozni:

n

I (f) = _cif (x:), ahol z; € [a,b]. (5)

=0

Definici6 szerint az I, (f) = I, (f,{co,xz0},{c1,21}, ..., {¢n, zn}) képletet kvad-
ratiuraképletnek nevezziik, c; értékeit a kvadratiraképlet sulyainak, x; értékeit
pedig a kvadraturaképlet alappontjainak hivjuk [1].

Vegyiik észre, hogy az alapelv az, hogy az eredeti I (f) hatarozott integralt
I, (f) osszeggel kozelitjiik. Vilagos az is, hogy I, (f) értéke és pontossaga jelen-
tGsen fligg egyrészt a silyok és alapontok szamétoél, valamint azok megvélasz-
tasanak modjatol is. Az is vilagos, hogy mivel I, (f) kozelités, igy sziikséges és
érdemes vizsgalni az eltérést I (f) és I, (f) kozott. Mivel a kvadratiaraképletek
pontossaganak kérdése Osszetett tudoményteriilet, igy ezzel projektfeladatom
csak érintdlegesen fog foglalkozni.



4. Interpolaciés képletek, Lagrange-féle interpola-
ciés polinom

A hatérozott integral kozelité meghatarozasdhoz tehat az

n

b
[ @) dex b () =3 af @), € o, (6)

=0

Osszefiiggést alkalmazzuk, ahol ¢; silyok egyelére még ismeretlen egyiitthatok,
melyeket meg kell hataroznunk. Kérdés, hogyan.

Az interpolacios kvadraturaképletek bevezetéséhez és megértéséhez elGszor
is be kell vezetniink a Lagrange-féle interpoldcids polinom fogalméat. Ehhez te-
kintsiik az (xg, x1, ..., xn) és (f(xo), f(x1), ..., f(x,)) értékeket, melyek adottak.
A Lagrange-féle interpolacios polinom definicidja a kovetkezd [3]:

n

Loy (2):= Y flei)li(@), ahol = [ —— o
k=0

T — X5
J=0,7k "R T

A megértéshez tekintsiink egy egyszert példat, melynek Matlab-kodja [4] a do-
kumentum mellékletében lagrange_inter_pol_xmpl.m néven megtalalhato.

Adott 5 darab z-érték (zg,...,z4) = (—2,1,3,7,11), valamint a hozzajuk
tartozé 5 darab f fuggvényérték (f(zo),..., f(z4)) = (—4,2.5,3.7,10,-1). A
Lagrange-féle interpolécios polinom ebben az esetben az

Ly (z) = f(z0)lo(x)+ f(21) 1 () + ... + f (74) 14 () (8)

alakot 0lti, ahol [, értékeket kell még kifejteniink az eredeti 6sszefiiggésnek meg-
felelGen. Vizsgaljuk meg példaként [y alakjat, a tobbi pedig teljesen analog
moédon felirhato:

lo(w) = (jz_—11> (—362_—33) (:1:2—_77) (—332_—1111> ' ©)

Az 1. abran az f (z9)lo (z) és f (x1) 11 (z) alappolinomok lathatok.

s Lagrange-féle interpolacios polinom I Lagrange-féle interpoléciés polinom

1. abra. Alappolinomok: f (zq)ly (z) és f (z1) 1 (2)

Lathato, hogy a polinom tokéletesen illeszkedik az (xo, f(x0)) és (z1, f(21)),
koordinatakra, mig a tObbire nem. A tovabbi alappolinomokat és a teljes
Lagrange-féle interpolécios polinomot a 2. dbra és a 3. dbra mutatja.
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2. abra. Alappolinomok: f (z2)ls (x) és f(z3)l3 (x)
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3. abra. f (x4) 14 (z) és a teljes Lagrange-féle interpolaciés polinom

Visszatérve az eredeti kérdésre: a silyok meghatirozasahoz helyettesitsiik
f-et az z; € [a,b] alappontokra (i = 0,1, ...,n) tdmaszkod6 Lagrange-féle inter-
polaciés polinommal, majd integraljuk azt [1]. Igy:

b b
/ () dz ~ / Lo (2) da (10)
irhato fel, amely kifejtve:
b b n n b n
o o xr — l‘j
/Ln,f (@) da:—/Zf(xk)lk(a:) =3 g0 [ I o= de ()
a w k=0 k=0 o J=0,j#k

Osszevetve (6) és (11) dsszefiiggeseket 1atjuk, hogy c; stlyok a kovetkezokeép-
pen adodnak:
b b

ci:/li () d:v:/‘ ﬁ :v—_“;ﬂ] dr. (12)

- T
a w J=0,3#1

Az olyan formulakat, melyekben a sulyokat (egyiitthatokat) (12) alapjan sza-
moljuk, interpolacios formuldknak nevezziikk. Nem bizonyitom, de belathato [1],
hogy az ilyen formuldk, ha n + 1 pontra tdmaszkodnak, akkor legaldbb az n-
edfokd polinomra pontosak.



Amennyiben a vizsgalt tartomany felosztasa ekvidisztans, azaz xy = zo+k-h,
ahol h = b_T“ és k = 0,1,...,n, Newton-Cotes kvadratirdknek nevezzik. A
tovabbiakban megismerkediink néhany Newton-Cotes formulaval.

5. Erintéformula

Az érint6formula a legegyszeriibb és legalapvetébb numerikus integralasi formu-
la. Lényege abban &ll, hogy az eredeti [a, b] intervallumot felbontjuk n darab
egyenld hosszasagu részintervallumra gy, hogy

[a,b] = [xo = a,21 = xo + AU [r1,22 =21 + ] U ... U [zp_1,2, = b].  (13)

Az egyes részintervallumok tehat [zy,xy + h| alakaak, ahol £ = 0,1,...,n — 1.
Az osztopontokat az intervallumok kdzéppontjaban vessziik fel, azaz altalanos
esetben a [z, xx + h] intervallum osztopontja & = xy + % Az eredeti integralt
a Lagrange-féle interpolaciés polinommal kozelitjiik ezen intervallumok felett a
kovetkezGképpen:

zr+h zr+h
/ f(z) dz =~ f (&) - / lo (x) dx. (14)

Mivel intervallumonként egyetlen osztépontot vettiink fel, igy az Gsszeg is egy-
tényezGs lesz, ly értéke pedig 1, mert az iiresszorzat értéke definicidszerten 1.

Igy:

Tr+h
co = / 1 de = (2 = b (15)
T

adodik. Adott minden, most mér fel lehet irni egyetlen intervallumra az érints-
formula Gsszefliggését:

Ey. (f) := f (&) - h, (16)

és vilagos, hogy a fliggvény kozelité hatarozott integralja ezen elemi szakaszok
felett értelmezett hatarozott integralok szuperpozicidja lesz:

n—1 n—1
E:=) BEi=hy f(&). (17)
k=0 k=0

A formula Matlab-kodja a dokumentum mellékletében erintoform_xmpl.m
néven megtalalhat6. A példaban a formula mikodését az f (z) = % fliggvényre
vizsgaltam a [2,20] intervallum felett.

A példa segitségével a megvalositas helyessége és a pontos eredményhez tor-
ténd konvergencia is vizsgalhato n felosztasfinomsag fiiggvényében, hiszen ezt a
hatarozott integralt pontosan is ki tudjuk szamolni:

20

1
/E dz = [In]z[]2’ =1n20 — In2 = In 10 ~ 2.3026. (18)
2

Megvizsgaltam, miként fiigg az érint6formula altal kiszamolt kozelits integral
értéke n nagysagatol, azaz a felosztéis finomsagatol. Az eredmények a 4. dbran
lathatok, zold aszimptotaként az integral pontos értéke lathato.



Az érintéformula

4. abra. Az érintGformula altal adott eredmények n fiiggvényében

6. Trapézformula

Klasszikus numerikus integralési formula az agynevezett trapézformula. A for-
mula lényege, hogy a vizsgalt [a, b] intervallumot — az érintéformulédhoz teljesen
hasonléan — ismételten egyenls, h hosszisagi diszjunkt intervallumokra bont-
juk fel, mely szakaszok uni6ja kiadja az eredeti [a, b] intervallumot, azaz

[a,b] = [xg = a,x1 = xo + h]U[x1,22 =21 + h]U...U[xp_1,2, =b]. (19)

Amig az érint6formula esetén a kvadratira pontjai az egyes intervallumok koze-
pén helyezkedtek el, addig ezattal minden egyes intervallumn két pontot vesziink
fel, mégpedig ezek a pontok az egyes részintervallumok kezdd- és végpontjai lesz-
nek. Formalisan: egy altalanos [xy,zx + h] részintervallum kvadratirapontjai:
&k =2k 68 &1 = 1 + D

Ebben az esetben az a feladatunk, hogy Lagrange-féle interpolécioés polino-
mot fektessiink a (&, f (€k)) s (€k+1, f (§k+1)) pontokra:

zp+h Skt1 1
[ 1@ ar= [ 1@ don Y ear), (20)
Z Ex 1=0

ahol a kvadratura sulyait a kovetkezSképpen szamoljuk:

Ek41 Skt
Co = / lo (z) dx, = / I (x) dx, (21)
&k k
ahol
T — Tg T — &t rT—1r1  x—&

lo= = h= (22)

1 — T2 &k — Epa T2 — a1 g1 — &



Elvégezve az integralasokat:

Ekt+1 €rn
_ T — ki1 _ 1 B _
“ ; &k — k1 dr = &k — &yt 5/ (@ = &) du
1 2 G G .. & -
gk — &kt [ §k+14 £ B m <2 = &1 — o + §k+lfk> =
NS S 2 2 2 2
__2 5 (=& + fk_ﬂ + & — 26116k) __1 (€ — Epsr) = 1 (Eprt — Ex).-
&k Ekt1 2 2
Skt Ekt+1

_ z — &k _ 1 _ _
Cl_/§k+1—§k dx_fkﬂ—&c /(a: S) de

&k &k
L L (S e €g)-
§k+1 §k [ §kx} €x §k;+1 §k < 2 Sk 2 o) =

_ 3 L (&2 — 2618 — & +280) 1
= =5 (k1 — &)
Ektr1 — &k 2
A két saly értéke tehat megegyezik. A trapézformula igy a kovetkezSképpen
alakul:

Ek+1

Ekt1
_ Sk — &

5 (f (k) + f (Eks1)) - (23)

&k

A formula Matlab-kodja a dokumentum mellékletében trapezform_xmpl.m
néven megtalalhato. A példaban a formula miikodését ismét az f (z) = 2 fiigg-
vényre vizsgaltam a [2, 20] intervallum felett, hogy a konvergencia modjat dssze
lehessen hasonlitani az érintéformula esetében tapasztaltakkal. Megvizsgaltam,
miként fligg a trapézformula segitségével kiszamolt kozelité integral értéke n
nagysagatol, azaz a felosztas finomségatol. Az eredmények az 5. abran latha-
tok, zold aszimptotaként az integral pontos értéke lathato. Ezuttal megfigyehe-

A trapézformula

5. abra. A trapézformula &ltal adott eredmények n fliggvényében

t6, hogy ez a formula specialisan az f (z) = % fliggvény esetében felsG becslést
ad az integral pontos értékére, ellentétben a korabban bemutatott érint&formu-
laval.



7. Simpson-formula

Szintén széleskdrben elterjedt formula az tgynevezett Simpson-formula [1] is. A
formula alkalmazisénak lényege abban all, hogy az eredeti [a, b] intervallumun-
kat az eddig megszokott moédon diszjunkt, egyenls h hosszusigu részintervallu-
mokra bontjuk, azaz

[a,b] = [z =a,x1 =20+ h]U[z1,20 =21 + h]U..U[r,_1,2, = 0], (24)

de ez a kvadraturatipus mar harom pontra tamaszkodik. Ezen kvadratirapon-
tok az egyes részintervallumok két szélén, valamint az intervallumok kézepén
helyezkednek el, azaz

h
&k = Tk, Epr1 =Tk + 5 Sk+2 = Tht1- (25)

Az eddigiek alapjan mar teljesen vilagos, hogy a formulat az

S(f)=cof (&) +crf (§rv1) +caf (Err2) (26)

alakban keressiik, ahol ¢y, ¢; és co a kvadratira meghatarozandé salyai. Vilagos,
hogy ismét a Lagrange-féle interpolaciés polinomhoz kell nytlni, tehat az egyes
silyokat a kovetkezSképpen lehet szamolni:

co = / lo(z) dz, c1 = / Iy (x) dz, ca = / I (z) d. (27)
T Tr Tk

Mivel Iy (z), 1 (z) és Iz (x) polinomfiiggvények, integraljuk kénnyedén kisza-
molhat6 a trapézformula esetén mar ismertetett modon. A levezetést mellGzé-
sével kozlom a kvadratura sulyait [1]:

(Thr1 — k) 4 (zpy1 — 71) (Thr1 — k)

5 , (= —"—>, 0= —"—72. (28)

0= 6 6

A Simpson-formula

23 e
o 10 20 30 40 50 60
n

6. abra. A Simpson-formula altal adott eredmények n fiiggvényében

A Simpson-formula Gsszefliggése tehat — egyvaltozos esetben — a kovetke-
zGképpen alakul:

500 =TI () s af @) ). (29)



A formula Matlab-kodja a dokumentum mellékletében simpson_xmpl.m né-
ven megtalalhato. A példaban a formula mikodését az eddig megszokott f (z) =
1 fiiggvényre vizsgaltam a [2, 20] intervallum felett, hogy a konvergencia modjét
Ossze lehessen hasonlitani az eddigiekkel. Megvizsgaltam, miként fiigg a trapéz-
formula segitségével kiszamolt kozelits integral értéke n nagysagatol, azaz a fel-
osztas finomsagatol. Az eredmények a 6. abran lathatok, zold aszimptotaként
az integral pontos értéke lathato.

8. A Gauss-tipusu kvadratirakrol dltalaban

Az eddig ismertett formulak soran lattuk, hogy alkalmazasuk csak igen magas
pontszam alkalmazésa esetén ad megfelelGen pontos értéket. Ko6z0s jellemzgjiik
tovabbé, hogy csak a kvadratara silyait valaszthattuk meg szabadon, az alap-
pontjait nem. A Gauss-tipusa kvadraturak alkalmazésa soran ezzel szemben mi
magunk valaszthatjuk meg nemcsak a sulyokat, de az alappontokat is [1].

A Gauss-tipusu kvadraturak pontos értéket adnak 2n — 1 vagy ennél alacso-
nyabb foku polinomok esetében az z; alappontok és ¢; silyok megfelel6 meg-
valasztasa esetén. (i = 1,...,n). Ennek a pontossdgnak a megvalositasahoz az
alappontoknak és a silyoknak az alabbi feltételt kell kielégiteniiik:

b

n
ch (xk)i:/a:i dr, i=0,1,....2n — 1. (30)
k=1

a

Legyen

Q) = / w (@) f (x) dr, (31)

ahol w : (a,b) — R folytonos, pozitiv, valamint f;w(x) dr létezik, w egy
ugynevezett sulyfliggvény. Amennyiben feltessziik, hogy [a,b] = [—1,1], ugy w
alakjatol fliggGen beszélhetiink példaul Gauss-Legendre-, vagy Gauss-Csebisev-
kvadratararol is.

Azt mondjuk, hogy az

b

Je@ @) dox St @) (32)
k=1

a

formula Gauss-kvadratira, ha az integral minden p € P,,_; polinom esetén
pontos.

Példaként tekintsiik a Gauss-Legendre-kvadratira silyainak és pontjainak
meghatéarozasat [—1,1] felett, n = 2 esetén. Gauss-Legendre kvadratarardl be-
széliink akkor, ha a w (x) = 1 valasztéassal éliilnk. Ebben az esetben (30) alapjan
a kovetkezs feltételrendszeriink adodik ¢y, co silyokra és x1, zo pontokra:

1 1 1
cl+02:f1dx:[x]1_1:2, cllechxg:fxd:c:[””—;] 1:0,
1 1 -

1 1 1 1
3 2 4
crt+ ey = [ 2?2 dr = [% } T aat +egay = [ ad de= |4 = 0.
21 - ] -



Kaptunk tehat egy — nemlinearis — egyenletrendszert négy egyenlettel és négy
ismeretlennel. Az egyenletrendszer megoldhaté, konnyen ellendrizhets, hogy

1 1
—, Ty = —.
V3T B

megoldas. A kvadraturaformula tehat ebben a konkrét esetben:

[ AR

Ez a formula alkalmas minden, legfeljebb harmadfokd polinom integraljanak
pontos meghatarozasara. Konnyen megmutathatjuk azt is, hogy negyedfoku
polinomokra ez mar nem igaz. Tekintsiik példaul az f (z) = z* fiiggvényt:

[ra=[Z] ~tas(-5)eo(5)-3

Fontos felhivni az olvasé figyelmét, hogy a Gauss-tipust kvadratirdk elmé-
lete ennél sokkal mélyebb és Osszetettebb. Projektmunkdmnak nem célja, hogy
feltarja a teljes elméleti hatteret. A cél inkdbb az, hogy megértsiik, léteznek
olyan moédszerek, amelyek bizonyos el6re meghatarozott silyok és pontok alkal-
mazasaval képesek igen kis pont- és silymennyiség mellett is sokkal pontosabb
eredményt biztositani, mint az eddig ismertetett formulak.

81:1, 6221, xry = — (33)

9. Példa Gauss-tipusu kvadratirara

A Gauss-tipust kvadraturaképletek kozépérték-képletek [2]:

b k
/f ({E) dz =~ Zcuyuv ahol y, = f (l'g,u) : (35)
a v=1

A formuldban ¢, a Gauss-kvadratira sulyait, =4, a pontjait, v, pedig az in-
tegrandus x4, pontban értelmezett helyettesitési értékét jeloli. Miként azt mar
kordbban emlitettiik, ebben az esetben nem csak a ¢, egyiitthatokat, de az =,
alappontokat is szabad paraméterként kezelhetjiik ugy, hogy az integrélkozelité
Osszefiiggésiink minél magasabb fokszami polinom esetén is pontos lehessen. A
gyakorlati tapasztalatok azt mutatjak, hogy a Gauss-tipusu kvadraitraképle-
tek tobbnyire rendkiviil pontos kozelitést adnak, de ehhez az alappontok igen
specialis megvalasztasara van sziikség.

Amennyiben az integracios intervallumot ugy vélasztjuk, hogy az [a,b] =
[—1, 1] legyen, az alappontokat pedig az ugynevezett Legendre-polinomok gy6-
kei [2], akkor ¢, egyiitthatokat tgy lehet meghatéarozni, hogy a kozelits képle-
tiink legfeljebb a 2n 4 1-ed fokd polinomok integraljat pontosan adja. A hivat-
kozott Legendre-polinom gyokei az origéra szimmetrikusan helyezkednek el. A
megfeleld stlyok és pontok szamos internetesen oldalon elérhetGek (példaul [7]),
de generalasukra talalhatok szamos programozasi nyelvre megirt fiiggvények is.
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Ahhoz, hogy az itt definidlt Gauss-kvadratitra segitségével tetszéleges [a, b]
intervallumra meg tudjuk hatarozni a fliggvények hatarozott integraljanak ko-
zelits értékét, egy egyszeri transzformécios eljarasra van sziikség. Egyszertien
belathato, hogy a t = b’T‘lx + ‘%rb transzforméaci6 az [—1, 1] intervallumnak az
[a, b] intervallumot felelteti meg, igy az integral kozelits értéke:

b k
b— b— +b
[ 1@ ar= Q“Ecuf(g“xg,y+“2 ) (36)

A kubattra Matlab-kodja a dokumentum mellékletében gausskvad_xmpl.m né-
ven megtaldlhato. A script bemeneti paramétereként szabadon megvalaszthato,
hogy az hany ponttal és stllyal végezze el az integral kozelitését. A példaban
a formula mtikodéseét ismét az f (z) = L fiiggvényre vizsgéltam a [2,20] inter-
vallum felett, hogy az eddigiekkel 6sszehasonlithatd eredményt kaphassak. Azt
tapasztaltam, hogy n = 8 siily és pont alkalmazésa esetén a tényleges (2.3026) és
a kozelits érték (2.3025) kozotti eltérés (0.0038 %) jelentGsen kisebbnek adodott,

mint az eddig tapasztaltak.

10. Kubattra egyszeri téglalap felett

A feladat a kovetkezs: legyen adott egy f (z,y) kétvaltozos fiiggvény, amely
értelmezve van egy S téglalap felett, ahol |z| < h és |y| < h, teljesiil tovabba
minden olyan feltétel, amely lehetvé teszi, hogy az

/ / f () dudy (37)
S

integral létezzen. Ekkor az f (z,y) kétvaltozos fliggvény S feletti integralja
meghatérozhato az

/ / f (@) dady =402 [ S w;f (35,5) + R (38)
s J=1

formula segitségével, ahol w; a kvadrattura silyait, x;,y; € S a kvadratira
pontjait, R pedig a kvadrattra hibatagjat jeloli [5].

Vizsgéaljuk meg a kubatira miikddését és megvaldsitasi modjat. Legyen els-
szOr

f(x,y) =z’ +y27 S = [_272]27 (39)

//f(sr:,y) dzdy = /2/2(x2+y2) dzdy. (40)
s S22

A kétvaltozos fiiggvény grafikonja a 7. abran lathato. Mivel ez a kétvaltozos
fliggvény masodfoku, igy az eddigiek alapjan hasznalhatjuk a négy pontot és
négy silyt alkalmazd kubatira-formulét.

Az alkalmazott kubatura sulyai és pontjai a kovetkezsk [5,7]:

1 1 1
Wy =wy = w3 =Wy =7, (i, yi) = (igﬁh,ig\/ﬁh) )

kérdés pedig:
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ahol h ebben az esetben S definiciéja miatt 2. A kubatira Matlab-kodja a
dokumentum mellékletében kubaturanegyp_xmpl.m néven megtalalhato. Mivel
a valasztott kétvaltozos fliggvény integréalja analitikus tton meghatérozhaté (a

levezetés mellGzésével az integral pontos értéke: % ~ 42.6667), igy konnyen

tudjuk ellendrizni az eredményt.

7. abra. Az f(x,y) fliggvény S felett

A script lefutattdsa utan kapott eredményiink szintén 42.6667-re adodott,
ami azt jelenti, hogy a kubattra erre a fliggvény — mind&sszesen négy pont
és suly alkalmazasiaval — az alkalmazott szidmébrazoldsunk mellett megfelel
eredményt adott.

11. Kubattra tetszdleges csticskoordinatija tégla-
lapok felett

Felmeriilhet a kérdés, hogy miként lehet tetsz6leges csticskoordinatikkal defini-
alt téglalapok felett kvadratira segitségével kiszamitani kétvaltozos fiiggvények
hatarozott integraljét.

A kovetkezokben ismeretett formula [6] alkalmas tetszéleges tipusu és tet-
sz6leges cstucspont-koordinataju négyszog teriilete (K) felett értelmezett f (x,y)
kétvaltozos fiiggvény kozelitésére:

I= / / F(z,y) ddy. (41)
K

Ez ugy teheté meg, hogy az altalanos négyszoget egy szabalyos, origd kozép-
ponttal rendelkezs, 2 egység oldalhosszuségu négyzetté (R) sziikséges transz-
formélni, amely felett mar alkalmazhaté a kétdimenzios Gauss-kvadratura. A
transzformécié moédjat a 8. dbra mutatja.

Lényege, hogy az xy-sikon értelmezett eredeti négyszdget csomoédponti for-
mafiiggvények segitségével a &n-sikra kell transzformalni, majd a fiiggvény in-
tegralasat ezen a sikon sziikséges elvégezni. A csomoponti formafiiggvények
legfontosabb tulajdonséiga, hogy i-edik sorszamu értéke az i-edik csomopontban
1, az 6sszes tObbiben nulla. A transzforméciohoz az alabbi négy formafiiggvényt
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Y n
(-1,1) (1,1)
P 4(‘x4’y 4) P(?(x(?ly 3)
X S
K R
P1(x1’y1) P2(x2’y2) ('17'1) (1:'1)

8. dbra. Transzforméacié a kvadratirdhoz

alkalmaztam [6]:

M= (-9,
Ny= (146 (1),
: (42)
Ny= (1461 +n),
Ni=3 (-6 +n).

A formafiiggvények segitségével végrehajtott transzformacioval az eredeti in-
tegral kiszamithato az

/ / f (@) dady = / / FP(Em).QEm)|det J (€,m)] dedy  (43)
K R

Osszefliggés felhasznalasaval, ahol P (€, 7n) az eredeti x, Q (§,n) pedig az eredeti
y valtozd helyettesitési értéke, kifejtésiik a formafiiggvények segitségével:

4

P(fﬂ?) = leNl (fﬂ?) =11 (5377) + x9Ny (5777) +.’£3N3 (5777) + x4 Ny (5777) y
=1
4

Q(&m) =D uilNi (&) = y1N1 (&) + y2N2 (1) + y3Ns (€,1) + yaNa (£,n) .
=1

(44)

A transzforméacié Jacobi-méatrixdnak determinansahoz sziikség van x és y £ és
7 szerinti derivaltjaira is, hiszen

9z 9y Ox dy Oy ox
det J (¢,m) = |Qewd| — 1 0¢ g} — T2 P 45
(&m) ’a@,n)’ Qo Gul T 9con 0L on (45)
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A derivaltakat analitikus modon hataroztam meg:

Jr  x To T3 T4

9¢ = 4l A=+ A4n+ (1=,

19)

= O+ (19 + MO+ (1-9),

n o 4 4 4 4 (46)

Oy _w _ Y2 B Ya g _

9 = g AT A=m A+ F A4+ T (=1 =),

Oy _yn Yo B Y4 g _

A kvadrattra Osszefiiggése a transzformécié alkalmazésaval tehét:

N N
Zzwiwjf(P (&>m;), Q (&, my)) et J (&, my)l (47)
i=1 j=1

ahol w;, w; a kvadratira sdlyait, &;,n; pedig a pontjait jeloli, melyek megtaldl-
hatoak példaul a hivatkozott forrason [7] is.

Az itt bemutatott transzformacios kvadratirat Matlab-kdrnyezetben meg is
valésitottam, a kédja a dokumentum utolsé mellékleteként megtalalhato. Mi-
kodését a kovetkezs kettds integral kiszamitasaval teszteltem:

3 10

/ / _ dzdy. (48)

N
-3 6
Ezen hatéarozott integral ot tizedesre megadott, kerekitett értéke a — bonyolult,
de zart alakban megadhaté — primitiv fliggvény felhasznalasaval (a levezetés
mellézésével, pl. Wolfram Alpha segitségével konnyen ellendrizhets) 2.99049.
Amennyiben n = 7 sily és pont felhasznalasaval futtatjuk le a scriptet, ugy
az integral kozelitG értéke Ot tizedesjegyen 2.99049, azaz megegyezik a primtiv
fiiggveény segitségével kiszamitott értékkel. A Jacobi-determinéns értéke |.J| = 6-
ra adodott.

Megvizsgaltam azt is, miként valtozik ez az eredmény, ha az el6z6 fejezetben
ismertetett négypontos modszer segitségével probaljuk meg kozeliteni a hatéaro-
zott integral értékét. Ebben az esetben az eredmény 6t tizedesjegyen abrazolva
2.99048, amely annak ellenére, hogy az adott szimabrazolas mellett ¢ = 1-107°
hibat eredményez, gyakorlati szempontboél szintén megfelels eredménynek te-
kinthetd.

12. A formuldk hibajanak vizsgalata

Egyszeri kvadratiraformuldknak nevezziik azokat a kvadraturaformulékat, me-
lyek soran az eredetileg vizsgalt [a, b] intervallum nem keriil feldarabolésra disz-
junkt részintervallumokra, hanem a korabban ismertetett kvadraturaformulak
kizarolagosan egyszer, a teljes [a, b] intervallumra keriilnek felirasra, igy kozelitve
a fliggvény hatarozott integraljat. Ezen egyszeri kvadraturaformuldk hibakép-
lete a kovetkezdképpen alakul [1]:
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Egyszeri érint6formula: Legyen f : [a,b] — R kétszer folytonosan diffe-
rencidlhaté. Ebben az esetben az egyszerd érintéformula hibaképlete a kévetkezd:

b (- a)’
[ d-rn="00 1 ©) ccla. (49)

Egyszerii trapézformula: Legyen f : [a,b] — R kétszer folytonosan diffe-
rencidlhato. Ebben az esetben az egyszerd trapézformula hibaképlete a kédvetkezd:

b 3
[r@ dr T () == (6. celat). (50)

Egyszeri Simpson-formula: Legyen f : [a,b] — R négyszer folytonosan
differencidlhats. Ebben az esetben az eqyszerd Simpson-formula hibaképlete a
kévetkezo:

(b—a)’
2850

b
/ f (@) de—S.(f) = — D), €€, (51)

A projektmunkdmban ismertetett interpolaciés kvadratiuraformuldk mind-
egyike dsszetett kvadratiraformula volt. Ezeket a kvadratiuraformulakat az egy-
szerd formuldk pontositasira hasznaljuk, lényege a kordbban ismertetett elmé-
leti hattér szerint abban 4ll, hogy az eredeti intervallumot diszjunkt, egyenlé
hosszusagu, n darab részintervallumokra bontjuk fel, melyek felett elvégezve az
egyszerd kvadraturaformuldk &ltal adott szamitasokat, majd végiil ezek ered-
ményét Osszeadva pontosabb eredmént kaphatunk. Pontossaguk miatt vilagos,
hogy a gyakorlatban ezen formulak az elterjedtebbek. A hibaképletek a kovet-
kezSképpen alakulnak [8]:

Osszetett érintéformula: Legyen f : [a,b] — R kétszer folytonosan diffe-
rencidlhato. Ebben az esetben az dsszetett érintdformula hibaképlete a kévetkezd:

(- a)S y

b
[r@ a-p) =505 @ ¢l (52)

Osszetett trapézformula: Legyen f : [a,b] — R kétszer folytonosan diffe-
rencidlhaté. Ebben az esetben az dsszetett trapézformula hibaképlete a kévetkezd:

(b— a)3 "

b
[t -7 =-E25 1 ©, celabl. (59)

Osszetett Simpson-formula: Legyen f : [a,b] — R négyszer folytonosan
differencidlhato. Ebben az esetben az dsszetett Simpson-formula hibaképlete a
kovetkezd:

5
fW(©), €€lab. (54)



Az egyes formuldk altal adott integralértékeket n fiiggvényében az 1. tab-
lazat tartalmazza gy, hogy n értékét ketts hatvanyaira valasztottam. Latjuk,
hogy mig az érint6formula az integral értékét alulrdl becsli, addig a trapéz- és a
Simpson-formula felsé becslést ad. Ez teljes mértékben Gsszhangban van a hiba-
képletekkel, hiszen a tényleges integral és a formula altal adott érték kiilonbsége
az utobbi két esetben negativ, mig az els6 esetben pozitiv elGjeld.

n E(f) | T() | S() || » En[%] | Tw[%] | Sn[%]
2 1.9653 | 3.2932 | 2.4079 || 2 14.6481 | 43.0218 | 4.5738
4 2.1663 | 2.6292 | 2.3206 || 4 5.9187 | 14.1847 | 0.7813
8 2.2582 | 2.3977 | 2.3047 || 8 1.9276 | 4.1307 | 0.0914
16 2.2902 | 2.3208 | 2.3028 || 16 0.5378 | 0.7910 | 0.0077
32 2.2994 | 2.3091 | 2.3026 || 32 0.1383 | 0.2829 | < 0.0006
64 2.3018 | 2.3042 | 2.3026 || 64 0.0340 | 0.0701 < 0.0006
128 | 2.3024 | 2.3030 | 2.3026 || 128 | 0.0080 | 0.0180 | < 0.0006
256 | 2.3025 | 2.3027 | 2.3026 || 256 | 0.0036 | 0.049 < 0.0006
512 | 2.3026 | 2.3026 | 2.3026 || 512 | 0.0006 | 0.0006 | < 0.0006
1024 | 2.3026 | 2.3026 | 2.3026 || 1024 | 0.0006 | 0.0006 | < 0.0006
2048 | 2.3026 | 2.3026 | 2.3026 || 2048 | 0.0006 | 0.0006 | < 0.0006
4096 | 2.3026 | 2.3026 | 2.3026 || 4096 | 0.0006 | 0.0006 | < 0.0006
8192 | 2.3026 | 2.3026 | 2.3026 || 8192 | 0.0006 | 0.0006 | < 0.0006

1. tablazat. Az egyes kvadratturaformulék atal adott eredmények n fiiggvényében

Lathato, hogy a Simpson-formula segitéségvel a vizsgalt példa esetén mar 16
részszakaszra torténd felbontas esetén is megfelel pontossagi eredmény érhe-
t6 el, mig az érint- és trapézformulak esetében hasonlé pontossigi eredmény
eléréséhez jelentGsen finomabb felbontasra van sziikség.
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0. Mellékletek: Matlab-kédok

0.1. lagrange inter pol xmpl.m

%Lagrange-fele interpolacios polinom, pelda

clear; clc;

x_pontok = [-2 1 3 7 11]; f_pontok = [-4 2.5 3.7 10 -1]; felbontas = 200;

x = linspace(-2,11,felbontas); L = zeros(1,felbontas);

for 1:1length(x_pontok)
= x_pontok(k); f_k = f_pontok(k);
ones(1,felbontas);
or j = 1:length(x_pontok)
if § =k
x_j = x_pontok(j);
for n = 1:length(1)
1(n) = 1(n) * (x(@) - x_j) / (x_k - x_j);
end
end
end
L=L+ (fk .% 1);
end
figure(k); hold on; plot(x_pontok,f_pontok,’red*’); xlim([-5 151); ylim([-5 151);
plot(x,L); xlabel(’x’); ylabel(’f’);
axis square; title(’Lagrange-féle interpolacidés polinom’);

0.2. erintoform xmpl.m
%Erintoformula alkalmazasa, pelda

clear; clc;

%Felbontas (max.) finomsaga
n = 3;

a=2; b=20; h= (b-a)/n; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); x1lim([a,b]l); xlabel(’x’); ylabel(’y’);

xi = zeros(1l,n-1); x_pontok = zeros(l,n+1);
x_pontok(1l) = a;

for i = 2:(n+1)
x_pontok(i) = x_pontok(i-1) + h;
xi(i-1) = x_pontok(i-1) + h/2;
end
E = 0;
for i = 1:length(xi)

E=E+h=* (1 /xi(i));
end

0.3. trapezform xmpl.m

%Trapezformula alkalmazasa, pelda
clear; clc;

%Felbontas (max.) finomsaga
n = 3;

a=2; b=20; h= (b-a)/n; I = log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; %Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); x1lim([a,b]l); xlabel(’x’); ylabel(’y’);
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xi = zeros(1l,n-1); x_pontok = zeros(l,n+1);
x_pontok(1l) = a;

for i = 2:(n+1)
x_pontok(i) = x_pontok(i-1) + h;
end

for i = 1:(length(x_pontok)-1)
T + ((x_pontok(i+1)-x_pontok(i)) / 2) * ...
( (1 / x_pontok(i)) + (1 / x_pontok(i+1)) );

)
]

end

0.4. simpson xmpl.m
%Simpson-formula alkalmazasa, pelda
clear; clc;

%Felbontas (max.) finomsaga
n = 10;

a=2; b=20; h=(b-a)/n; I =1log(b) - log(a);
x=linspace(a,b,200); £ = 1 ./ x; Y%Egyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,bl); xlabel(’x’); ylabel(’y’);
xi = zeros(1,2#n+1);

for i = 1:length(xi)

if i ==

xi(i) = a;
else

xi(i) = xi(i-1) + 0.5%h;
end

end

xi_k = xi(1); xi_kpl = xi(2); xi_kp2 = xi(3);
S = 0;

S =8+ ((xi_kp2 - xi_k) / 6) * ...
((1/xi_k)+4*(1/xi_kp1)+(1/xi_kp2));
for i = 2:n
xi_k = xi(2%i-1);
xi_kpl = xi(2#%i);
xi_kp2 = xi(2%i+1);
S =8+ ((xi_kp2 - xi_ k) / 6) * ...
((1/xi_k)+4*(1/xi_kpl)+(1/xi_kp2));
end

0.5. gausskvad xmpl.m

%Gauss-kvadratura, 1D

clear; clc;

Gaussp = load(’./Gaussp_1D.txt’); Gausss = load(’./Gausss_1D.txt’);

a=2; b=20; I=1log(b) - log(a);
x=linspace(a,b,200); f = 1 ./ x; JEgyszeru integralando: 1/x

figure(1); hold on; plot(x,f); xlim([a,bl); xlabel(’x’); ylabel(’y’);

G = 0; bmap2 = ((b-a)/2);

for i
G

1:1length(Gaussp)
G + bmap2*Gausss(i)*(1/(bmap2*Gaussp(i)+((a+b)/2)));

end

0.6. kubaturanegyp xmpl.m

%Kubatura teglalap felett, negy ponttal pelda
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clear; clc;

h = 2;
x = linspace(-h,h,100); y = linspace(h,-h,100); [X,Y] = meshgrid(x,y);
f = zeros(length(x));

for i = 1:length(x)
for j = 1l:length(y)
£(1,7) = X(4,3)72+Y(1,3)"2;
end
end

figure(1); hold on; surf(X,Y,f); xlabel(’x’); ylabel(’y’); zlabel(’f(x,y)’);
I_negyp = 0; sulyok = [1/4 1/4 1/4 1/4]1;
pontok_x = [1/3*sqrt(3)*h -1/3*sqrt(3)*h 1/3*sqrt(3)*h -1/3*sqrt(3)+*h];
pontok_y = [1/3*sqrt(3)*h -1/3*sqrt(3)*h -1/3*sqrt(3)*h 1/3*sqrt(3)+*h];
for i = 1:length(pontok_x)

I_negyp = I_negyp + 4xh~2%sulyok(i) * (pontok_x(i)~2+ ...

pontok_y(i)~2);
end

0.7. kubatura transzformacioval.m
%Kubatura transzformacioval, pelda
clear; clc;

Gaussp_x = load(’./Gaussp_x.txt’); Gausss = load(’./Gausss.txt’);
Gaussp_y=load(’./Gaussp_y.txt’);

%Teglalap megadasa a koordinataival
x = [6 10 10 61;
y=1[-3-333];1I=0;

for o = 1:length(Gaussp_x)
for p = 1:length(Gaussp_y)

.26* (1-Gaussp_x(p) ) *(1-Gaussp_y(0));
.26* (1+Gaussp_x(p) ) *(1-Gaussp_y(0) ) ;

.25% (1+Gaussp_x (p) ) * (1+Gaussp_y (o)) ;

0
=0
=0

0.25%(1-Gaussp_x(p) ) * (1+Gaussp_y(0));

P = x(1)*N_1+x(2)*N_2+x(3)*N_3+x(4)*N_4;
Q = y(1)*N_1+y(2)*N_2+y (3) *N_3+y (4) *N_4;

dx_dkszi = 0.25*x(1)*(-1+Gaussp_y (o)) + 0.25*x(2)*(1-Gaussp_y(o)) + ...
0.25*x(3) * (1+Gaussp_y (o)) + 0.25xx(4)*(-1-Gaussp_y(0));

dx_deta = 0.25*x(1)*(-1+Gaussp_x(p)) + 0.25%x(2)*(-1-Gaussp_x(p)) + ...
0.25%x(3)*(1+Gaussp_x(p)) + 0.25*%x(4)*(1-Gaussp_x(p));

dy_dkszi = 0.25*y(1)*(-1+Gaussp_y (o)) + 0.25%y(2)*(1-Gaussp_y(o)) + ...
0.25%y(3) *(1+Gaussp_y (o)) + 0.25%y(4)*(-1-Gaussp_y(0));

dy_deta = 0.25*y(1)*(-1+Gaussp_x(p)) + 0.25*y(2)*(-1-Gaussp_x(p)) + ...
0.25%y(3) *(1+Gaussp_x(p)) + 0.25*xy(4)*(1-Gaussp_x(p));

det_jacobi = dx_dkszi*dy_deta - dy_dkszi*dx_deta;
I = I + Gausss(o)*Gausss(p)* 1/sqrt(P~2+Q~2) * abs(det_jacobi);

end
end
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