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Kivonat

Stacionarius €s Radiofrekvencias Elektromagneses Terek Vizsgalata a Momentumok
Modszerének Segitségével

Dolgozatom a staciondrius és radiofrekvencias elektromdgneses terek numerikus

crer

crr

megvalositdsat ¢és alkalmazhatosagat kiillonbozé geometriai  elrendezésti  és
komplexitast problémak esetén.

Rovid attekintést nylijtok a munkdm soran alkalmazott, az elektromagneses terek
jelenségeit leir6 Maxwell-egyenletekrél, a segitségiikkel levezetett elektrosztatikai és
sugarzasi Osszefliggésekrdl, kiilonos tekintettel azok frekvenciatartomanybeli
alakjaira. Bemutatom a modszer haszndlata soran kiemelked6 szereppel biré Green-
fiiggvényeket, legfontosabb tulajdonsagaikat. Ismertetem a momentumok
modszerének alapjait, alkalmazasdnak legfontosabb [épéseit, Osszefiiggéseit,
hasonlésagait és kiilonbségeit az eltérd numerikus technikdkhoz, kiemelten a
végeselem-modszerhez képest.

Bemutatom a momentumok modszerének alkalmazasi lehetdségeit egydimenzids
¢s kétdimenzios elektrosztatikai problémdk megoldasara, valamint a munkam soran
implementalt Ma t 1 ab-scripteket, azok miikodését.

Ismertetem, levezetem az elektrosztatika altalanos alapegyenletét, a Laplace-
Poisson-egyenlet megoldasat. Ismertetem az egydimenzids szimulacid segitségével
vizsgalhatd toltott huzal problémajat, annak megolddsat és a megoldd matrix-szintii
implementaldsat. Bevezetem a megoldashoz sziikséges egydimenziés Gauss-
kvadratarat, annak egyenleteit. Ismertetem a szimulacidés eredményeket, azok
kiértekelését.

Bemutatom a probléma kétdimenzids megvaldsitasat egy altalanos toltott lemez
segitségével. Ismertetem a kétdimenzids egyenleteket, kiilonds tekintettel az
impedanciamatrix elemeinek kiértékelésének modjat. Részletesen ismertetem a
munkam sordn alkalmazott, Mat1lab-scriptben megvaldsitott kétdimenzios Gauss-
kvadratira egyenleteit, mely kvadratira-techika segitségével az impedanciamatrix
foatloinak elemei is kiértékelhetok.

Ismeretem a modszer alkalmazasat radiofrekvencids problémdk vizsgélatara.
Bevezetem a vékony huzal altalanos probléméjat, levezetem a Hallén- ¢és
Pocklington-egyenleteket. Részletesen ismertetem a Hallén-egyenlet megoldasanak
Iépéseit.

Bemutatom a radidfrekvencias problémak alapvetd épitéelemének, a félhulldmu
dipolusantennanak vizsgalatdt Hallén-egyenlet segitségével. Ismeretem a gerjesztés
megadasanak altalam alkalmazott mddjat, a peremfeltételek beallitasdnak technikajat
valamint az eredményeket, azok kiértékelését. Bemutatom az antenna-
iranykarakterisztika felvételének kéttipusi modszerét, melyeket Mat1ab-Script
formajaban meg is valositottam.



Abstract

Examination of Static and Radiofrequency Electromagnetic Fields with the Method
of Moments

My thesis deals with the examination of static and radiofrequency electromagnetic
fields by simulation techniques. Its primary object is to present the root ideas of the
Method of Moments used for simulating different type of electromagnetic fields, with
special emphasis of the implementation of the method and its applicability on
different problems having different type of geometries and complexities.

| offer a brief overview of the Maxwell-equations describing the phenomena of
the electromagnetic fields, and also touch on the question of deduction of the main
electrostatic and radiation equations, with special priority of their aspects in the
frequency-domain, which | used and implemented during my work. | introduce the
Green-functions and their significant relationship with the Method of Moments. |
present the basic theories and the most important steps of the Method of Moments,
the essential equations of the method and the fundamental analogies and differences
according to other numerical techniques, especially to the Finite Element Method.

| exposit the application opportunities of the Method of Moments for solving
one- and two dimensional electrostatic problems, and | also introduce the Mat1ab-
scripts which I implemented during my work with their essential functions.

I present the deduction of the main, global electrostatic equation and the
solution of the Laplace-Poisson’s equation. I summarize the one-dimensional charged
wire problem, its solution and implementation on the level of matrices by using the
Method of Moments. | summarize the basics of the implemented one-dimensional
Gaussian quadrature and its equations. | evaluate the results and the characteristics of
modelling and simulation.

| introduce the implementation of a two-dimensional electrostatic problem by
analyzing a two-dimensional charged plate. | summarize the equations, with special
emphasis of the evaluation of the elements of the impedance matrix. | particularly
present the two-dimensional Gaussian quadrature, which | implemented in Mat1ab-
script, and which can also handle the evaluation of the elements in the main diagonal
of the impedance matrix.

| describe the applicability of the method for solving and examining
radiofrequency problems. | also present the problem of the thin wire. And the
solution of the Hallén’s equation in detail.

Last, but not least | overview the problem of the half-wave dipole antenna —
which is an essential tool in the field of radiofrequency problems — and its analysis by
using the Hallén’s equation. I also introduce the used excitation method, the set up of
the boundary conditions and the results as well. Through two implemented particular
cases | outline the procedure of the identification of the radiation patterns.
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1. fejezet

Bevezetés, koszonetnyilvanitas

Dolgozatom a stacionérius és radiéfrekvencias elektromagneses terek numerikus ana-
lizisének témakorében irédott. Munkam elsGdleges célkitiizése, hogy atfogd részle-
tességgel ismertesse az elektromagneses terek szimulacidéjahoz alkalmazott momen-
tumok modszerének alapgondolatéit, megvalositasat és alkalmazhatosagat kiilonbo-
76 geometriai elrendezési és komplexitast problémak esetén. Napjaink kutatasi-
fejlesztési munkaja méra mar elképzelhetetlenné valt a kiilonb6z6 szimulacios elja-
rasok és programcsomagok napi hasznalata nélkiil, melyek az eszkozok paramétereit
— legyen az villamos vagy mechanikai — konkrét megvalositas nélkiil, szamitogépes
kornyezetben teszik vizsgalhatova. A szimuldcios eljardsok ismerete és gyakorlati
szint{ alkalmazéasa éppen ezért valt szinte a mindennapi életiink részévé a villamos-
mérnoki gyakorlatban is.

Az értekezés els6 szakaszaban ismertetem a munkam soran alkalmazott, az elekt-
romagneses terek jelenségeit leir6 Maxwell-egyenleteket, a segitségiikkel levezetett
elektrosztatikai és sugéarzasi osszefiiggéseket, kiilonos tekintettel azok frekvenciatar-
tomanybeli alakjaira. Ismertetem a modszer hasznédlata soran kiemelkedd szerep-
pel bird Green-fliiggvényeket, azok legfontosabb tulajdonsagait. A mésodik feje-
zetben bemutatom a momentumok mobdszerét, alkalmazasanak legfontosabb lépé-
seit, hasonlosagait és kiilonbségeit a kiilonb6z6 numerikus technikdkhoz (példaul a
végeselem-modszerhez) képest. A harmadik részben ismertetem a modszer hasz-
nalatdnak modjat egydimenzios és kétdimenzids elektrosztatikai példdk megoldéa-
sara, kitérve a programkod-szinti megvaldsitas 1épéseire is, valamint ismertetem a
szimulacios eredményeket. A negyedik szakaszban bemutatom a modszer széles-
kord alkalmazasat radidfrekvencias problémék vizsgalatara, levezetem a Hallén- és
Pocklington-egyenletet, részletesen ismertetem el6bbi megvalositasat a momentu-
mok modszerének segitségével az alapvetd épitGelemnek szamito félhullama dipolus-
antennan.

Dolgozatomat levelezé mesterszakos villamosmérnok hallgatoként irtam. Eztton
szeretném megkoszonni az értékes tamogatast és segitséget konzulensemnek, Kucz-
mann Miklosnak. Koszonetemet fejezem ki tovabbéa a volt Elektromégneses Terek
Laboratorium minden egykori kollégajéanak, kiilonos tekintettel Budai Taméasnak és
Friedl Gergelynek a sokéves kézos munkabol fakado tamogatasért. Koszonom koz-
vetlen kollégaimnak és vezetGimnek, hogy a napi feladatok ellatasa mellett nemcsak
megértGek voltak, hanem lehet&ségeik szerint tamogattak is munkamat.

A dolgozatot ETEX szdvegszerkesztében készitettem el.



2. fejezet

A Maxwell-egyenletek

2.1. IdSétartomanybeli egyenletek integralis és diffe-
rencialis alakjai

James Clerk Mazwell (1831 - 1879) kivalo skot elméleti matematikus-fizikus éle-
tének legfontosabb tevékenysége az elektromossaghoz kéthetd. Elsddleges szerepe
abban all, hogy kiterjesztette és matematikai formulédkba 6ntotte a korabbi fiziku-
sok (példaul Michael Faraday és André-Marie Ampére) kisérleti tapasztalatait, és
egy Osszekapcsolodo, egységes parcidlis differencidlegyenlet-rendszerbe foglalta éket,
melyeket 1861-ben publikalt elGszér On Physical Lines of Force cimi cikkében [1].
Maxwell egyenletrendszere hisz egyenletet és husz valtozé mennyiséget tartalma-

2.1. abra. James Clerk Maxwell [2] és Oliver Heaviside [3]

zott. Az egyenletek mai formajat egy oriasi formatumau, kiemelkeds, de méltatlanul
elfelejtett autodidakta angol villamosmérncknek, Oliver Heaviside-nak (1850-1925)
koszonhetjiik, aki munkaja soran kifejlesztette és a villamosmérnoki gyakorlatba
illesztette a vektoranalizist, a rotacioé és a divergencia operatorok segitségével tizen-
két egyenletet atalakitott, igy az egyenletrendszert négy egyenletté redukéilta négy
valtozoval.

A Maxwell-egyenletek olyan kozelhatéasi torvényeket definialo, evolacids, parcia-
lis differencialegyenletek, melyek a tér egy adott pontjaban, annak infinitezimélisan

4
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sziik kornyezetében megadjak az egyes térjellemz6 mennyiségek valtozasdnak kap-
csolatat. Segitségilikkel tehat barmely térjellemzd (legyen az akar elektromos, akar
méagneses) meghatarozhato, hiszen azok Osszefiiggést teremtenek a gerjeszté mennyi-
ségek (toltés, aram), a térintenzitasok (elektromos térerGsség, magneses indukcio) és
a gerjesztettségi mennyiségek (elektromos eltolas, magneses térerdsség) kozott [4].
Az egyenletek integralis alakban:

fﬁ-df—/(ﬂ%—?)-d& (2.1)

l A
Lo 0B -
E-dl = . dA 2.2
7{ di / a4 (2.2)
l A
fé.dfi':o, (2.3)
A
j{ﬁ~dj—/pdV (2.4)
A \%

Az els6 Maxwell-egyenlet (2.1) az Ampére-féle gerjesztési torvény, fizikai jelentése,
hogy az aram és az elektromos tér valtozasa mégneses teret kelt (értelemszertien a
két mennyiség egyszerre is létrehozhatja a teret, de kiilon-kiilon is képesek méagneses
teret kelteni). A masodik egyenlet (2.2) a Faraday-féle indukcios torvény, fizikai
jelentése, hogy a magneses tér valtozasa elektromos teret kelt. A harmadik egyenlet
(2.3) a magneses Gauss-torvény, jelentése, hogy az indukciovonalak forrasmentesek,
onmagukban zarodnak. A negyedik egyenlet (2.4) az elektrosztatika Gauss torvénye,
jelentése, hogy a elektromos tér forrasos, er6vonalai toltéseken kezdGdnek, toltéseken
végzddnek.

Munkém soran minden esetben izotrop, linearis kozeget feltételeztem. Ebben az
esetben a térjellemz6 mennyiségek kozott kapcsolatot teremtd konstiticios relaciok
a kovetkezSképpen alakulnak:

B = pop. H, (2.5)
D = cye, E, (2.6)
J=o (E+E,,), (2.7)

ahol jio a vakuum permeabilitasa, értéke 47 - 1077 X—;’l, g9 a vakuum permittivitasa,

értéke kozelitSleg 8,8541 - 10712 \‘?—;, W és g, pedig a vizsgalt kozeg vikuumhoz
viszonyitott relativ permeabilitasa és permittivitasa.

Az egyenletek igy teljesek és ellentmondasmentesek. Integralis alakjuk fizikailag
szemléletes, de a numerikus szamitasok soran ebben a formaban alkalmazni Gket
nehéz, koriilményes. Az egyenletek atirhatok differencidlis alakba a Stokes-tétel:

]fﬁ-df:/vXﬁ.dA’, (2.8)
A

l
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és a Gauss-Osztrogradszkij-tétel segitségével [5]:

fﬁ-dfi’:/v-adv, (2.9)
14

A

ahol V az ugynevezett nabla vektoroperator, mely segitségével egy ¥ (7,t) =
€xVz(t) + €yv,(t) + €,v,(t) alakban felirhato vektor rotacioja és divergenciaja kife-
jezhetd Descartes-féle koordinata-rendszerben:

0
9z
J
V= |2, 2.10
% (2.10)
0z
S & ov, Ov
VX T=r10t(0) = |3 a5 o :e;<ay —a_j)_
Up Uy Uy (2.11)
e 81}2_8% Le %_8%
Y\oxr 0z *\Nox oy )’
. L ov,  Ov,  Ov,
U= = — 4+ . 2.12
V-4 = div (V) e + o + P (2.12)

A kifejezések alapjan belathato, hogy a rotacié alkalmazésa vektorboél vektort,
mig a divergencia vektoroperdtor vektorbol skalart eredményez.
A Maxwell-egyenletek differencialis alakja az eddigieket felhasznalva:

-~ - 0D

H=J+== 2.1

V x J+ TR (2.13)
- 0B

E=-"—" 2.14
V x 5 ( )
V-B=0, (2.15)
V-D=p. (2.16)

Az Osszefiiggésekben H a magneses térerdsséget jeloli, dimenzi6ja %, J az aram-
stirtiség, dimenzidja %, D az elektromos eltolas, dimenzidja %, E az elektromos
térerdsség, dimenzidja %, Ba magneses indukcio, dimenzidja Tesla, p a toltéssiri-
ség, dimenzidja <

m3*

2.2. Attérés a frekvenciatartomanyba

A Maxwell-egyenletek id6tartomanybeli differencialis alakjaibol levezetett Gsszefiig-
gések numerikus kezelése a derivaltak miatt sokszor igen bonyolult feladat, melyekre
bar léteznek konvergens technikik, azok stabilitasa sokszor nehezen biztosithato [6].
Radiofrekvencias problémak vizsgalata esetén az egyenletek stacionarius kozelitése
(0/0t ~ 0) nem alkalmazhato, igy a feladat komplexitasa tovabb novekszik. Az
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egyenleteket célszeri tehat a frekvenciatartomanyban vizsgalni, megoldani, mely-
hez az attérést a Fourier-transzformacio biztositja [7]. Definicio szerint egy x(t)
folytonos idéfiiggvény Fourier-transzformaltja az

o0

X(jw) = F{z(t)} = / w(t) - e ¥t dt (2.17)

— 00

Osszefliggés segitségével hatarozhatdé meg. A frekvenciatartoméanyba valo attérés
legnagyobb elénye, hogy az id6 szerinti derivalas a fiiggvény valtozojaval, tehat
Jjw-val torténd szorzassa egyszertisédik. Ertelemszertien az n-szeres id§ szerinti de-
rivalas (jw)"-el torténd szorzassal lesz ekvivalens. Ez kénnyen belathato az inverz-

P

() = FHX (jw)} = \/% / X (jw) - e dw (2.18)

Osszefiiggéssel definialhatd, melynek segitségével a frekvenciatartoményban térténd
derivalas matematikai igazolasa:

ax(t) a or—1 . a 1 7 . jwt
= — X = — _— X . elv —
o~ KU =g 0a ) AUt de
L ]OX( w) - der! dw = L j('wX('w)) e dw = F T {jwX (jw)}
o J ot = o J J = J J .

(2.19)

Ezek alapjan a Maxwell-egyenletek differencialis alakjai a frekvenciatartomanyban
a kovetkezdképpen alakulnak:

— — —

V x H=J+ jwD, (2.20)
V x E = —jwB, (2.21)
V-B=0, (2.22)
V-D=p (2.23)

A frekvenciatartomanybeli analizis soran mindig szem elGtt kell tartani, hogy az
inverz-transzformécié soran elallitott idofiiggvény kizarolag stacionarius kompo-
nensbdl all, a tranziens Osszetev6t nem tartalmazza. Masképpen fogalmazva: a
megoldas soran elveszitjiik a vizsgalt rendszer szabad valaszat. A szimulacidés modell
megalkotasa és az alkalmazott szamitasi modszer kivalasztasa soran mindig figyelem-
be kell venni, hogy lehetséges-e eltekinteni a bekapcsolasi jelenségek vizsgilatatol.
Amennyiben a tranziens komponens elvesztése nem nyujt teljeskord vizsgalodasra
lehetGséget, tgy a frekvenciatartomanybeli analizis alkalmazasa keriilends. Altala-
nosan elmondhaté, hogy a radidfrekvencids-sugarzasi jelenségek vizsgalata soran a
hosszutava viselkedés a fontos, ezért a tranziens komponens elhagyasa nem jelent
problémat.



3. fejezet

Sugarzasi osszefliggések

Ebben a fejezetben részletesen ismertetem a Maxwell-egyenletekbdl levezethets su-
garzési Osszefiiggéseket, melyek segitségével a tér barmely pontjaban meghataroz-
haté az elektromos és méagneses térerGsség komplex csucsértéke. Az Osszefiiggések
altaldnos alakjain tul kitérek azok specidlis, Descartes-féle koordinata-rendszerben
értelmezett formaira, valamint a vektorpotencial és a Green-fiiggvények meghatéro-
zasanak modjara is kétdimenzios és haromdimenziés probléma esetén.

3.1. Az elektromos és magneses térerdsség formulai

P

Az elektromos térerdsségre vonatkozo Osszefliggés meghatarozhaté (2.21) rotacioja-
nak képzésével, tovabba (2.5) felhasznalasaval:

VXVxXxE=—jwuV x H. (3.1)

Behelyettesitve az Ampére-féle gerjesztési torvényt (2.20) és az eltolasvektorra vo-
natkozo konstittcios relaciot (2.6) a

VxVxE=—jwu <f+ jweﬁ) = —jopd + W pueE (3.2)

Osszefiiggés adodik, igy kiiszobolve ki a tér magneses tulajdonsigaira jellemzd
mennyiségeket. Felhasznalva a

VXVxT=V(V-%) — AT, V5 (7t (3.3)

vektoranalitikai Osszefiiggést, bevezetve tovabba k = w,/uc = 27” hullamszam fogal-
mat

V(V-E) - AE - KPE = —jon (3.4)

adodik [9], ahol A az tgynevezett Laplace-operator, alkamazasa skalar- és vektor-
fiiggvény esetén a
P %  0? v, 0%v, 0%v,

— ()0 — [ — —
A t) = A t) = @
(7 1) 8$2+0y2+8z2’ v(7.1) <8x2+8y2+822)e+

N d*v, N D*v, N d*v, o4 0%v, N 0%v, N 0%v, &
0x? oy? 022 )Y ox? oy? 022 ) #

(3.5)
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Osszefiiggéseket eredményezi, mely leképzés skalar-skalar és vektor-vektor tipusu [5].
Az egyenletet arendezve, beszorozva minusz eggyel, valamint kifejezve és behelyet-
tesitve az elektromos térerGsség divergencidjat az elektrosztatika Gauss-torvényének
segitségével

AE + IPE = juud + vg (3.6)

adodik. A p toltéssiriség kifejezhetd a folytonossagi egyenlet [4] frekvenciatarto-
ménybeli alakja alapjan az aramstriség divergencidjaval a

- 1 -
V-Jd=—jwp =-p=—-V-J (3.7)
Jw

Osszefiiggéssel, mely segitségével
— — — 1 —
AE 4+ K2E = jupd — —V (v - J) (3.8)
Jwe

irhat6 fel. Az egyenlet jobb oldalan kiemelve jwu-t adodik az elektromos térergsségre
vonatkoz6 differencidlegyenlet végsd alakja:

AB 1 BB = jup {Jn Ly (v. f)] | (39)
A fenti Osszefiiggés matematikai szempontbdl egy inhomogén Helmholtz-egyenlet,
melynek bal oldalan az ismeretlen vektorfiiggvény az elektromos térerésség, a jobb
oldalon pedig az inhomogenitast okozd gerjesztés talalhato, amely a formulaban tel-
jes egészében az aramstrtséggel keriilt kifejezése. A gerjesztés altalanos esetben
két komponenshdl all. Az els6 tag (jwp,f) fizikai tartalma, hogy az &dram idébeli
valtozasa elektromos teret kelt. A mésodik tag a tértoltések hely szerinti derivaltjat,
gradiensét tartalmazza, melynek értelmében a toltések jelenléte a vizsgalt problé-
matartomanyon beliil szintén elektromos teret gerjeszt.

A magneses térerdsség kifejezésére alkalmas Helmholtz-egyenlet az itt bemuta-
tottakkal analog modon levezethets [8]. Ezuttal csak a végsé Osszefiiggést kozlom,
tekintettel arra, hogy a gyakorlati jelent&sége munkam sorén igen csekély:

. L - 1 -
AH + K2H = jwe {M + 5V (v : M)} . (3.10)

Tovabb bonyolitja a kérdést, hogy a fenti Gsszefiiggésben szerepld M az ugynevezett
méagneses aram, amely fizikailag nem realizalhato, pusztan matematikai absztrakeio.
A Helmholtz-egyenletek megoldasaval kapcsolatos szakmai irodalom igen széles és
sokszind [10-12|, az ilyen tipusu egyenletek kezelésére sokféle lehetséges megoldast
ismeriink. Dolgozatomban a momentumok médszeréhez szorosan kapcsolodé Green-
fiiggvényekkel torténd megoldast fogom bemutatni és alkalmazni.

3.2. Megoldas a Green-fiiggvények alkalmazasaval

A megoldas soran a Maxwell-egyenletek linearitdsanak koszonhetGen feltételezhet-
jiik, hogy J aramstriiség elemi pontforrasok szuperpozicioja egy tetszéleges V' térfo-
gatban elosztva. A konnyebb megértés érdekében tekintsiik a Helmholtz-operatort
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(A + k?) egy altalanos rendszeroperatornak. Az egyenlet jobb oldalan reprezen-
talt gerjesztésre a Helmholtz-operatorral leirhaté rendszer a targyalt egyenletnek
megfelel§ valaszt ad. A linearitds miatt amennyiben ismert egy pontforrasra (infi-
nitezimalis gerjesztés) adott valasz, ugy a kiindulasi probléma is megoldhato ezen
valasz térfogatra torténd integralasaval [8]. Vizsgaljuk meg (3.9) egyetlen (€,) ira-
nyt komponensét:

10 -
AE, +KE, = Jy+ —=—V-J), 3.11
+ Jwp ( +t o, ) (3.11)
valamint vizsgaljuk meg a Helmholtz-operatorral leirhato rendszer impulzusvala-
szat [13], amely egy olyan G (F’, 7 ) skalar-vektor fliggvény, amely kielégiti a skalar
Helmholtz-egyenletet:

AG (7, 7) + kK*G (F,7) = —6 (7, 7). (3.12)

Az itt definialt G('F’, F’) fiiggvényt Green-fliggvénynek nevezziik [8,9,26] és a
Helmholtz-operator impulzusvéilaszanak tekintjik. A rendszerelmélet értelmében
ha ismert az impulzusvalasz, Ggy a rendszer valasza tetszéleges gerjesztésre meg-
hatarozhato a konvolicios integral segitségével, amit ezittal nem idében, hanem
térben kell elvégezni. A Green-fiiggvény segitségével tehat az elektromos térerGsség-
re felirhatd konvolicio:

0

E, (F) = —jwu/G(F, ) [Jx—l— %%v’.f(ﬂ) dr, (3.13)
|4

amely teljes, vektorialis alakban az

ZA

P.(y.z.%)

3.1. abra. Altalanos vizsgalati koordinata-rendszer

10
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() = —jon [ 6 (7.7) [f(f') VY f(f')] A (314)
formulaval irhat6é le. Az eddigiekhez teljesen hasonlé médon felirhat6 a magneses
térerdsség helyfiiggése is:

A (7) = —jo [ 6(77) [M (7) + vV N (ﬂ)] a7, (3.15)
Dolgozatomban a 3.1. Aabra jel6lésrendszerét alkalmazom, melynek értelmében a

Py(ys, 2, xy) forraspontba mutat az 7 vektor, mely az integralas futoviltozoja, a
P,(yy, 20, T,) vizsgalati pontot pedig az 7 vektor jeldli ki.

3.3. A Green-fiiggvények meghatarozasa

Munkam soran két tipusi Green-fiiggvényt alkalmaztam: az altalanos, haromkoor-
dindtas, valamint a kétdimenzios valtozatot, igy ebben a szakaszban ennek a két
fiiggvénytipusnak a bemutatasara szoritkozom. A Green-fliggvény meghatarozasa
sordan (3.12) megoldasat keressiik. Mivel ez egy inhomogén parcialis differenciél-
egyenlet, az OsszetevGkre bontas modszerével [5| viszonylag konnyen célt tudunk
érni: els6ként tehat a homogén altalanos megoldast keressiik meg, majd a perem-
feltételek érvényesitésével meghatarozhaté az inhomogén partikularis megoldas. A
megoldas sorén figyelembe vehetjiik, hogy G (77, 7 ) a Helmholtz-egyenlet megoldéasa
egyetlen pontforras esetén, ezért a fiiggvény géombszimmetrikus, elegendé a sugér-
iranyt dsszetevé vizsgalata [8]. Igy a Laplace-operator kifejtése a

AG (7,7) = (3.16)

Tar) T S drr T rdr

li(sz> 1 (2 ac 2d2G) &G 246

alakban irhato fel. Ismét a szorzatderivalas szabélyéat alkalmazva belathathato, hogy

(3.17)

1d*(rG) 14d dG e 1 /dG n d*G n dG d*G n 2dG
r o dr? rdr \ dr r \ dr dr2 ~ dr dr2 7 dr’
igy az r > 0 feltétel kikdtése esetén a homogén Helmholtz-egyenletbe rG helyettesit-
het6, a Laplace-operator pedig r-irdnya kétszeres derivalassa egyszeriisodik, tehat

igaz lesz a
d* (r@)

2 _

0 +k*(rG)=0 (3.18)
egyenlet [8]. Matematikai titon belathato [5], hogy az ilyen tipust egyenletek meg-
oldasat a , .

efjkr e]kr
G=A +B (3.19)
r r

alakban kereshetjiik, ahol a negativ exponens a halad6, a pozitiv exponens pedig a
reflektalt hullamot reprezentalja, ebben az esetben viszont tudjuk, hogy a megoldas
csak a halado komponenst tartalmazza (B = 0), ezért elegendd az elss tag vizsgalata.
Az Osszefiiggésben r = }’F’ — 7 }, tehat az Osszefiiggés a forraspont és a vizsalgati pont
kozotti vektor hosszénak fiiggvénye.

11
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Az inhomogén partikularis megoldas meghatarozasahoz figyelembe kell venni a
peremfeltételt, mely szerint a haladé hullam eltiinik, ha a sugariranya komponenssel

tartunk a végtelenbe:
lim G (7,7) = 0. (3.20)

=00

Ezt a feltételt a paraméteres megoldas formailag automatikusan teljesiti, igy az r = 0
pont vizsgalataval tudjuk meghatarozni az ismeretlen A konstanst. Ehhez (3.12)
integralasara van sziikség egy térfogatra. Az integral miatt az Osszefiiggés jobb
oldalan talalhato Dirac-delta automatikusan egységnyi lesz a fiiggvény definicioja

szerint:
e—jk‘r e—jk’r
A/ {A ( ) + K ( )} dv = —1. (3.21)
T T
1%

Az Gsszefiiggés elsG tagja a divergenciatétel (2.9) értelmében atirhato az

—jkr —jkr R —jkr

/A(e )dvzfv(e )-FdA:j[ﬁ(e )dA (3.22)
r r or r

v A

A

alakra, hiszen gémb esetén a sugarirdnyt egységvektor megegyezik a vizsgalt fe-
lillet normélisaval. Elvégezve a fliggvény radilis derivalasat, valamint figyelembe
véve, hogy a zart gombfeliilet az A = 4mwa? formuldval hatarozhaté meg, az integral
hatarértéke az origoban (a — 0):

ey ik 1
lim | 47a® | 22— = lim ( 47a® |—— = —4m. (3.23)
a—0 T2 a—0 TQ r=a

Az Osszefiiggés masodik tagja sugarirdnyt vonalintegralra egyszertsithetd:

a a

o [ 2 oM 2 —jkr
k . dV =k*4n [ r . dr = k%4 [ re”™7"" dr, (3.24)

ami nulldhoz tart, ha a fels6 hatart a nulldhoz kozelitjitk. Igy az A konstans és a
keresett Green-fiiggvény mar kifejezhetd [14]:

—jkr e_jk’F—’f_"/|

(3.25)

z[m]
R - T

o
v [m]

3.2. 4bra. A Green-fiiggvény yz-metszetének abszolit értéke és fazisa (7 = [0,0])

12
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Bar a levezetett hAromdimenzios Green-fiiggvény alkalmas kétdimenzios problé-
mak kezelésére is, a vonatkozo szakirodalom [8,9,14] kiilon kezeli a specialis kétdi-
menzios vizsgalatokra alkalmas fiiggvényt, amely a levezetés mellGzésével a

G(p.7) = —7H (k|p = 7)) (3.26)
formulaval irhaté fel, ahol p a kétdimenzios helyvekort, Héz) pedig a mésodfa-
ja, nulladrendd Hankel-fiiggvényt jeloli, mely szoros kapcsolatban all a Bessel-
fiiggvényekkel [15]. A formula el6nye, hogy beépitetten rendelkezésre 41l Matlab [16]
kornyezetben, hatranya, hogy amennyiben a Green-fiiggvény analitikus derivaltjara
van sziikség, igy annak el6allitasa kevésbé célravezets, ellenben a hdromdimenzios,
altalanos formulaval.

3.4. A magneses vektorpotencial

Az eddig bemutatott sugarzasi Osszefiiggések segitségével a gerjeszté mennyiségek-
b6l kozvetleniil meghatarozhato az elektromos és magneses térerGsség a tér barmely
pontjaban. Dolgozatom az egyenletek numerikus megvalésitasat a késébbiek folya-
man részletezi. A térersségek komplex csucsértéke meghatarozhato egy kézbeikta-
tott mennyiség, a magneses vektorpotenciil bevezetésének segitségével is. Mivel a
méagneses indukcidévektor divergenciamentes, az bevezethet§ az ugynevezett vektor-
potenciél rotaciojaként:

B=VxA, (3.27)

mert

V. (VxT()=0, Y&#). (3.28)

A Faraday-féle indukcios torvény frekvenciatartomanybeli alakjaba visszahelyette-
sitve a vektorpotencial rotacidjat, majd az egyenletet dtrendezve

V x (EHMA’) ~0 (3.29)

adodik. Ismert vektoranalitikai azonossag szerint [5] egy skalarmez$ gradiensének
rotacidja mindig zérus, tehat

V x (=V®) =0, (3.30)

az elektromos térerdsség felirhato a vektorpotencial és egy tetszGleges skalarpotenciél
Osszegeként:
E=—jwA—-Vo. (3.31)

Véve a H = IILV x A konstiticios relacio rotaciojat, tovabba felhasznélva (3.3)
Osszefliggést az
wxﬁ:v(v.Z)—AA’ (3.32)

egyenlet irhato fel. Felhasznélva az Ampére-féle gerjesztési torvényt és az elektromos
eltolasra vonatkozo6 konstitticios relaciot

ud + joneE = pd + jwpe (— jwA — vq>) -V (v : A) AL (3.33)

13



Diplomamunka Unger Tamés Istvan

adodik, melyet atrendezve felirhaté a megoldando egyenlet:

AA + A = —uf—l— \Y (V . fi—i—jwue@) : (3.34)

irtuk el6. Ez tetsz6legesen megtehets. A Coulomb-mértékkel [17] ellentétben ezuttal
nem zérus, hanem

V-A=—juucd (3.35)

valasztéassal célszerd élni (Lorenz-mérték), hiszen igy (3.34) a kovetkez Osszefiiggésre
egyszertisodik:
AA+ KA =—ud. (3.36)

Ez az ismert inhomogén, vektorialis Helmholtz-egyenlet, megoldasa az eddigiekkel
teljesen analog modon megadhatod az aramsiirtiség, tehat az inhomogenitast okozo
altalanos gerjesztés és a Green-fiiggvény helytartoméanybeli konvoliciojaval:

A7) =p / G (7)) J(7) dV'. (3.37)

Ez tulajdonképpen harom saklaregyenlet: A,, A, és A, komponensekre, Descartes-
féle koordinata-rendszert feltételezve. Altalanosan kifejezve az elektromos térerdsség
a tér barmely pontjaban a vektorpotencial segitségével az

E= jwA - Vo=_juA- v (v : A’) (3.38)
WHE
Osszefliggés segitségével szamithatdé., A szimulaciok sordn gyakran el6fordul,
hogy a méagneses vektorpotencial kizarolag z-irdnyt komponenssel rendelkezik
(ezA, (x,y,2)), mely esetben a vonatkozo elektromos térerésség-komponensek ki-
fejtése Descartes-féle koordinata-rendszerben [9):

1 9?4 1 9?4 1 [0
By = —j—— ot By=—j——o ot Eo=—j—— (o5 + k) A (3.39
]wueaxaz Y wpe Oyoz jw/ﬁ?( " ) (889

Ezt a modust z-re transzverzalis modusnak nevezziik (TM?), mely esetén a kiala-
kul6 magneses mezs z-iranyt komponense zérus. Az itt bemutatott két Gsszefliggés
koziil minden esetben azt célszerd alkalmazni, amelyikkel a lehet6 leggyorsabban
és legpontosabban eredményre tudunk jutni. Amennyiben a gerjeszté aramstiriiség
tavolterében vizsgéaljuk a létrehozott térerGsséget egy geometriai alakzat, példaul
egy kor vagy gdémb mentén, tgy felesleges kozbeiktatott potencidlmennyiség meg-
hatarozésa, célszert a diszkrét vizsgélati pontokra a térerGsség értékének kdzvetlen
meghatarozasa az ismert gerjesztés felhasznalasaval. Amennyiben a kisugarzott tér
vizsgélata a cél, igy numerikus mddszerekkel jobban és pontosabban kezelhets a
vektorpotencialbdl torténd szarmaztatés, hiszen ebben az esetben az irdnymenti de-
rivaltak numerikus elGallitisa soran biztosan nem adodik a kis valtozokiilonbségbdl
adodo szingularitas.

14



4. fejezet

A momentumok modszere

Ebben a fejezetben f6bb vonasait tekintve ismertetem a momentumok modszerének
alkalmazasat, hasonlosagait és kiilonbségeit a végeselem-modszerhez képest. Bemu-
tatom a modszer hasznalata sordn alkalmazhaté tipikus bazisfliggvényeket, vizsga-
lati modszereket, azok elényeit és hatranyait.

4.1. A probléma Altalanositasa

A momentumok mobdszere sokoldalian alkalmazhaté numerikus technika parci-
lis differencidlegyenletek megoldasara. Felhasznalasa jellemz6en a frekvenciatar-
tomanybeli problémék vizsgalatara terjedt el, de itt érdemes megjegyezni, hogy
alkalmas id6tartomanybeli analizisre is [18]. Vizsgaljunk meg egy &ltalanositott
problémét, mely az

Y (4.1)
alakban irhato fel, ahol f az ismeretlen fiiggvény, melyre . {-} linearis operator
hat (ez utoébbi tipikusan integral és/vagy differencidloperator), g pedig egy ismert
gerjesztofiiggvény, fizikai tartalma a vizsgalt problématol fiigg (erd, potencial, aram,
beesd elektromos térerdsség) [8]. A momentumok modszerének alkalmazasa soran a
vizsgalt problématartomanyt N darab diszkrét elemre sziikséges felbontani (egydi-
menzidban szakaszokra, kétdimenzioban példaul négyszogekre), majd az ismeretlen
fiiggvényt ugyanennyi silyozott béazisfiiggvény Osszegeként kell kézeliteni:

N
Y anta (4.2)
n=1

ahol a, az n-edik ismeretlen silyozokonstanst jelenti. Az ismeretlen fiiggvényre
hato operdtor linearitasa miatt a konstanssal szorzés, az Osszegzés és az operator
alkalmazasanak sorrendje felcserélhets, igy az eredeti Gsszefiiggés a
N
Zany {fuf =g (4.3)
n=1
alakban frhat6 fel, amely az eredeti egyenlet kozelitése, hiszen véges mennyiségii
stlyozott bazisfiiggvényt alkalmazunk. Igy a rezidual az

R=g-— Zany {fu} (4.4)
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Osszefiiggéssel definidlhaté. A megoldas soran az a cél, hogy a rezidualfiiggvényt
a vizsgalt problématartomanyon beliil bizonyos feltételek kikotése mellett, stlyo-
zofiiggvények felhasznaldsaval nullara csokkentsiik. Ezt a modszert altalanosan a
stilyozott maradékok elvének nevezziik, melynek a momentumok modszere egy spe-
cialis esete [20].

4.2. A momentum fogalma

A momentumok moddszere esetében a sulyozofiiggvény mindig polinomfiiggvény,
melybdl szamszeriien annyit kell alkalmazni, ahany bazisfiiggvényt értelmeztiink a
vizsgalt problématéren beliil. Definidljuk az tgynevezett belsé szorzatot, masnéven
momentumot f,, (¥) silyozofiiggvény és f,, () bazisfiiggvény kozott a kovetkez6kép-
pen [19]:

i fo) = [ 5T 5,7 a7 (45)
fm

Ezt felhasznalva beldthatd, hogy az egyes silyozofiiggvények rezidualfiiggvénnyel
vett bels6 szorzata mindig zérust ad, azaz

N

(fns B) = (fins ) = Y an (fns {fa}) = 0. (4.6)

n=1

Kifejtve a bels6 szorzatokat és atrendezve az egyenletet a
N
S an [ ul®) S () d7 = [ £ ()9 () a7 (4.7)
n=1
Jm fm

Osszefiiggés irhato fel. Ez az egyenlet egy N x N-es méatrixegyenletet eredményez,

amely altalanosan a
Z-a=b (4.8)

alakban adodik, ahol Z az egyiitthato- vagy impedanciaméatrix, m-edik soranak n-
nedik eleme a

o = o Lfu}) = / fou () L (7)) - dF (4.9)
fm

Osszefiiggéssel hatarozhaté meg, a az ismeretleneket tartalmazo, b pedig a gerjesztést
reprezentalo oszlopvektor, melynek elemei altaldnosan a

by = / fon (7) g (7) - A7 (4.10)
fm

integrallal szamithatok. Az egyenlet jobb oldala a probléma komplexitasatol, a
szimmetriatol és a gerjesztés tipusatol fiiggGen tobb, kiilén kezelendd oszlopvektor
szuperpozicidjaként is elGallhat, melyek elGsorban a peremfeltételek kezelésekor bir-
nak kiemelt jelentGséggel.
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4.3. Galerkin-modszer és a pont-illesztés

A stlyozofiiggvény megvalasztasi modjatol fliggGen a momentumok modszerének
tobbféle alkalmazasi modszere létezik [26]. A legelterjedtebb és egyben legegysze-
riibb alkalmazasi modszer az tgynevezett pont-illesztéses eljaras. Ennek lényege,
hogy a silyozofiiggvényt Dirac-deltanak valasztjuk, azaz

i (7) = 6 (7). (4.11)

Alkalmazasanak legfontosabb elénye, hogy a silyozéfiiggvény és a bazisfiiggvény
kozott értelmezett specidlis belsd szorzat kiértékelése soran csupan az f, (7)-re hatod
& {-} operétort sziikséges numerikusan kiértékelni:

orm = / 5(7).7 {fo ()} - dF = 7 {f, ()} (4.12)

fm

A pont-illesztéses eljaras hatranya, hogy a peremfeltételek kizarolag a diszkrét vizs-
galati pontokon érvényesitheték, a vizsgalati tartomany t6bbi részén nem, igy azo-
kon akar mas értékeket is felvehetnek. Ettdl fliggetleniil a pont-illesztéses eljaras az
esetek tobbségében kielégits eredményt ad [8,20].

A masik elterjedt modszer az ugynevezett Galerkin-modszer, mely esetén a fel-
hasznalt silyozofiiggvények megegyeznek az alkalmazott bazisfiiggvényekkel. Ebben
az esetben az impedanciaméatrix elemeinek meghatarozasahoz az . {-} operator nu-
merikus kiértékelésén tul a sulyozofiiggvény szerinti integral kiszamitasara is sziikség
van.

4.4. Bazisfiiggvények

A momentumok modszerének alkalmazasa soran hasznalt bazisfiiggvények két alap-
vetd csoportba sorolhatok:

e a teljes vizsgalati tartoméanyt lefedd, valamint
e annak csak egy részét érintG lokalis bazisfiiggvénykral.

A teljes tartoményt lefed6 bazisfliiggvénnyel dolgozatom nem foglalkozik, mivel al-
kalmazasa kevésbé elterjedt. Lokalis bazisfiiggvényre a legegyszertibb példa a 4.1.
abran lathato tgynevezett ugrasfiiggvényes megvalositas. A lokalis ugrasfiiggvényt
matematikailag a kdvetkezGképpen lehet definidlni:

fa(z) = (4.13)

1, haz, <z <zh1,

0, minden mas esetben.
Az ugrasfiiggvény alkalmazasanak elénye, hogy egy-egy elem felett értelmezve kons-
tans, igy az impedanciamatrix elemeinek numerikus kiértékelését jelentGsen leegysze-
riisiti. Hatranya, hogy a fiiggvény z-szerinti derivalasa az elemek végein Dirac-deltat
eredményez, igy ez a tipusi bazisfiiggvény nem alkalmazhaté abban az esetben, ha
& {-} operator tartalmaz z-irany szerinti derivaltat.
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afx)
afox) G of o)
a,fi(x) e
Ay N (X
afy(x)
o o :x
X, Xo Xs X4 X5 Xn.2 XN-1 XN
4.1. dbra. Az ugras bazisfiiggvény
a,f,(x)
a,f,(x)
An ol N.o(X
a.fi) ot ) e
f f f U je o of 1 ‘>x
X; Xy Xs Xy X5 Xn.2 Xn.1 X
af(x)
a.f.(x) a.fi(x) anfu(x)

a,f,(x) A of (%)

4.2. abra. A haromszog-tipusi bazisfiiggvény

Az z-szerinti derivaltak kezelését példaul a 4.2. abrén lathat6 haromszog-tipusi
bazisfiiggvények segitségével lehet kikiiszobdlni. Ennek két tipusa létezik: a felsd
abran lathato megoldas explicit modon kikényszeriti, hogy a diszkretizalt probléma-
tartomany végein a keresett fiiggvény értéke zérus legyen. Ez a tipust bazisfiiggvény
tehat csak ebben az esetben alkalmazhaté. Igy az N darab pont segitségével N — 1
szakaszra diszkretizalt tartoméany felett N — 2 bazisfiiggvény értelmezhets, melyeket
az

—L—In haz, <z <z,.,
fulz) = {””“‘“ o (4.14)

LT—Tn42
Ty hang S0 S Tngo

lehet meghatarozni. Amennyiben nem feltételezhetjiik, hogy a megoldas a problé-
matér két peremén zérus, gy az als6 abran bemutatott bazisfiiggvény-elrendezést
sziikséges alkalmazni. Ebben az esetben N darab bazisfiiggvényt kell meghatarozni,
a kovetkez&képpen:

folz) = ¢ i (4.15)

LT—Tn41
Tn—Tn+1 )

T—Tp—1
{ - 9 ha Tp—1 S X S Tn,

haz, <x <z,
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Antennak szimulicidja soran gyakran alkalmazott lokalis bazisfiiggvény az ugyne-
vezett szinuszos bazisfiiggvény, hiszen az antenndk &rameloszlasa szinuszos, igy a
megoldés a bazisfiiggvények segitségével kevesebb ismeretlen segitségével, pontosab-
ban kozelithets. Mivel a huzalantennak adrameloszlasa az antenna végein zérusnak
adodik, gy felesleges a linearis, haromszog-tipustubazisfiiggvények esetén bemuta-
tott két altipus kezelése, az ismeretlen konstans a problématér két végén zérusnak
valaszthato.

4.5. A momentumok mobdszere és a végeselem-
modszer

A momentumok modszerének targyaldsa soran érdemes azt a széleskorben elter-
jedt numerikus modszerek kozott kontextusba helyezni, igy mutatva be a méddszer
sajatossagait, valamint a fontosabb eltéréseket egyéb numerikus technikdk vonatko-
zasaban. Mivel alapszakos tanulmanyaim soran foglalkoztam a végeselem-modszer
alkalmazasaval az alacsonyfrekvencias téranalizis tekintetében [17], igy kézenfekve,
hogy a momentumok modszerét ezzel a technikaval vessem 0Ossze.

Mind a momentumok mobdszere, mind a végeselem-modszer numerikus techni-
ka parcidlis differencidlegyenletek kozelité megoldasara. Alkalmazasuk elve abban
all, hogy nem torekszenek a keresett fliggvény pontos meghatirozasara és a pe-
remfeltételek tokéletes kielégitésére, hanem az eredeti egyenlet egy tetszéleges N
formafiiggvénnyel vett belsG szorzatat teszik egyenléve nullaval [22]:

(N, PDE) = /N . PDE dQ = 0. (4.16)
Q

A bels6 szorzat alkalmazasatol fliiggGen két, egymastol jelentdsen eltéré numerikus
technikat lehet megkiilonboztetni. Amennyiben a bels6 szorzat definicids integralja
az eredeti formajaban keriil meghatarozasra, gy a direkt alakhoz jutunk. Igy a
parcidlis differencidlegyenletben szerepld derivilasok rendje véltozatlan marad. A
momentumok modszere ilyen, a direkt alakot kezel6 numerikus technika. Ha a belsé
szorzatban a szorzatfiiggvényre vonatkoz6 integralasi tétel keriil alkalmazasra, ugy
a derivalas rendje eggyel csokken, és az ugynevezett gyenge alakhoz jutunk. A
végeselem-modszer ilyen, a gyenge alakot kezel6 numerikus technika.

Eredeti belsé szorzat
Atalakitott belsé szorzat

|
N\

‘ Végeselem-modszer ‘

\ Direkt alak

A momentumok médszere

‘ Gyenge alak

4.3. dbra. A direkt alak és a gyenge alak

A leképzést tekintve mind a momentumok moédszerének, mind a végeselem-
modszer alkalmazasa sordn az eredeti Osszefiiggést egy linearis algebrai egyenlet-
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rendszerré képezziik le, melynek altalanos strukturaja megegyezs: egy négyzetes
méatrix keriil jobbrol megszorzisra az ismeretleneket tartalmazo oszlopvektorral az
egyenlet bal oldalan, mig a jobb oldalon a peremfeltételeket, valamint id6tartomany-
beli analizis soran az el6z6 id6lépés értékeit tartalmazo oszlopvektor talalhato:

Z-a=b — a=Z"b. (4.17)

Az egyenletrendszer megoldasahoz sziikség van a négyzetes matrix inverzének elGal-
litdsahoz, amely a futasi id§ kérdését tekintve mindkét technika esetében kulcsfon-
tossagu kérdés. Jelentds az eltérés a két modszer alkalmazésa kozott a felépitendd
egyenlet bal oldalan taldlhaté matrixanak jellegzetességeit tekintve is. A végeselem-
modszer soran az egyiitthatomatrix minden esetben ritka matrix (angol nevén spar-
se matriz), mert az egyes csomopontok kizarolag énmagukkal, valamint azokkal a
csomopontokkal allnak kdlcsonhatédsban, melyekkel egy elemet alkotnak. A momen-
tumok modszerének alkalmazasa sordn — a Green-fliggvény miatt — minden elem
kélesonhatasban all minden elemmel, igy a felépitendé impedanciamatrix minden
eleme nullatol kiillonbozo értékd lesz, ahogyan az a 4.4. 4bran is lathato.

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
nz = 1681 nz =11

4.4. abra. A teljes impedanciamétrix és a ritka matrix

Lényeges hasonlosag, hogy mindkét technika esetén az ismeretlen fiiggvény a
diszkretizalt problématartomény felett keriil meghatarozésra az elemeken értelme-
zett skalar- vagy vektor-fiiggvények silyozott szuperpoziciojaként [21]. Ezek szama-
ban eltérés adodhat: végeselem-modszer esetén — csomoéponti formafiiggvényeket
alkalmazva — annyi ismeretlennel sziikséges szamolni, ahdny csomopont létrejott a
diszkretizalas soran, mig a momentumok moddszerének hasznilata esetén az isme-
retlenek szdma fiigg az alkalmazott bazisfiiggvény tipusatol: lokalis ugrasfiiggvényt
alkalmazva ez az érték az elemszammal lesz egyenld.

Radiofrekvencias problémak végeselem-modszerrel torténé vizsgélata soran min-
den esetben le kell zarni a teret, hogy szdmolhaté problémat kapjunk. Erre a
momentumok modszere esetén nincsen sziikség: a keresett térerGsség-érték a tér
barmely pontjaban egyértelmiien és fiiggetleniil meghatarozhato, a tér lezarasat a
Green-fiiggvények alkalmazasa biztositja. Bar a momenumok modszerével a keresett
fiiggvény kevesebb ismeretlen felvételével is pontosabban meghatarozhato, a szimu-
lacio futasi ideje nem csokken a végeselem-modszerhez képest, hiszen a teljes méatrix
kezelése, invertalasa idGigényesebb folyamat, mint a a ritka méatrixé. Célszert te-
hat alaposan megfontolni, hogy melyik modszer alkalamzasa vezet hatékonyabban
és gyorsabban célra.
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5. fejezet

Stacionarius problémak vizsgalata

Ebben a fejezetben bemutatom az elektrosztatika legfontosabb Gsszefiiggéseit, alap-
egyenletének levezetését, a Laplace-Poisson-egyenletet, valamint annak altalanos
megoldasat. I[smertetem a Laplace-Poisson-egyenlet megoldasanak modjat a mo-
mentumok modszerének segitségével egydimenzids és kétdimenzios geometria esetén,
részletesen kitérve az egyenlet numerikus kezelésére, a felmeriils integralok megha-
tarozasanak modjara. Bemutatom a szimulacio l1épéseit, kiértékelem a kapott ered-
ményeket.

5.1. Az elektrosztatika altalanos alapegyenlete

Elektrosztatikus teret nyugvo toltések hozhatnak létre. A tér id6ben nem valtozik
(0/0t = 0), valamint aram sem folyik (f = 0). Ezek alapjan a teret linearis, izotrop

kozegben a kovetkezd specifikus Maxwell-egyenletek irjak le:

VxE=0, (5.1)
V-D =p, (5.2)
D =cE. (5.3)

Mivel egy skalarmez§ gradiensének rotaciéja minden esetben nulla, az elektromos
térerGsségvektor bevezethetd egy skaldrmezd negativ gradienseként (5.1.) értelmeé-

ben: B
VxVp=0, Veo(r,r) - E=-Ve. (5.4)

Behelyettesitve a D ¢s E kozott kapcsolatot teremtd konstitticios relacioba, valamint
behelyettesitve (5.2.) Osszefiiggésbe adodik az elektrosztatika altalanos egyenlete:

-V -eVyp =p. (5.5)

A vizsgélt probléma specidlis esete, amikor a permittivitds a vizsgalt tartomanyon
beliil konstans, igy kiemelhet6 a differencidloperatorok koziil. FEz az dgynevezett
Laplace-Poisson-egyenlet:

v.vwz—g = A¢=—§. (5.6)
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5.2. A Laplace-Poisson-egyenlet megoldasa

Az elektrosztatika altalanos problémajat az 5.1. 4bra mutatja. A p toltéssirtiség egy
V' térfogatban helyezkedik el, amelynek egy infinitezimalisan kicsi dV’ térfogatré-
szére 7 vektor mutat. A ¢ skalarpotencial értékét az 7 vektor altal kijelslt pontban
keressiik. A dV’ térfogatban talalhato konstans ponttoltés értéke a toltéssiirtiséggel

O

5.1. abra. Altalanos elektrosztatika-probléma

kifejezve:
dQ' = p (7)dV’. (5.7)
Ez a ponttoltés a kijelélt pontban
dQ’ ) dV’
a9 _ pH)a” (5.8)
47?5|'r—'r| 47?5|r—r|

potencialjarulékot hoz létre. Az ebben a pontban létrejovs teljes potencial megha-
tarozasahoz az ¥ vektor teljes V térfogaton torténd végigpasztazasara van sziikség.
Ennek értelmében a fenti Osszefiiggés jarulékosszege egy integralt eredményez, amely
egyben a Laplace-Poisson-egyenlet megoldasdnak altalanos alakja is:

P () = 471T€/ |§(_r; v (5.9)

5.3. Egydimenziés probléma: toltott huzal

Munkdm soran megvizsgaltam egy olyan, az x-tengely mentén elhelyezett, ismert
o potenciallal rendelkez6, vékony, vezetd anyagbol késziilt huzal toltéseloszlasat,
amely L hosszusaggal és a sugarral rendelkezik. A vizsgalat soran feltételeztem,
hogy a huzal sugara jelentGsen kisebb annak hosszénal (a << L). A probléma geo-
metridja az 5.2. dbran lathato. A Laplace-Poisson-egyenlet dltalanos megoldasanak
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5.2. abra. A vizsgalt geometriai elrendezés

értelmében a huzal potencialja a

1 Lq )
go/h? - (5.10)

Osszefiiggés segitségével szamithatd. Ha ismert ¢y potencial, és a keresett fiigg-
vény a ¢ (2') potencidleloszlas, akkor a fenti Osszefiiggést integralegyenletként kell
kezelni, melyet numerikusan meg lehet oldani. Ehhez a keresett fiiggvényt diszkrét
mennyiségi stulyozott bazisfiiggvény szuperpoziciojaként sziikséges felirni, azaz

N

q (l‘/) = Z n fn (JZ/) ) (5.11)

n=1

ahol a vizsgalt problématér (tehat a huzalt reprezentélo szakaszt) N darab szeg-
mensre keriilt felbontasra. A szimulaciot lokalis ugras-bazisfiiggvények segitségével
végeztem el, f, (z') tehat olyan fiiggvény, amely Az hossztisagu elemen konstans 1,
értéke minden egyéb helyen nulla. Behelyettesitve (5.10.) egyenletbe

L .
/ /
= a r) ——— dx 5.12
%o /Z nfn ( >47T8‘77—7_‘¥‘ ( )
0 n=1

irhato fel. Ezt az 6sszefiiggést célszert tgy atalakitani, hogy a teljes huzalhosszra ér-
telmezett integralt az egyes diszkrét elemek felett értelmezett integralok osszegeként
keriiljenek kifejtésre. Ezek a részintervallumok Az hossziasaguak, igy az integralok
(n — 1)Az és nAz kozott értelmezettek. Figyelembe véve, hogy a bazisfiiggvény
az integral tartoi kozott konstans 1 értékt, ezért az integrandust érdemeben nem
befolyésolja, a kovetkezs Gsszefiiggés irhato fel:

N nAx

1 1
= n — da, 5.13
07 dne — ¢ / T — 'F"| v (5.13)
n= (n—1)Az
ahol |’F’— 'F"} =/(z— x’)Q + a2, mivel a megoldas soran a forraspontokat a huzal

tengelyén, a vizsgalati pontokat pedig a huzal feliiletén kell rogziteni. Ebben az eset-
ben az integrandus nem fog szingularitdssal rendelkezni, mert a nevezd semmilyen
x és x’ értékére sem lesz zérus. Igy egyetlen egyenlet all rendelkezésiinkre, melyben

23



Diplomamunka Unger Tamés Istvan

N darab ismeretlen talalhato:

2Az
1
471'6@0 = ao/ d.ﬁlﬁ/ + ap / dﬂ?l +
\/ )? + a2 A v/ (x — ') + a2
A (5.14)

+an_1 / dSC+CLN /
(N-2)Aq \/(x — ') —l—aQ .\ (z—a) +a2

A probléma akkor valik megoldhatova, hogyha N ismeretlen és N darab egyenlet all
rendelkezésre, igy N darab forraspontot sziikséges megvalasztani a huzal feliiletén.
Ebbél egy lineéris algebrai egyenletrendszer adodik:

Z-a=b, (5.15)
ahol
[ Az 2Az NAz T
[T @ | ot ] e
0 (z1—2')"+a? (z1—2') +a2 (N-1)Az (z1—2')*+a?
Az ) QAQ: L NAx
—— do’ ——dd -
2 || Vo ¥ L oo o aa Vi 1
Az . 2Ax . . NAzx
S — ¥ f R E—
Y (zn—2')*+a? vV (zn—a’) +02 (N—-1)Az V (xn—a')+a?
i (5.16)
aq 47T€g00
a 4dme
a= || esb=| """ (5.17)
an dmepg

Az impedanciaméatrix minden eleme nullatél kiilonbozs, valés érték. A probléma
megoldéasa, a vektor elemeinek meghatarozasa Z invertilasaval lehetséges:

a=7Z"'b. (5.18)

5.3.1. Egydimenziés Gauss-kvadratira

Az impedanciamatrix elemeinek meghatarozaséhoz a diszkretizalt problématér fe-
letti vonalintegralok numerikus meghatarozasara van sziikség. Erre széleskori
eszkozkészlet all rendelkezésre, melybél a legelterjedtebb az egydimenzios Gauss-
kvadratira [23]. A Gauss-tipusa kvadraturaképletek kozépérték-képltek:

b k
/f () do =~ chy,,, Yy = f(xg0)- (5.19)

A formulaban ¢, a Gauss-kvadratira silyait, z,, a pontjait, y, pedig az integrandus
x4, pontban értelmezett helyettesitési értékét jeloli, c,, x4, és k szabadon megvé-
laszthato paraméterek, értékiiket igy célszerd megvalasztani, hogy a kozelités minél
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pontosabb legyen. Altalanos szabaly, hogy k darab pont és suly felhasznalasaval
legfeljebb (k — 1)-edfoku polinom kozelithetd. A kvadrattraképlet tetszéleges szamu
stlya és pontja [24] alapjan meghatarozhato és felhasznalhat6. Munkam soran az
impedanciamatrix elemeinek integralformulajat harminc stllyal és ponttal kozelitet-
tem, amely kielégité eredményt adott.

Mivel a kiértékelend$ formula nem a [—1;1] intervallumon keriil értelmezésre,
hanem egy diszkrét [(n — 1)Ax; nAx] szakaszelem felett, [5] alapjan az

b k
/f(x) dzmb Vf( y+a;b) (5.20)

v=1

transzformacioval kell élni. gy az integral kiértékeléséhez hasznalt sszefiiggés:

n/m A ic 1
(n_1)As v/ (x —a) +a2 =1 \/[x—(%IQ,V—FAI(Zn—l))]Q—i-cﬁ

(5.21)

Kis elemszam mellett a Gauss-kvadratiran kiviil hatékonyan alkalmazhaté még

a trapezoid-szabaly szerinti numerikus integralasi technika [5] is. Ebben az esetben

az integralas hatarai altal meghatarozott szakaszt tovabbi diszkrét elemekre kell

bontani. A modszer lényege, hogy a keresett fiiggvény értékét xg szik [xg; xo + dx]

kornyezetében els6fokit polinommal kozelitjiik. Ezen a szakaszon a keresett gorbe
alatti teriilet egy trapéz teriiletével lesz egyenld, tehat

xo+dz

/ f(z) de =

Zo

f (l’o) + f (.Z'o + dl’)
2

dz (5.22)

irhato fel. Ezek alapjan az impedanciamatrix elemeinek meghatarozasahoz az

nAx

~ zm:()b - + ! - («'[k] — [k — 1])
= \/(x—:v’[k:]) ta2 @k 1)+ a2

(5.23)

Osszefiiggés alkalmazhato, ahol m az egyes szakaszokon felvett diszkrét pontok sza-
méat jelenti.

5.3.2. Eredmények, kiértékelés

A Matlab-kornyezetben megvalositott kod az A.1. fiiggelékben megtalalhato. A
vizsgalt esetben a huzal hossza 1 m, sugara (a) tizedmiliméter nagysagu és oo = 3
V potenciallal rendelkezik. az 5.3. abran a huzal toltéseloszlésa, valamint abbol a
ellenérzésképpen meghatarozott potencialeloszlas lathaté N = 25 darab elem esetén.
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Bar a toltéseloszlas jellege a huzal mentén a fizikai képnek megfelels, az ellenérzés
soran a potencidl visszaszamolasaval egyértelmiien beldthato, hogy a 25 elemes diszk-
retizalas, igy az ismeretlen fliggvény huszonot diszkrét pontban torténd kozelitése
nem ad kielégité eredményt.

495}
49t
485}
48}

% 475}
47t
465}
46

4551

45 ] L L L L J
0 0.2 0.4 06 08 1
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5.3. dbra. A toOltés- és potencidleloszlas 25 elem esetén

Szaz ismeretlennel vizsgalva a problémat mar nemcsak jellegre, hanem szam-
szertien is jo megoldas adodik. Az 5.4. &bra alapjan a huzalmenti toltéseloszlas
20 pC/m nagysagrendbe esik. A fiiggvényt visszahelyettesitve és kiszamolva az in-
tegralt a potencial harom volt kozeli értékre adodik, igy kell6en pontos eredményt
adodik. Tovabb novelve az elemszdmot a megold6 futasi ideje az elemek feletti nu-
merikus integralas miatt jelentGsen megnovekszik, ezzel padrhuzamosan az eredmény
csak kismértékben javul.
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5.4. dbra. A toltés- és potencidleloszlas 100 elem esetén

5.4. Kétdimenziés probléma: toltott lemez
Munkam soran megvizsgaltam egy L oldalhossziisagt, négyzet alaki, oo potencial-

lal rendelkezi toltott lemez toltéseloszlasat is. A vizsgalat soran azt feltételeztem,
hogy a lemez vastagsaga elhanyagolhatd nagysagi annak oldalhosszédhoz képest.
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Ez a probléma az el6z6 feladat kétdimenzios kiterjesztésének tekintheté a Laplace-
Poisson-egyenlet megoldasanak vonatkozasaban. A geometriat ebben az esetben is
diszkretizalni szitkséges, tetszéleges modon harom- vagy négyszogekre. En az utobbi
valasztéassal éltem. A vizsgalt geometria az 5.5. dbran lathato. A Laplace-Poisson-

Y

(x y) (x y) (x‘y) (x y) “(x,, y17
/ (x‘y) ° ',"" ° ,"l e ’,"'

! : /
/ /
; ® o
,. ! /
/ ; 3 /
7 7 7 7
3 : / /
i s ! ’
/ y . /
/ ! / /
/ .

5.5. dbra. A vizsgalt, diszkretizalt geometria harminc elem esetén

egyenlet altalanos megoldasa a konkrét lemezgeometriara felirva egy kétdimenzios
integralosszefiiggést jelent. Amennyiben a Descartes-féle koordinata-rendszer origod-
jat a lemez kozepére rogzitjik, gy

/
0o = / / dx'dy (5.24)
Ae }'r — 'r

_ L

M\h

2

irhat6 fel. Ahogyan az egydimenziés szimulacié esetén, ugy a lemez vizsgalata soran
is az elemek kozepére rogzitettem a vizsgalati pontokat és a forraspontokat, a két-
valtozos toltéseloszlas-fiiggvényt tehat ezen pontokon kozelitettem. A felépitendd
lineéris algebrai egyenletrendszer b vektorat az eddigiekkel teljesen megegyez§ mo-
don kell felépiteni. Kiilonbség kizarolag az impedanciméatrixban adodik. A méatrix
m-edik sordnak n-edik oszlopaban talalhato elemét a

1 1
Zmn = // —— da'dy’ = // dz'dy’ (5.25)
) =7 VS @ =2 + (g — )

+ (Ym

Osszefiiggéssel lehet meghatarozni, ahol az integral K, tartoja a teljes lemezfelii-
let n-edik résznégyzet-teriiletét jelenti, x,, és v, pedig az m-edik forrasrésznégyzet
kozéppontjanak koordinatait jeloli. Az integral kiértékeléséhez kétdimenziés nume-
rikus integraléasi technikara van sziikség. Itt érdemes megjegyezni, hogy az integran-
dus az (T, ym) = (2/,y’) pontban szingularitassal rendelkezik. Belathato, hogy a
szingularitds minden sorban egyszer jelentkezik: amikor m=n, tehat a miveletet a
forraspontot tartalmazo6 négyzet felett kell elvégezni. Ez egyben az impedanciaméat-
rix f6atlojat fogja jelenteni. Az integralasi technika megvalasztasa soran kiilonos
figyelmet kell forditani tehat a szingularitdshoz tartozé helyettesitési érték felhasz-
nalasanak elkeriilésére.
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5.4.1. Az impedanciamatrix elemeinek kiértékelése

A vonatkozd szakirodalom [8,9] az impedanciamatrix elemeinek meghatarozéasat két
részproblémara bontja: a f6atlo elemeinek kiértékelését analitikus modon végzi el, a
tobbi elem meghatarozasara pedig kozelits képletet alkalmaz. Vizsgalataim soran et-
t61 a modszertdl elszakadva egy specidlis, négyszogek felett alkalmazhato kvadratira-
formulat alkalmaztam az impedanciamatrix felépitéséhez, amely a Gauss-kvadratira
stulyainak és pontjainak alkalmazasaval képes az Osszes elem kiszamitasara [25]. A
formula alkalmas tetszGleges tipusi és csticspont-koordinatajia négyszog teriilete (K)
felett értelmezett F' (x,y) kétvaltozos fiiggvény kozelitésére:

I= //F(:c,y) dzdy. (5.26)

Ez tgy tehet6 meg, hogy az altalanos négyszoget egy szabilyos, origd kdzéppont-
tal rendelkezs, 2 egység oldalhossziisadgu négyzetté (R) sziikséges transzformélni,
amely felett mar alkalmazhaté a kétdimenzios Gauss-kvadratira. A transzformé-
ci6 modjat az 5.6. abra mutatja. Lényege, hogy az zy-sikon értelmezett eredeti

Ay A ]7
('171) (Ll)

P(x,y,) Pyx,y,)

] |

X ¢
K R

Pz(xl’y1> P2(x2’y2) ('15'1) (17'1)

5.6. abra. Transzformaci6 a kvadratardhoz

négyszoget csomoponti formafiiggvények segitségével a En-sikra kell transzformal-
ni, majd a fiiggvény integralasat ezen a sikon sziikséges elvégezni. A csoméponti
formafiiggvények legfontosabb tulajdonsiga, hogy i-ediksorszamu értéke az i-edik
csomopontban 1, az Osszes tobbiben nulla. A transzformécidohoz az alabbi négy
formafiiggvényt alkalmaztam [25]:

Ni=1(1-90-n),
No= (14617,
h (5.27)
Ny= 14 +n),
Ny= (-8 +n).
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A formafiiggvények segitségével végrehajtott transzformacioval az eredeti integ-
ral kiszamithato az

/ [ Pl dody - / [FPEn.Qemdent o day (629

osszefiigges felhasznélasaval, ahol P (£,7n) az eredeti z, @ (§,n) pedig az eredeti y
valtozo helyettesitési értéke, kifejtésiik a formafiiggvények segitségével:

Zﬂil (§,m) = 21Ny (§,m) + 22Na (€,m) + 23N3 (€, ) + 24Ny (€, 1)

Zyz (&) =N (&) + y2Na (§,m) + ysN3 (€ m) + yaNa (§,m) -
(5.29)

A transzforméacié Jacobi-matrixdnak determinansahoz sziikség van z és y £ és
szerinti derivaltjaira is, hiszen

9z %l Prdy  Oyox
det J (&,n) = |2en)| = |o¢ 2e) - “2CY  TIOT 5.30
& =5 o 9T 9Edn  9€ dn (5:30)
A derivaltakat analitikus modon hataroztam meg:
or 1 T2 T3 Ty
ag—z( 1+U)+z(1 7))+z(1+77)+z( 1—n),
%)
=Tl 21—+ T+ + T A0,
(5.31)
dy Yo Y3 Ya
-2 21— 21 A1 —
o€ 1 +n>+4( )+ )+ ( n,
dy Y2 Ys
an—4(—1+£) 4( 1—€)+4(1+€) 4(1—5)

Igy az eddiek alapjan mar felirhat6 az impedanciamatrix elemeinek meghatarozasa-
hoz hasznalt Gsszefiiggés:

Zn = // 21 - det J (&,m) dédn ~
2 @ = P e + (0~ QUEm))
kook ] (5.32)
A ) g det J (&,&;) .
ST = PEE) + (- Q6.6))’

melyben ¢; és c; a kvadratira stlyait, & és §; pedig a pontjait jeloli.

5.4.2. A problématér diszkretizilasa

A vizsgalt problémateret racs- és halogenerald szoftver nélkiil, egy szubrutin se-
gitségével diszkretizaltam egyenls, a oldalhosszusagn négyzetekre. A diszkretizalas
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soran nem torekedtem az egyes elemek csomopontjainak felvételére, elegendé csu-
pan az elemkozéppontok koordindtainak meghatarozéisa, abbol a szamités soran a
csomopontok egyértelmiien meghatarozhatok. A diszkretizalas soran szabad pa-
raméterként kezeltem azt, hogy a lemez hanyszor keriil elvagasra = és x-irdnyban
egyarant. Két eset lehetséges, melyeket kiilon kell kezelni: ha péros szamu vagas-
sal torténik a diszkretizalas, illetve ha paratlan szadmua vagassal keriil felosztasra a
teljes problématér. A szubrutin megtalalhato az A.2. fliggelék els6 részében. Az
L = 1 méter oldalhossztisdgi lemez 6t és hisz vagassal torténd diszkretizaldsanak
eredményét az 5.7. abra mutatja, melyeken az elemkozéppontokat dbrazoltam.
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5.7. abra. Diszkretizalas 6t és husz "vagas" esetén

5.4.3. Eredmények, kiértékelés

A szimulacié Matlab-kédja az A.2. figgelékben megtalalhatd. A vizsgalt lemez egy
1 méter hosszlsaglt négyzet, amely ¢y = 5 V potenciallal rendelkezik. A megoldast
k = 5 "vagas" (36 ismeretlen), valamint k& = 20 "vagas" (441 ismeretlen) esetén
az 5.8. abra mutatja. Konnyen belathato, hogy az egyméteres lemezen felvett har-
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5.8. dbra. A lemez toltéseloszlasa (N—36 és N—441 ismeretlennel)

minchat darab ismeretlennel térténd megoldas pontatlan eredményt ad, a kozelités
hibas. Négyszaz feletti ismeretlennel a toltéseloszlés fiiggvénye méar sokkal pontosab-
ban kozelithets, az eredmény jellege az egydimenzios megoldéshoz hasonléan alakul,
egy tetszbleges metszete kvalitativ médon meg is egyezik azzal.
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6. fejezet

Radidfrekvencias problémak
vizsgalata

Ebben a fejezetben bemutatom azokat a formuldkat, melyek segitségével meghata-
rozhatd egy vékony huzal drameloszlasa és a kialakuld vektorpotencial értéke. Is-
mertetem a Hallén-egyenlet és a Pocklington-egyenlet szarmaztatasanak modjat,
konkrét példék segitségével bemutatom azok megvalositasat a momentumok mod-
szerének segitségével Matlab-kornyezetben. A fejezetben kiértékelem a szimulacios
eredményeket, ismertetem az alkalmazott modszerek elényeit, hatranyait.

6.1. A vékony huzal probléméaja

A 6.1. &bran lathato elrendezés értelmében a vékony huzal egy olyan, e,-iranyu
L hosszusagi és a sugari henger, melynek sugara jelentésen kisebb a vizsgélt hul-
lamhosszhoz és a henger hosszahoz képest. Az elrendezés fontossagat elsGsorban

-
X
L/2
A >
A y
L/2
v D
2a

6.1. abra. A vizsgalt elrendezés
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az adja, hogy ez a geometriai modell jo kozelitése az elemi dipolusantenna és mo-
nopoélusantenna geometridjanak, igy azok tulajdonsagai, elektromagneses tere meg-
hatarozhato. Ilyen elemi huzalokbdl épitheték fel az Osszetett antennarendszerek
is, igy a geometria és a hozzad kapcsolodd probléma tekinthet6 az antennatervezés
alapfeladatanak is.

Mivel a huzal vékony, az aramsiiriiség felirhat6 az e,-irAnyu vonalaram segitsé-
gével:
I, (2)

2ma

J(7) = €. (6.1)

Az Osszefiiggés értelmében az adramstirtiség konstansnak tekinthet6 a huzal kereszt-
metszetén, masképpen fogalmazva: a formula fiiggetlen ¢ azimutszog értékétsl. A
méagneses vektorpotencial (3.37) értelmében felirhaté a Green-fiiggvény és az aram-
stirtiség konvolicidjaként. Ez hengerkoordinata-rendszerben az

L
2 27
I (Z/) e—jkr
A, = z dy'dz’ 6.2
(p, ¢, 2) u// e e dde (6.2)
L0
osszefiiggeéssel irhato fel [8], ahol
r:‘F—F"|:\/(z—z’)2+|ﬁ—ﬁ"2. (6.3)

A vektorpotencial skalarfelirdsa elegendd, hiszen az csak z-komponenssel fog ren-
delkezni. Figyelembe véve, hogy az integralast a huzal feliiletén kell végrehajtani
(p) = a), r atirhato a koszinusztétel segitségével:

r= \/(z—z’)2+p2+a2—2pacos(<p—g0/). (6.4)

Az integrandus tehat (¢ — ') fliggvénye. Mivel igy a megoldas hengeresen szimmet-
rikusnak adodik, a vektorpotencial alakulasa fiiggetlen lesz ¢ azitmutszog értékétdl,
a fenti Osszefiiggésben tehat cos (¢ — ¢') = cos (¢'):

L
2 27
Iz o efjk’r
A (p,2) =p / 27(m) / o delde (6.5)
_L 0

Amennyiben a rendkiviil kicsi, ugy 7 &~ y/(z — 2/)> 4 p2, tehat a belsG integandus
fiiggetlen lesz ¢'-t6l, az antenna mentén pedig vonalszeri aramot feltételezhetiink.
[gy a magneses vektorpotencial az

e—jk’r

dz’ (6.6)

4rr

Osszefliggés segitségével hatarozhatdé meg, ami egy viszonylag kénnyen kezelhetd
vonalintegral a huzal tengelye mentén.
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6.2. A Hallén-egyenlet és a Pocklington-egyenlet

A vékony huzal mentén kialakulo aram fiiggvénye (és a magneses vektorpotencial is)
a Hallén-egyenlet és a Pocklington-egyenlet segitségével hatarozhatdé meg. Fzek le-
vezetéséhez (3.38) alkalmazasara van sziikség, amely kapcsolatot teremt a magneses
vektorpotencial (ismeretlen fiiggvény) és az elektromos térerdsség kozott. Az egyen-
let altalanosan vektoridlis alakban irandé fel, de ezuttal a vektormennyiségeknek
kizarélag z-komponensiik van, ezért elegendé egyetlen skalarosszefiiggés kezelése.
Figyelembe véve, hogy a késébbiekben részletezett modon megadott gerjesztd (be-
es6, B térerGsség kizarolag z-iranyd komponenssel rendelkezik az vektoregyenlet
skalaregyenletté redukalodik:

. j_ o i[9, 2
B = jwA, + 24— — A, = 2 | ==+ k| A., 6.7
2 SJwA T wpe 0%z WHE l@zQ * (67)
ahol a forras- és a megfigyelési pont tavolsaga r = 1/ (z — z’)2 + a?. Ez annyit jelent,

hogy a megoldas soran a forraspontokat a huzal feliiletére, a megfigyelési pontokat
pedig a huzal bels6 tengelyére sziikséges rogziteni.

A formulanak kétféle kifejtése ismert. Az els§ esetben a skalar Helmholtz-
operator a vonalintegralon kiviil helyezkedik el:

e—jk:r

dz’.

I ()

\M\h

e—jk’r ,] 82
[z (2/) - dZ/ = E {@ + k2:|

\w\h

i [0 s
Ebe= = | — 4k
P wpue [822 * } a dmr

Nl
Nl

(6.8)
Ez az ugynevezett Hallén-egyenlet. Amennyiben a skalar Helmholtz-operator a vo-
nalintegralon beliil marad, agy

Ebe — L
z WE

dz. (6.9)

S~

, 82 efjkr
Iz (Z ) {@ + /{?2:|

4rr

ol

irhato fel. Ez az ugynevezett Pocklington-egyenlet.

6.3. A Hallén-egyenlet megoldasa

A Hallén-egyenlet megoldasa soran (6.8) parcialis differencidlegyenlet megoldéasat
sziikséges megkeresni. Az egyenlet dtrendezve altalanosan felirhato a vektorpoten-
cidlra is az

0z?
alakban. Ez egy inhomogén, skalar Helmholtz-egyenlet, az ismeretlen fiiggvény a
vektorpotencial z-komponense, a gerjesztés pedig a jobb oldalon talalhato E% bees6
vagy gerjeszt térerdsség. Az egyenlet megoldasanak klasszikus modszere a homogén
altaldnos és az inhomogén partikularis megoldis megkeresése, majd az eredmények
szuperponalasa. A

2
P— + kQ} A, (2) = —jwpcE® (6.10)

[aa_; + kZ] A (2) =0 (6.11)
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homogén egyenlet megoldasa az
A, (2) = K&/ + Kye 7% (6.12)

alakban kereshetd, ahol az els6 tag a reflektalt, a mésodik pedig a halad6 hullamot
reprezentalja. Az inhomogén partikulas megoldas felirasdhoz meg kell keresni azt a
G (z) Green-fiiggvényt, amely kielégiti a

B—; + k2] G(z)=46(2) (6.13)

egyenletet. A Green-fiiggvényt olyan probafiiggvény formajaban kell keresni, amely
kielégit két sziikséges feltételt: F'(z) legyen folytonos z = O-ban, de a derivaltfiigg-
vényének legyen szakadasa ugyanott [9]. Ennek megfelel az

G (2) = K sin (k |2]) (6.14)

probafiiggvény, melyben k a hulldszam, K pedig konstans. A prébafiiggvényt vissza-
helyettesitve (6.13) egyenletbe, valamint a kifejezést integralva —¢ és £ kozott

1 &
2
k:QK/sin(k:|z|) dz+/m dz =1 (6.15)
022
—£ —£

irhato fel, melybdl a keresett K konstans meghatarozhato. Az egyenlet bal oldalan
talalhaté masdodik tag felirhato a Green-fiiggvény els6 derivaltjanak felhasznalasa-
val a Newton-Leibniz-formula értelmében:

3

92G () aG (2)1¢
———dz = 6.16
/ 92 [ 0z |’ (6.16)
=£
ahol a probafiiggvény derivaltja a Kk%j(k'z‘) formulaval irhato le. Az abszolutérték

miatt a kifejezést az integralas esetén két részre sziikséges bontani, figyelembe véve
annak tulajdonsagait:

2)7¢

Ezt visszairva az eredeti Osszefiiggésbe, valamint £ értékét kozelitve a nulldhoz

3

kQK?iI(l) / sin (k|z|) dz+ gl_ifél, [— Kk cos (—kz)](iE + glif(% [Kkcos (kz))5 =1 (6.18)
—£

irhato fel. Az elsd integral hatarértéke nulla, a masik két tagot kifejtve és atrendezve

a keresett konstans kifejezhetd:

1
2Kk =1 K=—. d
k — % (6.19)
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A konstans felhasznélasaval a Green-fiiggvény felirhato az

G2) = %Sin(kz 12]) (6.20)

alakban. Az inhomogén egyenlet altalanos megoldésat a homogén egyenlet altaldnos

P

Osszege adja:

A, (2) = K1 + Kye % — jope | G(z,7)E*(¢) d7 =

\Mh

|t~

(6.21)

Klejkz + KQGijkz — ]—

sin (k|2 — 2/|) B () d7,
n

|
vt \w\h

ahol n = 1/‘&_‘—((]) ~ 1207 a szabad tér hulliamimpedanciaja. Mivel vektorpotencial

helyett az antenna arama az els6dlegesen keresett mennyiség, az egyenlet bal oldala
(6.6) értemében kifejthets:

L
2 efjkr ) ] ]
/ L (%) dz = Kie/* + Kye ™% — 2

: ) be (1 /
- o sin (k |z —2'|) B¢ (2) d2'. (6.22)

|
vt \w\h

Ez a formula mar implementalasra alkalmas. Fontos megjegyezni, hogy a Green-
fiiggvény megvalasztésa sordn nemcsak szinuszos probafiiggvény véalaszthato, hanem
példaul exponencialis is [8]: »
_J  —jkl]
G, (z) = e 7P 6.23
() =2 (6.23)
tovabba a két homogén tag felirhat6 a

Klejkz + K2@_jkz — Dl coS (ka) + D2 sin (]{?Z) (624)

alakban is.

6.4. Félhullama dipélus vizsgalata szimmetrikus
Hallén-egyenlettel

6.4.1. Vizsgilt geometria

Munkam soran levezettem és Matlab-kornyezetben implementéltam a szimmetrikus
Hallén-egyenlet megoldasat egy félhullamu dipdlus arameloszlésanak, elektromos te-
rének és az iranykarakterisztikdjanak meghatarozasahoz. A vizsgélt geometria a 6.2.
abran lathat6. A vizsgalati pontokat ezuttal is a huzalantenna feliiletén, a megfi-
gyelési pontokat pedig a huzal k6zépss tengelyén sziikséges rogziteni. A gerjesztés
kdzvetlen modon fesziiltséggel, kozvetett modon pedig E* elektromos térerésséggel

35



Diplomamunka Unger Tamés Istvan

L2 L2 ‘

< <
< >

<

P OIITETETELT

v
\

o
<

I

SR O —
L@_‘ X

—F>

A

L

|

6.2. Abra. A vizsgalt félhullama dipolus

torténik az antenna kozepén, ahol az A hosszan megszakitasra keriil. Mivel a félhul-
lamu dipolus arameloszlasa szimmetrikus, a Hallén-egyenlet speciélis, szimmetrikus,
redukalt valtoztatat sziikséges megoldani és kezelni. A kovetkezékben részletesen ki-
térek ennek megvalositdsara a momentumok modszerével, érintve a gerjesztés és a
peremfeltételek megadasanak modjat is.

6.4.2. Az 0sszefliggés levezetése és implementilasa

A szimmetrikus Hallén-egyenlet megoldasdhoz (6.22) egyenlet bal oldalan talalha-
t6 arameloszlas-fliggvényt silyozott bazisfiiggvények szuperpozicidjaként sziikséges
kozeliteni :

L
2 . N :
—jkr e—jkr
L(z)S " dy = n/n' dz'. 6.25
/ () 5= 4z E_la fa (&) 5 dz (6.25)
~L [

Mivel N darab ismeretlen meghatarozasahoz N darab tesztfiiggvényre és a huzal
hosszanak N darab Az hossziusagn szakaszra torténd felbontasara van sziikség, az
impedanciamatrix m-edik sordnak n-edik oszlopaban talalhaté elem altalanosan a
kovetkezs formuléval hatarozhaté meg:

o — / Fn (2 / PR — dz/dz. (6.26)

Amennyiben az egyenlet ugras-bazisfiiggvényekkel és pont-illesztéses eljarassal
keriil megoldasra, agy a kiilsé integral egyszertien elhagyhato, és az impedanciamat-
rix elemei a

Zn+%
e—jkr
zmn:/ = dz’ (6.27)
=5

formulaval értékelheték ki, ahol z, az n-edik elem kozéppontjanak koordinatajat

jeloli, és r = \/ (2 — 2 )2 + a?. Ezt az integralt egydimenzios Gauss-kvadratura se-
gitségével értékeltem ki. Az egyenlet jobb oldalat szintén N darab tesztfiiggvénnyel
vizsgalva, valamint az exponencialis tagok helyett a trigonometrikus alakot hasznal-
va, figyelembe véve, hogy a probléma szimmetrikus, ezért a szinuszos komponens
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elhagyhato, (6.22) alapjan

D, / fm (2) cos (kz) dz — ;—n/fm (2) / sin (k |z — 2/|) E* (/) d2/dz  (6.28)
Im fm

L
2

irhato fel. Ugras-bazisfiiggvények és pont-illesztéses eljaras hasznalata esetén ez a

D cos (kz) — J

5 sin (k |z — 2/|) B% (/) d2/ (6.29)
n

\w\h

|t

formulara egyszeriisédik. Ezek alapjan a megoldando egyenletrendszer a
Z-a=Dis+b (6.30)

alakban adodik, ahol

by = — sin (k |z, — 2'|) B d2' és s, = cos (kzm) . (6.31)

Bl
—ie

[~

6.4.3. A gerjesztés megadasa

Munkam soran a lehetséges gerjesztéstipusok koziil [8,9] az tgynevezett delta-gap-
tipusu gerjesztéssel dolgoztam. Ennek lényege, hogy egy U fesziiltséget szolgaltato
idealis fesziiltségforrast feltételez az antenna A hosszan megszakitott pontjara, a fél-
hullama dipolus talppontjai kozé. Az két antennaelem kozott létrejovs, a gerjesztést
szolgaltatd £ elektromos térerGsség az

U
b

Eze - K (632)
formuléaval fejezhetd ki. Mivel a beesd térersség az antennanak kizarolag azon sza-
kaszan bir nullatol kiilénbo6z6 értékkel, ahol az antenna megszakitasra keriil, b vektor
elemeinek meghatérozasihoz az integralast elegendé csak ezen rovid A szakasz felett

elvégezni:

by = —2i/sin (k|zm — 2')) B d7. (6.33)
n
A

6.4.4. Peremfeltétel érvényesitése

A probléma megoldasdhoz D, konstans meghatatozasara van sziikség, melynek érté-
ke a peremfeltételektdl fiigg. Belathatd, hogy az aram az antenna két végén minden
esetben nulla kell, hogy legyen, azaz I, (—L/2) = I, (L/2) = 0. Els6 lépésben meg
kell szorozni az egyenletrendszer mindkét oldalat az impedanciamatrix inverzével:

a=DZ"'s+Z"'-b. (6.34)
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A peremfeltétel érvényesithets egy u? = [1,0,0, ...,0,0, 1] oszlopvektor segitségével:

ua=Du'-Z'.s+u’-Z' b=0. (6.35)
Ezt az egyenletet D;-re dtrendezve a konstans méar meghatarozhato [8:
u’-Z7'.b
Dy=—FF———. 6.36
! u’ - Z-1.s (6.36)

6.4.5. Eredmények, kiértékelés

Az antenna drameloszlasanak meghatérozasara implementalt Matlab-kod a B.1. fiig-
gelékben megtalalhato. A szimulaciot f = 516,12456 MHz frekvencidn, U = 100
V fesziiltségti gerjesztéssel, N = 101 diszkrét elemmel és a = 1,5 - 10~* méteres
huzalsugar mellett végeztem el. A 6.3. &bra a huzal mentén kialakuli komplex

10

Aram abszolatértéke (|I[) [mA]

© kB N w » a0 o N ® ©
T T T T T T T T T

-0.1 -0.05 0 0.05 0.1 0.15
z[m]

6.3. abra. Az dram abszolutértéke ezonancia esetén

aram abszolutértékét és fazisat mutatja rezonancia esetén, mig a 6.4. abrén az aram
eloszlasa lathato egy rezonanciafrekvenciatol eltérg frekvencian. Mivel az antenna
ilyenkor elektromégneses szempontbol hosszabb, mint a hullamhossz fele (ebben az
esetben példaul annak kettd és félszerese), tobb maximumbhely alakul ki rajta, su-
garzasi tulajdonsagai, villamos paraméterei jelentGsen moédosulnak. Az drameloszlas

Aram abszolttértéke (|I[) [mA]
Aram fazisa (g=arc{l}) [rad]

. . . . . . | . . .
-0.1 -0.05 0 0.05 0.1 0.15 -0.1 -0.05 0 0.05 0.1 0.15
z[m] z[m]

6.4. abra. Az aram abszolutértéke és fazisa L = 2,5\ esetén

ismeretében az antenna fontosabb paraméterei, igy a kialakuld elektromagneses tér,
az irdnykarakterisztika és a bemeneti impedancia is meghatarozhato.
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6.5. Iranykarakterisztika meghatarozasa

Az antenna irdnykarakterisztikdjan a tér egy adott irdnyaba kisugarzott térerdsség
(vagy teljesitmény) és a fGiranyba kisugarzott érték hanyadosat értjiik. Munkam
soran a vizsgalt dipolusnatennénak kétféle médon vettem fel az irdnykarakterisz-
tikdjat. Az els6 modszer esetében a szimmetrikus Hallén-egyenlet megoldasa utan
az antenna koré egy négyzet alakt problémateret definialtam, majd ezen problé-
matérre meghataroztam a vektorpotencial értékét. Az antenna altal létrehozott
vektorpotencidl kizarolag z-komponenssel fog rendelkezni, hiszen az antennan kiala-
kulo aramstirtiség is skalar, kizarolag z fiiggvénye [26]. A vektorpotencil tehat ezen
aram és a Green-fliggvény konvolucidjaként hatarozhato meg, ahol az integralast az
antenna mentén sziikséges elvégezni:

A (59) = / G (7 )L () d. (6.37)

Az eredmények a 6.5. és a 6.6. abrakon lathatok. A vektorpotencial a szimmetrikus

z[m]
R S N - S - S S R R SR

y[m]
6.5. dbra. A vektorpotencial alakulasa rezonancia esetén

arameloszlas-fiiggvény esetén jol lathatéan szimmetrikus lesz, és mivel a vizsgalat
kizarolag az zy-sikra terjed ki, ezért az elektromos térersségnek kizarodlag az z- és
y-komponensével sziikséges szamolni. A vizsgilatot f = 450 MHz frekvencian, az
antenna koriil a hullamhossz tizennégyszeresével megegyezd oldalhosszisagi négy-
zetet felvéve végeztem el. Ezek (3.39) értelmében:

z[m]
I - T S R

S
5

>~

-5 [ 5 z[m]
yIm]

6.6. 4bra. A vektorpotencil alakulasa L = 2,5\ esetén
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1 0?4 1 0?
Ej=—j—_—"Z2 E.=—j— [ =— +k*) A.. 6.38
Y wpe 0ydz’ ]w,ue ( * ) (6.38)

Az Gsszefiiggéshdl lathato, hogy a vektorkomponensek meghatarozasahoz a vektor-
potencidl irAnymenti derivaltjaira van sziikség. Mivel A, métrixos formaban ado-
dik, igy a koordinatik szerinti numerikus derivalast is méatrixos formaban hajtot-
tam végre a Matlab gradiensképzd parancsat hasznéalva. Az elektromos térerdsség
abszolutértékét a 6.7. és a 6.8. &brakon lehet tanulmanyozni. A vektorpotencial

IE] [vim]

z[m]

6.7. abra. A térerdsség abszolutértékének alakuldsa rezonancia esetén

szimmetridjabol adodik, hogy az antenna koriil kialakulé elektromos tér szimmetri-
kus lesz. Erdemes megjegyezni, hogy amig végeselem-modszer esetén szimulaciohoz
az antennét koriilvevs teret le kell zarni (példaul a perem mentén érvényesiteni kell
a Sommerfeld-féle sugarzasi feltételt [6,26]), addig a momentumok modszerének al-
kalmazasa soran erre nincsen sziikség, a problématér peremére semmilyen peremfel-
tételt sem kell elGirni a megoldashoz, mivel a teret a Green-fiiggvények alkalmazasa
automatikusan lezérja. Az iranykarakterisztika meghatarozasahoz a problématéren

z[m]
|E] [v/m]

6.8. dbra. A térerGsség abszolutértékének alakulasa L = 2,5\ esetén

beliil, az antenna kdrnyezetében egy kor felvételére van sziikség. A modszert a 6.9.
abra mutjata. A 14\ széles problématér diszkrét pontjain rendelkezésre allo elekt-
romos térerdsség-értékek felhasznalasaval a tér belsejében definialt, 5\ sugara kéron
kétdimenzios interpoléacié felhasznaldséval a karakterisztika felvehets. Ehhez a kor

22 4 9% = 25)\2 (6.39)

egyenlettel meghatarozhaté pontjait a koordinatak elGjelei szerint vektorokba ren-
deztem, majd az Osszetartozd koordinata-parokra a Matlab interp2 parancsat fel-
hasznalva meghataroztam az elektromos térerésséget. A felvett iranykarakteriszti-
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) 141 _
A
B (B)
A
.50
[L/2
= 1414
L/2 '
|
\4

6.9. dbra. Az irdnykarakterisztika felvétele

kak a 6.10. abran lathatok, a szimulacié programkodja pedig a B.2. fiiggelékben
talalhatdé meg. Az eredmények jol mutatjak, hogy a dipdlus rezonancia esetén szim-
metrikusan két f6 sugarzasi irdnnyal rendelkezik, valamint az antenna sfkjaban nem
sugaroz. Bar a karakterisztika a sikban zérustol eltérd térerésség-értéket mutat, ez
az interpoléacios hibabol adodik. Az antenna rezonanciafrekvenciatol eltérs frekven-

6.10. dbra. A dipo6lus irdnykarakterisztikdja rezonancia és L = 2,5\ esetén

cia esetén tobb féirannyal fog rendelkezni, mely nyaldbok ugyan szimmetrikusak,
de maximumaik és nyalabszélességeik nem egyeznek meg. Belathato, hogy bar a
modszer eredményre vezet, de egyrészt pontatlan, méasrészt nem elég hatékony, hi-
szen a karakterisztika meghatarozasahoz joval tobb térer6sség-érték kiszamitasara
van sziikség, mint amennyi ténylegesen felhasznalasra keriil. Ezért — amennyiben
kizarélagosan az iranykarakterisztika meghatarozasa a cél — jovan hatékonyabb és
célravezetGbb az elektromos térergsségre felirhato integralegyenlet numerikus meg-
oldasa.
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6.6. Az elektromos térerésség integralegyenletének
megoldasa

Az antennakarakterisztika gyorsabb, hatékonyabb felvételéhez az elektromos tér-
erGsség integralegyenletének megoldasara van sziikség. Ennek altalanos formulajat
dolgozatom harmadik fejezetében mar bevezettem. Az Gsszefiiggés a dipdlusantenna
esetén egyszeriisodik: az integralast nem egy altalanos térfogatra, hanem az antenna
hossza mentén sziikséges elvégezni, valamint az dram bar vektormennyiség, kizaro-
lag z-komponenssel rendelkezik, igy skaldrként kezelhets. Ezek alapjan az egyenlet
az

E () = —jwp 17

|
sl i

GF )L ()& do — I / V(L () €) G (7, 2) d

(6.40)
formulara egyszertisodik. A zy-siknal maradva ez két skalaregyenlet: egy az elekt-
romos térerGsség z-komponensére, egy pedig az y-komponensére. Az Osszefliggés
mésodik tagjanak integrandusdban az dram divergenciidja szerepel, amely egyrészt
skalar, masrészt pedig ebben a specialis esetben az dram z-szerinti derivaltjaval lesz
egyenlG:

oI, ()

0z
Az Osszefiiggés kiértékeléséhez tehat el kell allitani az aram fiiggvényének z-szerinti
derivaltjat. A masodik tag gradiens-operatora a Green-fiiggvényre lesz hatassal, igy
a kifejezés atirhato:

V' (L () &) = (6.41)

. 2 . 2 I
E(7) = —jwp / G(F 2L () e, de — L8 / 0 Z(f JVG 72y 4. (6.42)

A Green-fiiggvény gradiense a
R oG _ 0G _ 9 [eikr L0 [eTikr .
VG(r,z’)za'ez—l—a—yey:E( )-ez—l——< >'ey (6.43)
alakban irhato fel, ahol

r= \/(y—y’)2+ (z—2/)% (6.44)

A parcidlis derivaltak analitikus modon felirhatok, melyeket munkam soran le-
vezettem. Az Osszefiiggések (a levezetés melldzésével):

oG 1 —e Ik (2 — ) (jk + %) oG 1 —e IR (y — ) (jk: + %)

0z 4w r2 T Oy A4n 72 '

Az eddigiek alapjan az elektromos térerdsség két komponense mar egyértelmten
felirhato:

(6.45)

E, = —jwu

\,w\h
)
—~
!
N
N>
&
—
N
N>
o,
N\
|
T
o

— d7 6.46
4 (640)

Nyl
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L
2
jwu 01, (2)0G
B--Lf [T HT (6.47)

Az integralast ezuttal is egydimenzids Gauss-kvadratira segitségével valositot-
tam meg, 1gy, hogy egy-egy Az hossztusagu diszkrét elem felett konstansnak tekintet-
tem az dramot és annak derivaltjat is. Ennek értelmében azok a két integrandus elé
kiemelhet6k konstansként, és az integrandus az els6 tag esetében a Green-fiiggvény
maga, a masodik tag esetében pedig annak megfelel§ irany szerinti derivaltja. A
felvett irdnykarakterisztikdk a 6.11. abran lathatok, a Matlab-kod pedig a B.3. fiig-
gelékben megtalalhatd. Az elektromos térergsségre vonatkozd Gsszefiiggések imple-

6.11. abra. A dipolus irdnykarakterisztikaja rezonancia és L = 2,5\ esetén

mentalasanak nagy elénye, hogy gyorsabban vezet pontosabb eredményre, mint az
el6z6ekben bemutatott modszer, tovabba a koordinatak modositasaval a tér barmely
pontjaban meghatarozhato az elektromos térerdsség értéke. Lathato, hogy az ered-
mény gyakorlatilag megegyezik a vekorpotencial segitségével meghatarozottakkal.
Mivel eztuttal a pontokban nem interpoléciéval, hanem kozvetleniil a térjellemzbkre
vonatkozo Osszefiiggések segitségével keriilt meghatirozasra az elektromos tér, az
eredmény tobb pontban és pontosabban felvehetd.

vektorpotencidlbol szarmaztatott iranykarakterisztika meghatarozasa 200 x 200-as
matrixok hasznalata esetén, az antennat 101 elemre bontva, az iranykarakterisztka
500 pontban torténd kiszamitasaval 6sszesen 6,872 percet, mig az elektromos térerGs-
ségre megoldott integralegyenlet hasznalata esetén, 101 elemre diszkretizalt antenna
esetén 500 pontban felvéve az iranykarakterisztikat ez 22 masodpercet vett igénybe.
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7. fejezet

Osszefoglalas, jovébeni tervek

Dolgozatomban ismertettem az elektromagneses terek leirasara hasznalt Maxwell-
egyenletek idG- és frekvenciatartomanybeli teljes rendszerét, az egyenleteket felhasz-
nalva levezettem az elektrosztatikus és radidfrekvencias problémakat leir6 egyenlete-
ket. Altalanosan felvazoltam a momentumok modszerének lényegét, alkalmazasanak
modjat, elényeit és hatranyait, valamint Osszevetettem azt a végeselem-modszerrel
is. Részletesen, a numerikus megvalositasig ismertettem az egyenletek implementéa-
lasanak modjat Matlab-kornyezetben, kitérve az integralok kezelésére egy- és kétdi-
menzidban.

A vonatkoz6 szakirodalommal ellentétben az impedanciamatrix szingularités-
sal bir6 elemeit nem analitikus modon értékeltem ki, hanem altalanos, sokpontos
Gauss-kvadratirat hasznalva egy univerzélisan hasznilhaté eljarést valositottam
meg. Bemutattam a Hallén-egyenletet és a Pocklington egyenletet. Ismertettem
a Hallén-egyenlet alkalmazasat az antennatervezés alapvetd épitSelemének szami-
to félhullamu dipolusantenna esetében. Bemutattam, milyen modon lehetséges az
antenna araménak meghatirozasa, az antenna kozel- és tavolterének, valamint az
irAnykarakterisztikdjanak kiszamitasa. Ismerettem az egyes modszerek elényeit, hat-
ranyait, kitérve a sziikséges szamfitasi iddre is.

Célom, hogy a tovabbiakban az itt bemutatott modszert Osszetettebb antenna-
rendszerek vizsgalatara, szimulacidjara és tervezésére hasznaljam fel. Az itt imple-
mentalt, a klasszikus térszimulacios szoftvercsomagoktol elszakadt modszerek szé-
leskorii lehetGséget biztositanak a gyors és rugalmas tervezésre. Célkitiizésem, hogy
a vizsgalatokat kiterjesszem antennarendszerek villamos paramétereinek javitasara,
valamint adott célértékekhez optimalizaladsara is. Munkam soran igyekszem kitérni
a vektorpotenciallal torténd szamitasi eljaras esetleges gyorsitasanak vizsgalatara is,
figyelembe véve a vizsgalt elrendezések és a kialakulo elektromégeses tér szimmetri-
ajat, jellegzetességeit.
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A. fuggelék

Stacionarius problémak
Matlab-kbédja

A.1. toltott huzal 1D.m

%#To61ltdtt huzal, 1D
%Method of Moments

clear;

clc;

%Geometria

L=1;

a = 0.0001

fi =3

eps_0 = 8.8541%10~(-12);
eps_r = 1;

eps = eps_O*eps_r;
%Diszkretizalas
N = 100;

dx = L/N;
x = zeros(1,N);

for i = 1:N
if 1 == 1
x(i) = dx/2;
else
x(1) = x(i-1)+dx;
end
end
%Asszemblalas
Z = zeros(N);
q = zeros(N,1);
b = zeros(N,1);
for i = 1:N
for j = 1:N
x_a = (j-1) * dx;
x_b = j * dx;

int_x = [x_a:dx/99:x_b];

for k = 1:length(int_x)
f_x(k) =1 / sqrt((x(i)-int_x(k))"2 + a~2);
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end
for k = 1:(length(int_x)-1)
Z(i,j) = 2(i,j) + (int_x(k+1)-int_x(k))*((f_x(k)+f_x(k+1))/2);
end
end
b(i) = fix4*pi*eps;
end

q = inv(Z) * b;

phi = zeros(1,N);
c =1/ (4*xpi*eps);

for i = 1:N
for j = 1:N
x_a = (j-1) * dx;
x_b = j % dx;
int_x = [x_a:dx/(N-1):x_b];

for k = 1:length(int_x)
f_x(k) =1 / sqrt((x(i)-int_x(k))"2 + a~2);
end

for k = 1:(length(int_x)-1)
phi(i) = phi(i) + c*q(k)*(int_x(k+1)-int_x(k))*((f_x(k)+f_x(k+1))/2);
end
end
end

figure(1)

hold on;
plot(x,q.*10~(12),°g.?);
plot(x,q.*107(12),°r?);
xlabel(’x [m]’);
ylabel(’q [pC/m]’);

figure(2)

hold on;
plot(x,phi,’g.?);
plot(x,phi,’r’);
xlabel(’x [m]’);
ylabel(’\Phi [V]’);

A.2. esztatika 2D.m

%Elektrosztatika példa, 2D
#Négyzetekre diszkretizalt t81ltétt lemez problémaja
%Method of Moments

clear;
clc;

%Geometria generalésa

%A lemezt k-szor "vagjuk el" x és y iranyban egyarant

k = 10;

L=1;

a = L/(k+1);

X = zeros(k+1);
Y = zeros(k+1);

if mod(k,2) == 0 %Paros esetek kezelése

sz = -k/2; n = k+1;
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for i = 1:(k+1)

coord_vec(i) = (sz/n)*L;
sz = sz + 1;

end
else }Paratlan esetek kezelése

coord = -((((1/(k+1))*L)/2) + (((k-1)/2) * ((1/(k+1))*L)));

for i = 1:(k+1)

coord_vec(i) = coord;
coord = coord + ((1/(k+1))*L);

end
end
inv_index = k+1;
for i = 1:(k+1)

X(:,1) = coord_vec(i);
Y(inv_index,:) = coord_vec(i);

inv_index = inv_index - 1;
end
#Megoldas
%Gauss-kvadratira siulyai, pontjai

Gaussp_x = load(’./gaussian_input/Gaussp_x.txt’); Gausss = load(’./gaussian_input/Gausss.txt’);
Gaussp_y=load(’./gaussian_input/Gaussp_y.txt’);

fi = 5;
eps_0 = 8.8541%10~(-12);
eps_r = 1;

eps = eps_O*eps_r;

Z = zeros(length(coord_vec)~2);

b = zeros(length(coord_vec)~2,1);
q = zeros(length(coord_vec)~2,1);

source_index = 1;

for i = 1:(length(coord_vec))
for j = 1:(length(coord_vec))

X(i,j);
Y(i,j);

X_m
y-m

observation_index = 1;

for k = 1:(length(coord_vec))
for 1 = 1:(length(coord_vec))

x = [X(k,1)-(0.5%a) X(k,1)+(0.5%a) X(k,1)+(0.5%a) X(k,1)-(0.5%a)];
= [Y(k,1)-(0.5%a) Y(k,1)-(0.5%a) Y(k,1)+(0.5%a) Y(k,1)+(0.5%a)];

~
[l

for o = 1:length(Gaussp_x)
for p = 1:length(Gaussp_y)

0.25*%(1-Gaussp_x(p))*(1-Gaussp_y(0));
0.25*(1+Gaussp_x(p) ) *(1-Gaussp_y(0));
0.25*%(1+Gaussp_x(p))*(1+Gaussp_y(0));
0.25%(1-Gaussp_x(p))*(1+Gaussp_y(0));

D W N
non

P = x(1)*N_1+x(2)*N_2+x(3)*N_3+x(4)*N_4;
Q = y(L)*N_1+y(2)*N_2+y(3) *N_3+y(4)*N_4;
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dx_dkszi = 0.25*x(1)*(-1+Gaussp_y(0)) + 0.25*x(2)*(1-Gaussp_y(0)) + ...
0.25*x(3)*(1+Gaussp_y (o)) + 0.25*x(4)*(-1-Gaussp_y(0));

dx_deta = 0.25*x(1)*(-1+Gaussp_x(p)) + 0.25xx(2)*(-1-Gaussp_x(p)) + ...
0.25*x(3)*(1+Gaussp_x(p)) + 0.25*x(4)*(1-Gaussp_x(p));

dy_dkszi = 0.25*y(1)*(-1+Gaussp_y(0)) + 0.25*y(2)*(1-Gaussp_y(0)) + ...
0.25*y(3)*(1+Gaussp_y(0)) + 0.256xy(4)*(-1-Gaussp_y(0));

dy_deta = 0.2b*%y(1)*(-1+Gaussp_x(p)) + 0.25*y(2)*(-1-Gaussp_x(p)) + ...
0.25*y(3)*(1+Gaussp_x(p)) + 0.25xy(4)*(1-Gaussp_x(p));

det_jacobi = dx_dkszixdy_deta - dy_dkszi*dx_deta;

Z(source_index,observation_index) = Z(source_index,observation_index) + ...
Gausss (o) *Gausss (p)*(1/sqrt ((x_m-P)~2+(y_m-Q)~2) )* det_jacobi;

observation_index = observation_index + 1;

end
end
end
end
b(source_index) = fix4xpixeps;
source_index = source_index + 1;
end
end
#Megoldas
q =2\ b;

%Aztan ezt jo lenne abrazolni is
g_matrix = zeros(k);
g_index = 1;

for i = 1:k
for j = 1:k

g_matrix(i,j) = q(q_index);
gq_index = q_index + 1;

end
end

figure(1)

axis square;
surf(X,Y,q_matrix.*10"(12));
xlabel(’x [m]’);

ylabel(’y [m]’);

zlabel(’q [pC/m]?);
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Radidfrekvencias problémak
Matlab-kbédja

B.1. lambdafeldipol 1D.m

%Félhullam-hosszlisagl dipolantenna arameloszlésa
%Method of Moments, Hallén-egyenlettel

clear;
clc;

%Paraméterek

eps_0 = 8.854e-12; mu_0 = 4#*pixle-7; eps_r = 1;
nu = 1 / sqrt(eps_O*eps_r*mu_0);

f = 516.12456€6;

lambda = nu / £; k = (2#pi)/lambda;

eta = sqrt(mu_0/(eps_O*eps_r));

L = 0.5%lambda;

a = 1.5e-4;

%Diszkretizalas
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N
z_abr(i) = z(i) + 0.5%(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)

U = 10e3;

E_exc = zeros(1,N+1);

E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamatrix és s-vektor felépitése Gauss-kvadraturaval
Z = zeros(N); s = zeros(N,1);
Gaussp = load(’./gaussian_input/Gaussp_x.txt’); Gausss = load(’./gaussian_input/Gausss.txt’);
for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_b = z(j+1); z_a = z(j);

for 1 = 1:length(Gaussp)
z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)~2 + a~2);
Z(i,j) = 2(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pi*R));
end
end
s(i) = cos(k*z_m);

end
Zml = inv(Z);

%Gerjesztésvektor (b) felépitése
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b = zeros(N,1);
for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_a = z(i); z_b = z(i+1);
if (E_exc(j) > 0) &% (E_exc(j+1) > 0) %Ekkor kell a konvolicid
for 1 = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2*eta)) * ((z_b - z_a)/2) * Gausss(l) * ...
sin(k*abs(z_m - z_g)) * (U/dz));
end
end
end
end
#Megoldas
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
D_1 = - (uT*Zmlxb) / (uT*Zml*s);
I = D_1*Zml*s + Zmlxb;

% Aram

figure(1)

plot(z_abr,le3*abs(I));

xlabel(’z [m]’);

ylabel(’Aram abszoliitértéke (II|) [mAl’);

figure(2)

plot(z_abr,phase(I));

xlabel(’z [m]’);

ylabel(’Aram fazisa (\phi=arc\{I\}) [rad]’);

%ldétartomanybeli vizsgalat
t = linspace(0,4%(1/£),400); I_t = zeros(N,1);
for j = 1:length(t)
for i = 1:N
I_t(i) = abs(I(i)) * cos(2xpixf*t(j)+phase(I(i)));
end
figure(3)
plot(z_abr,1e3*I_t);
axis([-L/2 L/2 -1e3#*max(abs(I)) le3+*max(abs(I))])
xlabel(’z [m]?);
ylabel(?i(t) [mAl’);
end

B.2. dipolter hallen.m

%Félhullam-hosszlisagl dipolantenna tere
%Szimmetrikus Hallén-egyenlettel

clear; clc;

%Paraméterek

eps_0 = 8.854e-12; mu_0 = 4xpixle-7; eps_r = 1;
nu = 1 / sqrt(eps_O*eps_r*mu_0);

f = 450e6; %Ezzel érdemes jatszani

lambda = nu / f; k = (2xpi)/lambda;

eta = sqrt(mu_0/(eps_O*eps_r));

L = 0.5%lambda;

a = 1.be-4;

#Diszkretizalas
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N
z_abr(i) = z(i) + 0.5x(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)
U = 10;
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E_exc = zeros(1,N+1);
E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamatrix és s-vektor felépitése Gauss-kvadraturaval
Z = zeros(N); s = zeros(N,1);

Gaussp = load(’./gaussian_input/Gaussp_x.txt’);

Gausss = load(’./gaussian_input/Gausss.txt’);

for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_b = z(j+1); z_a = z(j);
for 1 = 1:length(Gaussp)

1
z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)~2 + a~2);
Z(i,j) = Z2(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pix*R));
end
end
s(i) = cos(k*z_m);
end
Zml = inv(Z);

%Gerjesztésvektor (b) felépitése
b = zeros(N,1);
for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_a =z(i); z_b = z(i+1);
if (E_exc(j) > 0) && (E_exc(j+1) > 0) %Ekkor kell a konvolicid
for 1 = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2*eta)) * ((z_b - z_a)/2) * Gausss(l) * ..
sin(k*abs(z_m - z_g)) * (U/dz));
end
end
end
end
#Megoldas
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
D_1 = - (uT*Zml#*b) / (uT*Zmlx*s);
I = D_1%Zml*s + Zmlxb;

% Aram

figure(1)

plot(z_abr,le3*abs(I));

xlabel(’z [m]’);

ylabel(’Aram abszoliitértéke (|I|) [mAl’);

%#Vizsgalt problématér definialasa
y_coord = linspace(-7#*lambda,7*lambda,200);
z_coord = linspace(7*lambda,-7*lambda,200);
[Y,Z] = meshgrid(y_coord,z_coord);

%Térszamitas
A_z = zeros(size(Z));
for i = 1:size(Z,1)
for j = 1:size(Z,2)
R_obs = [Y(4i,j) Z(i,j)]1;
R_obs_abs = sqrt(R_obs(1)"2+R_obs(2)"2);
int_aram = 0;
for 1 = 1:N
dz = z(2) - z(1);
z_a = z_abr(l) - 0.5%dz;
z_b = z_abr(l) + 0.5%dz;
%Tolunk egy joféle Gauss-kvadratirat
int_gauss = 0;
for h = 1:length(Gaussp)
z_gauss = 0.5%(z_b-z_a)*Gaussp(h)+(0.5%(z_a+z_b));
R_gauss = sqrt((R_obs(1)-a)~2+(R_obs(2)-z_gauss)~2);
int_gauss = int_gauss + 0.5%(z_b-z_a)*Gausss(h)*exp(-sqrt(-1)
*k*R_gauss)/(4xpi*R_gauss) ;
end
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int_aram = int_aram + I(l)*int_gauss;
end
A_z(i,j) = mu_O*int_aram;

end

end

%Vektorpotencial abrazolasa

figure(2)

surf(Y,Z,abs(4_2z));

xlabel(’y [m]’); ylabel(’z [m]’); zlabel(’A_z’);
shading interp;

hh

%#Derivaltmatrixok eldallitésa
[dAz_dy,dAz_dz] = gradient(A_z,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));

[d2Az_dy2,d2Az_dzdy] = gradient(dAz_dy,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));
[d2Az_dzdy,d2Az_dz2] = gradient(dAz_dz,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));
#Vektorkomponensek meghatarozasa

E_z = -sqrt(-1)*(1/(2*pi*f*mu_0*eps_0))*(d24z_dz2 + (k~2)*A_z);
E_y = -sqrt(-1)*(1/(2*pi*f*mu_O*eps_0))*d2Az_dzdy;

%hbrazolas

E_ik = zeros(size(Z));

t = linspace(0,2x(1/£),200);

for i

= 1:length(t)

for j = 1l:size(Z,1)

for 1 = 1:size(Z,2)

E_yt(j,1) = abs(E_y(j,1)) * cos(2¥pixf*t(i)+angle(E_y(j,1)));
E_zt(j,1) = abs(E_z(j,1)) * cos(2*pixf*t(i)+angle(E_z(j,1)));

E(j,1) = sqrt(abs(E_yt(j,1)) 2+abs(E_zt(j,1))"2);
if E(j,1) > E_ik(j,1)
E_ik(j,1) = E(j,1);
end
end

end

%Kialakuld tér abszolitértékének abrazolasa
figure(3)

surf(Y,Z,E);

shading interp;

colormap jet;

axis([min(min(Y)) max(max(Y)) min(min(Z)) max(max(Z)) -max(max(abs(E))) max(max(abs(E)))]);
view(2);

pause (0.00000005) ;

end

hh

%Iranykarakterisztika

E_abs

= sqrt(abs(E_z) . 2+abs(E_y)."2);

y_coord_ik = linspace(-5%lambda,5*lambda,500);

for i

z_
z_

= 1:length(y_coord_ik)
coord_ik_poz(i) = sqrt((5*lambda)~2-y_coord_ik(i)~2);
coord_ik_neg(i) = -z_coord_ik_poz(i);

if y_coord_ik(i) >= 0

phi_poz(i) = atan(abs(z_coord_ik_poz(i)/y_coord_ik(i)));

phi_neg(i) = (2#pi)-atan(abs(z_coord_ik_neg(i)/y_coord_ik(i)));

elseif y_coord_ik(i) < 0

phi_poz(i) = atan(abs(y_coord_ik(i)/z_coord_ik_poz(i))) + 0.5%*pi;

phi_neg(i) = pi+atan(z_coord_ik_neg(i)/y_coord_ik(i));

end

end

E_ik_poz = zeros(l,length(y_coord_ik));
E_ik_neg = zeros(1,length(y_coord_ik));

for i

= 1:length(E_ik_poz)

E_ik_poz(i) = interp2(Y,Z,E_abs,y_coord_ik(i),z_coord_ik_poz(i));
E_ik_neg(i) = interp2(Y,Z,E_abs,y_coord_ik(i),z_coord_ik_neg(i));

end

E_iranykar = zeros(1l,length(phi_poz)+length(phi_neg));
phi_iranykar = zeros(1l,length(phi_poz)+length(phi_neg));

for i

= 1:length(phi_poz)

E_iranykar(i) = E_ik_poz(i);
phi_iranykar(i) = phi_poz(i);

end
i=1
for j

+1;
= 1:length(phi_neg)

E_iranykar(i) = E_ik_neg(j);
phi_iranykar(i) = phi_neg(j);



Diplomamunka Unger Tamés Istvan

i=i+1;
end

figure(4)

E_iranykar = E_iranykar./max(E_iranykar);
polar(phi_iranykar,E_iranykar,’b.’);

B.3. dipolter eife.m

%Félhullam-hosszisagi dipdlantenna tere
%#Szimmetrikus Hallén-egyenlettel

clear; clc;

%Paraméterek

eps_0 = 8.854e-12; mu_0 = 4#*pixle-7; eps_r = 1;
nu = 1 / sqrt(eps_O*eps_r*mu_0);

f = 450e6; JEzzel érdemes jatszani

lambda = nu / £; k = (2#pi)/lambda;

eta = sqrt(mu_0/(eps_O*eps_r));

L = 0.5%lambda;

a = 1.5e-4;

%Diszkretizalas
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N
z_abr(i) = z(i) + 0.5%(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)

U = 10;

E_exc = zeros(1,N+1);

E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamatrix és s-vektor felépitése Gauss-kvadraturaval
Z = zeros(N); s = zeros(N,1);
Gaussp = load(’./gaussian_input/Gaussp_x.txt’); Gausss = load(’./gaussian_input/Gausss.txt’);
for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_b = z(j+1); z_a = z(j);
for 1 = 1:length(Gaussp)
z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)~2 + a~2);
Z(i,j) = 2(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pi*R));
end
end
s(i) = cos(k*z_m);
end
Zml = inv(Z);

%Gerjesztésvektor (b) felépitése
b = zeros(N,1);
for i = 1:N
z_m = z(i) + 0.5%dz;
for j = 1:N
z_a = z(i); z_b = z(i+1);
if (E_exc(j) > 0) &% (E_exc(j+1) > 0) %Ekkor kell a konvoliicid
for 1 = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2%xeta)) * ...
((z_b - z_a)/2) * Gausss(l) * sin(k*abs(z_m - z_g)) * (U/dz));
end
end
end
end
#Megoldas
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
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D_1 = - (uT*Zmlx*b) / (uT*Zmlx*s);
I = D_1%Zml*s + Zmlxb;

% Aram

figure(1)

plot(z_abr,le3*abs(I));

xlabel(’z [m]’);

ylabel(’Aram abszoliitértéke (|I|) [mAl’);

%Iranykarakterisztika meghatéarozasa (EFIE-vel, Balanis kényv, (12-55))
vizsg_sugar = 5*lambda;
y_coord = linspace(-vizsg_sugar,vizsg_sugar,500);
for i = 1:length(y_coord)
z_coord_poz(i) = sqrt((vizsg_sugar)~2-y_coord(i)~2);

z_coord_neg(i) = -z_coord_poz(i);
if y_coord(i) >= 0
phi_poz(i) = atan(abs(z_coord_poz(i)/y_coord(i)));

phi_neg(i) = (2#pi)-atan(abs(z_coord_neg(i)/y_coord(i)));
elseif y_coord(i) < 0
phi_poz(i) = atan(abs(y_coord(i)/z_coord_poz(i))) + 0.5%pi;
phi_neg(i) = pi+atan(z_coord_neg(i)/y_coord(i));
end
end
E_y_poz = zeros(l,length(y_coord)); E_z_poz = zeros(l,length(y_coord));
E_y_neg = zeros(l,length(y_coord)); E_z_neg = zeros(l,length(y_coord));
dI_dz = gradient(I,z_abr(2)-z_abr(1));

for i = 1:(length(z_coord_poz)+length(z_coord_neg))
if i <= length(z_coord_poz)
R_obs = [y_coord(i) z_coord_poz(i)];
else
R_obs = [y_coord(i-length(z_coord_poz)) z_coord_neg(i-length(z_coord_poz))];
end
R_obs_abs = sqrt(R_obs(1)~2+R_obs(2)"2);
if i <= length(z_coord_poz)
E_z_poz_int_1 = 0; E_z_poz_int_2 = 0;
else
E_z_neg_int_1 = 0; E_z_neg_int_2 = 0;
end
for j = 1:N
dz = z(2) - z(1);
z_a = z_abr(j) - 0.5%dz;
z_b = z_abr(j) + 0.5%dz;
%#Gauss-kvadratira toérténik mindkét részintegréalra
int_gauss_1 = 0; int_gauss_2z = 0; int_gauss_2y = 0;
for 1 = 1:length(Gaussp)
z_gauss = 0.5%(z_b-z_a)*Gaussp(1)+(0.5%(z_a+z_b));
R_gauss = sqrt((R_obs(1)-a)~2+(R_obs(2)-z_gauss)"2);
int_gauss_1 = int_gauss_1 + 0.5%(z_b-z_a)*Gausss(1l)*exp(-sqrt(-1)*k*R_gauss)/ ...
(4xpi*R_gauss);
int_gauss_2z = int_gauss_2z + 0.5x(z_b-z_a)* ...
Gausss(1)*(1/(4*pi))* ((-exp(-sqrt(-1)*k+*R_gauss)
*x(R_obs(2)-z_gauss)* ...
(sqrt(-1)*k+(1/R_gauss))) / (R_gauss~2));
int_gauss_2y = int_gauss_2y + 0.5%(z_b-z_a)*Gausss(1)*(1/(4*pi))
*((-exp(-sqrt(-1)*k*R_gauss)*(R_obs(1)-a)* ...
(sqrt(-1)*k+(1/R_gauss))) / (R_gauss~2));

end
if i <= length(z_coord_poz)
E_z_poz_int_1 = E_z_poz_int_1 + (-sqrt(-1)*2*pi*f*mu_O*I(j)*int_gauss_1);
E_z_poz_int_2 = E_z_poz_int_2 + (-sqrt(-1)*2xpi*f*mu_0*(1/k~2)*dI_dz(j)*int_gauss_2z);
else
E_z_neg_int_1 = E_z_neg_int_1 + (-sqrt(-1)*2*pi*f*mu_O*I(j)*int_gauss_1);
E_z_neg_int_2 = E_z_neg_int_2 + (-sqrt(-1)*2xpi*f*mu_0*(1/k~2)*dI_dz(j)*int_gauss_2z);
end
if i <= length(z_coord_poz)

E_y_poz(i) = E_y_poz(i) + (-sqrt(-1)*2*pixf*mu_0*(1/k~2)*dI_dz(j)*int_gauss_2y);
else

E_y_neg(i-length(z_coord_poz)) = E_y_neg(i-length(z_coord_poz)) + ...

(-sqrt(-1)*2*pi*f*mu_0%(1/k~2)*dI_dz(j)*int_gauss_2y);

end

end
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if i <= length(z_coord_poz)
E_z_poz(i) = E_z_poz_int_1 + E_z_poz_int_2;
else
E_z_neg(i-length(z_coord_poz)) = E_z_neg_int_1 + E_z_neg_int_2;
end
end
%Abrazolni kell a cuccot
E_poz = sqrt(abs(E_z_poz). 2+abs(E_y_poz)."2); E_poz = E_poz./max(E_poz);
E_neg = sqrt(abs(E_z_neg). 2+abs(E_y_neg)."2); E_neg = E_neg./max(E_neg);
E_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
phi_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
for i = 1:length(phi_poz)
E_iranykar(i) = E_poz(i);
phi_iranykar(i) = phi_poz(i);

end

i=1+1;

for j = 1:length(phi_neg)
E_iranykar(i) = E_neg(j);
phi_iranykar(i) = phi_neg(j);
i=1+1;

end

figure(4)

E_iranykar = E_iranykar./max(E_iranykar);
polar(phi_iranykar,E_iranykar,’b.’);
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