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Kivonat  

Stacionárius és Rádiófrekvenciás Elektromágneses Terek Vizsgálata a Momentumok 

Módszerének Segítségével 

 

Dolgozatom a stacionárius és rádiófrekvenciás elektromágneses terek numerikus 

szimulációjával foglalkozik, elsődleges célja, hogy bemutassa az elektromágneses 

terek szimulációjához alkalmazott momentumok módszerének alapgondolatát, 

megvalósítását és alkalmazhatóságát különböző geometriai elrendezésű és 

komplexitású problémák esetén. 

Rövid áttekintést nyújtok a munkám során alkalmazott, az elektromágneses terek 

jelenségeit leíró Maxwell-egyenletekről, a segítségükkel levezetett elektrosztatikai és 

sugárzási összefüggésekről, különös tekintettel azok frekvenciatartománybeli 

alakjaira. Bemutatom a módszer használata során kiemelkedő szereppel bíró Green-

függvényeket, legfontosabb tulajdonságaikat. Ismertetem a momentumok 

módszerének alapjait, alkalmazásának legfontosabb lépéseit, összefüggéseit, 

hasonlóságait és különbségeit az eltérő numerikus technikákhoz, kiemelten a 

végeselem-módszerhez képest. 

Bemutatom a momentumok módszerének alkalmazási lehetőségeit egydimenziós 

és kétdimenziós elektrosztatikai problémák megoldására, valamint a munkám során 

implementált Matlab-scripteket, azok működését.  

Ismertetem, levezetem az elektrosztatika általános alapegyenletét, a Laplace-

Poisson-egyenlet megoldását. Ismertetem az egydimenziós szimuláció segítségével 

vizsgálható töltött huzal problémáját, annak megoldását és a megoldó mátrix-szintű 

implementálását. Bevezetem a megoldáshoz szükséges egydimenziós Gauss-

kvadratúrát, annak egyenleteit. Ismertetem a szimulációs eredményeket, azok 

kiértékelését. 

Bemutatom a probléma kétdimenziós megvalósítását egy általános töltött lemez 

segítségével. Ismertetem a kétdimenziós egyenleteket, különös tekintettel az 

impedanciamátrix elemeinek kiértékelésének módját. Részletesen ismertetem a 

munkám során alkalmazott, Matlab-scriptben megvalósított kétdimenziós Gauss-

kvadratúra egyenleteit, mely kvadratúra-techika segítségével az impedanciamátrix 

főátlóinak elemei is kiértékelhetők. 

Ismeretem a módszer alkalmazását rádiófrekvenciás problémák vizsgálatára. 

Bevezetem a vékony huzal általános problémáját, levezetem a Hallén- és 

Pocklington-egyenleteket. Részletesen ismertetem a Hallén-egyenlet megoldásának 

lépéseit. 

Bemutatom a rádiófrekvenciás problémák alapvető építőelemének, a félhullámú 

dipólusantennának vizsgálatát Hallén-egyenlet segítségével. Ismeretem a gerjesztés 

megadásának általam alkalmazott módját, a peremfeltételek beállításának technikáját 

valamint az eredményeket, azok kiértékelését. Bemutatom az antenna-

iránykarakterisztika felvételének kéttípusú módszerét, melyeket Matlab-script 

formájában meg is valósítottam. 



Abstract 

Examination of Static and Radiofrequency Electromagnetic Fields with the Method 

of Moments 

 

My thesis deals with the examination of static and radiofrequency electromagnetic 

fields by simulation techniques. Its primary object is to present the root ideas of the 

Method of Moments used for simulating different type of electromagnetic fields, with 

special emphasis of the implementation of the method and its applicability on 

different problems having different type of geometries and complexities. 

 I offer a brief overview of the Maxwell-equations describing the phenomena of 

the electromagnetic fields, and also touch on the question of deduction of the main 

electrostatic and radiation equations, with special priority of their aspects in the 

frequency-domain, which I used and implemented during my work. I introduce the 

Green-functions and their significant relationship with the Method of Moments. I 

present the basic theories and the most important steps of the Method of Moments, 

the essential equations of the method and the fundamental analogies and differences 

according to other numerical techniques, especially to the Finite Element Method. 

 I exposit the application opportunities of the Method of Moments for solving 

one- and two dimensional electrostatic problems, and I also introduce the Matlab-

scripts which I implemented during my work with their essential functions. 

 I present the deduction of the main, global electrostatic equation and the 

solution of the Laplace-Poisson’s equation. I summarize the one-dimensional charged 

wire problem, its solution and implementation on the level of matrices by using the 

Method of Moments. I summarize the basics of the implemented one-dimensional 

Gaussian quadrature and its equations. I evaluate the results and the characteristics of 

modelling and simulation. 

 I introduce the implementation of a two-dimensional electrostatic problem by 

analyzing a two-dimensional charged plate. I summarize the equations, with special 

emphasis of the evaluation of the elements of the impedance matrix. I particularly 

present the two-dimensional Gaussian quadrature, which I implemented in Matlab-

script, and which can also handle the evaluation of the elements in the main diagonal 

of the impedance matrix. 

 I describe the applicability of the method for solving and examining 

radiofrequency problems.  I also present the problem of the thin wire. And the 

solution of the Hallén’s equation in detail. 

 Last, but not least I overview the problem of the half-wave dipole antenna –

which is an essential tool in the field of radiofrequency problems – and its analysis by 

using the Hallén’s equation. I also introduce the used excitation method, the set up of 

the boundary conditions and the results as well. Through two implemented particular 

cases I outline the procedure of the identification of the radiation patterns. 
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1. fejezet

Bevezetés, köszönetnyilvánítás

Dolgozatom a stacionárius és rádiófrekvenciás elektromágneses terek numerikus ana-
lízisének témakörében íródott. Munkám els®dleges célkit¶zése, hogy átfogó részle-
tességgel ismertesse az elektromágneses terek szimulációjához alkalmazott momen-
tumok módszerének alapgondolatát, megvalósítását és alkalmazhatóságát különbö-
z® geometriai elrendezés¶ és komplexitású problémák esetén. Napjaink kutatási-
fejlesztési munkája mára már elképzelhetetlenné vált a különböz® szimulációs eljá-
rások és programcsomagok napi használata nélkül, melyek az eszközök paramétereit
− legyen az villamos vagy mechanikai − konkrét megvalósítás nélkül, számítógépes
környezetben teszik vizsgálhatóvá. A szimulációs eljárások ismerete és gyakorlati
szint¶ alkalmazása éppen ezért vált szinte a mindennapi életünk részévé a villamos-
mérnöki gyakorlatban is.

Az értekezés els® szakaszában ismertetem a munkám során alkalmazott, az elekt-
romágneses terek jelenségeit leíró Maxwell-egyenleteket, a segítségükkel levezetett
elektrosztatikai és sugárzási összefüggéseket, különös tekintettel azok frekvenciatar-
tománybeli alakjaira. Ismertetem a módszer használata során kiemelked® szerep-
pel bíró Green-függvényeket, azok legfontosabb tulajdonságait. A második feje-
zetben bemutatom a momentumok módszerét, alkalmazásának legfontosabb lépé-
seit, hasonlóságait és különbségeit a különböz® numerikus technikákhoz (például a
végeselem-módszerhez) képest. A harmadik részben ismertetem a módszer hasz-
nálatának módját egydimenziós és kétdimenziós elektrosztatikai példák megoldá-
sára, kitérve a programkód-szint¶ megvalósítás lépéseire is, valamint ismertetem a
szimulációs eredményeket. A negyedik szakaszban bemutatom a módszer széles-
kör¶ alkalmazását rádiófrekvenciás problémák vizsgálatára, levezetem a Hallén- és
Pocklington-egyenletet, részletesen ismertetem el®bbi megvalósítását a momentu-
mok módszerének segítségével az alapvet® épít®elemnek számító félhullámú dipólus-
antennán.

Dolgozatomat levelez® mesterszakos villamosmérnök hallgatóként írtam. Ezúton
szeretném megköszönni az értékes támogatást és segítséget konzulensemnek, Kucz-
mann Miklósnak. Köszönetemet fejezem ki továbbá a volt Elektromágneses Terek
Laboratórium minden egykori kollégájának, különös tekintettel Budai Tamásnak és
Friedl Gergelynek a sokéves közös munkából fakadó támogatásért. Köszönöm köz-
vetlen kollégáimnak és vezet®imnek, hogy a napi feladatok ellátása mellett nemcsak
megért®ek voltak, hanem lehet®ségeik szerint támogatták is munkámat.

A dolgozatot LATEX szövegszerkeszt®ben készítettem el.
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2. fejezet

A Maxwell-egyenletek

2.1. Id®tartománybeli egyenletek integrális és di�e-
renciális alakjai

James Clerk Maxwell (1831 - 1879) kiváló skót elméleti matematikus-�zikus éle-
tének legfontosabb tevékenysége az elektromossághoz köthet®. Els®dleges szerepe
abban áll, hogy kiterjesztette és matematikai formulákba öntötte a korábbi �ziku-
sok (például Michael Faraday és André-Marie Ampére) kísérleti tapasztalatait, és
egy összekapcsolódó, egységes parciális di�erenciálegyenlet-rendszerbe foglalta ®ket,
melyeket 1861-ben publikált el®ször On Physical Lines of Force cím¶ cikkében [1].
Maxwell egyenletrendszere húsz egyenletet és húsz változó mennyiséget tartalma-

2.1. ábra. James Clerk Maxwell [2] és Oliver Heaviside [3]

zott. Az egyenletek mai formáját egy óriási formátumú, kiemelked®, de méltatlanul
elfelejtett autodidakta angol villamosmérnöknek, Oliver Heaviside-nak (1850-1925)
köszönhetjük, aki munkája során kifejlesztette és a villamosmérnöki gyakorlatba
illesztette a vektoranalízist, a rotáció és a divergencia operátorok segítségével tizen-
két egyenletet átalakított, így az egyenletrendszert négy egyenletté redukálta négy
változóval.

A Maxwell-egyenletek olyan közelhatási törvényeket de�niáló, evolúciós, parciá-
lis di�erenciálegyenletek, melyek a tér egy adott pontjában, annak in�nitezimálisan
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sz¶k környezetében megadják az egyes térjellemz® mennyiségek változásának kap-
csolatát. Segítségükkel tehát bármely térjellemz® (legyen az akár elektromos, akár
mágneses) meghatározható, hiszen azok összefüggést teremtenek a gerjeszt® mennyi-
ségek (töltés, áram), a térintenzitások (elektromos térer®sség, mágneses indukció) és
a gerjesztettségi mennyiségek (elektromos eltolás, mágneses térer®sség) között [4].
Az egyenletek integrális alakban:∮

l

~H · d~l =

∫
A

(
~J +

∂ ~D

∂t

)
· d ~A, (2.1)

∮
l

~E · d~l =

∫
A

−∂
~B

∂t
· d ~A, (2.2)

∮
A

~B · d ~A = 0, (2.3)

∮
A

~D · d ~A =

∫
V

ρ dV. (2.4)

Az els® Maxwell-egyenlet (2.1) az Ampére-féle gerjesztési törvény, �zikai jelentése,
hogy az áram és az elektromos tér változása mágneses teret kelt (értelemszer¶en a
két mennyiség egyszerre is létrehozhatja a teret, de külön-külön is képesek mágneses
teret kelteni). A második egyenlet (2.2) a Faraday-féle indukciós törvény, �zikai
jelentése, hogy a mágneses tér változása elektromos teret kelt. A harmadik egyenlet
(2.3) a mágneses Gauss-törvény, jelentése, hogy az indukcióvonalak forrásmentesek,
önmagukban záródnak. A negyedik egyenlet (2.4) az elektrosztatika Gauss törvénye,
jelentése, hogy a elektromos tér forrásos, er®vonalai töltéseken kezd®dnek, töltéseken
végz®dnek.

Munkám során minden esetben izotrop, lineáris közeget feltételeztem. Ebben az
esetben a térjellemz® mennyiségek között kapcsolatot teremt® konstitúciós relációk
a következ®képpen alakulnak:

~B = µ0µr ~H , (2.5)

~D = ε0εr ~E, (2.6)

~J = σ
(
~E + ~Eb

)
, (2.7)

ahol µ0 a vákuum permeabilitása, értéke 4π · 10−7 Vs
Am

, ε0 a vákuum permittivitása,
értéke közelít®leg 8, 8541 · 10−12 As

Vm
, µr és εr pedig a vizsgált közeg vákuumhoz

viszonyított relatív permeabilitása és permittivitása.
Az egyenletek így teljesek és ellentmondásmentesek. Integrális alakjuk �zikailag

szemléletes, de a numerikus számítások során ebben a formában alkalmazni ®ket
nehéz, körülményes. Az egyenletek átírhatók di�erenciális alakba a Stokes-tétel:∮

l

~v · d~l =

∫
A

∇× ~v · d ~A, (2.8)
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és a Gauss-Osztrogradszkij-tétel segítségével [5]:∮
A

~v · d ~A =

∫
V

∇ · ~v dV, (2.9)

ahol ∇ az úgynevezett nabla vektoroperátor, mely segítségével egy ~v (~r, t) =
~exvx(t) + ~eyvy(t) + ~ezvz(t) alakban felírható vektor rotációja és divergenciája kife-
jezhet® Descartes-féle koordináta-rendszerben:

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 , (2.10)

∇× ~v = rot (~v) =

∣∣∣∣∣∣
~ex ~ey ~ez
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣ = ~ex

(
∂vz
∂y
− ∂vy

∂z

)
−

− ~ey
(
∂vz
∂x
− ∂vx

∂z

)
+ ~ez

(
∂vy
∂x
− ∂vx

∂y

)
,

(2.11)

∇ · ~v = div (~v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

. (2.12)

A kifejezések alapján belátható, hogy a rotáció alkalmazása vektorból vektort,
míg a divergencia vektoroperátor vektorból skalárt eredményez.

A Maxwell-egyenletek di�erenciális alakja az eddigieket felhasználva:

∇× ~H = ~J +
∂ ~D

∂t
, (2.13)

∇× ~E = −∂
~B

∂t
, (2.14)

∇ · ~B = 0, (2.15)

∇ · ~D = ρ. (2.16)

Az összefüggésekben ~H a mágneses térer®sséget jelöli, dimenziója A
m
, ~J az áram-

s¶r¶ség, dimenziója A
m2 , ~D az elektromos eltolás, dimenziója C

m2 , ~E az elektromos
térer®sség, dimenziója V

m
, ~B a mágneses indukció, dimenziója Tesla, ρ a töltéss¶r¶-

ség, dimenziója C
m3 .

2.2. Áttérés a frekvenciatartományba

A Maxwell-egyenletek id®tartománybeli di�erenciális alakjaiból levezetett összefüg-
gések numerikus kezelése a deriváltak miatt sokszor igen bonyolult feladat, melyekre
bár léteznek konvergens technikák, azok stabilitása sokszor nehezen biztosítható [6].
Rádiófrekvenciás problémák vizsgálata esetén az egyenletek stacionárius közelítése
(∂/∂t ≈ 0) nem alkalmazható, így a feladat komplexitása tovább növekszik. Az

6
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egyenleteket célszer¶ tehát a frekvenciatartományban vizsgálni, megoldani, mely-
hez az áttérést a Fourier-transzformáció biztosítja [7]. De�níció szerint egy x(t)
folytonos id®függvény Fourier-transzformáltja az

X(jω) = F{x(t)} =

∞∫
−∞

x(t) · e−jωt dt (2.17)

összefüggés segítségével határozható meg. A frekvenciatartományba való áttérés
legnagyobb el®nye, hogy az id® szerinti deriválás a függvény változójával, tehát
jω-val történ® szorzássá egyszer¶s®dik. Értelemszer¶en az n-szeres id® szerinti de-
riválás (jω)n-el történ® szorzással lesz ekvivalens. Ez könnyen belátható az inverz-
transzformáció de�níciójának felhasználásával, amely az

x(t) = F−1{X(jω)} =
1√
2π

∞∫
−∞

X(jω) · ejωt dω (2.18)

összefüggéssel de�niálható, melynek segítségével a frekvenciatartományban történ®
deriválás matematikai igazolása:

∂x(t)

∂t
=

∂

∂t
F−1{X(jω)} =

∂

∂t

 1√
2π

∞∫
−∞

X(jω) · ejωt dω

 =

1√
2π

∞∫
−∞

X(jω) · ∂ejωt

∂t
dω =

1√
2π

∞∫
−∞

(jωX(jω)) · ejωt dω = F−1{jωX(jω)}.

(2.19)

Ezek alapján a Maxwell-egyenletek di�erenciális alakjai a frekvenciatartományban
a következ®képpen alakulnak:

∇× ~H = ~J + jω ~D, (2.20)

∇× ~E = −jω ~B, (2.21)

∇ · ~B = 0, (2.22)

∇ · ~D = ρ. (2.23)

A frekvenciatartománybeli analízis során mindig szem el®tt kell tartani, hogy az
inverz-transzformáció során el®állított id®függvény kizárólag stacionárius kompo-
nensb®l áll, a tranziens összetev®t nem tartalmazza. Másképpen fogalmazva: a
megoldás során elveszítjük a vizsgált rendszer szabad válaszát. A szimulációs modell
megalkotása és az alkalmazott számítási módszer kiválasztása során mindig �gyelem-
be kell venni, hogy lehetséges-e eltekinteni a bekapcsolási jelenségek vizsgálatától.
Amennyiben a tranziens komponens elvesztése nem nyújt teljeskör¶ vizsgálódásra
lehet®séget, úgy a frekvenciatartománybeli analízis alkalmazása kerülend®. Általá-
nosan elmondható, hogy a rádiófrekvenciás-sugárzási jelenségek vizsgálata során a
hosszútávú viselkedés a fontos, ezért a tranziens komponens elhagyása nem jelent
problémát.
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3. fejezet

Sugárzási összefüggések

Ebben a fejezetben részletesen ismertetem a Maxwell-egyenletekb®l levezethet® su-
gárzási összefüggéseket, melyek segítségével a tér bármely pontjában meghatároz-
ható az elektromos és mágneses térer®sség komplex csúcsértéke. Az összefüggések
általános alakjain túl kitérek azok speciális, Descartes-féle koordináta-rendszerben
értelmezett formáira, valamint a vektorpotenciál és a Green-függvények meghatáro-
zásának módjára is kétdimenziós és háromdimenziós probléma esetén.

3.1. Az elektromos és mágneses térer®sség formulái

Az elektromos térer®sségre vonatkozó összefüggés meghatározható (2.21) rotációjá-
nak képzésével, továbbá (2.5) felhasználásával:

∇×∇× ~E = −jωµ∇× ~H . (3.1)

Behelyettesítve az Ampére-féle gerjesztési törvényt (2.20) és az eltolásvektorra vo-
natkozó konstitúciós relációt (2.6) a

∇×∇× ~E = −jωµ
(
~J + jωε~E

)
= −jωµ ~J + ω2µε~E (3.2)

összefüggés adódik, így küszöbölve ki a tér mágneses tulajdonságaira jellemz®
mennyiségeket. Felhasználva a

∇×∇× ~v = ∇ (∇ · ~v)−∆~v, ∀~v (~r, t) (3.3)

vektoranalitikai összefüggést, bevezetve továbbá k = ω
√
µε = 2π

λ
hullámszám fogal-

mát
∇
(
∇ · ~E

)
−∆~E − k2 ~E = −jωµ ~J (3.4)

adódik [9], ahol ∆ az úgynevezett Laplace-operátor, alkamazása skalár- és vektor-
függvény esetén a

∆ϕ (~r, t) =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
, ∆~v (~r, t) =

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
~ex+

+

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
~ey +

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
~ez

(3.5)

8
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összefüggéseket eredményezi, mely leképzés skalár-skalár és vektor-vektor típusú [5].
Az egyenletet árendezve, beszorozva mínusz eggyel, valamint kifejezve és behelyet-
tesítve az elektromos térer®sség divergenciáját az elektrosztatika Gauss-törvényének
segítségével

∆~E + k2 ~E = jωµ ~J +∇ρ
ε

(3.6)

adódik. A ρ töltéss¶r¶ség kifejezhet® a folytonossági egyenlet [4] frekvenciatarto-
mánybeli alakja alapján az árams¶r¶ség divergenciájával a

∇ · ~J = −jωρ → ρ = − 1

jω
∇ · ~J (3.7)

összefüggéssel, mely segítségével

∆~E + k2 ~E = jωµ ~J − 1

jωε
∇
(
∇ · ~J

)
(3.8)

írható fel. Az egyenlet jobb oldalán kiemelve jωµ-t adódik az elektromos térer®sségre
vonatkozó di�erenciálegyenlet végs® alakja:

∆~E + k2 ~E = jωµ

[
~J +

1

k2
∇
(
∇ · ~J

)]
. (3.9)

A fenti összefüggés matematikai szempontból egy inhomogén Helmholtz-egyenlet,
melynek bal oldalán az ismeretlen vektorfüggvény az elektromos térer®sség, a jobb
oldalon pedig az inhomogenitást okozó gerjesztés található, amely a formulában tel-
jes egészében az árams¶r¶séggel került kifejezése. A gerjesztés általános esetben
két komponensb®l áll. Az els® tag (jωµ ~J) �zikai tartalma, hogy az áram id®beli
változása elektromos teret kelt. A második tag a tértöltések hely szerinti deriváltját,
gradiensét tartalmazza, melynek értelmében a töltések jelenléte a vizsgált problé-
matartományon belül szintén elektromos teret gerjeszt.

A mágneses térer®sség kifejezésére alkalmas Helmholtz-egyenlet az itt bemuta-
tottakkal analóg módon levezethet® [8]. Ezúttal csak a végs® összefüggést közlöm,
tekintettel arra, hogy a gyakorlati jelent®sége munkám során igen csekély:

∆ ~H + k2 ~H = jωε

[
~M +

1

k2
∇
(
∇ · ~M

)]
. (3.10)

Tovább bonyolítja a kérdést, hogy a fenti összefüggésben szerepl® ~M az úgynevezett
mágneses áram, amely �zikailag nem realizálható, pusztán matematikai absztrakció.
A Helmholtz-egyenletek megoldásával kapcsolatos szakmai irodalom igen széles és
sokszín¶ [10�12], az ilyen típusú egyenletek kezelésére sokféle lehetséges megoldást
ismerünk. Dolgozatomban a momentumok módszeréhez szorosan kapcsolódó Green-
függvényekkel történ® megoldást fogom bemutatni és alkalmazni.

3.2. Megoldás a Green-függvények alkalmazásával

A megoldás során a Maxwell-egyenletek linearitásának köszönhet®en feltételezhet-
jük, hogy ~J árams¶r¶ség elemi pontforrások szuperpozíciója egy tetsz®leges V térfo-
gatban elosztva. A könnyebb megértés érdekében tekintsük a Helmholtz-operátort

9
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(∆ + k2) egy általános rendszeroperátornak. Az egyenlet jobb oldalán reprezen-
tált gerjesztésre a Helmholtz-operátorral leírható rendszer a tárgyalt egyenletnek
megfelel® választ ad. A linearitás miatt amennyiben ismert egy pontforrásra (in�-
nitezimális gerjesztés) adott válasz, úgy a kiindulási probléma is megoldható ezen
válasz térfogatra történ® integrálásával [8]. Vizsgáljuk meg (3.9) egyetlen (~ex) irá-
nyú komponensét:

∆Ex + k2Ex = jωµ

(
Jx +

1

k2

∂

∂x
∇ · ~J

)
, (3.11)

valamint vizsgáljuk meg a Helmholtz-operátorral leírható rendszer impulzusvála-
szát [13], amely egy olyan G

(
~r,~r′

)
skalár-vektor függvény, amely kielégíti a skalár

Helmholtz-egyenletet:

∆G
(
~r,~r′

)
+ k2G

(
~r,~r′

)
= −δ

(
~r,~r′

)
. (3.12)

Az itt de�niált G
(
~r,~r′

)
függvényt Green-függvénynek nevezzük [8, 9, 26] és a

Helmholtz-operátor impulzusválaszának tekintjük. A rendszerelmélet értelmében
ha ismert az impulzusválasz, úgy a rendszer válasza tetsz®leges gerjesztésre meg-
határozható a konvolúciós integrál segítségével, amit ezúttal nem id®ben, hanem
térben kell elvégezni. A Green-függvény segítségével tehát az elektromos térer®sség-
re felírható konvolúció:

Ex (~r) = −jωµ
∫
V

G
(
~r,~r′

) [
Jx +

1

k2

∂

∂x
∇′ · ~J

(
~r′
)]

d~r′, (3.13)

amely teljes, vektoriális alakban az

y

z

x

o

V

r'

r

r-r'

P y ,z ,xv v v v( )

P y ,z ,xf f f f( )

3.1. ábra. Általános vizsgálati koordináta-rendszer
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~E (~r) = −jωµ
∫
V

G
(
~r,~r′

) [
~J
(
~r′
)

+
1

k2
∇∇′ · ~J

(
~r′
)]
· d~r′ (3.14)

formulával írható le. Az eddigiekhez teljesen hasonló módon felírható a mágneses
térer®sség helyfüggése is:

~H (~r) = −jωε
∫
V

G
(
~r,~r′

) [
~M
(
~r′
)

+
1

k2
∇∇′ · ~M

(
~r′
)]
· d~r′. (3.15)

Dolgozatomban a 3.1. ábra jelölésrendszerét alkalmazom, melynek értelmében a
Pf (yf , zf , xf ) forráspontba mutat az ~r′ vektor, mely az integrálás futóváltozója, a
Pv(yv, zv, xv) vizsgálati pontot pedig az ~r vektor jelöli ki.

3.3. A Green-függvények meghatározása

Munkám során két típusú Green-függvényt alkalmaztam: az általános, háromkoor-
dinátás, valamint a kétdimenziós változatot, így ebben a szakaszban ennek a két
függvénytípusnak a bemutatására szorítkozom. A Green-függvény meghatározása
során (3.12) megoldását keressük. Mivel ez egy inhomogén parciális di�erenciál-
egyenlet, az összetev®kre bontás módszerével [5] viszonylag könnyen célt tudunk
érni: els®ként tehát a homogén általános megoldást keressük meg, majd a perem-
feltételek érvényesítésével meghatározható az inhomogén partikuláris megoldás. A
megoldás során �gyelembe vehetjük, hogy G

(
~r,~r′

)
a Helmholtz-egyenlet megoldása

egyetlen pontforrás esetén, ezért a függvény gömbszimmetrikus, elegend® a sugár-
irányú összetev® vizsgálata [8]. Így a Laplace-operátor kifejtése a

∆G
(
~r,~r′

)
=

1

r2

d

dr

(
r2dG

dr

)
=

1

r2

(
2r
dG

dr
+ r2d

2G

dr2

)
=
d2G

dr2
+

2

r

dG

dr
(3.16)

alakban írható fel. Ismét a szorzatderiválás szabályát alkalmazva beláthatható, hogy

1

r

d2 (rG)

dr2
=

1

r

d

dr

(
r
dG

dr
+G

)
=

1

r

(
dG

dr
+ r

d2G

dr2
+
dG

dr

)
=
d2G

dr2
+

2

r

dG

dr
, (3.17)

így az r > 0 feltétel kikötése esetén a homogén Helmholtz-egyenletbe rG helyettesít-
het®, a Laplace-operátor pedig r-irányú kétszeres deriválássá egyszer¶södik, tehát
igaz lesz a

d2 (rG)

dr2
+ k2 (rG) = 0 (3.18)

egyenlet [8]. Matematikai úton belátható [5], hogy az ilyen típusú egyenletek meg-
oldását a

G = A
e−jkr

r
+B

ejkr

r
(3.19)

alakban kereshetjük, ahol a negatív exponens a haladó, a pozitív exponens pedig a
re�ektált hullámot reprezentálja, ebben az esetben viszont tudjuk, hogy a megoldás
csak a haladó komponenst tartalmazza (B = 0), ezért elegend® az els® tag vizsgálata.
Az összefüggésben r =

∣∣~r − ~r′∣∣, tehát az összefüggés a forráspont és a vizsálgati pont
közötti vektor hosszának függvénye.
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Az inhomogén partikuláris megoldás meghatározásához �gyelembe kell venni a
peremfeltételt, mely szerint a haladó hullám elt¶nik, ha a sugárirányú komponenssel
tartunk a végtelenbe:

lim
r→∞

G
(
~r,~r′

)
= 0. (3.20)

Ezt a feltételt a paraméteres megoldás formailag automatikusan teljesíti, így az r = 0
pont vizsgálatával tudjuk meghatározni az ismeretlen A konstanst. Ehhez (3.12)
integrálására van szükség egy térfogatra. Az integrál miatt az összefüggés jobb
oldalán található Dirac-delta automatikusan egységnyi lesz a függvény de�níciója
szerint:

A

∫
V

[
∆

(
e−jkr

r

)
+ k2

(
e−jkr

r

)]
dV = −1. (3.21)

Az összefüggés els® tagja a divergenciatétel (2.9) értelmében átírható az∫
V

∆

(
e−jkr

r

)
dV =

∮
A

∇
(
e−jkr

r

)
· ~̂r dA =

∮
A

∂

∂r

(
e−jkr

r

)
dA (3.22)

alakra, hiszen gömb esetén a sugárirányú egységvektor megegyezik a vizsgált fe-
lület normálisával. Elvégezve a függvény radiális deriválását, valamint �gyelembe
véve, hogy a zárt gömbfelület az A = 4πa2 formulával határozható meg, az integrál
határértéke az origóban (a→ 0):

lim
a→0

(
4πa2

[
e−jkr

−jk r − e
−jkr

r2

]
r=a

)
= lim

a→0

(
4πa2

[
− 1

r2

]
r=a

)
= −4π. (3.23)

Az összefüggés második tagja sugárirányú vonalintegrálra egyszer¶síthet®:

k2

∫
V

e−jkr

r
dV = k24π

a∫
0

r2 e
−jkr

r
dr = k24π

a∫
0

re−jkr dr, (3.24)

ami nullához tart, ha a fels® határt a nullához közelítjük. Így az A konstans és a
keresett Green-függvény már kifejezhet® [14]:

−A · 4π = −1 → A =
1

4π
, G

(
~r,~r′

)
=
e−jkr

4πr
=

e−jk|~r−~r
′|

4π
∣∣~r − ~r′∣∣ . (3.25)

3.2. ábra. A Green-függvény yz-metszetének abszolút értéke és fázisa
(
~r′ = [0, 0]

)
12
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Bár a levezetett háromdimenziós Green-függvény alkalmas kétdimenziós problé-
mák kezelésére is, a vonatkozó szakirodalom [8, 9, 14] külön kezeli a speciális kétdi-
menziós vizsgálatokra alkalmas függvényt, amely a levezetés mell®zésével a

G
(
~ρ, ~ρ′

)
= −j

4
H

(2)
0

(
k
∣∣~ρ− ~ρ′∣∣) (3.26)

formulával írható fel, ahol ~ρ a kétdimenziós helyvekort, H(2)
0 pedig a másodfa-

jú, nulladrend¶ Hankel-függvényt jelöli, mely szoros kapcsolatban áll a Bessel-
függvényekkel [15]. A formula el®nye, hogy beépítetten rendelkezésre áll Matlab [16]
környezetben, hátránya, hogy amennyiben a Green-függvény analitikus deriváltjára
van szükség, úgy annak el®állítása kevésbé célravezet®, ellenben a háromdimenziós,
általános formulával.

3.4. A mágneses vektorpotenciál

Az eddig bemutatott sugárzási összefüggések segítségével a gerjeszt® mennyiségek-
b®l közvetlenül meghatározható az elektromos és mágneses térer®sség a tér bármely
pontjában. Dolgozatom az egyenletek numerikus megvalósítását a kés®bbiek folya-
mán részletezi. A térer®sségek komplex csúcsértéke meghatározható egy közbeikta-
tott mennyiség, a mágneses vektorpotenciál bevezetésének segítségével is. Mivel a
mágneses indukcióvektor divergenciamentes, az bevezethet® az úgynevezett vektor-
potenciál rotációjaként:

~B = ∇× ~A, (3.27)

mert
∇ · (∇× ~v (~r)) = 0, ∀~v (~r) . (3.28)

A Faraday-féle indukciós törvény frekvenciatartománybeli alakjába visszahelyette-
sítve a vektorpotenciál rotációját, majd az egyenletet átrendezve

∇×
(
~E + jω ~A

)
= 0 (3.29)

adódik. Ismert vektoranalitikai azonosság szerint [5] egy skalármez® gradiensének
rotációja mindig zérus, tehát

∇× (−∇Φ) = 0, (3.30)

az elektromos térer®sség felírható a vektorpotenciál és egy tetsz®leges skalárpotenciál
összegeként:

~E = −jω ~A−∇Φ. (3.31)

Véve a ~H = 1
µ
∇ × ~A konstitúciós reláció rotációját, továbbá felhasználva (3.3)

összefüggést az
µ∇× ~H = ∇

(
∇ · ~A

)
−∆ ~A (3.32)

egyenlet írható fel. Felhasználva az Ampére-féle gerjesztési törvényt és az elektromos
eltolásra vonatkozó konstitúciós relációt

µ ~J + jωµε~E = µ ~J + jωµε
(
−jω ~A−∇Φ

)
= ∇

(
∇ · ~A

)
−∆ ~A (3.33)
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adódik, melyet átrendezve felírható a megoldandó egyenlet:

∆ ~A+ k2 ~A = −µ ~J +∇
(
∇ · ~A+ jωµεΦ

)
. (3.34)

A mágneses vektorpotenciál rotációját már de�niáltuk, de a divergenciáját még nem
írtuk el®. Ez tetsz®legesen megtehet®. A Coulomb-mértékkel [17] ellentétben ezúttal
nem zérus, hanem

∇ · ~A = −jωµεΦ (3.35)

választással célszer¶ élni (Lorenz-mérték), hiszen így (3.34) a következ® összefüggésre
egyszer¶södik:

∆ ~A+ k2 ~A = −µ ~J . (3.36)

Ez az ismert inhomogén, vektoriális Helmholtz-egyenlet, megoldása az eddigiekkel
teljesen analóg módon megadható az árams¶r¶ség, tehát az inhomogenitást okozó
általános gerjesztés és a Green-függvény helytartománybeli konvolúciójával:

~A (~r) = µ

∫
V

G
(
~r,~r′

)
~J
(
~r′
)

dV ′. (3.37)

Ez tulajdonképpen három sakláregyenlet: Ax, Ay és Az komponensekre, Descartes-
féle koordináta-rendszert feltételezve. Általánosan kifejezve az elektromos térer®sség
a tér bármely pontjában a vektorpotenciál segítségével az

~E = −jω ~A−∇Φ = −jω ~A− j

ωµε
∇
(
∇ · ~A

)
(3.38)

összefüggés segítségével számítható. A szimulációk során gyakran el®fordul,
hogy a mágneses vektorpotenciál kizárólag z-irányú komponenssel rendelkezik
(~ezAz (x, y, z)), mely esetben a vonatkozó elektromos térer®sség-komponensek ki-
fejtése Descartes-féle koordináta-rendszerben [9]:

Ex = −j 1

ωµε

∂2Az
∂x∂z

, Ey = −j 1

ωµε

∂2Az
∂y∂z

, Ez = −j 1

ωµε

(
∂2

∂z2
+ k2

)
Az. (3.39)

Ezt a módust z-re transzverzális módusnak nevezzük (TMz), mely esetén a kiala-
kuló mágneses mez® z-irányú komponense zérus. Az itt bemutatott két összefüggés
közül minden esetben azt célszer¶ alkalmazni, amelyikkel a lehet® leggyorsabban
és legpontosabban eredményre tudunk jutni. Amennyiben a gerjeszt® árams¶r¶ség
távolterében vizsgáljuk a létrehozott térer®sséget egy geometriai alakzat, például
egy kör vagy gömb mentén, úgy felesleges közbeiktatott potenciálmennyiség meg-
határozása, célszer¶ a diszkrét vizsgálati pontokra a térer®sség értékének közvetlen
meghatározása az ismert gerjesztés felhasználásával. Amennyiben a kisugárzott tér
vizsgálata a cél, úgy numerikus módszerekkel jobban és pontosabban kezelhet® a
vektorpotenciálból történ® származtatás, hiszen ebben az esetben az iránymenti de-
riváltak numerikus el®állítása során biztosan nem adódik a kis változókülönbségb®l
adódó szingularitás.
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4. fejezet

A momentumok módszere

Ebben a fejezetben f®bb vonásait tekintve ismertetem a momentumok módszerének
alkalmazását, hasonlóságait és különbségeit a végeselem-módszerhez képest. Bemu-
tatom a módszer használata során alkalmazható tipikus bázisfüggvényeket, vizsgá-
lati módszereket, azok el®nyeit és hátrányait.

4.1. A probléma általánosítása

A momentumok módszere sokoldalúan alkalmazható numerikus technika parciá-
lis di�erenciálegyenletek megoldására. Felhasználása jellemz®en a frekvenciatar-
tománybeli problémák vizsgálatára terjedt el, de itt érdemes megjegyezni, hogy
alkalmas id®tartománybeli analízisre is [18]. Vizsgáljunk meg egy általánosított
problémát, mely az

S {f} = g (4.1)

alakban írható fel, ahol f az ismeretlen függvény, melyre S {·} lineáris operátor
hat (ez utóbbi tipikusan integrál és/vagy di�erenciáloperátor), g pedig egy ismert
gerjeszt®függvény, �zikai tartalma a vizsgált problémától függ (er®, potenciál, áram,
bees® elektromos térer®sség) [8]. A momentumok módszerének alkalmazása során a
vizsgált problématartományt N darab diszkrét elemre szükséges felbontani (egydi-
menzióban szakaszokra, kétdimenzióban például négyszögekre), majd az ismeretlen
függvényt ugyanennyi súlyozott bázisfüggvény összegeként kell közelíteni:

f ≈
N∑
n=1

anfn, (4.2)

ahol an az n-edik ismeretlen súlyozókonstanst jelenti. Az ismeretlen függvényre
ható operátor linearitása miatt a konstanssal szorzás, az összegzés és az operátor
alkalmazásának sorrendje felcserélhet®, így az eredeti összefüggés a

N∑
n=1

anS {fn} ≈ g (4.3)

alakban írható fel, amely az eredeti egyenlet közelítése, hiszen véges mennyiség¶
súlyozott bázisfüggvényt alkalmazunk. Így a reziduál az

R = g −
N∑
n=1

anS {fn} (4.4)
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összefüggéssel de�niálható. A megoldás során az a cél, hogy a reziduálfüggvényt
a vizsgált problématartományon belül bizonyos feltételek kikötése mellett, súlyo-
zófüggvények felhasználásával nullára csökkentsük. Ezt a módszert általánosan a
súlyozott maradékok elvének nevezzük, melynek a momentumok módszere egy spe-
ciális esete [20].

4.2. A momentum fogalma

A momentumok módszere esetében a súlyozófüggvény mindig polinomfüggvény,
melyb®l számszer¶en annyit kell alkalmazni, ahány bázisfüggvényt értelmeztünk a
vizsgált problématéren belül. De�niáljuk az úgynevezett bels® szorzatot, másnéven
momentumot fm (~r) súlyozófüggvény és fn (~r) bázisfüggvény között a következ®kép-
pen [19]:

〈fm, fn〉 =

∫
fm

fm (~r) fn (~r) · d~r. (4.5)

Ezt felhasználva belátható, hogy az egyes súlyozófüggvények reziduálfüggvénnyel
vett bels® szorzata mindig zérust ad, azaz

〈fm, R〉 = 〈fm, g〉 −
N∑
n=1

an 〈fm,S {fn}〉 = 0. (4.6)

Kifejtve a bels® szorzatokat és átrendezve az egyenletet a

N∑
n=1

an

∫
fm

fm (~r) S {fn (~r)} · d~r =

∫
fm

fm (~r) g (~r) · d~r (4.7)

összefüggés írható fel. Ez az egyenlet egy N × N -es mátrixegyenletet eredményez,
amely általánosan a

Z · a = b (4.8)

alakban adódik, ahol Z az együttható- vagy impedanciamátrix, m-edik sorának n-
nedik eleme a

zmn = 〈fm,S {fn}〉 =

∫
fm

fm (~r) S {fn (~r)} · d~r (4.9)

összefüggéssel határozható meg, a az ismeretleneket tartalmazó, b pedig a gerjesztést
reprezentáló oszlopvektor, melynek elemei általánosan a

bm =

∫
fm

fm (~r) g (~r) · d~r (4.10)

integrállal számíthatók. Az egyenlet jobb oldala a probléma komplexitásától, a
szimmetriától és a gerjesztés típusától függ®en több, külön kezelend® oszlopvektor
szuperpozíciójaként is el®állhat, melyek el®sorban a peremfeltételek kezelésekor bír-
nak kiemelt jelent®séggel.
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4.3. Galerkin-módszer és a pont-illesztés

A súlyozófüggvény megválasztási módjától függ®en a momentumok módszerének
többféle alkalmazási módszere létezik [26]. A legelterjedtebb és egyben legegysze-
r¶bb alkalmazási módszer az úgynevezett pont-illesztéses eljárás. Ennek lényege,
hogy a súlyozófüggvényt Dirac-deltának választjuk, azaz

fm (~r) = δ (~r) . (4.11)

Alkalmazásának legfontosabb el®nye, hogy a súlyozófüggvény és a bázisfüggvény
között értelmezett speciális bels® szorzat kiértékelése során csupán az fn (~r)-re ható
S {·} operátort szükséges numerikusan kiértékelni:

zmn =

∫
fm

δ (~r) S {fn (~r)} · d~r = S {fn (~r)} . (4.12)

A pont-illesztéses eljárás hátránya, hogy a peremfeltételek kizárólag a diszkrét vizs-
gálati pontokon érvényesíthet®k, a vizsgálati tartomány többi részén nem, így azo-
kon akár más értékeket is felvehetnek. Ett®l függetlenül a pont-illesztéses eljárás az
esetek többségében kielégít® eredményt ad [8, 20].

A másik elterjedt módszer az úgynevezett Galerkin-módszer, mely esetén a fel-
használt súlyozófüggvények megegyeznek az alkalmazott bázisfüggvényekkel. Ebben
az esetben az impedanciamátrix elemeinek meghatározásához az S {·} operátor nu-
merikus kiértékelésén túl a súlyozófüggvény szerinti integrál kiszámítására is szükség
van.

4.4. Bázisfüggvények

A momentumok módszerének alkalmazása során használt bázisfüggvények két alap-
vet® csoportba sorolhatók:

• a teljes vizsgálati tartományt lefed®, valamint

• annak csak egy részét érint® lokális bázisfüggvénykr®l.

A teljes tartományt lefed® bázisfüggvénnyel dolgozatom nem foglalkozik, mivel al-
kalmazása kevésbé elterjedt. Lokális bázisfüggvényre a legegyszer¶bb példa a 4.1.
ábrán látható úgynevezett ugrásfüggvényes megvalósítás. A lokális ugrásfüggvényt
matematikailag a következ®képpen lehet de�niálni:

fn(x) =

{
1, ha xn ≤ x ≤ xn+1,

0, minden más esetben.
(4.13)

Az ugrásfüggvény alkalmazásának el®nye, hogy egy-egy elem felett értelmezve kons-
tans, így az impedanciamátrix elemeinek numerikus kiértékelését jelent®sen leegysze-
r¶síti. Hátránya, hogy a függvény x-szerinti deriválása az elemek végein Dirac-deltát
eredményez, így ez a típusú bázisfüggvény nem alkalmazható abban az esetben, ha
S {·} operátor tartalmaz x-irány szerinti deriváltat.
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xx1 x2 x3 x4 x5 xN-2 xN-1 xN

a f (x)1 1

a f (x)2 2

a f (x)3 3

a f (x)4 4

a f (x)N-2 N-2

a f (x)N-1 N-1

4.1. ábra. Az ugrás bázisfüggvény

xx1 x2 x3 x4 x5 xN-2 xN-1 xN

a f (x)1 1
a f (x)2 2

a f (x)3 3

a f (x)4 4

a f (x)N-2 N-2

xx1 x2 x3 x4 x5 xN-2 xN-1 xN

a f (x)1 1

a f (x)2 2

a f (x)3 3

a f (x)4 4

a f (x)N N

a f (x)N-1 N-1

a f (x)N-2 N-2

a f (x)5 5

4.2. ábra. A háromszög-típusú bázisfüggvény

Az x-szerinti deriváltak kezelését például a 4.2. ábrán látható háromszög-típusú
bázisfüggvények segítségével lehet kiküszöbölni. Ennek két típusa létezik: a fels®
ábrán látható megoldás explicit módon kikényszeríti, hogy a diszkretizált probléma-
tartomány végein a keresett függvény értéke zérus legyen. Ez a típusú bázisfüggvény
tehát csak ebben az esetben alkalmazható. Így az N darab pont segítségével N − 1
szakaszra diszkretizált tartomány felett N−2 bázisfüggvény értelmezhet®, melyeket
az

fn(x) =

{
x−xn

xn+1−xn , ha xn ≤ x ≤ xn+1,
x−xn+2

xn+1−xn+2
, ha xn+1 ≤ x ≤ xn+2

(4.14)

lehet meghatározni. Amennyiben nem feltételezhetjük, hogy a megoldás a problé-
matér két peremén zérus, úgy az alsó ábrán bemutatott bázisfüggvény-elrendezést
szükséges alkalmazni. Ebben az esetben N darab bázisfüggvényt kell meghatározni,
a következ®képpen:

fn(x) =

{
x−xn−1

xn−xn−1
, ha xn−1 ≤ x ≤ xn,

x−xn+1

xn−xn+1
, ha xn ≤ x ≤ xn+1.

(4.15)
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Antennák szimulációja során gyakran alkalmazott lokális bázisfüggvény az úgyne-
vezett szinuszos bázisfüggvény, hiszen az antennák árameloszlása szinuszos, így a
megoldás a bázisfüggvények segítségével kevesebb ismeretlen segítségével, pontosab-
ban közelíthet®. Mivel a huzalantennák árameloszlása az antenna végein zérusnak
adódik, így felesleges a lineáris, háromszög-típusúbázisfüggvények esetén bemuta-
tott két altípus kezelése, az ismeretlen konstans a problématér két végén zérusnak
választható.

4.5. A momentumok módszere és a végeselem-
módszer

A momentumok módszerének tárgyalása során érdemes azt a széleskörben elter-
jedt numerikus módszerek között kontextusba helyezni, így mutatva be a módszer
sajátosságait, valamint a fontosabb eltéréseket egyéb numerikus technikák vonatko-
zásában. Mivel alapszakos tanulmányaim során foglalkoztam a végeselem-módszer
alkalmazásával az alacsonyfrekvenciás téranalízis tekintetében [17], így kézenfekv®,
hogy a momentumok módszerét ezzel a technikával vessem össze.

Mind a momentumok módszere, mind a végeselem-módszer numerikus techni-
ka parciális di�erenciálegyenletek közelít® megoldására. Alkalmazásuk elve abban
áll, hogy nem törekszenek a keresett függvény pontos meghatározására és a pe-
remfeltételek tökéletes kielégítésére, hanem az eredeti egyenlet egy tetsz®leges N
formafüggvénnyel vett bels® szorzatát teszik egyenl®vé nullával [22]:

〈N,PDE〉 =

∫
Ω

N · PDE dΩ = 0. (4.16)

A bels® szorzat alkalmazásától függ®en két, egymástól jelent®sen eltér® numerikus
technikát lehet megkülönböztetni. Amennyiben a bels® szorzat de�níciós integrálja
az eredeti formájában kerül meghatározásra, úgy a direkt alakhoz jutunk. Így a
parciális di�erenciálegyenletben szerepl® deriválások rendje változatlan marad. A
momentumok módszere ilyen, a direkt alakot kezel® numerikus technika. Ha a bels®
szorzatban a szorzatfüggvényre vonatkozó integrálási tétel kerül alkalmazásra, úgy
a deriválás rendje eggyel csökken, és az úgynevezett gyenge alakhoz jutunk. A
végeselem-módszer ilyen, a gyenge alakot kezel® numerikus technika.

Direkt alak

A momentumok módszere

Gyenge alak

Végeselem-módszer

Eredeti belső szorzat

Átalakított belső szorzat

4.3. ábra. A direkt alak és a gyenge alak

A leképzést tekintve mind a momentumok módszerének, mind a végeselem-
módszer alkalmazása során az eredeti összefüggést egy lineáris algebrai egyenlet-
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rendszerré képezzük le, melynek általános struktúrája megegyez®: egy négyzetes
mátrix kerül jobbról megszorzásra az ismeretleneket tartalmazó oszlopvektorral az
egyenlet bal oldalán, míg a jobb oldalon a peremfeltételeket, valamint id®tartomány-
beli analízis során az el®z® id®lépés értékeit tartalmazó oszlopvektor található:

Z · a = b → a = Z−1 · b. (4.17)

Az egyenletrendszer megoldásához szükség van a négyzetes mátrix inverzének el®ál-
lításához, amely a futási id® kérdését tekintve mindkét technika esetében kulcsfon-
tosságú kérdés. Jelent®s az eltérés a két módszer alkalmazása között a felépítend®
egyenlet bal oldalán található mátrixának jellegzetességeit tekintve is. A végeselem-
módszer során az együtthatómátrix minden esetben ritka mátrix (angol nevén spar-

se matrix ), mert az egyes csomópontok kizárólag önmagukkal, valamint azokkal a
csomópontokkal állnak kölcsönhatásban, melyekkel egy elemet alkotnak. A momen-
tumok módszerének alkalmazása során − a Green-függvény miatt − minden elem
kölcsönhatásban áll minden elemmel, így a felépítend® impedanciamátrix minden
eleme nullától különböz® érték¶ lesz, ahogyan az a 4.4. ábrán is látható.
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4.4. ábra. A teljes impedanciamátrix és a ritka mátrix

Lényeges hasonlóság, hogy mindkét technika esetén az ismeretlen függvény a
diszkretizált problématartomány felett kerül meghatározásra az elemeken értelme-
zett skalár- vagy vektor-függvények súlyozott szuperpozíciójaként [21]. Ezek számá-
ban eltérés adódhat: végeselem-módszer esetén − csomóponti formafüggvényeket
alkalmazva − annyi ismeretlennel szükséges számolni, ahány csomópont létrejött a
diszkretizálás során, míg a momentumok módszerének használata esetén az isme-
retlenek száma függ az alkalmazott bázisfüggvény típusától: lokális ugrásfüggvényt
alkalmazva ez az érték az elemszámmal lesz egyenl®.

Rádiófrekvenciás problémák végeselem-módszerrel történ® vizsgálata során min-
den esetben le kell zárni a teret, hogy számolható problémát kapjunk. Erre a
momentumok módszere esetén nincsen szükség: a keresett térer®sség-érték a tér
bármely pontjában egyértelm¶en és függetlenül meghatározható, a tér lezárását a
Green-függvények alkalmazása biztosítja. Bár a momenumok módszerével a keresett
függvény kevesebb ismeretlen felvételével is pontosabban meghatározható, a szimu-
láció futási ideje nem csökken a végeselem-módszerhez képest, hiszen a teljes mátrix
kezelése, invertálása id®igényesebb folyamat, mint a a ritka mátrixé. Célszer¶ te-
hát alaposan megfontolni, hogy melyik módszer alkalamzása vezet hatékonyabban
és gyorsabban célra.
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5. fejezet

Stacionárius problémák vizsgálata

Ebben a fejezetben bemutatom az elektrosztatika legfontosabb összefüggéseit, alap-
egyenletének levezetését, a Laplace-Poisson-egyenletet, valamint annak általános
megoldását. Ismertetem a Laplace-Poisson-egyenlet megoldásának módját a mo-
mentumok módszerének segítségével egydimenziós és kétdimenziós geometria esetén,
részletesen kitérve az egyenlet numerikus kezelésére, a felmerül® integrálok megha-
tározásának módjára. Bemutatom a szimuláció lépéseit, kiértékelem a kapott ered-
ményeket.

5.1. Az elektrosztatika általános alapegyenlete

Elektrosztatikus teret nyugvó töltések hozhatnak létre. A tér id®ben nem változik
(∂/∂t = 0), valamint áram sem folyik

(
~J = 0

)
. Ezek alapján a teret lineáris, izotrop

közegben a következ® speci�kus Maxwell-egyenletek írják le:

∇× ~E = 0, (5.1)

∇ · ~D = ρ, (5.2)

~D = ε~E. (5.3)

Mivel egy skalármez® gradiensének rotációja minden esetben nulla, az elektromos
térer®sségvektor bevezethet® egy skalármez® negatív gradienseként (5.1.) értelmé-
ben:

∇×∇ϕ = 0, ∀ϕ (~r, r) → ~E = −∇ϕ. (5.4)

Behelyettesítve a ~D és ~E között kapcsolatot teremt® konstitúciós relációba, valamint
behelyettesítve (5.2.) összefüggésbe adódik az elektrosztatika általános egyenlete:

−∇ · ε∇ϕ = ρ. (5.5)

A vizsgált probléma speciális esete, amikor a permittivitás a vizsgált tartományon
belül konstans, így kiemelhet® a di�erenciáloperátorok közül. Ez az úgynevezett
Laplace-Poisson-egyenlet:

∇ · ∇ϕ = −ρ
ε
→ ∆ϕ = −ρ

ε
. (5.6)
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5.2. A Laplace-Poisson-egyenlet megoldása

Az elektrosztatika általános problémáját az 5.1. ábra mutatja. A ρ töltéss¶r¶ség egy
V térfogatban helyezkedik el, amelynek egy in�nitezimálisan kicsi dV ′ térfogatré-
szére ~r′ vektor mutat. A ϕ skalárpotenciál értékét az ~r vektor által kijelölt pontban
keressük. A dV ′ térfogatban található konstans ponttöltés értéke a töltéss¶r¶séggel

V

O

r´

r-r´

r

φ( )r

ρ

5.1. ábra. Általános elektrosztatika-probléma

kifejezve:
dQ′ = ρ

(
~r′
)

dV ′. (5.7)

Ez a ponttöltés a kijelölt pontban

dϕ′ =
dQ′

4πε
∣∣~r − ~r′∣∣ =

ρ
(
~r′
)

dV ′

4πε
∣∣~r − ~r′∣∣ (5.8)

potenciáljárulékot hoz létre. Az ebben a pontban létrejöv® teljes potenciál megha-
tározásához az ~r′ vektor teljes V térfogaton történ® végigpásztázására van szükség.
Ennek értelmében a fenti összefüggés járulékösszege egy integrált eredményez, amely
egyben a Laplace-Poisson-egyenlet megoldásának általános alakja is:

ϕ (~r) =
1

4πε

∫
V

ρ
(
~r′
)∣∣~r − ~r′∣∣dV ′. (5.9)

5.3. Egydimenziós probléma: töltött huzal

Munkám során megvizsgáltam egy olyan, az x-tengely mentén elhelyezett, ismert
ϕ0 potenciállal rendelkez®, vékony, vezet® anyagból készült huzal töltéseloszlását,
amely L hosszúsággal és a sugárral rendelkezik. A vizsgálat során feltételeztem,
hogy a huzal sugara jelent®sen kisebb annak hosszánál (a << L). A probléma geo-
metriája az 5.2. ábrán látható. A Laplace-Poisson-egyenlet általános megoldásának
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x
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5.2. ábra. A vizsgált geometriai elrendezés

értelmében a huzal potenciálja a

ϕ0 =
1

4πε

L∫
0

q (x′)∣∣~r − ~r′∣∣ dx′ (5.10)

összefüggés segítségével számítható. Ha ismert ϕ0 potenciál, és a keresett függ-
vény a q (x′) potenciáleloszlás, akkor a fenti összefüggést integrálegyenletként kell
kezelni, melyet numerikusan meg lehet oldani. Ehhez a keresett függvényt diszkrét
mennyiség¶ súlyozott bázisfüggvény szuperpozíciójaként szükséges felírni, azaz

q (x′) =
N∑
n=1

anfn (x′) , (5.11)

ahol a vizsgált problématér (tehát a huzalt reprezentáló szakaszt) N darab szeg-
mensre került felbontásra. A szimulációt lokális ugrás-bázisfüggvények segítségével
végeztem el, fn (x′) tehát olyan függvény, amely ∆x hosszúságú elemen konstans 1,
értéke minden egyéb helyen nulla. Behelyettesítve (5.10.) egyenletbe

ϕ0 =

L∫
0

N∑
n=1

anfn (x′)
1

4πε
∣∣~r − ~r′∣∣ dx′ (5.12)

írható fel. Ezt az összefüggést célszer¶ úgy átalakítani, hogy a teljes huzalhosszra ér-
telmezett integrált az egyes diszkrét elemek felett értelmezett integrálok összegeként
kerüljenek kifejtésre. Ezek a részintervallumok ∆x hosszúságúak, így az integrálok
(n − 1)∆x és n∆x között értelmezettek. Figyelembe véve, hogy a bázisfüggvény
az integrál tartói között konstans 1 érték¶, ezért az integrandust érdemeben nem
befolyásolja, a következ® összefüggés írható fel:

ϕ0 =
1

4πε

N∑
n=1

an

n∆x∫
(n−1)∆x

1∣∣~r − ~r′∣∣ dx′, (5.13)

ahol
∣∣~r − ~r′∣∣ =

√
(x− x′)2 + a2, mivel a megoldás során a forráspontokat a huzal

tengelyén, a vizsgálati pontokat pedig a huzal felületén kell rögzíteni. Ebben az eset-
ben az integrandus nem fog szingularitással rendelkezni, mert a nevez® semmilyen
x és x′ értékére sem lesz zérus. Így egyetlen egyenlet áll rendelkezésünkre, melyben
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N darab ismeretlen található:

4πεϕ0 = a0

∆x∫
0

1√
(x− x′)2 + a2

dx′ + a1

2∆x∫
∆x

1√
(x− x′)2 + a2

dx′ + ...

+ aN−1

(N−1)∆x∫
(N−2)∆x

1√
(x− x′)2 + a2

dx′ + aN

N∆x∫
(N−1)∆x

1√
(x− x′)2 + a2

dx′.

(5.14)

A probléma akkor válik megoldhatóvá, hogyha N ismeretlen és N darab egyenlet áll
rendelkezésre, így N darab forráspontot szükséges megválasztani a huzal felületén.
Ebb®l egy lineáris algebrai egyenletrendszer adódik:

Z · a = b, (5.15)

ahol

Z =



∆x∫
0

1√
(x1−x′)2+a2

dx′
2∆x∫
∆x

1√
(x1−x′)2+a2

dx′ · · ·
N∆x∫

(N−1)∆x

1√
(x1−x′)2+a2

dx′

∆x∫
0

1√
(x2−x′)2+a2

dx′
2∆x∫
∆x

1√
(x2−x′)2+a2

dx′ · · ·
N∆x∫

(N−1)∆x

1√
(x2−x′)2+a2

dx′

...
... . . . ...

∆x∫
0

1√
(xN−x′)2+a2

dx′
2∆x∫
∆x

1√
(xN−x′)2+a2

dx′ · · ·
N∆x∫

(N−1)∆x

1√
(xN−x′)2+a2

dx′


,

(5.16)

a =


a1

a2
...
aN

 és b =


4πεϕ0

4πεϕ0
...

4πεϕ0

 . (5.17)

Az impedanciamátrix minden eleme nullától különböz®, valós érték. A probléma
megoldása, a vektor elemeinek meghatározása Z invertálásával lehetséges:

a = Z−1 · b. (5.18)

5.3.1. Egydimenziós Gauss-kvadratúra

Az impedanciamátrix elemeinek meghatározásához a diszkretizált problématér fe-
letti vonalintegrálok numerikus meghatározására van szükség. Erre széleskör¶
eszközkészlet áll rendelkezésre, melyb®l a legelterjedtebb az egydimenziós Gauss-
kvadratúra [23]. A Gauss-típusú kvadratúraképletek középérték-képltek:

b∫
a

f (x) dx ≈
k∑
ν=1

cνyν , yν = f (xg,ν) . (5.19)

A formulában cν a Gauss-kvadratúra súlyait, xg,ν a pontjait, yν pedig az integrandus
xg,ν pontban értelmezett helyettesítési értékét jelöli, cν , xg,ν és k szabadon megvá-
lasztható paraméterek, értéküket úgy célszer¶ megválasztani, hogy a közelítés minél
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pontosabb legyen. Általános szabály, hogy k darab pont és súly felhasználásával
legfeljebb (k−1)-edfokú polinom közelíthet®. A kvadratúraképlet tetsz®leges számú
súlya és pontja [24] alapján meghatározható és felhasználható. Munkám során az
impedanciamátrix elemeinek integrálformuláját harminc súllyal és ponttal közelítet-
tem, amely kielégít® eredményt adott.

Mivel a kiértékelend® formula nem a [−1; 1] intervallumon kerül értelmezésre,
hanem egy diszkrét [(n− 1)∆x;n∆x] szakaszelem felett, [5] alapján az

b∫
a

f (x) dx ≈ b− a
2

k∑
ν=1

cνf

(
b− a

2
xg,ν +

a+ b

2

)
(5.20)

transzformációval kell élni. Így az integrál kiértékeléséhez használt összefüggés:

n∆x∫
(n−1)∆x

1√
(x− x′)2 + a2

dx′ ≈ ∆x

2

k∑
ν=1

cν
1√[

x−
(

∆x
2
xg,ν + ∆x (2n− 1)

)]2
+ a2

.

(5.21)
Kis elemszám mellett a Gauss-kvadratúrán kívül hatékonyan alkalmazható még

a trapezoid-szabály szerinti numerikus integrálási technika [5] is. Ebben az esetben
az integrálás határai által meghatározott szakaszt további diszkrét elemekre kell
bontani. A módszer lényege, hogy a keresett függvény értékét x0 sz¶k [x0;x0 + dx]
környezetében els®fokú polinommal közelítjük. Ezen a szakaszon a keresett görbe
alatti terület egy trapéz területével lesz egyenl®, tehát

x0+dx∫
x0

f (x) dx ≈ f (x0) + f (x0 + dx)

2
dx (5.22)

írható fel. Ezek alapján az impedanciamátrix elemeinek meghatározásához az

n∆x∫
(n−1)∆x

1√
(x− x′)2 + a2

dx ≈

≈
m∑
k=2

0.5

 1√
(x− x′[k])2 + a2

+
1√

(x− x′[k − 1])2 + a2

 (x′[k]− x′[k − 1])

(5.23)

összefüggés alkalmazható, ahol m az egyes szakaszokon felvett diszkrét pontok szá-
mát jelenti.

5.3.2. Eredmények, kiértékelés

A Matlab-környezetben megvalósított kód az A.1. függelékben megtalálható. A
vizsgált esetben a huzal hossza 1 m, sugara (a) tizedmiliméter nagyságú és ϕ0 = 3
V potenciállal rendelkezik. az 5.3. ábrán a huzal töltéseloszlása, valamint abból a
ellen®rzésképpen meghatározott potenciáleloszlás látható N = 25 darab elem esetén.
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Bár a töltéseloszlás jellege a huzal mentén a �zikai képnek megfelel®, az ellen®rzés
során a potenciál visszaszámolásával egyértelm¶en belátható, hogy a 25 elemes diszk-
retizálás, így az ismeretlen függvény huszonöt diszkrét pontban történ® közelítése
nem ad kielégít® eredményt.
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5.3. ábra. A töltés- és potenciáleloszlás 25 elem esetén

Száz ismeretlennel vizsgálva a problémát már nemcsak jellegre, hanem szám-
szer¶en is jó megoldás adódik. Az 5.4. ábra alapján a huzalmenti töltéseloszlás
20 pC/m nagyságrendbe esik. A függvényt visszahelyettesítve és kiszámolva az in-
tegrált a potenciál három volt közeli értékre adódik, így kell®en pontos eredményt
adódik. Tovább növelve az elemszámot a megoldó futási ideje az elemek feletti nu-
merikus integrálás miatt jelent®sen megnövekszik, ezzel párhuzamosan az eredmény
csak kismértékben javul.
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5.4. ábra. A töltés- és potenciáleloszlás 100 elem esetén

5.4. Kétdimenziós probléma: töltött lemez

Munkám során megvizsgáltam egy L oldalhosszúságú, négyzet alakú, ϕ0 potenciál-
lal rendelkezú töltött lemez töltéseloszlását is. A vizsgálat során azt feltételeztem,
hogy a lemez vastagsága elhanyagolható nagyságú annak oldalhosszához képest.
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Ez a probléma az el®z® feladat kétdimenziós kiterjesztésének tekinthet® a Laplace-
Poisson-egyenlet megoldásának vonatkozásában. A geometriát ebben az esetben is
diszkretizálni szükséges, tetsz®leges módon három- vagy négyszögekre. Én az utóbbi
választással éltem. A vizsgált geometria az 5.5. ábrán látható. A Laplace-Poisson-

x

y

L

L

a

a

( )x ,y1 1 ( )x ,2 y1 ( )x ,3 y1
( )x ,4 y1

( )x ,5 y1

( )x ,y1 2

( )x ,y5 6

5.5. ábra. A vizsgált, diszkretizált geometria harminc elem esetén

egyenlet általános megoldása a konkrét lemezgeometriára felírva egy kétdimenziós
integrálösszefüggést jelent. Amennyiben a Descartes-féle koordináta-rendszer origó-
ját a lemez közepére rögzítjük, úgy

ϕ0 =

L
2∫

−L
2

L
2∫

−L
2

q (x′, y′)

4πε
∣∣~r − ~r′∣∣ dx′dy′ (5.24)

írható fel. Ahogyan az egydimenziós szimuláció esetén, úgy a lemez vizsgálata során
is az elemek közepére rögzítettem a vizsgálati pontokat és a forráspontokat, a két-
változós töltéseloszlás-függvényt tehát ezen pontokon közelítettem. A felépítend®
lineáris algebrai egyenletrendszer b vektorát az eddigiekkel teljesen megegyez® mó-
don kell felépíteni. Különbség kizárólag az impedancimátrixban adódik. A mátrix
m-edik sorának n-edik oszlopában található elemét a

zmn =

∫∫
Kn

1∣∣~r − ~r′∣∣ dx′dy′ =

∫∫
Kn

1√
(xm − x′)2 + (ym − y′)2

dx′dy′ (5.25)

összefüggéssel lehet meghatározni, ahol az integrál Kn tartója a teljes lemezfelü-
let n-edik résznégyzet-területét jelenti, xm és ym pedig az m-edik forrásrésznégyzet
középpontjának koordinátáit jelöli. Az integrál kiértékeléséhez kétdimenziós nume-
rikus integrálási technikára van szükség. Itt érdemes megjegyezni, hogy az integran-
dus az (xm, ym) = (x′, y′) pontban szingularitással rendelkezik. Belátható, hogy a
szingularitás minden sorban egyszer jelentkezik: amikor m=n, tehát a m¶veletet a
forráspontot tartalmazó négyzet felett kell elvégezni. Ez egyben az impedanciamát-
rix f®átlóját fogja jelenteni. Az integrálási technika megválasztása során különös
�gyelmet kell fordítani tehát a szingularitáshoz tartozó helyettesítési érték felhasz-
nálásának elkerülésére.
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5.4.1. Az impedanciamátrix elemeinek kiértékelése

A vonatkozó szakirodalom [8,9] az impedanciamátrix elemeinek meghatározását két
részproblémára bontja: a f®átló elemeinek kiértékelését analitikus módon végzi el, a
többi elem meghatározására pedig közelít® képletet alkalmaz. Vizsgálataim során et-
t®l a módszert®l elszakadva egy speciális, négyszögek felett alkalmazható kvadratúra-
formulát alkalmaztam az impedanciamátrix felépítéséhez, amely a Gauss-kvadratúra
súlyainak és pontjainak alkalmazásával képes az összes elem kiszámítására [25]. A
formula alkalmas tetsz®leges típusú és csúcspont-koordinátájú négyszög területe (K)
felett értelmezett F (x, y) kétváltozós függvény közelítésére:

I =

∫∫
K

F (x, y) dxdy. (5.26)

Ez úgy tehet® meg, hogy az általános négyszöget egy szabályos, origó középpont-
tal rendelkez®, 2 egység oldalhosszúságú négyzetté (R) szükséges transzformálni,
amely felett már alkalmazható a kétdimenziós Gauss-kvadratúra. A transzformá-
ció módját az 5.6. ábra mutatja. Lényege, hogy az xy-síkon értelmezett eredeti

x

y

ξ

η

K R

(-1,1) (1,1)

(-1,-1) (1,-1)P x ,y1 1 1( )
P x ,y2 2 2( )

P x ,y3 3 3( )P x ,y4 4 4( )

5.6. ábra. Transzformáció a kvadratúrához

négyszöget csomóponti formafüggvények segítségével a ξη-síkra kell transzformál-
ni, majd a függvény integrálását ezen a síkon szükséges elvégezni. A csomóponti
formafüggvények legfontosabb tulajdonsága, hogy i-ediksorszámú értéke az i-edik
csomópontban 1, az összes többiben nulla. A transzformációhoz az alábbi négy
formafüggvényt alkalmaztam [25]:

N1 =
1

4
(1− ξ) (1− η) ,

N2 =
1

4
(1 + ξ) (1− η) ,

N3 =
1

4
(1 + ξ) (1 + η) ,

N4 =
1

4
(1− ξ) (1 + η) .

(5.27)
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A formafüggvények segítségével végrehajtott transzformációval az eredeti integ-
rál kiszámítható az∫∫

K

F (x, y) dxdy =

∫∫
R

F (P (ξ, η) , Q (ξ, η)) det J (ξ, η) dξdη (5.28)

összefüggés felhasználásával, ahol P (ξ, η) az eredeti x, Q (ξ, η) pedig az eredeti y
változó helyettesítési értéke, kifejtésük a formafüggvények segítségével:

x = P (ξ, η) =
4∑
i=1

xiNi (ξ, η) = x1N1 (ξ, η) + x2N2 (ξ, η) + x3N3 (ξ, η) + x4N4 (ξ, η) ,

y = Q (ξ, η) =
4∑
i=1

yiNi (ξ, η) = y1N1 (ξ, η) + y2N2 (ξ, η) + y3N3 (ξ, η) + y4N4 (ξ, η) .

(5.29)

A transzformáció Jacobi-mátrixának determinánsához szükség van x és y ξ és η
szerinti deriváltjaira is, hiszen

det J (ξ, η) =
∣∣∣∂(x,y)
∂(ξ,η)

∣∣∣ =

∣∣∣∣∣∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣ =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
. (5.30)

A deriváltakat analitikus módon határoztam meg:

∂x

∂ξ
=
x1

4
(−1 + η) +

x2

4
(1− η) +

x3

4
(1 + η) +

x4

4
(−1− η) ,

∂x

∂η
=
x1

4
(−1 + ξ) +

x2

4
(−1− ξ) +

x3

4
(1 + ξ) +

x4

4
(1− ξ) ,

∂y

∂ξ
=
y1

4
(−1 + η) +

y2

4
(1− η) +

y3

4
(1 + η) +

y4

4
(−1− η) ,

∂y

∂η
=
y1

4
(−1 + ξ) +

y2

4
(−1− ξ) +

y3

4
(1 + ξ) +

y4

4
(1− ξ) .

(5.31)

Így az eddiek alapján már felírható az impedanciamátrix elemeinek meghatározásá-
hoz használt összefüggés:

zmn =

∫∫
Rn

1√
(xm − P (ξ, η))2 + (ym −Q (ξ, η))2

det J (ξ, η) dξdη ≈

≈
k∑
i=1

k∑
j=1

cicj
1√

(xm − P (ξi, ξj))
2 + (ym −Q (ξi, ξj))

2
det J (ξi, ξj) ,

(5.32)

melyben ci és cj a kvadratúra súlyait, ξi és ξj pedig a pontjait jelöli.

5.4.2. A problématér diszkretizálása

A vizsgált problémateret rács- és hálógeneráló szoftver nélkül, egy szubrutin se-
gítségével diszkretizáltam egyenl®, a oldalhosszúságú négyzetekre. A diszkretizálás
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során nem törekedtem az egyes elemek csomópontjainak felvételére, elegend® csu-
pán az elemközéppontok koordinátáinak meghatározása, abból a számítás során a
csomópontok egyértelm¶en meghatározhatók. A diszkretizálás során szabad pa-
raméterként kezeltem azt, hogy a lemez hányszor kerül elvágásra x és x-irányban
egyaránt. Két eset lehetséges, melyeket külön kell kezelni: ha páros számú vágás-
sal történik a diszkretizálás, illetve ha páratlan számú vágással kerül felosztásra a
teljes problématér. A szubrutin megtalálható az A.2. függelék els® részében. Az
L = 1 méter oldalhosszúságú lemez öt és húsz vágással történ® diszkretizálásának
eredményét az 5.7. ábra mutatja, melyeken az elemközéppontokat ábrázoltam.
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5.7. ábra. Diszkretizálás öt és húsz "vágás" esetén

5.4.3. Eredmények, kiértékelés

A szimuláció Matlab-kódja az A.2. függelékben megtalálható. A vizsgált lemez egy
1 méter hosszúságú négyzet, amely ϕ0 = 5 V potenciállal rendelkezik. A megoldást
k = 5 "vágás" (36 ismeretlen), valamint k = 20 "vágás" (441 ismeretlen) esetén
az 5.8. ábra mutatja. Könnyen belátható, hogy az egyméteres lemezen felvett har-
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5.8. ábra. A lemez töltéseloszlása (N=36 és N=441 ismeretlennel)

minchat darab ismeretlennel történ® megoldás pontatlan eredményt ad, a közelítés
hibás. Négyszáz feletti ismeretlennel a töltéseloszlás függvénye már sokkal pontosab-
ban közelíthet®, az eredmény jellege az egydimenziós megoldáshoz hasonlóan alakul,
egy tetsz®leges metszete kvalitatív módon meg is egyezik azzal.

30



6. fejezet

Rádiófrekvenciás problémák
vizsgálata

Ebben a fejezetben bemutatom azokat a formulákat, melyek segítségével meghatá-
rozható egy vékony huzal árameloszlása és a kialakuló vektorpotenciál értéke. Is-
mertetem a Hallén-egyenlet és a Pocklington-egyenlet származtatásának módját,
konkrét példák segítségével bemutatom azok megvalósítását a momentumok mód-
szerének segítségével Matlab-környezetben. A fejezetben kiértékelem a szimulációs
eredményeket, ismertetem az alkalmazott módszerek el®nyeit, hátrányait.

6.1. A vékony huzal problémája

A 6.1. ábrán látható elrendezés értelmében a vékony huzal egy olyan, ~ez-irányú
L hosszúságú és a sugarú henger, melynek sugara jelent®sen kisebb a vizsgált hul-
lámhosszhoz és a henger hosszához képest. Az elrendezés fontosságát els®sorban

y

z

x

L/2

L/2

2a

y

z
xz

ρ φ

P( ), ,ρ φ z

6.1. ábra. A vizsgált elrendezés

31



Diplomamunka Unger Tamás István

az adja, hogy ez a geometriai modell jó közelítése az elemi dipólusantenna és mo-
nopólusantenna geometriájának, így azok tulajdonságai, elektromágneses tere meg-
határozható. Ilyen elemi huzalokból építhet®k fel az összetett antennarendszerek
is, így a geometria és a hozzá kapcsolódó probléma tekinthet® az antennatervezés
alapfeladatának is.

Mivel a huzal vékony, az árams¶r¶ség felírható az ~ez-irányú vonaláram segítsé-
gével:

~J (~r) =
Iz (z)

2πa
~ez. (6.1)

Az összefüggés értelmében az árams¶r¶ség konstansnak tekinthet® a huzal kereszt-
metszetén, másképpen fogalmazva: a formula független ϕ azimutszög értékét®l. A
mágneses vektorpotenciál (3.37) értelmében felírható a Green-függvény és az áram-
s¶r¶ség konvolúciójaként. Ez hengerkoordináta-rendszerben az

Az (ρ, ϕ, z) = µ

L
2∫

−L
2

2π∫
0

Iz (z′)

2πa

e−jkr

4πr
dϕ′dz′ (6.2)

összefüggéssel írható fel [8], ahol

r =
∣∣~r − ~r′∣∣ =

√
(z − z′)2 +

∣∣~ρ− ~ρ′∣∣2. (6.3)

A vektorpotenciál skalárfelírása elegend®, hiszen az csak z-komponenssel fog ren-
delkezni. Figyelembe véve, hogy az integrálást a huzal felületén kell végrehajtani
(ρ′ = a), r átírható a koszinusztétel segítségével:

r =

√
(z − z′)2 + ρ2 + a2 − 2ρa cos (ϕ− ϕ′). (6.4)

Az integrandus tehát (ϕ− ϕ′) függvénye. Mivel így a megoldás hengeresen szimmet-
rikusnak adódik, a vektorpotenciál alakulása független lesz ϕ azitmutszög értékét®l,
a fenti összefüggésben tehát cos (ϕ− ϕ′) = cos (ϕ′):

Az (ρ, z) = µ

L
2∫

−L
2

Iz (z′)

2πa

2π∫
0

e−jkr

4πr
dϕ′dz′. (6.5)

Amennyiben a rendkívül kicsi, úgy r ≈
√

(z − z′)2 + ρ2, tehát a bels® integandus
független lesz ϕ′-t®l, az antenna mentén pedig vonalszer¶ áramot feltételezhetünk.
Így a mágneses vektorpotenciál az

Az (ρ, z) = µ

L
2∫

−L
2

Iz (z′)
e−jkr

4πr
dz′ (6.6)

összefüggés segítségével határozható meg, ami egy viszonylag könnyen kezelhet®
vonalintegrál a huzal tengelye mentén.
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6.2. A Hallén-egyenlet és a Pocklington-egyenlet

A vékony huzal mentén kialakuló áram függvénye (és a mágneses vektorpotenciál is)
a Hallén-egyenlet és a Pocklington-egyenlet segítségével határozható meg. Ezek le-
vezetéséhez (3.38) alkalmazására van szükség, amely kapcsolatot teremt a mágneses
vektorpotenciál (ismeretlen függvény) és az elektromos térer®sség között. Az egyen-
let általánosan vektoriális alakban írandó fel, de ezúttal a vektormennyiségeknek
kizárólag z-komponensük van, ezért elegend® egyetlen skalárösszefüggés kezelése.
Figyelembe véve, hogy a kés®bbiekben részletezett módon megadott gerjeszt® (be-
es®, Ebe

z térer®sség kizárólag z-irányú komponenssel rendelkezik az vektoregyenlet
skaláregyenletté redukálódik:

Ebe
z = jωAz +

j

ωµε

∂2

∂2z
Az =

j

ωµε

[
∂2

∂z2
+ k2

]
Az, (6.7)

ahol a forrás- és a meg�gyelési pont távolsága r =
√

(z − z′)2 + a2. Ez annyit jelent,
hogy a megoldás során a forráspontokat a huzal felületére, a meg�gyelési pontokat
pedig a huzal bels® tengelyére szükséges rögzíteni.

A formulának kétféle kifejtése ismert. Az els® esetben a skalár Helmholtz-
operátor a vonalintegrálon kívül helyezkedik el:

Ebe
z =

j

ωµε

[
∂2

∂z2
+ k2

]
µ

L
2∫

−L
2

Iz (z′)
e−jkr

4πr
dz′ =

j

ωε

[
∂2

∂z2
+ k2

] L
2∫

−L
2

Iz (z′)
e−jkr

4πr
dz′.

(6.8)
Ez az úgynevezett Hallén-egyenlet. Amennyiben a skalár Helmholtz-operátor a vo-
nalintegrálon belül marad, úgy

Ebe
z =

j

ωε

L
2∫

−L
2

Iz (z′)

[
∂2

∂z2
+ k2

]
e−jkr

4πr
dz′. (6.9)

írható fel. Ez az úgynevezett Pocklington-egyenlet.

6.3. A Hallén-egyenlet megoldása

A Hallén-egyenlet megoldása során (6.8) parciális di�erenciálegyenlet megoldását
szükséges megkeresni. Az egyenlet átrendezve általánosan felírható a vektorpoten-
ciálra is az [

∂2

∂z2
+ k2

]
Az (z) = −jωµεEbe

z (6.10)

alakban. Ez egy inhomogén, skalár Helmholtz-egyenlet, az ismeretlen függvény a
vektorpotenciál z-komponense, a gerjesztés pedig a jobb oldalon található Ebe

z bees®
vagy gerjeszt® térer®sség. Az egyenlet megoldásának klasszikus módszere a homogén
általános és az inhomogén partikuláris megoldás megkeresése, majd az eredmények
szuperponálása. A [

∂2

∂z2
+ k2

]
Az (z) = 0 (6.11)
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homogén egyenlet megoldása az

Az (z) = K1e
jkz +K2e

−jkz (6.12)

alakban kereshet®, ahol az els® tag a re�ektált, a második pedig a haladó hullámot
reprezentálja. Az inhomogén partikulás megoldás felírásához meg kell keresni azt a
G (z) Green-függvényt, amely kielégíti a[

∂2

∂z2
+ k2

]
G (z) = δ (z) (6.13)

egyenletet. A Green-függvényt olyan próbafüggvény formájában kell keresni, amely
kielégít két szükséges feltételt: F (z) legyen folytonos z = 0-ban, de a deriváltfügg-
vényének legyen szakadása ugyanott [9]. Ennek megfelel az

G (z) = K sin (k |z|) (6.14)

próbafüggvény, melyben k a hullászám, K pedig konstans. A próbafüggvényt vissza-
helyettesítve (6.13) egyenletbe, valamint a kifejezést integrálva −ξ és ξ között

k2K

ξ∫
−ξ

sin (k |z|) dz +

ξ∫
−ξ

∂2G (z)

∂z2
dz = 1 (6.15)

írható fel, melyb®l a keresett K konstans meghatározható. Az egyenlet bal oldalán
található másdodik tag felírható a Green-függvény els® deriváltjának felhasználásá-
val a Newton-Leibniz-formula értelmében:

ξ∫
−ξ

∂2G (z)

∂z2
dz =

[
∂G (z)

∂z

]ξ
−ξ
, (6.16)

ahol a próbafüggvény deriváltja a Kkz cos(k|z|)
|z| formulával írható le. Az abszolútérték

miatt a kifejezést az integrálás esetén két részre szükséges bontani, �gyelembe véve
annak tulajdonságait:[

∂G (z)

∂z

]ξ
−ξ

= [−Kk cos (−kz)]0−ξ + [Kk cos (kz)]ξ0 . (6.17)

Ezt visszaírva az eredeti összefüggésbe, valamint ξ értékét közelítve a nullához

k2K lim
ξ→0

ξ∫
−ξ

sin (k |z|) dz+ lim
ξ→0−

[−Kk cos (−kz)]0−ξ + lim
ξ→0+

[Kk cos (kz)]ξ0 = 1 (6.18)

írható fel. Az els® integrál határértéke nulla, a másik két tagot kifejtve és átrendezve
a keresett konstans kifejezhet®:

2Kk = 1 → K =
1

2k
. (6.19)
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A konstans felhasználásával a Green-függvény felírható az

G (z) =
1

2k
sin (k |z|) (6.20)

alakban. Az inhomogén egyenlet általános megoldását a homogén egyenlet általános
megoldásának, valamint a gerjesztés és a Green-függvény térbeli konvolúciójának
összege adja:

Az (z) = K1e
jkz +K2e

−jkz − jωµε

L
2∫

−L
2

G (z, z′)Ebe
z (z′) dz′ =

K1e
jkz +K2e

−jkz − jµ

2η

L
2∫

−L
2

sin (k |z − z′|)Ebe
z (z′) dz′,

(6.21)

ahol η =
√

µ0

ε0
≈ 120π a szabad tér hullámimpedanciája. Mivel vektorpotenciál

helyett az antenna árama az els®dlegesen keresett mennyiség, az egyenlet bal oldala
(6.6) értemében kifejthet®:

L
2∫

−L
2

Iz (z′)
e−jkr

4πr
dz′ = K1e

jkz +K2e
−jkz − j

2η

L
2∫

−L
2

sin (k |z − z′|)Ebe
z (z′) dz′. (6.22)

Ez a formula már implementálásra alkalmas. Fontos megjegyezni, hogy a Green-
függvény megválasztása során nemcsak szinuszos próbafüggvény választható, hanem
például exponenciális is [8]:

Gz (z) =
j

2k
e−jk|z|, (6.23)

továbbá a két homogén tag felírható a

K1e
jkz +K2e

−jkz = D1 cos (kz) +D2 sin (kz) (6.24)

alakban is.

6.4. Félhullámú dipólus vizsgálata szimmetrikus
Hallén-egyenlettel

6.4.1. Vizsgált geometria

Munkám során levezettem és Matlab-környezetben implementáltam a szimmetrikus
Hallén-egyenlet megoldását egy félhullámú dipólus árameloszlásának, elektromos te-
rének és az iránykarakterisztikájának meghatározásához. A vizsgált geometria a 6.2.
ábrán látható. A vizsgálati pontokat ezúttal is a huzalantenna felületén, a meg�-
gyelési pontokat pedig a huzal középs® tengelyén szükséges rögzíteni. A gerjesztés
közvetlen módon feszültséggel, közvetett módon pedig Ebe

z elektromos térer®sséggel
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6.2. ábra. A vizsgált félhullámú dipólus

történik az antenna közepén, ahol az ∆ hosszan megszakításra kerül. Mivel a félhul-
lámú dipólus árameloszlása szimmetrikus, a Hallén-egyenlet speciális, szimmetrikus,
redukált változtatát szükséges megoldani és kezelni. A következ®kben részletesen ki-
térek ennek megvalósítására a momentumok módszerével, érintve a gerjesztés és a
peremfeltételek megadásának módját is.

6.4.2. Az összefüggés levezetése és implementálása

A szimmetrikus Hallén-egyenlet megoldásához (6.22) egyenlet bal oldalán találha-
tó árameloszlás-függvényt súlyozott bázisfüggvények szuperpozíciójaként szükséges
közelíteni :

L
2∫

−L
2

Iz (z′)
e−jkr

4πr
dz′ =

N∑
n=1

an

∫
fn

fn (z′)
e−jkr

4πr
dz′. (6.25)

Mivel N darab ismeretlen meghatározásához N darab tesztfüggvényre és a huzal
hosszának N darab ∆z hosszúságú szakaszra történ® felbontására van szükség, az
impedanciamátrix m-edik sorának n-edik oszlopában található elem általánosan a
következ® formulával határozható meg:

zmn =

∫
fm

fm (z)

∫
fn

fn (z′)
e−jkr

4πr
dz′dz. (6.26)

Amennyiben az egyenlet ugrás-bázisfüggvényekkel és pont-illesztéses eljárással
kerül megoldásra, úgy a küls® integrál egyszer¶en elhagyható, és az impedanciamát-
rix elemei a

zmn =

zn+ ∆
2∫

zn−∆
2

e−jkr

4πr
dz′ (6.27)

formulával értékelhet®k ki, ahol zn az n-edik elem középpontjának koordinátáját

jelöli, és r =
√

(zm − z′)2 + a2. Ezt az integrált egydimenziós Gauss-kvadratúra se-
gítségével értékeltem ki. Az egyenlet jobb oldalát szintén N darab tesztfüggvénnyel
vizsgálva, valamint az exponenciális tagok helyett a trigonometrikus alakot használ-
va, �gyelembe véve, hogy a probléma szimmetrikus, ezért a szinuszos komponens
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elhagyható, (6.22) alapján

D1

∫
fm

fm (z) cos (kz) dz − j

2η

∫
fm

fm (z)

L
2∫

−L
2

sin (k |z − z′|)Ebe
z (z′) dz′dz (6.28)

írható fel. Ugrás-bázisfüggvények és pont-illesztéses eljárás használata esetén ez a

D1 cos (kz)− j

2η

L
2∫

−L
2

sin (k |z − z′|)Ebe
z (z′) dz′ (6.29)

formulára egyszer¶södik. Ezek alapján a megoldandó egyenletrendszer a

Z · a = D1s + b (6.30)

alakban adódik, ahol

bm = − j

2η

L
2∫

−L
2

sin (k |zm − z′|)Ebe
z dz′ és sm = cos (kzm) . (6.31)

6.4.3. A gerjesztés megadása

Munkám során a lehetséges gerjesztéstípusok közül [8, 9] az úgynevezett delta-gap-
típusú gerjesztéssel dolgoztam. Ennek lényege, hogy egy U feszültséget szolgáltató
ideális feszültségforrást feltételez az antenna ∆ hosszan megszakított pontjára, a fél-
hullámú dipólus talppontjai közé. Az két antennaelem között létrejöv®, a gerjesztést
szolgáltató Ebe

z elektromos térer®sség az

Ebe
z =

U

∆
(6.32)

formulával fejezhet® ki. Mivel a bees® térer®sség az antennának kizárólag azon sza-
kaszán bír nullától különböz® értékkel, ahol az antenna megszakításra kerül, b vektor
elemeinek meghatározásához az integrálást elegend® csak ezen rövid ∆ szakasz felett
elvégezni:

bm = − j

2η

∫
∆

sin (k |zm − z′|)Ebe
z dz′. (6.33)

6.4.4. Peremfeltétel érvényesítése

A probléma megoldásához D1 konstans meghatátozására van szükség, melynek érté-
ke a peremfeltételekt®l függ. Belátható, hogy az áram az antenna két végén minden
esetben nulla kell, hogy legyen, azaz Iz (−L/2) = Iz (L/2) = 0. Els® lépésben meg
kell szorozni az egyenletrendszer mindkét oldalát az impedanciamátrix inverzével:

a = D1Z
−1 · s + Z−1 · b. (6.34)
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A peremfeltétel érvényesíthet® egy uT = [1, 0, 0, ..., 0, 0, 1] oszlopvektor segítségével:

uT · a = D1u
T · Z−1 · s + uT · Z−1 · b = 0. (6.35)

Ezt az egyenletet D1-re átrendezve a konstans már meghatározható [8]:

D1 = −uT · Z−1 · b
uT · Z−1 · s

. (6.36)

6.4.5. Eredmények, kiértékelés

Az antenna árameloszlásának meghatározására implementált Matlab-kód a B.1. füg-
gelékben megtalálható. A szimulációt f = 516, 12456 MHz frekvencián, U = 100
V feszültség¶ gerjesztéssel, N = 101 diszkrét elemmel és a = 1, 5 · 10−4 méteres
huzalsugár mellett végeztem el. A 6.3. ábra a huzal mentén kialakulú komplex
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6.3. ábra. Az áram abszolútértéke ezonancia esetén

áram abszolútértékét és fázisát mutatja rezonancia esetén, míg a 6.4. ábrán az áram
eloszlása látható egy rezonanciafrekvenciától eltér® frekvencián. Mivel az antenna
ilyenkor elektromágneses szempontból hosszabb, mint a hullámhossz fele (ebben az
esetben például annak kett® és félszerese), több maximumhely alakul ki rajta, su-
gárzási tulajdonságai, villamos paraméterei jelent®sen módosulnak. Az árameloszlás
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6.4. ábra. Az áram abszolútértéke és fázisa L = 2, 5λ esetén

ismeretében az antenna fontosabb paraméterei, így a kialakuló elektromágneses tér,
az iránykarakterisztika és a bemeneti impedancia is meghatározható.
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6.5. Iránykarakterisztika meghatározása

Az antenna iránykarakterisztikáján a tér egy adott irányába kisugárzott térer®sség
(vagy teljesítmény) és a f®irányba kisugárzott érték hányadosát értjük. Munkám
során a vizsgált dipólusnatennának kétféle módon vettem fel az iránykarakterisz-
tikáját. Az els® módszer esetében a szimmetrikus Hallén-egyenlet megoldása után
az antenna köré egy négyzet alakú problémateret de�niáltam, majd ezen problé-
matérre meghatároztam a vektorpotenciál értékét. Az antenna által létrehozott
vektorpotenciál kizárólag z-komponenssel fog rendelkezni, hiszen az antennán kiala-
kuló árams¶r¶ség is skalár, kizárólag z függvénye [26]. A vektorpotenciál tehát ezen
áram és a Green-függvény konvolúciójaként határozható meg, ahol az integrálást az
antenna mentén szükséges elvégezni:

Az (z, y) = µ

L
2∫

−L
2

G (~r, z′) Iz (z′) dz′. (6.37)

Az eredmények a 6.5. és a 6.6. ábrákon láthatók. A vektorpotenciál a szimmetrikus

6.5. ábra. A vektorpotenciál alakulása rezonancia esetén

árameloszlás-függvény esetén jól láthatóan szimmetrikus lesz, és mivel a vizsgálat
kizárólag az zy-síkra terjed ki, ezért az elektromos térer®sségnek kizárólag az z- és
y-komponensével szükséges számolni. A vizsgálatot f = 450 MHz frekvencián, az
antenna körül a hullámhossz tizennégyszeresével megegyez® oldalhosszúságú négy-
zetet felvéve végeztem el. Ezek (3.39) értelmében:

6.6. ábra. A vektorpotenciál alakulása L = 2, 5λ esetén

39



Diplomamunka Unger Tamás István

Ey = −j 1

ωµε

∂2Az
∂y∂z

, Ez = −j 1

ωµε

(
∂2

∂z2
+ k2

)
Az. (6.38)

Az összefüggésb®l látható, hogy a vektorkomponensek meghatározásához a vektor-
potenciál iránymenti deriváltjaira van szükség. Mivel Az mátrixos formában adó-
dik, így a koordináták szerinti numerikus deriválást is mátrixos formában hajtot-
tam végre a Matlab gradiensképz® parancsát használva. Az elektromos térer®sség
abszolútértékét a 6.7. és a 6.8. ábrákon lehet tanulmányozni. A vektorpotenciál

6.7. ábra. A térer®sség abszolútértékének alakulása rezonancia esetén

szimmetriájából adódik, hogy az antenna körül kialakuló elektromos tér szimmetri-
kus lesz. Érdemes megjegyezni, hogy amíg végeselem-módszer esetén szimulációhoz
az antennát körülvev® teret le kell zárni (például a perem mentén érvényesíteni kell
a Sommerfeld-féle sugárzási feltételt [6,26]), addig a momentumok módszerének al-
kalmazása során erre nincsen szükség, a problématér peremére semmilyen peremfel-
tételt sem kell el®írni a megoldáshoz, mivel a teret a Green-függvények alkalmazása
automatikusan lezárja. Az iránykarakterisztika meghatározásához a problématéren

6.8. ábra. A térer®sség abszolútértékének alakulása L = 2, 5λ esetén

belül, az antenna környezetében egy kör felvételére van szükség. A módszert a 6.9.
ábra mutjata. A 14λ széles problématér diszkrét pontjain rendelkezésre álló elekt-
romos térer®sség-értékek felhasználásával a tér belsejében de�niált, 5λ sugarú körön
kétdimenziós interpoláció felhasználásával a karakterisztika felvehet®. Ehhez a kör

z2 + y2 = 25λ2 (6.39)

egyenlettel meghatározható pontjait a koordináták el®jelei szerint vektorokba ren-
deztem, majd az összetartozó koordináta-párokra a Matlab interp2 parancsát fel-
használva meghatároztam az elektromos térer®sséget. A felvett iránykarakteriszti-
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U

L/2

L/2

5λ

14λ

14λ

E x,y E( )/max( )

6.9. ábra. Az iránykarakterisztika felvétele

kák a 6.10. ábrán láthatók, a szimuláció programkódja pedig a B.2. függelékben
található meg. Az eredmények jól mutatják, hogy a dipólus rezonancia esetén szim-
metrikusan két f® sugárzási iránnyal rendelkezik, valamint az antenna síkjában nem
sugároz. Bár a karakterisztika a síkban zérustól eltér® térer®sség-értéket mutat, ez
az interpolációs hibából adódik. Az antenna rezonanciafrekvenciától eltér® frekven-
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6.10. ábra. A dipólus iránykarakterisztikája rezonancia és L = 2, 5λ esetén

cia esetén több f®iránnyal fog rendelkezni, mely nyalábok ugyan szimmetrikusak,
de maximumaik és nyalábszélességeik nem egyeznek meg. Belátható, hogy bár a
módszer eredményre vezet, de egyrészt pontatlan, másrészt nem elég hatékony, hi-
szen a karakterisztika meghatározásához jóval több térer®sség-érték kiszámítására
van szükség, mint amennyi ténylegesen felhasználásra kerül. Ezért − amennyiben
kizárólagosan az iránykarakterisztika meghatározása a cél − jóvan hatékonyabb és
célravezet®bb az elektromos térer®sségre felírható integrálegyenlet numerikus meg-
oldása.
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6.6. Az elektromos térer®sség integrálegyenletének
megoldása

Az antennakarakterisztika gyorsabb, hatékonyabb felvételéhez az elektromos tér-
er®sség integrálegyenletének megoldására van szükség. Ennek általános formuláját
dolgozatom harmadik fejezetében már bevezettem. Az összefüggés a dipólusantenna
esetén egyszer¶södik: az integrálást nem egy általános térfogatra, hanem az antenna
hossza mentén szükséges elvégezni, valamint az áram bár vektormennyiség, kizáró-
lag z-komponenssel rendelkezik, így skalárként kezelhet®. Ezek alapján az egyenlet
az

~E (~r) = −jωµ

L
2∫

−L
2

G (~r, z′) Iz (z′) ~ez dz′ − jωµ

k2
∇

L
2∫

−L
2

∇′ · (Iz (z′) ~ez)G (~r, z′) dz′

(6.40)
formulára egyszer¶södik. A zy-síknál maradva ez két skaláregyenlet: egy az elekt-
romos térer®sség z-komponensére, egy pedig az y-komponensére. Az összefüggés
második tagjának integrandusában az áram divergenciája szerepel, amely egyrészt
skalár, másrészt pedig ebben a speciális esetben az áram z-szerinti deriváltjával lesz
egyenl®:

∇′ · (Iz (z′) ~ez) =
∂Iz (z′)

∂z′
. (6.41)

Az összefüggés kiértékeléséhez tehát el® kell állítani az áram függvényének z-szerinti
deriváltját. A második tag gradiens-operátora a Green-függvényre lesz hatással, így
a kifejezés átírható:

~E (~r) = −jωµ

L
2∫

−L
2

G (~r, z′) Iz (z′) ~ez dz′ − jωµ

k2

L
2∫

−L
2

∂Iz (z′)

∂z′
∇G (~r, z′) dz′. (6.42)

A Green-függvény gradiense a

∇G (~r, z′) =
∂G

∂z
· ~ez +

∂G

∂y
· ~ey =

∂

∂z

(
e−jkr

4πr

)
· ~ez +

∂

∂y

(
e−jkr

4πr

)
· ~ey (6.43)

alakban írható fel, ahol

r =

√
(y − y′)2 + (z − z′)2. (6.44)

A parciális deriváltak analitikus módon felírhatók, melyeket munkám során le-
vezettem. Az összefüggések (a levezetés mell®zésével):

∂G

∂z
=

1

4π

−e−jkr (z − z′)
(
jk + 1

r

)
r2

,
∂G

∂y
=

1

4π

−e−jkr (y − y′)
(
jk + 1

r

)
r2

. (6.45)

Az eddigiek alapján az elektromos térer®sség két komponense már egyértelm¶en
felírható:

Ez = −jωµ

L
2∫

−L
2

G (~r, z′) Iz (z′) dz′ − jωµ

k2

L
2∫

−L
2

∂Iz (z′)

∂z′
∂G

∂z
dz′, (6.46)
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Ey = −jωµ
k2

L
2∫

−L
2

∂Iz (z′)

∂z′
∂G

∂y
dz′. (6.47)

Az integrálást ezúttal is egydimenziós Gauss-kvadratúra segítségével valósítot-
tam meg, úgy, hogy egy-egy ∆z hosszúságú diszkrét elem felett konstansnak tekintet-
tem az áramot és annak deriváltját is. Ennek értelmében azok a két integrandus elé
kiemelhet®k konstansként, és az integrandus az els® tag esetében a Green-függvény
maga, a második tag esetében pedig annak megfelel® irány szerinti deriváltja. A
felvett iránykarakterisztikák a 6.11. ábrán láthatók, a Matlab-kód pedig a B.3. füg-
gelékben megtalálható. Az elektromos térer®sségre vonatkozó összefüggések imple-
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6.11. ábra. A dipólus iránykarakterisztikája rezonancia és L = 2, 5λ esetén

mentálásának nagy el®nye, hogy gyorsabban vezet pontosabb eredményre, mint az
el®z®ekben bemutatott módszer, továbbá a koordináták módosításával a tér bármely
pontjában meghatározható az elektromos térer®sség értéke. Látható, hogy az ered-
mény gyakorlatilag megegyezik a vekorpotenciál segítségével meghatározottakkal.
Mivel ezúttal a pontokban nem interpolációval, hanem közvetlenül a térjellemz®kre
vonatkozó összefüggések segítségével került meghatározásra az elektromos tér, az
eredmény több pontban és pontosabban felvehet®.

A számítási id®k tekintetében a két módszer között jelent®s eltérés adódik. A
vektorpotenciálból származtatott iránykarakterisztika meghatározása 200 × 200-as
mátrixok használata esetén, az antennát 101 elemre bontva, az iránykarakterisztka
500 pontban történ® kiszámításával összesen 6,872 percet, míg az elektromos térer®s-
ségre megoldott integrálegyenlet használata esetén, 101 elemre diszkretizált antenna
esetén 500 pontban felvéve az iránykarakterisztikát ez 22 másodpercet vett igénybe.
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7. fejezet

Összefoglalás, jöv®beni tervek

Dolgozatomban ismertettem az elektromágneses terek leírására használt Maxwell-
egyenletek id®- és frekvenciatartománybeli teljes rendszerét, az egyenleteket felhasz-
nálva levezettem az elektrosztatikus és rádiófrekvenciás problémákat leíró egyenlete-
ket. Általánosan felvázoltam a momentumok módszerének lényegét, alkalmazásának
módját, el®nyeit és hátrányait, valamint összevetettem azt a végeselem-módszerrel
is. Részletesen, a numerikus megvalósításig ismertettem az egyenletek implementá-
lásának módját Matlab-környezetben, kitérve az integrálok kezelésére egy- és kétdi-
menzióban.

A vonatkozó szakirodalommal ellentétben az impedanciamátrix szingularitás-
sal bíró elemeit nem analitikus módon értékeltem ki, hanem általános, sokpontos
Gauss-kvadratúrát használva egy univerzálisan használható eljárást valósítottam
meg. Bemutattam a Hallén-egyenletet és a Pocklington egyenletet. Ismertettem
a Hallén-egyenlet alkalmazását az antennatervezés alapvet® épít®elemének számí-
tó félhullámú dipólusantenna esetében. Bemutattam, milyen módon lehetséges az
antenna áramának meghatározása, az antenna közel- és távolterének, valamint az
iránykarakterisztikájának kiszámítása. Ismerettem az egyes módszerek el®nyeit, hát-
rányait, kitérve a szükséges számítási id®re is.

Célom, hogy a továbbiakban az itt bemutatott módszert összetettebb antenna-
rendszerek vizsgálatára, szimulációjára és tervezésére használjam fel. Az itt imple-
mentált, a klasszikus térszimulációs szoftvercsomagoktól elszakadt módszerek szé-
leskör¶ lehet®séget biztosítanak a gyors és rugalmas tervezésre. Célkit¶zésem, hogy
a vizsgálatokat kiterjesszem antennarendszerek villamos paramétereinek javítására,
valamint adott célértékekhez optimalizálására is. Munkám során igyekszem kitérni
a vektorpotenciállal történ® számítási eljárás esetleges gyorsításának vizsgálatára is,
�gyelembe véve a vizsgált elrendezések és a kialakuló elektromágeses tér szimmetri-
áját, jellegzetességeit.
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A. függelék

Stacionárius problémák
Matlab-kódja

A.1. toltott_huzal_1D.m
%Töltött huzal, 1D
%Method of Moments

clear;
clc;

%Geometria

L = 1;
a = 0.0001;

fi = 3;
eps_0 = 8.8541*10^(-12);
eps_r = 1;
eps = eps_0*eps_r;

%Diszkretizálás

N = 100;
dx = L/N;
x = zeros(1,N);

for i = 1:N
if i == 1

x(i) = dx/2;
else

x(i) = x(i-1)+dx;
end

end

%Asszemblálás

Z = zeros(N);
q = zeros(N,1);
b = zeros(N,1);

for i = 1:N
for j = 1:N

x_a = (j-1) * dx;
x_b = j * dx;

int_x = [x_a:dx/99:x_b];

for k = 1:length(int_x)
f_x(k) = 1 / sqrt((x(i)-int_x(k))^2 + a^2);
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end

for k = 1:(length(int_x)-1)
Z(i,j) = Z(i,j) + (int_x(k+1)-int_x(k))*((f_x(k)+f_x(k+1))/2);

end
end

b(i) = fi*4*pi*eps;

end

q = inv(Z) * b;

phi = zeros(1,N);
c = 1 / (4*pi*eps);

for i = 1:N
for j = 1:N

x_a = (j-1) * dx;
x_b = j * dx;

int_x = [x_a:dx/(N-1):x_b];

for k = 1:length(int_x)
f_x(k) = 1 / sqrt((x(i)-int_x(k))^2 + a^2);

end

for k = 1:(length(int_x)-1)
phi(i) = phi(i) + c*q(k)*(int_x(k+1)-int_x(k))*((f_x(k)+f_x(k+1))/2);

end
end

end

figure(1)
hold on;
plot(x,q.*10^(12),'g.');
plot(x,q.*10^(12),'r');
xlabel('x [m]');
ylabel('q [pC/m]');

figure(2)
hold on;
plot(x,phi,'g.');
plot(x,phi,'r');
xlabel('x [m]');
ylabel('\Phi [V]');

A.2. esztatika_2D.m
%Elektrosztatika példa, 2D
%Négyzetekre diszkretizált töltött lemez problémája
%Method of Moments

clear;
clc;

%Geometria generálása

%A lemezt k-szor "vágjuk el" x és y irányban egyaránt
k = 10;

L = 1;
a = L/(k+1);
X = zeros(k+1);
Y = zeros(k+1);

if mod(k,2) == 0 %Páros esetek kezelése

sz = -k/2; n = k+1;
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for i = 1:(k+1)

coord_vec(i) = (sz/n)*L;
sz = sz + 1;

end

else %Páratlan esetek kezelése

coord = -((((1/(k+1))*L)/2) + (((k-1)/2) * ((1/(k+1))*L)));

for i = 1:(k+1)

coord_vec(i) = coord;
coord = coord + ((1/(k+1))*L);

end

end

inv_index = k+1;

for i = 1:(k+1)

X(:,i) = coord_vec(i);
Y(inv_index,:) = coord_vec(i);

inv_index = inv_index - 1;

end

%Megoldás
%Gauss-kvadratúra súlyai, pontjai
Gaussp_x = load('./gaussian_input/Gaussp_x.txt'); Gausss = load('./gaussian_input/Gausss.txt');
Gaussp_y=load('./gaussian_input/Gaussp_y.txt');

fi = 5;
eps_0 = 8.8541*10^(-12);
eps_r = 1;
eps = eps_0*eps_r;

Z = zeros(length(coord_vec)^2);
b = zeros(length(coord_vec)^2,1);
q = zeros(length(coord_vec)^2,1);

source_index = 1;

for i = 1:(length(coord_vec))
for j = 1:(length(coord_vec))

x_m = X(i,j);
y_m = Y(i,j);

observation_index = 1;

for k = 1:(length(coord_vec))
for l = 1:(length(coord_vec))

x = [X(k,l)-(0.5*a) X(k,l)+(0.5*a) X(k,l)+(0.5*a) X(k,l)-(0.5*a)];
y = [Y(k,l)-(0.5*a) Y(k,l)-(0.5*a) Y(k,l)+(0.5*a) Y(k,l)+(0.5*a)];

for o = 1:length(Gaussp_x)
for p = 1:length(Gaussp_y)

N_1 = 0.25*(1-Gaussp_x(p))*(1-Gaussp_y(o));
N_2 = 0.25*(1+Gaussp_x(p))*(1-Gaussp_y(o));
N_3 = 0.25*(1+Gaussp_x(p))*(1+Gaussp_y(o));
N_4 = 0.25*(1-Gaussp_x(p))*(1+Gaussp_y(o));

P = x(1)*N_1+x(2)*N_2+x(3)*N_3+x(4)*N_4;
Q = y(1)*N_1+y(2)*N_2+y(3)*N_3+y(4)*N_4;
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dx_dkszi = 0.25*x(1)*(-1+Gaussp_y(o)) + 0.25*x(2)*(1-Gaussp_y(o)) + ...
0.25*x(3)*(1+Gaussp_y(o)) + 0.25*x(4)*(-1-Gaussp_y(o));

dx_deta = 0.25*x(1)*(-1+Gaussp_x(p)) + 0.25*x(2)*(-1-Gaussp_x(p)) + ...
0.25*x(3)*(1+Gaussp_x(p)) + 0.25*x(4)*(1-Gaussp_x(p));

dy_dkszi = 0.25*y(1)*(-1+Gaussp_y(o)) + 0.25*y(2)*(1-Gaussp_y(o)) + ...
0.25*y(3)*(1+Gaussp_y(o)) + 0.25*y(4)*(-1-Gaussp_y(o));

dy_deta = 0.25*y(1)*(-1+Gaussp_x(p)) + 0.25*y(2)*(-1-Gaussp_x(p)) + ...
0.25*y(3)*(1+Gaussp_x(p)) + 0.25*y(4)*(1-Gaussp_x(p));

det_jacobi = dx_dkszi*dy_deta - dy_dkszi*dx_deta;

Z(source_index,observation_index) = Z(source_index,observation_index) + ...
Gausss(o)*Gausss(p)*(1/sqrt((x_m-P)^2+(y_m-Q)^2))* det_jacobi;

end
end

observation_index = observation_index + 1;

end
end

b(source_index) = fi*4*pi*eps;
source_index = source_index + 1;

end
end

%Megoldás

q = Z \ b;

%Aztán ezt jó lenne ábrázolni is

q_matrix = zeros(k);

q_index = 1;

for i = 1:k
for j = 1:k

q_matrix(i,j) = q(q_index);
q_index = q_index + 1;

end
end

figure(1)
axis square;
surf(X,Y,q_matrix.*10^(12));
xlabel('x [m]');
ylabel('y [m]');
zlabel('q [pC/m]');
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B. függelék

Rádiófrekvenciás problémák
Matlab-kódja

B.1. lambdafeldipol_1D.m
%Félhullám-hosszúságú dipólantenna árameloszlása
%Method of Moments, Hallén-egyenlettel

clear;
clc;

%Paraméterek
eps_0 = 8.854e-12; mu_0 = 4*pi*1e-7; eps_r = 1;
nu = 1 / sqrt(eps_0*eps_r*mu_0);
f = 516.12456e6;
lambda = nu / f; k = (2*pi)/lambda;
eta = sqrt(mu_0/(eps_0*eps_r));
L = 0.5*lambda;
a = 1.5e-4;

%Diszkretizálás
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N

z_abr(i) = z(i) + 0.5*(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)
U = 10e3;
E_exc = zeros(1,N+1);
E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamátrix és s-vektor felépítése Gauss-kvadratúrával
Z = zeros(N); s = zeros(N,1);
Gaussp = load('./gaussian_input/Gaussp_x.txt'); Gausss = load('./gaussian_input/Gausss.txt');
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_b = z(j+1); z_a = z(j);
for l = 1:length(Gaussp)

z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)^2 + a^2);
Z(i,j) = Z(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pi*R));

end
end
s(i) = cos(k*z_m);

end
Zm1 = inv(Z);

%Gerjesztésvektor (b) felépítése
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b = zeros(N,1);
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_a = z(i); z_b = z(i+1);
if (E_exc(j) > 0) && (E_exc(j+1) > 0) %Ekkor kell a konvolúció

for l = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2*eta)) * ((z_b - z_a)/2) * Gausss(l) * ...

sin(k*abs(z_m - z_g)) * (U/dz));
end

end
end

end
%Megoldás
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
D_1 = - (uT*Zm1*b) / (uT*Zm1*s);
I = D_1*Zm1*s + Zm1*b;

% Áram
figure(1)
plot(z_abr,1e3*abs(I));
xlabel('z [m]');
ylabel('Áram abszolútértéke (|I|) [mA]');

figure(2)
plot(z_abr,phase(I));
xlabel('z [m]');
ylabel('Áram fázisa (\phi=arc\{I\}) [rad]');

%Id®tartománybeli vizsgálat
t = linspace(0,4*(1/f),400); I_t = zeros(N,1);
for j = 1:length(t)
for i = 1:N

I_t(i) = abs(I(i)) * cos(2*pi*f*t(j)+phase(I(i)));
end
figure(3)
plot(z_abr,1e3*I_t);
axis([-L/2 L/2 -1e3*max(abs(I)) 1e3*max(abs(I))])
xlabel('z [m]');
ylabel('i(t) [mA]');
end

B.2. dipolter_hallen.m
%Félhullám-hosszúságú dipólantenna tere
%Szimmetrikus Hallén-egyenlettel

clear; clc;

%Paraméterek
eps_0 = 8.854e-12; mu_0 = 4*pi*1e-7; eps_r = 1;
nu = 1 / sqrt(eps_0*eps_r*mu_0);
f = 450e6; %Ezzel érdemes játszani
lambda = nu / f; k = (2*pi)/lambda;
eta = sqrt(mu_0/(eps_0*eps_r));
L = 0.5*lambda;
a = 1.5e-4;

%Diszkretizálás
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N

z_abr(i) = z(i) + 0.5*(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)
U = 10;
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E_exc = zeros(1,N+1);
E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamátrix és s-vektor felépítése Gauss-kvadratúrával
Z = zeros(N); s = zeros(N,1);
Gaussp = load('./gaussian_input/Gaussp_x.txt');
Gausss = load('./gaussian_input/Gausss.txt');
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_b = z(j+1); z_a = z(j);
for l = 1:length(Gaussp)

z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)^2 + a^2);
Z(i,j) = Z(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pi*R));

end
end
s(i) = cos(k*z_m);

end
Zm1 = inv(Z);

%Gerjesztésvektor (b) felépítése
b = zeros(N,1);
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_a = z(i); z_b = z(i+1);
if (E_exc(j) > 0) && (E_exc(j+1) > 0) %Ekkor kell a konvolúció

for l = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2*eta)) * ((z_b - z_a)/2) * Gausss(l) * ..

sin(k*abs(z_m - z_g)) * (U/dz));
end

end
end

end
%Megoldás
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
D_1 = - (uT*Zm1*b) / (uT*Zm1*s);
I = D_1*Zm1*s + Zm1*b;

% Áram
figure(1)
plot(z_abr,1e3*abs(I));
xlabel('z [m]');
ylabel('Áram abszolútértéke (|I|) [mA]');

%Vizsgált problématér definiálása
y_coord = linspace(-7*lambda,7*lambda,200);
z_coord = linspace(7*lambda,-7*lambda,200);
[Y,Z] = meshgrid(y_coord,z_coord);

%Térszámítás
A_z = zeros(size(Z));
for i = 1:size(Z,1)

for j = 1:size(Z,2)
R_obs = [Y(i,j) Z(i,j)];
R_obs_abs = sqrt(R_obs(1)^2+R_obs(2)^2);
int_aram = 0;
for l = 1:N

dz = z(2) - z(1);
z_a = z_abr(l) - 0.5*dz;
z_b = z_abr(l) + 0.5*dz;
%Tolunk egy jóféle Gauss-kvadratúrát
int_gauss = 0;
for h = 1:length(Gaussp)

z_gauss = 0.5*(z_b-z_a)*Gaussp(h)+(0.5*(z_a+z_b));
R_gauss = sqrt((R_obs(1)-a)^2+(R_obs(2)-z_gauss)^2);
int_gauss = int_gauss + 0.5*(z_b-z_a)*Gausss(h)*exp(-sqrt(-1) ...

*k*R_gauss)/(4*pi*R_gauss);
end
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int_aram = int_aram + I(l)*int_gauss;
end
A_z(i,j) = mu_0*int_aram;

end
end
%Vektorpotenciál ábrázolása
figure(2)
surf(Y,Z,abs(A_z));
xlabel('y [m]'); ylabel('z [m]'); zlabel('A_z');
shading interp;
%%
%Deriváltmátrixok el®állítása
[dAz_dy,dAz_dz] = gradient(A_z,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));
[d2Az_dy2,d2Az_dzdy] = gradient(dAz_dy,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));
[d2Az_dzdy,d2Az_dz2] = gradient(dAz_dz,abs(y_coord(2)-y_coord(1)),abs(z_coord(2)-z_coord(1)));
%Vektorkomponensek meghatározása
E_z = -sqrt(-1)*(1/(2*pi*f*mu_0*eps_0))*(d2Az_dz2 + (k^2)*A_z);
E_y = -sqrt(-1)*(1/(2*pi*f*mu_0*eps_0))*d2Az_dzdy;
%Ábrázolás
E_ik = zeros(size(Z));
t = linspace(0,2*(1/f),200);
for i = 1:length(t)

for j = 1:size(Z,1)
for l = 1:size(Z,2)

E_yt(j,l) = abs(E_y(j,l)) * cos(2*pi*f*t(i)+angle(E_y(j,l)));
E_zt(j,l) = abs(E_z(j,l)) * cos(2*pi*f*t(i)+angle(E_z(j,l)));
E(j,l) = sqrt(abs(E_yt(j,l))^2+abs(E_zt(j,l))^2);
if E(j,l) > E_ik(j,l)

E_ik(j,l) = E(j,l);
end

end
end
%Kialakuló tér abszolútértékének ábrázolása
figure(3)
surf(Y,Z,E);
shading interp;
colormap jet;
axis([min(min(Y)) max(max(Y)) min(min(Z)) max(max(Z)) -max(max(abs(E))) max(max(abs(E)))]);
view(2);
pause(0.00000005);

end
%%
%Iránykarakterisztika
E_abs = sqrt(abs(E_z).^2+abs(E_y).^2);
y_coord_ik = linspace(-5*lambda,5*lambda,500);
for i = 1:length(y_coord_ik)

z_coord_ik_poz(i) = sqrt((5*lambda)^2-y_coord_ik(i)^2);
z_coord_ik_neg(i) = -z_coord_ik_poz(i);
if y_coord_ik(i) >= 0

phi_poz(i) = atan(abs(z_coord_ik_poz(i)/y_coord_ik(i)));
phi_neg(i) = (2*pi)-atan(abs(z_coord_ik_neg(i)/y_coord_ik(i)));

elseif y_coord_ik(i) < 0
phi_poz(i) = atan(abs(y_coord_ik(i)/z_coord_ik_poz(i))) + 0.5*pi;
phi_neg(i) = pi+atan(z_coord_ik_neg(i)/y_coord_ik(i));

end
end
E_ik_poz = zeros(1,length(y_coord_ik));
E_ik_neg = zeros(1,length(y_coord_ik));
for i = 1:length(E_ik_poz)

E_ik_poz(i) = interp2(Y,Z,E_abs,y_coord_ik(i),z_coord_ik_poz(i));
E_ik_neg(i) = interp2(Y,Z,E_abs,y_coord_ik(i),z_coord_ik_neg(i));

end
E_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
phi_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
for i = 1:length(phi_poz)

E_iranykar(i) = E_ik_poz(i);
phi_iranykar(i) = phi_poz(i);

end
i = i + 1;
for j = 1:length(phi_neg)

E_iranykar(i) = E_ik_neg(j);
phi_iranykar(i) = phi_neg(j);
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i = i + 1;
end
figure(4)
E_iranykar = E_iranykar./max(E_iranykar);
polar(phi_iranykar,E_iranykar,'b.');

B.3. dipolter_eife.m
%Félhullám-hosszúságú dipólantenna tere
%Szimmetrikus Hallén-egyenlettel

clear; clc;

%Paraméterek
eps_0 = 8.854e-12; mu_0 = 4*pi*1e-7; eps_r = 1;
nu = 1 / sqrt(eps_0*eps_r*mu_0);
f = 450e6; %Ezzel érdemes játszani
lambda = nu / f; k = (2*pi)/lambda;
eta = sqrt(mu_0/(eps_0*eps_r));
L = 0.5*lambda;
a = 1.5e-4;

%Diszkretizálás
N = 101;
z = [-L/2:L/N:L/2];
for i = 1:N

z_abr(i) = z(i) + 0.5*(z(2) - z(1));
end
dz = abs(z(2) - z(1));

%Gerjesztés (delta-gap)
U = 10;
E_exc = zeros(1,N+1);
E_exc((N+1)/2) = U / dz; E_exc(((N+1)/2)+1) = E_exc((N+1)/2);

%Impedanciamátrix és s-vektor felépítése Gauss-kvadratúrával
Z = zeros(N); s = zeros(N,1);
Gaussp = load('./gaussian_input/Gaussp_x.txt'); Gausss = load('./gaussian_input/Gausss.txt');
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_b = z(j+1); z_a = z(j);
for l = 1:length(Gaussp)

z_g = (((z_b - z_a) / 2) * Gaussp(l)) + ((z_a + z_b) / 2);
R = sqrt((z_m - z_g)^2 + a^2);
Z(i,j) = Z(i,j) + ((z_b - z_a) / 2) * Gausss(l) * (exp(-sqrt(-1)*k*R) / (4*pi*R));

end
end
s(i) = cos(k*z_m);

end
Zm1 = inv(Z);

%Gerjesztésvektor (b) felépítése
b = zeros(N,1);
for i = 1:N

z_m = z(i) + 0.5*dz;
for j = 1:N

z_a = z(i); z_b = z(i+1);
if (E_exc(j) > 0) && (E_exc(j+1) > 0) %Ekkor kell a konvolúció

for l = 1:length(Gaussp)
z_g = (((z_b - z_a)/2) * Gaussp(l)) + ((z_a + z_b)/2);
b(i) = b(i) + ((-sqrt(-1)/(2*eta)) * ...

((z_b - z_a)/2) * Gausss(l) * sin(k*abs(z_m - z_g)) * (U/dz));
end

end
end

end
%Megoldás
I = zeros(N,1); D_1 = 0;
uT = zeros(1,N); uT(1) = 1; uT(N) = uT(1);
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D_1 = - (uT*Zm1*b) / (uT*Zm1*s);
I = D_1*Zm1*s + Zm1*b;

% Áram
figure(1)
plot(z_abr,1e3*abs(I));
xlabel('z [m]');
ylabel('Áram abszolútértéke (|I|) [mA]');

%Iránykarakterisztika meghatározása (EFIE-vel, Balanis könyv, (12-55))
vizsg_sugar = 5*lambda;
y_coord = linspace(-vizsg_sugar,vizsg_sugar,500);
for i = 1:length(y_coord)

z_coord_poz(i) = sqrt((vizsg_sugar)^2-y_coord(i)^2);
z_coord_neg(i) = -z_coord_poz(i);
if y_coord(i) >= 0

phi_poz(i) = atan(abs(z_coord_poz(i)/y_coord(i)));
phi_neg(i) = (2*pi)-atan(abs(z_coord_neg(i)/y_coord(i)));

elseif y_coord(i) < 0
phi_poz(i) = atan(abs(y_coord(i)/z_coord_poz(i))) + 0.5*pi;
phi_neg(i) = pi+atan(z_coord_neg(i)/y_coord(i));

end
end
E_y_poz = zeros(1,length(y_coord)); E_z_poz = zeros(1,length(y_coord));
E_y_neg = zeros(1,length(y_coord)); E_z_neg = zeros(1,length(y_coord));
dI_dz = gradient(I,z_abr(2)-z_abr(1));

for i = 1:(length(z_coord_poz)+length(z_coord_neg))
if i <= length(z_coord_poz)

R_obs = [y_coord(i) z_coord_poz(i)];
else

R_obs = [y_coord(i-length(z_coord_poz)) z_coord_neg(i-length(z_coord_poz))];
end
R_obs_abs = sqrt(R_obs(1)^2+R_obs(2)^2);
if i <= length(z_coord_poz)

E_z_poz_int_1 = 0; E_z_poz_int_2 = 0;
else

E_z_neg_int_1 = 0; E_z_neg_int_2 = 0;
end
for j = 1:N

dz = z(2) - z(1);
z_a = z_abr(j) - 0.5*dz;
z_b = z_abr(j) + 0.5*dz;
%Gauss-kvadratúra történik mindkét részintegrálra
int_gauss_1 = 0; int_gauss_2z = 0; int_gauss_2y = 0;
for l = 1:length(Gaussp)

z_gauss = 0.5*(z_b-z_a)*Gaussp(l)+(0.5*(z_a+z_b));
R_gauss = sqrt((R_obs(1)-a)^2+(R_obs(2)-z_gauss)^2);
int_gauss_1 = int_gauss_1 + 0.5*(z_b-z_a)*Gausss(l)*exp(-sqrt(-1)*k*R_gauss)/ ...

(4*pi*R_gauss);
int_gauss_2z = int_gauss_2z + 0.5*(z_b-z_a)* ...

Gausss(l)*(1/(4*pi))* ((-exp(-sqrt(-1)*k*R_gauss) ...
*(R_obs(2)-z_gauss)* ...

(sqrt(-1)*k+(1/R_gauss))) / (R_gauss^2));
int_gauss_2y = int_gauss_2y + 0.5*(z_b-z_a)*Gausss(l)*(1/(4*pi)) ...

*((-exp(-sqrt(-1)*k*R_gauss)*(R_obs(1)-a)* ...
(sqrt(-1)*k+(1/R_gauss))) / (R_gauss^2));

end
if i <= length(z_coord_poz)
E_z_poz_int_1 = E_z_poz_int_1 + (-sqrt(-1)*2*pi*f*mu_0*I(j)*int_gauss_1);
E_z_poz_int_2 = E_z_poz_int_2 + (-sqrt(-1)*2*pi*f*mu_0*(1/k^2)*dI_dz(j)*int_gauss_2z);
else
E_z_neg_int_1 = E_z_neg_int_1 + (-sqrt(-1)*2*pi*f*mu_0*I(j)*int_gauss_1);
E_z_neg_int_2 = E_z_neg_int_2 + (-sqrt(-1)*2*pi*f*mu_0*(1/k^2)*dI_dz(j)*int_gauss_2z);
end
if i <= length(z_coord_poz)

E_y_poz(i) = E_y_poz(i) + (-sqrt(-1)*2*pi*f*mu_0*(1/k^2)*dI_dz(j)*int_gauss_2y);
else

E_y_neg(i-length(z_coord_poz)) = E_y_neg(i-length(z_coord_poz)) + ...
(-sqrt(-1)*2*pi*f*mu_0*(1/k^2)*dI_dz(j)*int_gauss_2y);

end
end

10



Diplomamunka Unger Tamás István

if i <= length(z_coord_poz)
E_z_poz(i) = E_z_poz_int_1 + E_z_poz_int_2;

else
E_z_neg(i-length(z_coord_poz)) = E_z_neg_int_1 + E_z_neg_int_2;

end
end
%Ábrázolni kell a cuccot
E_poz = sqrt(abs(E_z_poz).^2+abs(E_y_poz).^2); E_poz = E_poz./max(E_poz);
E_neg = sqrt(abs(E_z_neg).^2+abs(E_y_neg).^2); E_neg = E_neg./max(E_neg);
E_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
phi_iranykar = zeros(1,length(phi_poz)+length(phi_neg));
for i = 1:length(phi_poz)

E_iranykar(i) = E_poz(i);
phi_iranykar(i) = phi_poz(i);

end
i = i + 1;
for j = 1:length(phi_neg)

E_iranykar(i) = E_neg(j);
phi_iranykar(i) = phi_neg(j);
i = i + 1;

end
figure(4)
E_iranykar = E_iranykar./max(E_iranykar);
polar(phi_iranykar,E_iranykar,'b.');
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