
1. Absztrakt algebrai bevezető

LegyenA nemüres halmaz, n pedig nemnegat́ıv egész szám. Az f :An → A leképezéseketA–n értelmezett
n–változós műveleteteknek nevezzük. Az (a1, . . . , an) ∈ An elem f szerinti képét f(a1, . . . , an) jelöli. Mivel
A0 = {∅}, a 0–változós műveleteket egyértelműen meghatározza az f(∅) ∈ A elem, s ezért azonośıtani is
szoktuk vele.

Legyen F egy halmaz, és nevezzük elemeit műveletjeleknek. Tegyük fel, hogy F minden f eleméhez
egy n nemnegat́ıv egész szám van rendelve. Ekkor F–et algebrat́ıpusnak, f–et pedig n–változós művelet-
jelnek nevezzük. Azt mondjuk, hogy az (A;F ) rendezett elempár F–t́ıpusú algebrai struktúra (vagy röviden
algebra), ha A nemüres halmaz (az algebra alaphalmaza) F = {fA: f ∈ F} pedig A–n értelmezett mű-
veleteknek egy rendszere, ahol minden f ∈ F esetén fA egy A–n értelmezett n–változós művelet (n az f
műveletjel változószáma). A gyakorlatban fA helyett egyszerűen f–et ı́runk. Az ebből eredő kétértelműség
csak ritkán okoz problémát. Ha F véges, pl. F = {f1, . . . , fk}, akkor (A;F ) helyett az (A; f1, . . . , fk) jelölést
is használjuk, többnyire úgy, hogy f1, . . . , fk változószámuk szerint csökkenő sorrendben követik egymást.
Ha nem okoz félreértést, akkor az algebrát egyszerűen az alaphalmazával jelöljük. A kétváltozós műveleteket
általában a + vagy a · szimbólumokkal jelöljük, és az (a, b) elempár képét e műveletek során a+ b, a · b (vagy
egyszerűen ab) jelöli, és az adott elemek összegének, illetve szorzatának nevezzük.

Egy algebrai struktúrát grupoidnak nevezünk, ha egyetlen kétváltozós művelettel rendelkezik. Ha a
műveletnek van egységeleme, illetve a művelet kommutativ, akkor egységelemes, illetve kommutat́ıv grupo-
idról beszélünk. Az asszociat́ıv műveletű grupoidokat félcsoportoknak, az olyan egységelemes félcsoportokat
pedig, melyekben minden elemnek van inverze, csoportoknak nevezzük.

Azt mondjuk, hogy egy (R; +, ·) algebrai struktúra félgyűrű, ha (R; +) kommutat́ıv és egységelemes
félcsoport, (R; ·) félcsoport, és a szorzás disztribut́ıv az összeadásra nézve. Az (R; +, ·) félgyűrűt gyűrűnek
nevezzük, ha (R; +) csoport. Ha egy félgyűrű vagy gyűrű szorzása egységelemes, illetve kommutat́ıv akkor
egységelemes, illetve kommutat́ıv félgyűrűnek vagy gyűrűnek h́ıvjuk. Azt mondjuk, hogy az (R; +, ·) gyűrű
integritástartomány, ha kommutat́ıv, egységelemes és zérusosztómentes, azaz bármely a, b ∈ R esetén, ha
ab = 0, akkor a = 0 vagy b = 0. Az olyan (R; +, ·) kommutat́ıv gyűrűket, melyekre (R \ {0}; ·) csoport (0
az addit́ıv egységelem), testeknek nevezzük. Ha R a szorzás kommutativitását esetleg leszámı́tva a testek
minden tulajdonságával rendelkezik, akkor ferdetestnek nevezzük. Ha (R; +, ·) a szorzás asszociat́ıvitását
leszámı́tva minden gyűrű axiómát teljeśıt, akkor nem-asszociat́ıv gyűrűnek h́ıvjuk. A nem-asszociat́ıv jelző
csak annyit jelent, hogy a szorzás asszociativitása nem axióma, de nem zárja ki érvényességét.

Legyen (A;F ) és (B;F ) két azonos t́ıpusú algebra. Egy ϕ: A → B leképezést homomorfizmusnak
nevezünk, ha felcserélhető a műveletekkel, azaz tetszőleges f ∈ F n–változós (n ≥ 0) művelet és a1, . . . , an ∈
A esetén

f(a1, . . . , an)ϕ = f(a1ϕ, . . . , anϕ).

Ha ϕ szürjekt́ıv, akkor a második struktúrát az első homomorf képének nevezzük. A bijekt́ıv homomorfizmust
izomorfizmusnak, az injekt́ıvet pedig beágyazásnak h́ıvjuk. Homomorfizmusok szorzata homomorfizmus, és
izomorfizmusok inverze is izomorfizmus.

Számos művelettulajdonság öröklődik szürjekt́ıv homomorfizus esetén. Ilyen tulajdonságok például a
kommutativitás, az asszociativitás, a disztributivitás, valamint az egységelem és inverz elem létezése. Így
csoport, félgyűrű, illetve gyűrű homomorf képe is csoport, félgyűrű, illetve gyűrű.

Legyen (A;F ) algebrai struktúra és ρ ekvivalenciareláció az A halmazon. Azt monjuk, hogy ρ kongru-
enciareláció, és a hozzá tartozó ekvivalenciareláció kompatibilis osztályozás, ha a műveletek megőrzik, azaz
tetszőleges f ∈ F n–változós (n ≥ 0) művelet és a1, b1 . . . , an, bn ∈ A esetén

(a1, b1), . . . , (an, bn) ∈ ρ ⇒ (f(a1, . . . , an), f(b1, . . . , bn)) ∈ ρ.

Csoportok kompatibilis osztályozásai a normálosztó szerinti, gyűrűk kompatibilis osztályozásai pedig az ideál
szerinti osztályozások. Ha f kétváltozós, és az egyszerűség kedvéért · jelöli, akkor elegendő megkövetelni a
következő látszólag gyengébb feltételt: Tetszőleges a, b, c ∈ S esetén,

(a, b) ∈ ρ ⇒ (ac, bc) ∈ ρ, (ca, cb) ∈ ρ.

Ugyanis, ha (a, b) ∈ ρ és (c, d) ∈ ρ, akkor (ac, bc) ∈ ρ és (bc, bd) ∈ ρ, amiből ρ tranzitivitása miatt (ac, bd) ∈ ρ
következik.
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Legyen ρ az (A;F ) algebra kongruenciarelációja. Jelölje A/ρ az A halmaz ρ szerinti faktorhalmazát,
azaz ρ osztályainak halmazát, s ha a ∈ A, akkor az a–t tartalmazó osztályt jelölje a/ρ. Ha nem okoz
félreértést, akkor a/ρ helyett az a jelölést is használjuk. Minden f ∈ F n–változós (n ≥ 0) művelet seǵıtsé-
gével természtes módon értelmezhetünk egy ugyancsak f -fel jelölt n–változós műveletet az A/ρ halmazon:
Tetszőleges a1/ρ, . . . , an/ρ ∈ A/ρ esetén legyen

f(a1/ρ, . . . , an/ρ)
def
= f(a1, . . . , an)/ρ.

Így az (A;F) algebrával azonos t́ıpusú (A/ρ;F ) algebrát definiáltunk, melyet (A;F ) ρ szerinti faktorstruk-
túrájának vagy faktoralgebrájának nevezzük. Könnyen ellenőrizhető, hogy az A→ A/ρ, a 7→ a/ρ leképezés
szürjekt́ıv homomorfizmus.

Egy nemüres A halmazon értelmezett kétváltozós ρ relációt részbenrendezésnek nevezünk, ha reflex́ıv,
antiszimmetrikus és tranzit́ıv. Ha ρ dichotom, azaz bármely a, b ∈ A esetén a ρ b vagy b ρ a, akkor ρ–t
rendezésnek vagy lineáris rendezésnek h́ıvjuk.

2. Részbenrendezett csoportok és gyűrűk

2.1. Defińıció. Legyen (G; ·) csoport és ≤ részbenrendezés G–n. G részbenrendezett csoport ≤–re nézve,
ha tetszőleges a, b, c ∈ G esetén a ≤ b–ből ac ≤ bc és ca ≤ cb következik. Ha ráadásul ≤ rendezés,
akkor azt mondjuk, hogy G rendezett, lineárisan rendezett vagy elrendezett csoport ≤–re nézve. Ha G
részbenrendezett csoport a ≤ részbenrendezésre nézve, akkor az {a ∈ G: 1 ≤ a} halmazt a részbenrendezett
csoport pozit́ıvitási tartományának nevezzük, ahol 1 a csoport egységeleme.

2.2. Álĺıtás. Legyen (G; ·) egy csoport és ≤ egy részbenrendezés G–n. A következő álĺıtások ekvivalensek:
(1) Tetszőleges a, b, c ∈ G, ha a ≤ b, akkor ac ≤ bc és ca ≤ cb.
(2) Tetszőleges a, b, c, d ∈ G esetén, ha a ≤ b és c ≤ d, akkor ac ≤ bd és ca ≤ db.
(3) Tetszőleges a, b, c ∈ G esetén, ha a < b, akkor ac < bc és ca < cb.

Bizonýıtás. (1)⇒(2). Ha a ≤ b és c ≤ d, akkor (1) miatt ac ≤ bc és bc ≤ bd, amiből a tranzitivitás miatt
ac ≤ bd következik. (2)⇒(1). Ha a ≤ b és c ∈ G, akkor c ≤ c, és ı́gy (2) miatt ac ≤ bc és ca ≤ cb.

(1)⇒(3). Ha a < b és c ∈ G, akkor a ≤ b és a 6= b. Ezért (1) szerint ac ≤ bc és ca ≤ cb. Ha
valamelyik reláció egyenlőséggel teljesülne, akkor abból az a = b ellentmondás következne, mert csoportban
lehet egyszerűśıteni. Tehát ac < bc és ca < cb.

(3)⇒(1). Legyen a ≤ b és c ∈ G. Ha a = b, akkor ac = bc és ca = cb. Ha a 6= b, azaz a < b, akkor (3)
szerint ac < bc és ca < cb. Tehát mindkét esetben ac ≤ bc és ca ≤ cb.

2.3. Tétel. Legyen (G; ·) részbenrendezett csoport a ≤ részbenrendezésre nézve, és jelölje P a pozitivitási
tartományát. Ekkor a ≤ b akkor és csak akkor, ha a−1b ∈ P (ba−1 ∈ P ). G akkor és csak akkor lineárisan
rendezett ≤–re nézve, ha bármely x ∈ G esetén x ∈ P vagy x−1 ∈ P . Továbbá, P rendelkezik a következő
négy tulajdonsággal:

(a) 1 ∈ P .
(b) Ha a ∈ P és a−1 ∈ P , akkor a = 1.
(c) Ha a, b ∈ P , akkor ab ∈ P .
(d) Ha a ∈ P és x ∈ G, akkor x−1ax ∈ P .

Bizonýıtás. Ha a ≤ b, akkor 1 = a−1a ≤ a−1b (1 = aa−1 ≤ ba−1), és ı́gy a−1b ∈ P (ba−1 ∈ P ). Ha
a−1b ∈ P (ba−1 ∈ P ), akkor 1 ≤ a−1b (1 ≤ ba−1), amiből a = a1 ≤ a(a−1b = b) (a = 1a ≤ (ba−1)a = b)
következik. Ezzel az első álĺıtást igazoltuk.

Ha G lineárisan rendezett, akkor bármely a ∈ G esetén 1 ≤ a vagy a ≤ 1. Az első esetben a ∈ P , a
második esetben pedig 1 = aa−1 ≤ 1a−1 = a−1, és ı́gy a−1 ∈ P . Tegyük fel, hogy bármely x ∈ G esetén
x ∈ P vagy x−1 ∈ P . Ha a, b ∈ G, akkor a−1b ∈ P vagy b−1a = (a−1b)−1 ∈ P , azaz 1 ≤ a−1b vagy 1 ≤ b−1a.
Az első esetben a = a1 ≤ a(a−1b) = b, a második esetben pedig b = b1 ≤ b(b−1a) = a. Tehát G lineárisan
rendezett.
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Most rátérünk P tulajdonságainak igazolására. Mivel 1 ≤ 1, ezért 1 ∈ P . Ha a ∈ P és a−1 ∈ P , azaz
1 ≤ a és 1 ≤ a−1, akkor a második relációból a = a1 ≤ aa−1 = 1 következik, és ı́gy az antiszimmetria miatt
a = 1. Ha a, b ∈ P , azaz 1 ≤ a és 1 ≤ b, akkor 1 = 11 ≤ ab, vagyis ab ∈ P . Ha a ∈ P , azaz 1 ≤ a, és x ∈ G,
akkor 1 = x−11x ≤ x−1ax. Tehát x−1ax ∈ P .

2.4. Tétel. Legyen (G; ·) csoport és P ⊆ G olyan részhalmaz, mely rendelkezik a 2.3. Tételben megfogal-
mazot (a), (b), (c) és (d) tulajdonságokkal. Definiáljunk egy ≤ relációt G–n a következőképpen:

a ≤ b
def⇔ a−1b ∈ P, a, b ∈ G.

Ekkor ≤ részbenrendezés, melyre nézve G részbenrendezett csoport a P pozitivitási tartománnyal.

Bizonýıtás. Tegyük fel, hogy (G; ·), P és ≤ teljeśıtik a tétel feltételeit. Az (a) feltétel miatt 1 ∈ P . Ezért
bármely a ∈ G esetén a−1a ∈ P , és ı́gy a ≤ a. Ha a ≤ b és b ≤ a, azaz a−1b ∈ P és (a−1b)−1 = b−1a ∈ P ,
akkor (b) miatt a−1b = 1 és a = b. Ha a ≤ b és b ≤ c, vagyis a−1b ∈ P és b−1c ∈ P , akkor (c) szerint
a−1c = (a−1b)(b−1c) ∈ P és a ≤ c. Tehát ≤ reflex́ıv, antiszimmetrikus és tranzit́ıv, és ı́gy részbenrendezés.

Ha a ≤ b, azaz a−1b ∈ P , és c ∈ G, akkor egyrészt ((ca)−1)(cb) = (a−1c−1)(cb) = a−1b ∈ P és ac ≤ bc,
másrészt (d) miatt (ac)−1(bc) = (c−1a−1)(bc) = c−1(a−1b)c ∈ P és ac ≤ bc. Tehát G részbenrendezett
csoport a ≤ relációra nézve. Mivel 1 ≤ a ekvivalens azzal, hogy a = 1a = 1−1a ∈ P , a pozitivitási
tartományra vonatkozó álĺıtás is igaz.

2.5. Defińıció. Legyen (R ; +, ·) gyűrű és ≤ részbenrendezés R–en. Azt mondjuk, hogy R részbenrendezett
gyűrű a ≤ relációra nézve, ha tetszőleges a, b, c ∈ R esetén a ≤ b-ből a + c ≤ b + c következik, azaz (R; +)
részbenrendezett csoport ≤–re nézve, és bármely a, b, c ∈ R esetén, ha a ≤ b és 0 < c, akkor ac ≤ bc és
ca ≤ cb. Ha ráadásul ≤ rendezés, akkor azt mondjuk, hogy R rendezett, lineárisan rendezett vagy elrendezett
gyűrű a ≤ részbenrendezésre nézve. Ha R részbenrendezett gyűrű ≤–re nézve, akkor az {a ∈ R: 0 ≤ a}
halmazt a részbenrendezett gyűrű pozit́ıvitási tartományának nevezzük.

2.6. Álĺıtás. Legyen (R; +, ·) zérusosztómentes gyűrű és ≤ részbenrendezés R–en. A következő két álĺıtás
ekvivalens:

(1) Tetszőleges a, b, c ∈ R esetén, ha a ≤ b és 0 < c, akkor ac ≤ bc és ca ≤ cb.
(2) Tetszőleges a, b, c ∈ R esetén, ha a < b és 0 < c, akkor ac < bc és ca < cb.

Bizonýıtás. Mivel zérusosztómentes gyűrűben 0–tól különböző tényezővel lehet egyszerűśıteni, a 2.2. Tétel
bizonýıtásának (1)⇒(3) és (3)⇒(1) részét szinte szó szerint átvehetjük.

2.7. Tétel. Legyen (R; +, ·) részbenrendezett gyűrű a ≤ részbenrendezésre nézve, és jelölje P a pozitivitási
tartományát. Ekkor a ≤ b akkor és csak akkor, ha b − a ∈ P . R akkor és csak akkor lineárisan rendezett
≤–re nézve, ha bármely x ∈ R esetén x ∈ P vagy −x ∈ P . Továbbá, P rendelkezik a következő négy
tulajdonsággal:

(i) 0 ∈ P .
(ii) Ha a ∈ P és −a ∈ P , akkor a = 0.
(iii) Ha a, b ∈ P , akkor a+ b ∈ P .
(iv) Ha a, b ∈ P , akkor ab ∈ P .

Bizonýıtás. Tegyük fel, hogy (R; +, ·), P és ≤ teljeśıtik a tétel feltételeit. Mivel az (R; +) kommutat́ıv
csoport részbenrendezett ≤–re nézve, a tétel álĺıtásai (iv)–et kivéve a 2.3. Tételből következnek. Legyen
a, b ∈ P , azaz 0 ≤ a, b. Ha b=0, akkor ab = a0 = 0 ∈ P . Ha pedig 0 < b, akkor 0 = 0b ≤ ab, vagyis ab ∈ P .

2.8. Tétel. Legyen (R; +, ·) gyűrű és P ⊆ R egy olyan részhalmaz, mely rendelkezik a 2.7. Tételben
megfogalmazot (i), (ii), (iii) és (iv) tulajdonságokkal. Definiáljunk egy ≤ relációt R–en a következőképpen:

a ≤ b
def⇔ b− a ∈ P, ab ∈ R.
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Ekkor ≤ részbenrendezés, melyre nézve R részbenrendezett gyűrű a P pozitivitási tartománnyal.

Bizonýıtás. Tegyük fel, hogy (R; +, ·), P és ≤ teljeśıtik a tétel feltételeit. Ekkor az (i), (ii) és (iii)
feltételek és + kommutativitása biztośıtják, hogy (R; +), P és ≤ teljeśıtik 2.4. Tétel feltételeit. Ezért
(R; +) részbenrendezett csoport ≤–re nézve a P pozitivitási tartománnyal. Ha a ≤ b és 0 < c, akkor
b− a, c = c− 0 ∈ P , és ı́gy (iv) szereint bc− ac = (b− a)c ∈ P és cb− ca = c(b− a) ∈ P , amiből ≤ defińıciója
miatt ac ≤ bc és ca ≤ cb következik.

2.9. Tétel. Legyen (R; +, ·) részbenrendezett gyűrű a P pozitivitási tartománnyal. Legyen továbbá R′ az
R gyűrű egy részbenrendezett részgyűrűje a P ′ pozitivitási tartománnyal. Ekkor R′ részbenrendezése akkor
és csak akkor megszoŕıtása R részbenrendezésének, ha P ′ ⊆ P . Az álĺıtás érvényes csoportokra is.

2.10. Tétel. Ha (R; +, ·) gyűrű, s jelölje R R részbenrendezéseinek halmazát, P pedig R azon részhalma-
zainak halmazát, melyek rendelkeznek a pozitivitási tartományok tulajdonságaival. Ekkor

R → P , ≤ 7→ {x ∈ G: 1 ≤ x}

tartalmazástartó bijekt́ıv leképezés. Hasonló álĺıtás érvényes csoportok részbenrendezéseire és pozitivitási
tartományaira.

2.11. Tétel. Legyen R egy lineárisan rendezett gyűrű a ≤ relációra nézve, és definiáljuk R elemeinek
abszolút értékét a következőképpen:

|x| =

{

x, ha x ≥ 0;
−x, különben.

Ekkor tetszőleges a, b ∈ R esetén −|a| ≤ a ≤ |a|, |a| = | − a|, |ab| = |a| · |b| és |a+ b| ≤ |a| + |b|.

Bizonýıtás. Az első két álĺıtás azonnal adódik a defińıcióból. A harmadik álĺıtás igazolását az olvasóra
bizzuk, mert attól függően, hogy a és b eleme a pozitivitási tartománynak vagy nem, az ab = (−a)(−b) és
a −ab = (−a)b = a(−b) egyenlőségek felhasználásával egyszerű számolással megkapható. Most nézzük a
negyedik álĺıtást. Ha a+ b ≥ 0, akkor |a+ b| = a + b ≤ |a| + |b|. Ha a + b < 0, akkor |a+ b| = −(a+ b) =
(−a) + (−b) ≤ |a| + |b|.

3. Természetes számok

Azt mondjuk, hogy az N halmaz a természetes számok halmaza, ha teljeśıti az ún. Peano-féle axióma-
rendszert:

(P1) N nemüres halmaz és van egy 0 ∈ N kitüntetett eleme.
(P2) Adott egy ′:N → N leképezés.
(P3) Nincs olyan n ∈ N , melyre n′ = 0.
(P4) Minden m,n ∈ N esetén valahányszor m′ = n′, mindannyiszor m = n (azaz ′ injekt́ıv).
(P5) Ha U ⊆ N olyan, hogy 0 ∈ U , és valahányszor u ∈ U , mindannyiszor u′ ∈ U , akkor U = N .

Az algebrai struktúrák nyelvén a következőképpen fogalmazhatunk: A természetes számok halmaza egy
olyan (N ;′ , 0) algebrai struktúra, melyre (P1) és (P2) szerint 0 nullaváltozós, ′ pedig egyváltozós művelet,
mely teljeśıti a (P3) és (P4) axiómát. A (P5) axióma pontosan azt jelenti, hogy (N ;′ , 0)–nak nincs va-
lódi részstruktúrája. Ugyanis egy U ⊆ N halmaz pontosan akkor részstruktúra, ha zárt a 0 nullaváltozós
műveletre, azaz 0 ∈ U , és zárt a ′ egyváltozós műveletre, vagyis n ∈ U esetén n′ ∈ U is teljesül.

A halmazelmélet Zermelo-Frankel-féle axiómarendszerére éṕıtve megmutatható, hogy létezik az

N = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .}

4



halmaz. Ekkor (N ;∗ , ∅) modellje a Peano-féle axiómarenszernek, ahol minden n ∈ N–re n∗ = n ∪ {n}.

A Peano-féle axiómrendszer nem biztośıtja a természetes számok halmazának létezését, de – mint azt
hamarosan látni fogjuk – izomorfiától eltekintve egyértelműen meghatározza. Ennek igazolásához szükségünk
van a rekurźıv defińıcióra, amit a következő tétel biztośıt:

3.1. Tétel. Legyen A nemüres halmaz, a0 ∈ A, és ∗:A → A egy leképezés. Tegyük fel továbbá, hogy
(N ;′ , 0) teljeśıti a Peano-féle axiómákat. Ekkor létezik pontosan egy olyan ϕ:N → A leképezés, melyre
0ϕ = a0 és minden n ∈ N esetén n′ϕ = (nϕ)∗.

Bizonýıtás. Definiáljunk egy ϕ parciális leképezést N -ből A-ba a következőképpen: legyen 0ϕ = a0, és ha
valamely n-re nϕ értelmezve van, akkor legyen n′ϕ = (nϕ)∗. A (P4) axióma biztośıtja ϕ egyértékűségét, (P5)
pedig azt, hogy N minden elemére definiálva van. Tehát létezik a tétel feltételeinek eleget tevő leképezés.
Az egyértelműség igazolásához tegyük fel, hogy egy ψ:N → A leképezésre is 0ψ = a0, és n′ψ = (nψ)∗

minden n ∈ N esetén. Legyen U = {n ∈ N : nϕ = nψ}. Ekkor 0 ∈ U , és ha n ∈ U , azaz nϕ = nψ, akkor
n′ϕ = (nϕ)∗ = (nψ)∗ = n′ψ, vagyis n′ ∈ U . Így (P5) szerint U = N és ϕ = ψ.

3.2. Tétel. A természetes számok halmaza a Peano-féle axiómarendszerrel izomorfiától eltekintve egyértel-
műen meghatározott.

Bizonýıtás. Tegyük fel, hogy az (N ;′ , 0) és az (M ;∗ , o) algebrai struktúrák kieléǵıtik a (P1)–(P5) axiómá-
kat. A rekurźıv defińıció értelmében léteznek olyan ϕ:N → M és ψ:M → N leképezések, melyekre 0ϕ = o,
oψ = 0 és n′ϕ = (nϕ)∗, m∗ψ = (mψ)′ minden n ∈ N és m ∈ M esetén. Elegendő azt megmutatni, hogy
ϕ izomorfizmus. Mivel ϕ felcserélhető mind a nullaváltozós mind pedig az egyváltozós művelettel, ezért
homomorfizmus. Legyen U = {n ∈ N : n(ϕψ) = n}. Most 0(ϕψ) = (0ϕ)ψ = oψ = 0, ezért 0 ∈ U . Ha
n ∈ U , azaz n(ϕψ) = n, akkor n′(ϕψ) = (n′ϕ)ψ = ((nϕ)∗)ψ = ((nϕ)ψ)′ = (n(ϕψ))′ = n′, amiből n′ ∈ U
következik. Igy (P5) miatt U = N , azaz ϕψ = idN . Hasonlóan látható be ψϕ = idM is. Ezért ϕ bijekt́ıv, és
ı́gy izomorfizmus.

Legyen (N0;
′ , 0) a Peano-féle axiómarendszer egy rögźıtett modellje. Mostantól a természetes számok

halmazának mindig ezt a modellt tekintjük. Vezessük be a megszokott N = N0 \ {0} jelölést.

Az ötödik axiómát a teljes indukció axiómájának is nevezik, mivel a teljes indukciós bizonýıtásnak ez
az alapja.

3.3. Teljes indukció tétele. A Pn kijelentés, amelynek megfogalmazásában az n természetes szám mint
paraméter előfordul, igaz minden természetes számra, ha P0 igaz, és valahányszor Pk igaz, mindannyiszor
Pk′ is igaz.

Bizonýıtás. Jelölje U azoknak az n természetes számoknak a halmazát, amelyekre Pn igaz. A tétel feltételei
és (P5) miatt U = N0.

3.4. Álĺıtás. N = {n′: n ∈ N0}.

Bizonýıtás. Világos, hogy az U = {0} ∪ {n′: n ∈ N0} halmaz teljeśıti (P5) feltételeit. Ezért U = N0,
amiből következik az álĺıtás.

3.5. Álĺıtás. Minden n természetes számra n′ 6= n.

Bizonýıtás. Legyen U = {n ∈ N0: n
′ 6= n}. (P3) miatt 0 ∈ U . Ha n ∈ U , akkor n′ ∈ U , mert ellenkező

esetben (n′)′ = n′, amiből (P4) miatt n′ = n és n 6∈ U következik.
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A természetes számok halmazán az összeadást, illetve a szorzást rekurźıv defińıcióval adjuk meg oly
módon, hogy tetszőleges m első tagra, illetve első tényezőre megmondjuk, hogy hogyan kell m-hez hozzáadni
a második tagot, illetve hogyan kell megszorozni m-et a második tényezővel:

3.6. Defińıció. Tetszőleges m ∈ N0 esetén legyen

m+ 0
def
= m és m+ n′ def

= (m+ n)′,

m · 0 def
= 0 és m · n′ def

= m · n+m.

Vezessük be a következő jelölést: 1 = 0′. Vegyük észre, hogy minden n ∈ N0–re n′ = (n+0)′ = n+0′ = n+1.

A következőkben az összeadás és a szorzás tulajdonságait vizsgáljuk.

3.7. Az összeadás asszociat́ıv: (k +m) + n = k + (m+ n) tetszőleges k,m, n ∈ N0 esetén.

Bizonýıtás. A bizonýıtás n szerinti teljes indukcióval történik. Azt mutatjuk meg, hogy minden n termé-
szetes számra igaz a következő álltás: (k+m)+n=k+(m+n) minden k,m ∈ N0-ra. Az összeadás defińıcióját
felhasználva n = 0-ra az álĺıtás azonnal adódik: (k +m) + 0 = k +m = k + (m+ 0). Tegyük fel, hogy n-re
teljesül az álĺıtás. Ekkor (k +m) + n′ = ((k +m) + n)′ = (k + (m + n))′ = k + (m + n)′ = k + (m + n′).
Tehát n′–re is teljesül az álĺıtás.

3.8. A 0 addit́ıv egységelem: n+ 0 = 0 + n = n minden n ∈ N0 esetén.

Bizonýıtás. Az összeadás defińıciója szerint n + 0 = n minden n-re. Ezért csak a következő álĺıtást
kell igazolni: 0 + n = n minden n-re. 0 + 0 = 0 az összeadás defińıciója miatt. Ha 0 + n = n, akkor
0 + n′ = (0 + n)′ = n′. Tehát az álĺıtást teljes indukcióval igazoltuk.

3.9. Az összeadás kommutat́ıv: m+ n = n+m tetszőleges m,n ∈ N0 esetén.

Bizonýıtás. A bizonýıtás n szerinti teljes indukcióval történik. n = 0-ra 3.8 miatt igaz. n = 1-re is igazoljuk
m szerinti teljes indukcióval az álĺıtást: m+ 1 = 1 +m minden m ∈ N0-re. Ez m = 0-ra 3.8 miatt igaz. Ha
m+1 = 1+m, akkor 3.7-et felhasználva azt kapjuk, hogy m′+1 = (m+1)+1 = (1+m)+1 = 1+(m+1) =
1 +m′.

Végül tegyük fel, hogy m+ n = n +m. Ekkor m + n′ = m+ (n + 1) = (m + n) + 1 = (n +m) + 1 =
n+ (m+ 1) = n+ (1 +m) = (n+ 1) +m = n′ +m.

3.10. Az összeadás egyszerűśıtéses művelet: k + n = m + n-ből m = k következik bármely k,m, n ∈ N0

esetén.

Bizonýıtás. A bizonýıtást n szerinti teljes indukcióval végezzük. n = 0-ra az összeadás defińıciója miatt
igaz. Tegyük fel, hogy n-re teljesül az álĺıtás. Ha k+n′ = m+n′, akkor a defińıció miatt (k+n)′ = (m+n)′.
Ebből a (P4) axióma és az indukciós feltevés szerint k + n = m+ n és m = k következik.

3.11. A 0 multiplikat́ıv zéruselem: n · 0 = 0 · n = 0 minden n ∈ N0 esetén.

Bizonýıtás. A szorzás defińıciója szerint n · 0 = 0 minden n-re. Ezért csak a következő álĺıtást kell igazolni:
0 · n = 0 minden n-re. 0 · 0 = 0 a szorzás defińıciója miatt. Ha 0 · n = 0, akkor a defińıciót és 3.8-at
felhasználva azt kapjuk, hogy 0 · n′ = 0 · n+ 0 = 0 + 0 = 0.

3.12. A szorzás jobbról disztribut́ıv az összeadásra nézve: (k + m)n = kn +mn tetszőleges k,m, n ∈ N0

esetén.

Bizonýıtás. n szerinti teljes indukcióval bizonýıtunk. Az n = 0 esetre a műveletek defińıciójából következik:
(k + m)0 = 0 = 0 + 0 = k0 + m0. Ha az álĺıtás n-re teljesül, akkor az összeadás asszociat́ıvitását és
kommutat́ıvitását többször kihasználva kapjuk, hogy (k+m)n′ = (k+m)n+(k+m) = (kn+mn)+(k+m) =
· · · = (kn+ k) + (mn+m) = kn′ +mn′.
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3.13. Az 1 multiplikat́ıv egységelem: 1 · n = n · 1 = n tetszőleges n ∈ N0 esetén.

Bizonýıtás. n = 0–ra 3.11 miatt igaz az álĺıtás. Ha 1 ·n = n · 1 = n, akkor 1 · n′ = 1 · n+ 1 = n+ 1 = n′ és
n′ · 1 = (n + 1) · 1 = n · 1 + 1 · 1 = n+ 1 · 0′ = n+ (1 · 0 + 1) = n + (0 + 1) = n+ 1 = n′ adódik a szorzás
defińıciója és 3.12 alapján.

3.14. A szorzás kommutat́ıv művelet: mn = nm minden m,n ∈ N0 esetén.

Bizonýıtás. n szerinti teljes indukciót alkalmazunk. n = 0–ra 3.11 miatt igaz az álĺıtás. Tegyük fel, hogy
n–re is igaz. Ekkor 3.12-t felhasználva adódik, hogy mn′ = mn+m = nm+ 1 ·m = (n+ 1)m = n′m.

3.12 és 3.14 következményeként adódik

3.15. A szorzás disztribut́ıv az összeadásra nézve.

3.16. A szorzás asszociat́ıv: (km)n = k(mn) tetszőleges k,m, n ∈ N0 esetén.

Bizonýıtás. n szerinti teljes indukciót alkalmazunk. n = 0-ra a szorzás defińıciója biztośıtja az álĺıtás
helyességét: (km)0 = 0 = k0 = k(m0). Ha n-re igaz, akkor (km)n′ = (km)n + km = k(mn) + km =
k(mn+m) = k(mn′).

3.17. Ha két természetes szám összege 0, akkor mindkettő egyenlő 0-val.

Bizonýıtás. Kontrapoźıcióval bizonýıtunk. Legyen m,n ∈ N0, és tegyük fel, hogy valamelyik nem 0. Az
összeadás kommutat́ıvitása miatt feltehető, hogy n 6= 0. Ekkor 3.4 miatt van olyan k természetes szám,
melyre n = k′, és ı́gy m+ n = m+ k′ = (m+ k)′. A (P3) axióma szerint (m+ k)′ 6= 0.

3.18. Ha két természetes szám szorzata 0, akkor legalább az egyik egyenlő 0-val.

Bizonýıtás. Kontrapoźıcióval bizonýıtunk. Legyen m,n ∈ N0, és tegyük fel, hogy egyik sem 0. Ekkor 3.4
miatt vannak olyan k és l természetes számok, melyekre m = k′, és n = l′. Így mn = k′l′ = (k+ 1)(l+ 1) =
(kl + k + l) + 1 = (kl + k + l)′, ami a (P3) axióma szerint nem lehet 0.

Eddigi eredményeinket a következőképpen foglalhatjuk össze:

3.19. Tétel. Az (N0; +, ·, 0, 1) algebrai struktúra olyan kommutat́ıv és egységelemes félgyűrű, melyre 0 az
összeadás, 1 pedig a szorzás egységeleme. Az összeadás egyszerűśıtéses, 0 összegként csak úgy állhat elő, ha
az összeg minden tagja 0, és az N0 \ {0} halmaz zárt a szorzásra.

Most definiáljuk a természetes számok halmazának rendezését, és megadadjuk legfontosabb tulajdonsá-
gait is.

3.20. Defińıció. Az m,n természetes számokra legyen

m ≤ n
def⇔ ∃k ∈ N0: m+ k = n.

Ha m ≤ n és m 6= n, akkor erre a szokásos m < n jelölést használjuk. Továbbá m ≤ n, illetve m < n helyett
az n ≥ m, illetve n > m jelölést is használjuk.

3.21. Tétel. Az N0 halmazon a ≤ reláció egy olyan rendezés, melyre nézve 0 a legkisebb elem.

Bizonýıtás. Tetszőleges m ∈ N0 esetén m+ 0 = m, ami éppen azt jelenti, hogy m ≤ m. Tehát ≤ reflex́ıv
reláció. Ha m ≤ n és n ≤ m, akkor a defińıció szerint vannak olyan k, l természetes számok, hogy m+ k = n
és n + l = m. Behelyetteśıtve n-et a második egyenlőségbe azt kapjuk, hogy m + (k + l) = m + 0, amiből
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k+ l = 0 következik, hiszen az összeadás egyszerűśıtéses. Ebből pedig 3.17 miatt k = l = 0 és m = n adódik.
Tehát ≤ antiszimmetrikus. Ha valamely m,n, s természetes számokra m ≤ n és n ≤ s, akkor vannak olyan
k, l természetes számok, melyekre m+ k = n és n+ l = s, amiből s = n+ l = (m+ k) + l = m+ (k + l) és
m ≤ s adódik. Tehát ≤ tranzit́ıv is, és ı́gy részbenrendezés. 0 a legkisebb elem, hiszen tetszőleges m ∈ N0

esetén m = 0 +m és 0 ≤ m.

Most már csak azt kell igazolni, hogy bármely két természetes szám összehasonĺıtható. Legyen m
tetszőleges természetes szám, és legyen

U = {n ∈ N0: m ≤ n vagy n ≤ m}.

Azt kell belátni, hogy U = N0. 0 ∈ U hiszen 0 a legkisebb elem. Tegyük fel, hogy n ∈ U , azaz m ≤ n vagy
n < m. Az első esetben van olyan k, hogy n = m+ k. Ekkor n′ = n+ 1 = (m+ k) + 1 = m+ (k + 1), azaz
m ≤ n′, és ezért n′ ∈ U . A második esetben van olyan l 6= 0, melyre m = n+ l. Mivel l 6= 0, ezért 3.4 szerint
van olyan t, melyre l = t′ = t + 1. Így m = n + l = n + (t + 1) = (n + 1) + t = n′ + t, amiből n′ ≤ m és
n′ ∈ U adódik. Így a (P5) axióma szerint U = N0.

A következő tétel a ≤ reláció és a műveletek kapcsolatára vonatkozó legfontosabb tudnivalókat foglalja
össze.

3.22. Tétel. Tetszőleges m,n, k, l ∈ N0 esetén teljesülnek a következők:

(a) Az összeadás monoton művelet: ha az m ≤ n és k ≤ l, akkor m + k ≤ n + l. Ha továbbá m < n
vagy k < l akkor m+ k < n+ l.

(b) A szorzás monoton művelet: ha m ≤ n és k ≤ l, akkor mk ≤ nl. Ha továbbá m < n és l 6= 0, vagy
k < l és n 6= 0, akkor mk < nl.

(c) Ha m+ k ≤ n+ k, akkor m ≤ n. Ha m+ k < n+ k, akkor m < n.

(d) Ha mk ≤ nk és k 6= 0, akkor m ≤ n, Ha mk < nk és k 6= 0, akkor m < n.

3.23. Következmény. A szorzásnál 0-tól különböző tényezővel lehet egyszerűśıteni: ha mk = nk és k 6= 0,
akkor m = n.

Bizonýıtás. Ha mk = nk és k 6= 0, akkor mk ≤ nk, nk ≤ mk, és ezért 3.22(d) szerint m ≤ n és n ≤ m,
amiből m = n következik.

3.24. Defińıció. Legyen (R ; +, ·) félgyűrű és ρ részbenrendezés R-en. Azt mondjuk, hogy (R; +, ·)
részbenrendezett félgyűrű ρ-ra nézve, ha bármely a, b, c ∈ R esetén, ha a ρ b, akkor a+ c ρ b+ c, ac ρ bc és
ca ρ cb. Ha ráadásul ρ rendezés, akkor R-et rendezett vagy lineárisan rendezett félgyűrűnek nevezzük.

3.25. Tétel. A természetes számok félgyűrűje rendezett a ≤ relációra nézve. A természetes számok
félgyűrűjének két rendezése van: a ≤ és a ≥ rendezés.

Bizonýıtás. Az első álĺıtás lényegében összeloglalja néhány korábbi álĺıtásunkat. Legyen � a természetes
számok félgyűrűjének egy rendezése. Vegyük észre, hogy ekkor a természetes számok félgyűrűjének � is
rendezése.

Legyen először 0 � 1. Megmutatjuk, hogy ≤ ⊆ �, amiből ≤=� következik, mert mindkét reláció
rendezés. Valóban, ha ≤ ⊆ �, és van olyan a, b ∈ N0, hogy a � b és a 6≤ b, akkor b ≤ a, b � a és a = b, ami
a 6≤ b miatt nem teljesülhet.

Az ≤ ⊆ � tartalmazás igazolásához elegendő azt megmutatni, hogy tetszőleges m ∈ N0-ra az Um =
{x ∈ N0:m � m + x} halmaz megegyezik N0-lal. Világos, hogy 0 ∈ Um. Ha n ∈ Un, akkor m � n és
m = m+ 0 � n+ 1 = n′ és n′ ∈ Um. Ezért (P5) szerint Um = N0. Végül ha 1 � 0, akkor a fentiek szerint
�=≤.
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4. Egész számok

Az egész számok gyűrűjének konstrukciója arra a tényre épül, hogy minden egész szám két természetes
szám különbsége.

4.1. Defińıció. Az N2
0 halmazon értelmezzük az összeadás és a szorzás műveleteket, valamint egy kétvál-

tozós ρ relációt a következőképpen: Teszőleges (a, b), (c, d) ∈ N2
0 esetén legyen

(a, b) + (c, d)
def
= (a+ c, b+ d),

(a, b) · (c, d) def
= (ac+ bd, ad+ bc)

és
(a, b) ρ (c, d)

def⇔ a+ d = b+ c.

4.2. Tétel.

(1) Az (N2
0; +, ·) algebrai struktúra kommutat́ıv és egységelemes félgyűrű, melynek ρ kongruenciarelá-

ciója.
(2) Az (N2

0/ρ; +, ·) faktorstruktúra olyan integritástartomány, melyre az N0 → N2
0/ρ; n 7→ (n, 0)

leképezés az (N0; .+, ·) félgyűrűnek (N2
0/ρ; +, ·)–ba való beágyazása.

(3) N2
0/ρ = {−(n, 0): n ∈ N} ∪ {(0, 0)} ∪ {(n, 0): n ∈ N}, és az egyeśıtésben szereplő három halmaz

páronként diszjunkt.

Bizonýıtás. Egyszerű számolással ellenőrizhető, hogy N2
0–en az összeadás és a szorzás kommutat́ıv és

asszociat́ıv, a szorzás disztributiv az összeadásra nézve, a (0, 0) addit́ıv, az (1, 0) pedig multiplikat́ıv egysé-
gelem. Például a szorzás asszociativitását és az összeadásra vonatkozó disztributivitását a következőképpen
igazolhatjuk: Tetszőleges (a, b), (c, d), (e, f) ∈ N2

0 esetén

((a, b) · (c, d)) · (e, f) = (ac+ bd, ad+ bc) · (e, f) =

= ((ac+ bd)e+ (ad+ bc)f, (ac+ bd)f + (ad+ bc)e) =

= (a(ce+ df) + b(cf + de), a(cf + de) + b(ce+ df)) =

= (a, b) · (ce+ df, cf + de) = (a, b) · ((c, d) · (e, f))

és
((a, b) + (c, d)) · (e, f) = (a+ c, b+ d) · (e, f) =

= ((a+ c)e+ (b+ d)f, (a+ c)f + (b+ d)e) = (ae+ ce+ bf + df, af + cf + be+ de) =

= (ae+ bf, af + be) + (ce+ df, cf + de) = (a, b) · (e, f) + (c, d) · (e, f).

Tehát (N2
0; +, ·) kommutat́ıv és egységelemes félgyűrű.

Most megvizsgáljuk a ρ reláció tulajdonságait. A defińıcóból közvetlenül adódik, hogy ρ reflex́ıv és
szimmetrikus. Ha (a, b) ρ (c, d) és (c, d) ρ (e, f), akkor a+ d = b+ c és c+ f = d+ e, amiből a+ d+ c+ f =
b+ c+ d+ e, a+ f = b+ e és (a, b) ρ (e, f) következik. Tehát ρ tranzit́ıv is, és ezért ekvivalenciareláció.

Ahhoz, hogy ρ kongruenciareláció legyen, már csak azt kell igazolni, hogy ha (a, b) ρ (c, d) és (e, f) ∈ N2
0,

akkor
(a, b) + (e, f) = (a+ e, b+ f) ρ (c+ e, d+ f) = (c, d) + (e, f)

és
(a, b) · (e, f) = (ae+ bf, af + be) ρ (ce+ df, cf + de) = (c, d) · (e, f).

(a+e, b+f) ρ (c+e, d+f) ekvivalens azzal, hogy a+e+d+f = b+f+c+e, ami igaz, ha (a, b) ρ (c, d), azaz
a+d = b+c. (ae+bf, af+be) ρ (ce+df, cf+de) ekvivalens azzal, hogy ae+bf+cf+de = af+be+ce+df .
Ez igaz, ha a+ d = b+ c, hiszen

ae+ bf + cf + de = (a+ d)e+ (b + c)f = (b+ c)e+ (a+ d)f = be+ ce+ af + df.
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Tehát ρ kongruenciareláció.
Mivel az N2

0 → N2
0/ρ, (a, b) 7→ (a, b) leképezés homomorfizmus, az (N2

0/ρ; +, ·) faktorstruktúra is
kommutat́ıv és egységelemes félgyűrű, melynek (0, 0) az addit́ıv, (1, 0) pedig a multiplikat́ıv egységeleme.
Vegyük észre, hogy (x, y) = (0, 0) ekvivalens azzal, hogy x = y. Ezért (b, a) az (a, b) elem addit́ıv inverze,
hiszen

(a, b) + (b, a) = (a+ b, b+ a) = (0, 0).

Tehát (N2
0/ρ; +, ·) gyűrű.

Tegyük fel, hogy (a, b)·(c, d) = (ac+ bd, ad+ bc) = (0, 0), azaz ac+bd = ad+bc. Ha valamelyik tényező,
mondjuk (a, b) 6= (0, 0), akkor a 6= b, és mivel a < b vagy b < a, van olyan k 6= 0 természetes szám, melyre
b = a+ k vagy a = b + k. Az első esetben

ac+ ad+ kd = ac+ (a+ k)d = ac+ bd = ad+ bc = ad+ (a+ k)c = ad+ ac+ kc,

a második esetben pedig

bc+ kc+ bd = (b+ k)c+ bd = ac+ bd = ad+ bc = (b+ k)d+ bc = bd+ kd+ bc.

Ebből mindkét esetben kd = kc, c = d és (c, d) = (0, 0) következik. Tehát (N2
0/ρ; +, ·) zérusosztómentes is,

és ı́gy integritástartomány.
Most tekintsük a

ϕ: N0 → N2
0/ρ, a 7→ (a, 0)

leképezést. Ha aϕ = bϕ, akkor (a, 0) = (b, 0), azaz (a, 0) ρ (b, 0), amiből a = b következik. Tehát ϕ injekt́ıv.
ϕ felcserélhető a műveletekkel, ugyanis tetszőleges a, b ∈ N0 esetén

(a+ b)ϕ = (a+ b, 0) = (a, 0) + (b, 0) = aϕ+ bϕ

és
(ab)ϕ = (ab, 0) = (a, 0) · (b, 0) = (a, 0) · (b, 0) = aϕ · bϕ.

Tehát ϕ beágyazás.
Az utolsó álĺıtás igazolása céljából tekintsünk egy (a, b) ∈ N2

0/ρ elemet. Mivel a, b ∈ N0, ezért a < b,
a = b és b < a közül valamelyik teljesül. Ha a = b, akkor (a, b) = (0, 0). Ha a < b, akkor van olyan
n ∈ N0, n 6= 0, melyre b = a+ n. Ezért

(a, b) = (a, a+ n) = (0, n) = −(n, 0).

Ha pedig b < a, akkor van olyan n ∈ N0, n 6= 0, melyre a = b+ n. Így

(a, b) = (b+ n, b) = (n, 0).

A (0, 0) elem a rá vonatkozó észrevételünk miatt nem eleme az egyeśıtésben szereplő első és harmadik
halmaznak. Ha az első és harmadik halmaz nem volna diszjunkt, akkor valamely m,n ∈ N, elemekre

(m, 0) = −(n, 0) = (0, n)

teljesülne, amiből m+ n = 0 + 0 = 0 következne. Ez pedig lehetetlen.

4.3. Defińıció. Jelöljük az N2
0/ρ halmazt Z–vel, és az (n, 0), n ∈ N0, alakú elemeket pedig egyszerűen

n-nel. Z elemeit egész számoknak nevezzük. Értelmezzünk a ≤ relációt Z-n a következőképpen:

a ≤ b
def⇔ b− a ∈ N0

.
4.4. Tétel. A (Z; +, ·) olyan integritásrtartomány, melynek (N0; +, ·) részfélgyűrűje, és minden eleme a−b,
a, b ∈ N0, alakú. Továbbá (Z; +, ·) lineárisan rendezett gyűrű a ≤ relációra nézve az N0 pozitivitási tarto-
mánnyal, és a ≤ reláció N0-ra való megszoŕıtása megegyezik N0 előző fejezetben bevezetett rendezésével.

Bizonýıtás. Ha (a, b) ∈ Z, a, b ∈ N0, akkor

(a, b) = (a, 0) + (0, b) = (a, 0) − (b, 0) = a− b.

Ebből és 4.2(2)–ből már következik az első álĺıtás. N0 ⊆ Z tartalmazza a 0-t, zárt az összeadásra és a
szorzásra. Továbbá a 4.2(3) álĺıtás szerint, ha a,−a ∈ N0, akkor a = 0, és bármely a ∈ Z esetén a ∈ N0

vagy −a ∈ N0. Ezért a 2.7 és 2.8. Tétel szerint (Z; +, ·) lineárisan rendezett gyűrű ≤-re nézve. A ≤ reláció
megszoŕıtására vonatkozó álĺıtás közvetlenül adódik a defińıciókból.
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Most már definiálhatjuk egész számok abszolút értékét:

|x| =

{

x, ha x ≥ 0;
−x, különben.

A 2.11. Tétel speciális eseteként kapjuk a következőt:

4.5. Tetszőleges a, b ∈ Z esetén −|a| ≤ a ≤ |a|, |a| = | − a| és |ab| = |a| · |b| és |a+ b| ≤ |a| + |b|.

4.6. Tétel. Az egész számok gyűrűjének a most bevezetett ≤ részbenrendezés az egyetlen lineáris rendezése.

5. Racionális számok

A racionális számok testének alábbi konstrukciója arra a tényre épül, hogy minden racionális szám két
egész szám hányadosa.

5.1. Defińıció. Legyen S = {(a, b): a, b ∈ Z, b 6= 0}, és értelmezzük az összeadást, a szorzást, valamint
egy kétváltozós ρ relációt az S halmazon a következőképpen: Teszőleges (a, b), (c, d) ∈ S esetén legyen

(a, b) + (c, d)
def
= (ad+ bc, bd),

(a, b) · (c, d) def
= (ac, bd)

és
(a, b) ρ (c, d)

def⇔ ad = bc.

5.2. Tétel. A fent definiált (S; +, ·) algebrai struktúrára és ρ relációra érvényesek a következők:
(1) A +, illetve a · művelet kommutat́ıv, asszociat́ıv és egységelemes a (0, 1), illetve az (1, 1) egysége-

lemekkel.
(2) ρ kongruenciareláció.
(3) Az (S/ρ; +, ·) faktorstruktúra olyan test, melyre a Z → S/ρ, n 7→ (n, 1) leképezés az egész számok

gyűrűjének beágyazása (S/ρ,+, ·)-ba.
(4) S/ρ = {−(m,n): m,n ∈ N} ∪ {(0, 1)} ∪ {(m,n): m,n ∈ N} és az egyeśıtésben szereplő három

halmaz páronként diszjunkt.

Bizonýıtás. Az (1) álĺıtás a műveletek defińıcióját felhasználva egyszerű számolással adódik. Ezért csak az
összeadás asszociativitását részletezzük. Tetszőleges (a, b), (c, d), (e, f) ∈ S esetén

((a, b) + (c, d)) + (e, f) = (ad+ bc, bd) + (e, f) = ((ad+ bc)f + (bd)e, (bd)f) =

= (a(df) + b(cf + de), b(df)) = (a, b) + (cf + de, df) = (a, b) + ((c, d) + (e, f)).

Most megvizsgáljuk a ρ reláció tulajdonságait. Az nyilvánvaló, hogy ρ reflex́ıv és szimmetrikus. Ha
(a, b) ρ (c, d) és (c, d) ρ (e, f), akkor ad = bc és cf = de, amiből szorzással adcf = bcde, és egyszerűśıtéssel
acf = bce következik. Ha c 6= 0, akkor további egyszerűśıtéssel af = be adódik, azaz (a, b) ρ (e, f). Ha
c = 0, akkor ad = bc = 0 és de = cf = 0, amiből d, f 6= 0 miatt a = e = 0 következik. Ezért af = 0 = be, és
ı́gy (a, b) ρ (e, f). Tehát ρ tranzit́ıv is, és ezért ekvivalenciareláció.

Ahhoz, hogy ρ kongruenciareláció legyen, már csak azt kell igazolni, hogy ha (a, b) ρ (c, d) és (e, f) ∈S,
akkor

(a, b) + (e, f) = (af + be, bf) ρ (cf + de, df) = (c, d) + (e, f)
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és
(a, b) · (e, f) = (ae, bf) ρ (ce, df) = (c, d) · (e, f).

Tegyük fel, hogy (a, b) ρ (c, d), azaz ad = bc. Ekkor egyrészt (af + be)df = adf2 + bdef = bcf2 + bdef =
bf(cf + de), vagyis (af + be, bf) ρ (cf + de, df), másrészt (ae)(df) = adef = bcef = (bf)(ce), vagyis
(a, b) · (e, f) = (ae, bf) ρ (ce, df) = (c, d) · (e, f). Tehát ρ valóban kongruenciareláció.

Mivel az S → S/ρ, (a, b) 7→ (a, b) leképezés homomorfizmus, (1) miatt az (S/ρ; +, ·) faktorstruktúra
mindkét művelete kommutat́ıv és asszociat́ıv. Továbbá (0, 1) az addit́ıv, (1, 1) pedig a multiplikat́ıv egysé-
gelem. Vegyük észre, hogy tetszőleges (x, y) ∈ S esetén (x, y) = (0, 1), illetve (x, y) = (1, 1) ekvivalens azzal,
hogy (x, y) ρ (0, 1), azaz x = 0, illetve (x, y) ρ (1, 1), azaz x = y. Ezért (−a, b) az (a, b) elem addit́ıv inverze,
hiszen

(a, b) + (−a, b) = (ab+ b(−a), b2) = (0, b2) = (0, 1).

Továbbá, ha (a, b) 6= (0, 1), azaz a 6= 0, akkor (b, a) az (a, b) elem multiplikat́ıv inverze, mert

(a, b) · (b, a) = (ab, ba) = (1, 1).

Legyen (a, b), (c, d), (e, f) ∈ S/ρ. Ekkor

((a, b) + (c, d)) · (e, f) = (ad+ bc, bd) · (e, f) = ((ade+ bce, bdf) =

= (adef + bcef, bdf2) = (ae, bf) + (ce, df) = (a, b) · (e, f) + (c, d) · (e, f),

mert a harmadik egyenlőség ekvivalens az igaz

(ade+ bce)bdf2 = bdf(adef + bcef)

egyenlőséggel, a többi egyenlőség pedig a műveletek defińıciója miatt teljesül. Tehát a szorzás disztribut́ıv
az összeadásra nézve, és ezért (S/ρ; +, ·) test.

Most tekintsük a
ϕ: Z → S/ρ, a 7→ (a, 1)

leképezést. Ha aϕ = bϕ, akkor (a, 1) = (b, 1), vagyis (a, 1) ρ (b, 1), amiből a = b következik. Tehát ϕ injekt́ıv.
ϕ felcserélhető a műveletekkel, ugyanis tetszőleges a, b ∈ S esetén

(a+ b)ϕ = (a+ b, 1) = (a · 1 + 1 · b, 1 · 1) = (a, 1) + (b, 1) = aϕ+ bϕ

és
(ab)ϕ = (ab, 1) = (a, 1) · (b, 1) = aϕ · bϕ.

Tehát ϕ beágyazás.
A (4) álĺıtás igazolása céljából tekintsünk egy (a, b) ∈ S/ρ elemet. Feltehető, hogy b > 0, mert (a, b) =

(−a,−b), és ezért b < 0 esetén (a, b)-t helyetteśıthetjük (−a,−b)-vel. Már emĺıtettük, hogy (a, b) = (0, 1)
pontosan akkor, ha a = 0. Tegyük fel, hogy a 6= 0. Ekkor az a egész számra az −a ∈ N és a ∈ N

álĺıtások közül pontosan az egyik teljesül. Ha −a ∈ N, akkor (a, b) = −(−a, b) ∈ {−(m,n): m,n ∈ N}.
Ha a ∈ N, akkor (a, b) ∈ {(m,n): m,n ∈ N}. Ahhoz, hogy a (4) álĺıtásban szereplő halmazok páromként
diszjunktak már csak azt kell észrevenni, hogy (x, y) = (u, v) nem teljesülhet x, y,−u, v ∈ N esetén, hiszen
az egyenlőségből xv = yu következik.

5.3. Defińıció. Jelöljük az S/ρ halmazt Q-val, és az (n, 1), n ∈ Z, alakú elemeket pedig egyszerűen

n-nel. Q elemeit racionális számoknak nevezzük. Ha a, b ∈ Q és b 6= 0, akkor ab−1 helyett
a

b
-t vagy a/b-t

is ı́runk. Legyen továbbá Q+ = {(m,n): m,n ∈ N} és Q− = {−(m,n): m,n ∈ N}. Q+ elemeit pozit́ıv
racionális számoknak, Q− elemeit pedig negat́ıv racionális számoknak h́ıvjuk. Értelmezzünk a ≤ relációt
Q-n a következőképpen:

a ≤ b
def⇔ b− a ∈ Q+ ∪ {0}.
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5.4. Tétel. A (Q; +, ·) algebrai struktúra olyan test, melynek (Z; +, ·) részgyűrűje, és minden eleme
a

b
(a, b ∈ Z, b 6= 0) alakú. Továbbá (Q; +, ·) rendezett test a ≤ relációra nézve, és a ≤ reláció Z-re való
megszoŕıtása megegyezik Z előző fejezetben bevezetett rendezésével.

Bizonýıtás. Az első álĺıtás az 5.2(3) álĺıtásból és az alábbi észrevételből következik:

(a, b) = (a, 1) · (1, b) = (a, 1) ·
(

(b, 1)
)−1

=
a

b
.

Q+ ∪ {0} tartalmazza a 0-t, zárt az összeadásra és a szorzásra. Továbbá az 5.2(4) álĺıtás szerint ha
r,−r ∈ Q+ ∪ {0}, akkor r = 0, és bármely r ∈ Q esetén r ∈ Q+ ∪ {0} vagy −r ∈ Q+ ∪ {0}. Ezért második
álĺıtásunk a 2.7, 2.8 és 2.9 tételekből következik.

Az egész számokéhoz hasonlóan definiáljuk a racionális számok abszolút értékét:

|x| =

{

x, ha x ≥ 0;
−x, különben.

A 2.11. Tétel speciális eseteként adódik a következő:

5.5. Álĺıtás. Tetszőleges a, b ∈ Q esetén −|a| ≤ a ≤ |a|, |a| = | − a|, |ab| = |a| · |b| és |a+ b| ≤ |a| + |b|.

5.6. Álĺıtás. A racionális számhalmaz rendezése sűrű: tetszőleges a, b ∈ Q esetén, ha a < b, akkor van
olyan x ∈ Q, hogy a < x < b. Bármely a ∈ Q számhoz van egyetlen olyan n egész szám, hogy n ≤ a < n+1.

5.7. Defińıció. Legyen a egy racionális szám. Az a szám [a] egész része az 5.6 Álĺıtásban szereplő n szám,
törtrésze pedig {a} = a− [a].

5.8. Következmény. Tetszőleges a ∈ Q számra [a] ≤ a < [a] + 1 és 0 ≤ {a} < 1.

5.9. Tétel. A racionális számok testének a most bevezetett ≤ rendezés az egyetlen rendezése.

6. Valós számok Cantor-féle konstrukciója

A valós számok testének Cantor-féle konstrukciója arra a szemléletes tényre épül, hogy a számegye-
nes bármely pontjának akármilyen kis környezetében van racionális koordinátájú pont. Következésképpen
minden valós szám racionális számsorozat határértéke.

6.1. Defińıció. Tekintsük a végtelen racionális számsorozatok QN halmazát, melynek elemeit (ri)–vel
jelöljük, ahol ri a sorozat i-edik tagját jelöli, i ∈ N. Ha r ∈ Q, akkor (r) azt a sorozatot jelöli, melynek
minden tagja r. Egy (ri) ∈ QN sorozatot alapsorozatnak vagy Cauchy–sorozatnak nevezünk, ha teljeśıti
a Cauchy–féle belső konvergencia-kritériumot: Bármely ε ∈ Q+ számhoz van olyan n0 ∈ N küszöbszám,
melyre |rm − rn| < ε valahányszor m,n ≥ n0. Egy (ri) ∈ QN sorozatot nullsorozatnak nevezzük, ha bármely
ε ∈ Q+ számhoz van olyan n0 ∈ N küszöbszám, melyre |rn| < ε valahányszor n ≥ n0. Jelölje R az
alapsorozatok, I pedig a nullsorozatok halmazát. Értelmezzük az összeadás és a szorzás műveleteket az R
halmazon a következőképpen: Teszőleges (qi), (ri) ∈ R esetén legyen

(qi) + (ri)
def
= (qi + ri),

és
(qi) · (ri) def

= (qiri)

Vegyük észre, hogy az összeadás és a szorzás a számsorozatok szokásos tagonkénti összeadása és szorzása.
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6.2. Álĺıtás. Minden nullsorozat alapsorozat, azaz I ⊆ R. Az alapsorozatok korlátosak: ha (ri) ∈ R,
akkor van olyan K ∈ Q+, hogy |ri| < K minden i ∈ N esetén.

Bizonýıtás. Legyen először (ri) ∈ I, és legyen ε ∈ Q+ tetszőleges. A defińıcó szerint van olyan n0 ∈ N,

hogy |rn| <
ε

2
valahányszor n ≥ n0. Ezért, ha m,n ≥ n0, akkor

|rn − rm| ≤ |rm| + |rn| <
ε

2
+
ε

2
= ε.

Tehát (ri) alapsorozat.
Legyen másodszor (ri) ∈ R. A defińıcó szerint van olyan n0 ∈ N, melyre |rm − rn0

| < 1, azaz rn0
− 1 <

rm < rn0
+ 1 valahányszor m ≥ n0. Ha K1 = min(r0 . . . , rn0−1, rn0

− 1), K2 = max(r0 . . . , rn0−1, rn0
+ 1) és

K = max(|K1|, |K2|), akkor |ri| < K minden i ∈ N esetén.

6.3. Segédtétel. Tetszőleges (ri) ∈ R \ I esetén a következő két álĺıtás közül pontosan az egyik teljesül:
(∗) Van olyan t ∈ Q+ és n0 ∈ N, hogy t ≤ rn minden n ≥ n0 esetén.

(∗∗) Van olyan t ∈ Q+ és n0 ∈ N, hogy rn ≤ −t minden n ≥ n0 esetén.
A nullsorozatok egyik tulajdonsággal sem rendelkeznek.

Bizonýıtás. Legyen (ri) ∈ R \ I. Mivel (ri) nem nullsorozat, van olyan ε ∈ Q+, hogy bármely n ∈ N

esetén |rm| ≥ ε valamely m ≥ n–re. Mivel (ri) alapsorozat, ezért van olyan n1 ∈ N, hogy |rn − rm| < ε

2
valahányszor m,n ≥ n1. Az előbbiek szerint van olyan n0 ≥ n1, hogy |rn0

| ≥ ε. Legyen t =
ε

2
. Ha rn0

> 0,

akkor bármely n ≥ n0 esetén

rn = rn0
− (rn0

− rn) = |rn0
| − (rn0

− rn) ≥ ε− ε

2
=
ε

2
= t.

Tehát (∗) teljesül. Ha pedig rn0
< 0, akkor bármely n ≥ n0 esetén

−rn = −rn0
− (rn − rn0

) = |rn0
| − (rn − rn0

) ≥ ε− ε

2
=
ε

2
= t,

amiből rn ≤ −t következik. Tehát (∗∗) teljesül. Mindkét esetben úgy csökkentettünk, hogy a kissebb́ıtendőt
csökkentettük a kivonandót pedig növeltük. Az világos, hogy a két áĺıtás egyszerre nem teljesülhet, és a
nullsorozatok egyik álĺıtást sem teljeśıtik.

6.4. Defińıció. Azokat az alapsorozatokat, melyekre (∗), illetve (∗∗) teljesül, pozit́ıv sorozatoknak, illetve
negat́ıv sorozatoknak nevezzük. Jelölje R+ a pozit́ıv, R− pedig a negat́ıv alapsorozatok halmazát. Mivel
a nullsorozatok sem a (∗) sem a (∗∗) tulajdonsággal nem rendelkezhetnek, a 6.3 Segédtételből kapjuk a
következőt:

6.5. Következmény. R = R+ ∪R− ∪ I és az egyeśıtésben szereplő három halmaz páronlént diszjunkt.

6.6. Álĺıtás.

(a) Ha (qi), (ri) ∈ R és (si), (ti) ∈ I, akkor (qi + ri), (qiri) ∈ R és (qisi), (si + ti), (−si) ∈ I.
(b) Ha (qi), (ri) ∈ R+ és (si) ∈ I, akkor (qi + ri), (qiri), (qi + si) ∈ R+ és (−qi) ∈ R−.
(c) Ha (qi), (ri) ∈ R− és (si) ∈ I, akkor (qi + ri), (qi + si) ∈ R− és (−qi), (qiri) ∈ R+.

6.7. Tétel. Az (R; +, ·) algebrai struktúrára érvényesek a következők:
(1) A (R; +, ·) kommutat́ıv és egységelemes gyűrű, melynek (0) az addit́ıv (1) pedig a multiplikat́ıv

egységeleme.
(2) I ideál az R gyűrűben, és az (R/I; +, ·) faktorstruktúra olyan test, melyre a Q → R/I, r 7→ (r) =

I + (r) leképezés a (Q,+, ·) test beágyazása (R/I,+, ·)-be.
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(3) R/I = {(ri): (ri) ∈ R+} ∪ {(0)} ∪ {(ri): (ri) ∈ R−}, és az egyeśıtésben szereplő három halmaz
páronként diszjunkt.

Bizonýıtás. 6.6(a) szerint R zárt az összeadásra és a szorzásra. Tehát (R; +, ·) algebrai struktúra. Az első
álĺıtás azon része, mely az összeadás és a szorzás tulajdonságaira vonatkozik, egyszerű számolással igazolható,
s ezért itt nem részletezzük.

Ismét 6.6(a) szerint I olyan részgyűrű, melyre (qi)(si) ∈ I bámely (qi) ∈ R és (si) ∈ I esetén. Tehát I
ideál. Az (R/I; +, ·) faktorstruktúra kommutat́ıv és egységelemes gyűrű, melynek (0) az addit́ıv, (1) pedig a
multiplikat́ıv egységeleme, mert az (R; +, ·) gyűrű R → R/I, (ri) 7→ (ri) = I + (ri) homomorfizmus melletti
képe.

Legyen (ri) ∈ R/I, és tegyük fel, hogy (ri) 6= (0) = I. Ekkor (ri) 6∈ I, és ı́gy a 6.3. Segédtétel szerint
van olyan t ∈ Q+ és n0 ∈ N, hogy t ≤ |an| minden n0 ≤ n esetén. Ezért az (ri) sorozatnak csak az n0-nál
kisebb indexű tagjai lehetnek 0–val egyenlők. Definiáljuk az (si) sorozatot a következőképpen:

si =

{

ri, ha i ≥ n0;
t, különben.

Ekkor (si − ri) ∈ I, hiszen csak véges sok tagja különbözik 0–tól. Ezért (si) = (si − ri) + (ri) alapsorozat,

és (si) = (ri). Az
( 1

si

)

sorozat is alapsorozat. Ennek igazolásához legyen ε ∈ Q+, és n1 ∈ N olyan, hogy

|sm − sn| < εt2 minden m,n ≥ n1 esetén. Ha m,n ≥ n1, akkor

∣

∣

∣

1

sm

− 1

sn

∣

∣

∣ =
|sn − sm|
|sm||sn|

<
εt2

t2
= ε.

Tehát
( 1

si

)

∈ R/I, és az (ri) = (si) ∈ R/I elemnek multiplikat́ıv inverze, mert

(si) ·
( 1

si

)

=
(

si

1

si

)

= (1).

Tehát (R/I; +, ·) test.
Most tekintsük a

ϕ: Q → R/I, r 7→ (r)

leképezést. Ha qϕ = rϕ, akkor (r) = (q), vagyis a konstans (q−r) sorozat I-ben van, amiből q = r következik.
Tehát ϕ injekt́ıv. ϕ felcserélhető a műveletekkel, ugyanis tetszőleges q, r ∈ S esetén

(q + r)ϕ = (q + r) = (q) + (r) = qϕ+ rϕ

és
(qr)ϕ = (qr) = (q) · (r) = qϕ · rϕ.

Tehát ϕ beágyazás.
A (3) álĺıtás igazolása céljából tekintsünk egy tetszőleges (ri) ∈ R/I elemet. (ri) = (0) = I pontosan

akkor, ha (ri) ∈ I. Tegyük fel, hogy (ri) 6= (0), vagyis (ri) 6∈ I. Ekkor a 6.3. Segédtétel és a 6.4. Defińıció
szerint (ri) ∈ {(ri): (ri) ∈ R+} vagy (ri) ∈ {(ri): (ri) ∈ R−}. Ahhoz, hogy a (3) álĺıtásban szereplő halmazok
páronként diszjunktak, már csak azt kell észrevenni, hogy (qi) = (ri), azaz (qi − ri) ∈ I, nem teljesülhet
(qi) ∈ R+ és (ri) ∈ R− esetén, hiszen ellenkező esetben 6.6(b) szerint (qi − ri) = (qi) + (−ri) ∈ R+, ami 6.3.
Segédtétel szerint lehetetlen.

6.8. Defińıció. Jelöljük az R/I halmazt R–rel, és az (r), r ∈ Q, alakú elemeket pedig egyszerűen r–rel.
R elemeit valós számoknak nevezzük. Legyen továbbá R+ = {(ri): (ri) ∈ R+} és R− = {(ri): (ri) ∈ R−}.
R+ elemeit pozit́ıv valós számoknak R− elemeit pedig negat́ıv valós számoknak h́ıvjuk. Értelmezzünk a ≤
relációt R-n a következőképpen:

a ≤ b
def⇔ b− a ∈ R+ ∪ {0}.
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6.9. Tétel. Az (R; +, ·) algebrai struktúra olyan test, melynek (Q; +, ·) részgyűrűje. Továbbá (R; +, ·)
lineárisan rendezett test a ≤ relációra nézve, és a ≤ reláció Q–ra való megszoŕıtása megegyezik Q előző
fejezetben bevezetett rendezésével.

Bizonýıtás. Az első álĺıtás az 6.7(2) álĺıtásból következik. Mivel R+ ∪ {0} tartalmazza a 0-t, zárt az
összeadásra és a szorzásra, valamint a 6.7(3) álĺıtás szerint ha a,−a ∈ R+ ∪ {0}, akkor a = 0, és bármely
a ∈ R esetén a ∈ R+ ∪ {0} vagy −a ∈ R+ ∪ {0}. Ezért második álĺıtásunk a 2.7, 2.8 és 2.9 tételekből
következik.

Terjesszük ki az abszolút érték függvényt a valós számok halmazára is:

|x| =

{

x, ha x ≥ 0;
−x, különben.

A 2.11. Tétel speciális eseteként adódik most is a következő:

6.10. Álĺıtás. Tetszőleges a, b ∈ R esetén −|a| ≤ a ≤ |a|, |a| = | − a|, |ab| = |a| · |b| és |a+ b| ≤ |a| + |b|.

6.11. Álĺıtás. Tetszőleges a valós számhoz van egyetlen olyan n ∈ Z, hogy n ≤ a < n+ 1.

6.12. Defińıció. Legyen a valós szám. Az a szám [a] egész része az 6.11. Álĺıtásban szereplő n szám,
törtrésze pedig {a} = a− [a].

6.13. Következmény. Tetszőleges a ∈ R számra [a] ≤ a < [a] + 1 és 0 ≤ {a} < 1.

6.14. Álĺıtás. A valós számhalmaz rendezése sűrű: tetszőleges a, b ∈ R esetén, ha a < b, akkor van olyan
x ∈ R, hogy a < x < b. Sőt x racionális számnak is választható.

6.15. Defińıció. Azt mondjuk, hogy az an, n ∈ N, valós számsorozatnak az a valós szám a határértéke,
ha bármely ε ∈ R+ számhoz van olyan n0 ∈ N, hogy |a − an| < ε valahányszor n ≥ n0. (Mivel minden
pozit́ıv valós számnál van kisebb pozit́ıv racionális szám, ha ε ∈ R+ helyett ε ∈ Q+-t ı́runk, akkor az
eredetivel ekvivalens defińıciót kapunk. A későbbiekben ezt rendszeresen kihasználjuk.) Ha egy sorozatnak
van határértéke, akkor konvergens sorozatnak nevezzük. A racionális számsorozatokhoz hasonlóan egy an,
n ∈ N, valós számsorozatot Cauchy–sorozatnak nevezünk, ha teljeśıti a Cauchy–féle belső konvergencia-
kritériumot: bármely ε ∈ R+ számhoz van olyan n0 ∈ N, hogy |an − am| < ε valahányszor m,n ≥ n0.

6.16. Tétel. Ha valamely a valós számra és (ri) alapsorozatra a = (ri), akkor a az rn, n ∈ N, sorozat
határértéke. Tehát minden valós szám racionális számsorozat határértéke.

Bizonýıtás. Szükségünk lesz a következő észrevételre: Tetszőleges (qi) valós számra |(qi)| = (|qi|). Ugyanis,
ha (qi) = 0, akkor (qi) és ı́gy (|qi|) is nullsorozat, és ezért |(qi)| = |0| = 0 = (|qi|). Ha (qi) > 0, akkor (qi) ∈
R+. A defińıcióból következően (qi) tagjai valamely küszöbszámtól kezdve pozit́ıvok, és ı́gy megegyeznek
(|qi|) tagjaival. A (qi − |qi|) sorozat nullsorozat, mert az előbb emĺıtett küszöbszámtól kezdve minden tagja
nulla. Tehát |(qi)| = (qi) = (|qi|). Ha (qi) < 0, akkor (−qi) > 0, és az előző esetet felhasználva kapjuk, hogy
|(qi)| = | − (qi)| = |(−qi)| = (| − qi|) = (|qi|).

Legyen a = (ri), és ε ∈ Q+ tetszőleges. Mivel rn, n ∈ N, Cauchy-sorozat, van olyan n0 ∈ N, hogy

|rm − rn| <
ε

2
valahányszor m,n ≥ n0. Ha n ≥ n0, akkor (ε− |ri − rn|) ∈ R+, mert

ε− |ri − rn| > ε− ε

2
=
ε

2

minden i ≥ n0 esetén. Tehát
ε− (|ri − rn|) = (ε− |ri − rn|) > 0,

vagyis
|a− rn| = |(ri) − rn| = |(ri − rn)| = (|ri − rn|) < ε

valahányszor n ≥ n0.
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6.17. Tétel. Minden valós Cauchy–sorozatnak van határértéke.

Bizonýıtás. Legyen an = (rn
i ), n ∈ N, egy valós Cauchy–sorozat. A 6.16. Tétel szerint minden n–re

an = (rn
i ) az rn

i , i ∈ N, sorozat határértéke. Ezért minden n ∈ N–re van olyan n′ ∈ N, hogy

|rn
n′ − an| <

1

2n
.

Legyen qi = ri
i′ , i ∈ N. Megmutatjuk, hogy (qi) alapsorozat, és az a = (qi) valós szám az an, n ∈ N, sorozat

határértéke.

Az rn
n′ − an, n ∈ N sorozat konvergens, mert abszolút értékét a nullához tartó

1

2n
sorozat majorálja.

Ismert, hogy a konvergens sorozatok Cauchy-sorozatok. A racionális számsorozatokra vonatkozó megfelelő
bizonýıtást szó szerint megismételve megmutatható, hogy valós Cauchy–sorozatok összege is Cauchy–sorozat.
Mindezek miatt

qn = rn
n′ = (rn

n′ − an) + an, n ∈ N,

Cauchy–sorozat. Legyen ε ∈ R+. A 6.16. Tétel szerint az a = (qi) valós szám az qn, n ∈ N, sorozat

határértéke. Ezért van olyan n1 ∈ N, hogy |a − qn| <
ε

2
, ha n ≥ n1. Olyan n2 ∈ N is van, melyre

1

2n
<
ε

2
valányszor n ≥ n2. Legyen n0 = max(n1, n2). Ha n ≥ n0, akkor

|a− an| ≤ |(a− qn)| + |(qn − an)| = |a− qn| + |rn
n′ − an| <

ε

2
+

1

2n
<
ε

2
+
ε

2
= ε.

Tehát a az an, n ∈ N, sorozat határértéke.

6.20. Tétel. A valós számok testének a 6.8. Defińıcióban bevezetett ≤ rendezés az egyetlen lineáris
rendezése.

8. Komplex számok

8.1. Defińıció. Az R2 halmazon értelmezzük az összeadás és a szorzás műveleteket a következőképpen:
Teszőleges (a, b), (c, d) ∈ R2 esetén legyen

(a, b) + (c, d)
def
= (a+ c, b+ d)

és
(a, b) · (c, d) def

= (ac− bd, ad+ bc).

8.2. Tétel. Az (R2; +, ·) algebrai struktúra olyan test, melynek (0, 0) az addit́ıv (1, 0) pedig a multiplikat́ıv
egységeleme, és az R → R2, a 7→ (a, 0) leképezés a valós számok testének beágyazása az (R2,+, ·)–ba.

Bizonýıtás. Egyszerű számolással ellenőrizhető, hogy az összeadás és a szorzás kommutat́ıv és asszociat́ıv,
a szorzás disztributiv az összeadásra nézve, a (0, 0) addit́ıv, az (1, 0) pedig multiplikat́ıv egységelem, és
az (a, b) ∈ R elemnek (−a,−b) az addit́ıv inverze. Például a szorzás asszociativitását és az összeadásra
vonatkozó disztributivitását a következőképpen igazolhatjuk: Tetszőleges (a, b), (c, d), (e, f) ∈ R2 esetén

((a, b) · (c, d)) · (e, f) = (ac− bd, ad+ bc) · (e, f) =

= ((ac− bd)e− (ad+ bc)f, (ac+ bd)f + (ad+ bc)e) =

= ((a(ce− df) − b(cf + de), a(cf + de) + b(ce+ df)) =

= (a, b) · (ce− df, cf + de) = (a, b) · ((c, d) · (e, f))
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és
((a, b) + (c, d)) · (e, f) = (a+ c, b+ d) · (e, f) =

= ((a+ c)e− (b + d)f, (a+ c)f + (b+ d)e) =

= (ae+ ce− bf − df, af + cf + be+ de) = (ae− bf, af + be) + (ce− df, cf + de) =

= ((a, b) · (e, f)) + ((c, d) · (e, f)).

Ha (a, b) 6= (0, 0), akkor a2 + b2 6= 0 és

(a, b) ·
( a

a2 + b2
,

−b
a2 + b2

)

=
( a2

a2 + b2
− −b2
a2 + b2

,
ab

a2 + b2
+

−ab
a2 + b2

)

= (1, 0).

Tehát (a, b)–nek
( a

a2 + b2
,

−b
a2 + b2

)

a multiplikat́ıv inverze. Mindezeket figyelembe véve azt kapjuk, hogy

(R2; +, ·) test.
Most tekintsük a

ϕ: R → R2, a 7→ (a, 0)

leképezést. Világos, hogy ϕ injekt́ıv. Ha a, b ∈ R, akkor

(a+ b)ϕ = (a+ b, 0) = (a, 0) + (b, 0) = aϕ+ bϕ

és
(ab)ϕ = (ab, 0) = (ab− 0 · 0, a · 0 + b · 0) = (a, 0) · (b, 0) = aϕ · bϕ.

Tehát ϕ beágyazás.

8.3. Defińıció. Jelöljük az R2 halmazt C–vel, az (a, 0), a ∈ R, alakú elemeket egyszerűen a–val, a (0, 1)
elemet pedig i–vel. C elemeit komplex számoknak nevezzük. (Vegyük észre, hogy i2 = −1.)

8.4. Tétel. A (C; +, ·) algebrai struktúra olyan test, melynek (R; +, ·) részteste, minden eleme a + bi
(a, b ∈ R) alakban ı́rható, és nincs lineáris rendezése.

Bizonýıtás. Mivel 12 + i2 = 1 − 1 = 0, a 2.13. Tétel szerint nincs C–nek lineáris rendezése. Ha (a, b) ∈ C,
akkor

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0) · (0, 1) = a+ bi.

Ebből és a 8.2 Tételből már következik álĺıtásunk.

8.5. Defińıció. Egy z = a+ bi ∈ C komplex szám z konjugáltját és |z| abszolút értékét a következőképpen
értelmezzük:

z = a− bi, |z| =
√

a2 + b2.

A komplex számokra vonatkozó számolási szabályokkal szinte mindegyik bevezető jellegű felsőbb algebra
tankönyv részletesen foglalkozik. Ezért most csak a legfontosabbakat ismertetjük bizonýıtás nélkül.

8.6. Tétel. Bármely z, z1, z2 ∈ C esetén

z = z, |z| = |z|, zz = |z|2, 1

z
=

z

|z|2 (z 6= 0),

|z1z2| = |z1||z2|, z1 + z2 = z1 + z2, z1z2 = z1 · z2,
z1
z2

=
z1
z2

(z2 6= 0) és |z1 + z2| ≤ |z1| + |z2|.

Az alábbiakban két olyan konstrukciót ismertetünk, melynek ereménye a komplex számok teste.
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8.7. Tétel. Legyen C az

(

a b
−b a

)

(a, b ∈ R) alakú 2 × 2–es mátrixok halmaza. Ekkor C a mátrixok

összeadására és szorzására nézve a komplex számok testével izomorf testet alkot.

Bizonýıtás. Tekintsük a

ϕ: C → C, a+ bi 7→
(

a b
−b a

)

leképezést. Az nyilvánvaló, hogy ϕ bijekt́ıv. Ha a+ bi, c+ di ∈ C, akkor

((a+ bi) + (c+ di))ϕ = ((a+ c) + (b + d)i)ϕ =

=

(

a+ c b+ d
−(b+ d) a+ c

)

=

(

a b
−b a

)

+

(

c d
−d c

)

=

= (a+ bi)ϕ+ (c+ di)ϕ

és
((a+ bi)(c+ di))ϕ = ((ac− bd) + (ad+ bc)i)ϕ =

=

(

ac− bd ad+ bc
−(ad+ bc) ac− bd

)

=

(

a b
−b a

)

·
(

c d
−d c

)

=

= (a+ bi)ϕ · (c+ di)ϕ

Tehát ϕ felcserélhető az összeadással és a szorzással, és ezért izomorfizmus.

8.8. Tétel. Tekintsük a valós számok teste feletti egyhatározatlanú polinomok (R[x]; +, ·) gyűrűjét. Ekkor
R[x]–ben az

I = {(x2 + 1)q(x): q(x) ∈ R[x]}
halmaz ideált alkot, és az R[x]/I faktorgyűrű izomorf a komplex számok testével.

Bizonýıtás. Ha f, g ∈ I és h ∈ R[x], akkor valamely f1, g1 ∈ R[x] polinomokra f = (x2 + 1)f1 és
g = (x2 + 1)g1. Ezért

f + g = (x2 + 1)(f1 + g1), f − g = (x2 + 1)(f1 − g1) ∈ I

és
fh = (x2 + 1)(f1h) ∈ I.

Tehát I ideál. Az R[x]/I faktorgyűrű elemei az I + f (f ∈ R[x]) alakú mellékosztályok. Az egyszerűség
kedvéért I + f helyett f–et, ha pedig a egy konstans polinom, akkor a helyett egyszerűen a–t fogunk ı́rni.
Vegyük észre, hogy

x2 = x2 = x2 + 1 − 1 = 0 − 1 = −1.

Telintsük a
ϕ: C → R[x]/I, a+ bi 7→ a+ bx

leképezést. Ha a+ bi, c+ di ∈ C és (a+ bi)ϕ = (c+ di)ϕ, akkor a+ bx = c+ dx. Ezért

(a− c) + (b− d)x = (a+ bx) − (c+ dx) = 0 = I,

amiből (a − c) + (b − d)x ∈ I következik. Tehát az (a − c) + (b − d)x elsőfokú polinom az x2 + 1 polinom
többszöröse, ami csak úgy teljesülhet, ha a zérus polinom, azaz a = c és b = d. Tehát ϕ injekt́ıv. Ha
f ∈ R[x]/I, akkor van olyan q, r ∈ R[x], hogy f = (x2 + 1)q + r, ahol r legleljebb elsőfokú polinom, azaz
r = a+ bx valamely a, b ∈ R esetén. Ekkor

f = (x2 + 1)q + r = x2 + 1 · q + r = 0 · q + r = r = a+ bx = (a+ bi)ϕ.

Tehát ϕ szürjekt́ıv is. Legyen ismét a+ bi, c+ di ∈ C. Ekkor

((a+ bi) + (c+ di))ϕ = ((a+ c) + (b + d)i)ϕ =

= (a+ c) + (b + d)x = (a+ bx) + (c+ dx) = (a+ bi))ϕ+ (c+ di)ϕ.

és
((a+ bi)(c+ di))ϕ = ((ac− bd) + (ad+ bc)i)ϕ = (ac− bd) + (ad+ bc)x =

= (ac+ bdx2) + (ad+ bc)x = (a+ bx) · (c+ dx) = (a+ bi))ϕ · (c+ di)ϕ.

Tehát ϕ felcserélető a műveletekkel, és ezért izomorfizmus.
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9. Irracionális, algebrai és transzcendens számok

A R \ Q elemeit irracionális számoknak nevezzük. A halmazelmélet számosságokra vonatkozó alapis-
meretei szerint R kontinuum számosságú, Q pedig megszámlálhatóan végtelen halmaz, s ebből következően
R \ Q is kontinuum számosságú. Egyszerűen fogalmazva azt is mondhatjuk, hogy több irracionális szám
van, mint racionális. A legegyszerűbben gyökvonással juthatunk irracionális számokhoz.

9.1. Álĺıtás. Tetszőleges n, k ∈ N esetén k
√
n ∈ Q akkor és csak akkor, ha van olyan p ∈ N, hogy n = pk.

Bizonýıtás. Ha k
√
n racionális szám, akkor vannak olyan relat́ıv pŕım p, q ∈ N számok, hogy

k
√
n =

p

q
, vagyis qkn = pk.

Mivel p és q relat́ıv pŕımek, ezért pk és qk is relat́ıv pŕımek. Ismert, hogy ha egy egész szám osztója egy
szorzatnak, és a szorzat egyik tényezőjéhez relat́ıv pŕım, akkor osztója a másik tényezőnek. Ezért a második
egyenlőségből n|pk, pk|n és n = pk következik.

A valós számok tizedestört alakjáról is leolvasható, hogy racionális szám-e vagy sem.

9.2. Tétel. Egy valós szám akkor és csak akkor racionális, ha tizedestört alakja valamelyik jegytől kezdődően
periodikus.

Bizonýıtás. Egy racionális szám, azaz két egész szám hányadosának tizedestört alakjóhoz úgy jutunk,
hogy a számlálót osztjuk a nevezővel, és ha a számláló jegyeiből kifogytunk, a hányadosban kitesszük a
tizedes vesszőt, és a maradékhoz egy-egy 0-t ı́rva folytatjuk az osztást. A maradék mindig az osztónál kisebb
nemnegat́ıv szám. Így az osztás során szükségképpen fel kell lépni egy olyan maradéknak, mely korábban
már szerepelt. Ezért a két egyforma maradéktól kezdve a hányados jegyei rendre megegyeznek. Tehát innen
kezdve, a tizedesjegyek sorozata perodikus.

Megford́ıtva, legyen egy u pozit́ıv valós szám tizedestört alakja valamelyik jegytől kezdve periodikus,
azaz

u = a1a2 . . . ak, b1b2 . . . bmc1c2 . . . cnc1c2 . . . cn . . .

alakú. Legyen
a = a1a2 . . . ak, b = b1b2 . . . bm és c = c1c2 . . . cn.

Ekkor
10mu = 10ma+ b+

c

10n
+

c

102n
+ · · ·

és
10m+nu = 10m+na+ 10nb+ c+

c

10n
+

c

102n
+ · · · ,

amiből
(10m+n − 10m)u = (10m+n − 10m)a+ (10n − 1)b+ c

és

u =
(10m+n − 10m)a+ (10n − 1)b+ c

10m+n − 10m

következik. Tehát u racionális szám.

A következő tétel seǵıtségével többek között az e és a π számok irracionalitását igazolhatjuk.

9.3. Tétel. Legyen c egy pozit́ıv valós szám és f(x) egy olyan valós függvény, mely a [0, c] zárt intervallumon
folytonos, és a (0, c) nyitott intervallumon pozitiv. Legyen továbbá f1(x), f2(x), . . . egy olyan függvényso-
rozat, melyre f ′

1(x) = f(x) és f ′
k(x) = fk−1(x) minden k ≥ 2 esetén. Ha fk(0) és fk(c) egész számok,

k = 1, 2, . . ., akkor c irracionális szám.
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Bizonýıtás. Tegyük fel, hogy c, f(x) és f1(x), f2(x), . . . teljeśıtik a tétel feltételeit. Legyen

P = {g(x) ∈ R[x]: g(k)(0), g(k)(c) ∈ Z, k = 0, 1, 2 . . .},

ahol g(k) a g polinom k–adik de4riváltja.

9.3.1.

∫ c

0

f(x)g(x)dx egész szám minden g(x) ∈ P esetén.

A parciális integrálás többszöri alkalmazásával kapjuk, hogy

∫ c

0

f(x)g(x)dx =
[

f1g − f2g
′ + f3g

′′ − · · · + (−1)dfd+1g
(d)

]c

0
,

ahol d g fokszáma. Ebből pedig következik 9.3.1.

Parciális deriválással azonnal adódik a következő:

9.3.2. Ha g(x), h(x) ∈ P , akkor g(x)h(x) ∈ P .

Most a tétel álĺıtásával ellentétben tegyük fel, hogy c racionális szám, azaz c =
m

n
, ahol m és n pozit́ıv

egész számok. Könnyen ellenőrizhető, hogy

m− 2nx ∈ P. (∗)

Legyen

gk(x) =
xk(m− nx)k

k!
, k = 0, 1, 2 . . . .

9.3.3. gk(x) ∈ P minden k-ra.

Álĺıtásunk igazolása k szerinti teljes indukcióval történik. g0(x) = 1 ∈ P nyilvánvaló. Tegyük fel, hogy
k ≥ 1 és gk−1(x) ∈ P . Mivel

g′k = gk−1(x)(m − 2nx),

ezért 9.3.2 álĺıtást és (∗)–ot figyelembe véve azt kapjuk, hogy g′k(x) ∈ P . Ebből és gk(0) = gk(c) = 0-ból
gk(x) ∈ P következik.

Mivel gk(x) és f(x) is pozit́ıv (0, c)–n, ezért

∫ c

0

f(x)gk(x)dx > 0, k = 0, 1, . . . .

Ez az integrál 9.3.1 miatt egész szám, és ı́gy

∫ c

0

f(x)gk(x)dx ≥ 1, k = 0, 1, . . . . (∗∗)

Legyen M az x(m− nx) függvény maximuma [0, c]–n, L pedig f(x) maximuma [0, c]–n. Ekkor

∫ c

0

f(x)gk(x)dx ≤
∫ c

0

L · M
k

k!
dx = c · L · M

k

k!
,

ami

lim
k→∞

Mk

k!
= 0

miatt ellentmond (∗∗)–nak. Tehát c nem lehet racionális szám.
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9.4. Következmény. Ha 0 < |r| ≤ π és sin r, cos r racionális számok, akkor r irracionális szám. Speciálisan
π irracionális.

Bizonýıtás. Ha sin r, cos r racionális számok, akkor sin |r|, cos |r| is racionális számok. Ezért van olyan
n pozit́ıv egész szám, hogy n sin |r|, n cos |r| egész számok. Alkalmazva a 9.2. Tételt c = |r|–re és f(x) =
n sinx–re azt kapjuk, hogy |r| és r irracionális számok.

9.5. Következmény. Ha r 6= 1 pozit́ıv racionális szám, akkor ln r irracionális szám. e irracionális szám.

Bizonýıtás. Feltehető, hogy r > 1, és ı́gy ln r > 0. (Ellenkező esetben helyetteśıtsük r–et
1

r
–rel.) Legyen

r =
m

n
, ahol m és n pozit́ıv egész számok. Alkalmazva a 9.2. Tételt c = ln r–re és f(x) = nex–re, az első

álĺıtást kapjuk.
Ha e racionális szám volna, akkor első álĺıtásunk szerint 1 = ln e irracionális lenne. Tehát e irracionális.

Az érdekesség kedvéért egy közvetlen bizonýıtást is adunk arra, hogy e irracionális. Ha e racionális

volna, akkor elég nagy n–ekre n!e egész szám, n!e− n!

n
∑

i=0

1

i!
pedig egy pozit́ıv egész szám lenne. Ezért

1 ≤ n!e− n!

n
∑

i=0

1

i!
= n!

(

∞
∑

i=0

1

i!
−

n
∑

i=0

1

i!

)

=

n!

∞
∑

i=1

1

(n+ i)!
=

∞
∑

i=1

1

(n+ 1) · · · (n+ i)
<

<

∞
∑

i=1

1

(n+ 1)i
=

1

n
.

Ez pedig n ≥ 1 estén lehetetlen.

9.6. Defińıció. Egy a komplex számot algebrai számnak nevezünk, ha van olyan f ∈ Q[x], f 6= 0, polinom,
melyre f(a) = 0. Ha a ∈ C nem algebrai, akkor transzcendens számnak h́ıvjuk. Jelölje A az algebrai számok
halmazát. (Vegyük észre, hogy Q ⊆ A.)

9.7. Tétel. Az algebrai számok A halmaza megszámlálhatóan végtelen.

Bizonýıtás. A bizonýıtásban felhasználjuk a halmazelmélet megszámlálható (véges vagy megszámlálhatóan
végtelen) halmazokra vonatkozó következő eredményeit: Ha A megszámlálható halmaz és n ∈ N, akkor
An is megszámlálható halmaz. Speciálisan Qn megszámlálhatóan végtelen halmaz. Ha I és Ai, i ∈ I
megszámlálható halmazok, akkor

⋃

i∈I Ai is megszámlálható halmaz.
Tetszőleges n ∈ N–re jelölje Pn a legfeljebb n–edfokú racionális-együtthatós polinomok halmazát. Mivel

Qn+1 → Pn, (a0, a1, . . . , an) 7→ a0 + a1x+ · · · + anx
n

bijekt́ıv leképezés, Pn megszámlálható halmaz. Ezért

Q[x] =
⋃

n∈N

Pn

is megszámlálható halmaz. Tetszőleges f ∈ Q[x]–re jelölje Gf az f polinom gyökeinek halmazát. Ekkor

A =
⋃

f∈Q[x]\{0}

Gf

miatt A is megszámlálható halmaz.

22



9.10. Tétel. Az algebrai számok testet alkotnak az összeadásra és szorzásra, azaz ha a és b algebrai számok,

akkor a+ b, a − b, ab is algebrai számok, és amennyiben a 6= 0, akkor
1

a
is algebrai szám. Sőt az algebrai

számok teste algebrailag zárt, azaz bármely f ∈ A[x] polinomnak van gyöke A–ban.

Mivel C kontinuum számosságú, A pedig megszámlálhatóan végtelen halmaz, a transzcendens számok
C \ A halmaza is kontinuum számosságú. Egyszerűen fogalmazva azt is mondhatjuk, hogy több transzcen-
dens szám van, mint algebrai. Ezek után azt várná az olvasó, hogy könnyen lehet konkrét példákat adni
transzcendens számokra. Ez azonban nem ı́gy van. Az egyszerűnek látszó esetekben is komoly munkát
igényel a transzcendencia igazolása.

9.15. Tétel. Az α =
∞
∑

n=1

1

10n!
szám transzcendens.

10. Algebrák

10.1. Defińıció. Legyen K egy test és (R; +, ·) egy nem-asszociat́ıv gyűrű. Azt mondjuk, hogy R algebra
a K test felett, ha értelmezve van R elemeinek a K test elemeivel való szorzása úgy, hogy azzal (R; +)
vektorteret alkot K felett, valamint bármely a, b ∈ R és λ ∈ K esetén λ(ab) = (λa)b = a(λb). Röviden azt
is szoktuk mondani, hogy R K–algebra. Ha az algebrának egyetlen eleme van, akkor triviális algebrának
nevezzük. Ha R — mint vektortér — véges dimenziós (n–dimenziós), akkor véges rangú (n rangú) algebrának
nevezzük. (Vegyük észre, hogy egy algebra pontosan akkor 0 rangú, ha triviális.) Ha a szorzás asszociat́ıv,
akkor R–et asszociat́ıv algebrának nevezzük.

Valamely RK–algebra egy nemüres S részhalmazát részalgebrájának nevezzük, ha S zárt az összeadásra,
a szorzásra és K elemeivel való szorzásra. Könnyű belátni, hogy részalgebrák metszete is részalgebra. Ha
X ⊆ R, akkor az X–nél bővebb részalgebrák metszetét az X által generált részalgebrának nevezzük. Az R
algebra (illetve gyűrű) centrumának az

C(R) = {x ∈ R: ∀a ∈ R esetén xa = ax}

részhalmazát nevezzük. Könnyen ellenőrizhető, hogy C(R) részalgebra (illetve részgyűrű). Ha R — mint
gyűrű — kommutat́ıv, egységelemes, illetve zérus-osztómentes, akkor R–et kommutat́ıv, egységelemes, illetve
zérusosztómentes algebrának h́ıvjuk.

10.2. Példa. Legyen R egy egységelemes nem-asszociat́ıv gyűrű és K olyan részteste R–nek, mely R
centrumában van. Ekkor R tekinthető K–algebrának, hiszen a feltételek miatt R elemeit lehet szorozni K
elemeivel, és az algebra defińıciójában szereplő tulajdonságok nyilvánvalóan teljesülnek. Speciális esetként
adódnak a következő példák:

(1) R végtelen rangú Q–algebra, melyben az {a + b
√

2: a, b ∈ Q} halmaz 2 rangú részalgebra. C 2
rangú R–algebra.

(2) Ha K egy test, és K(a) a K test a elemmel való testbőv́ıtése, akkor K(a) végesrangú vagy végtelen
rangú K–algebra aszerint, hogy a algebrai vagy transzcendens elem K felett.

(3) Egy K test feletti n határozatlanú polinomok K[x1, . . . , xn] gyűrűje végtelen rangú K–algebra
(n ≥ 1). Ha f ∈ K[x1, . . . , xn], akkor az {fg: g ∈ K[x1, . . . , xn]} részhalmaz részalgebra, mely
csak akkor egységelemes, ha f konstans polinom.

(4) Legyen K egy test, Kn×n pedig a K feletti n × n–es mátrixok gyűrűje. A K → Kn×n, λ 7→ λE,
leképezés — ahol E az egységmátrixot jelöli — K beágyazása Kn×n–be. Ezért tekinthetjük K–t
Kn×n résztestének, és ekkor Kn×n n2–dimenziós K–algebra.

10.3. Tétel. Legyen K egy test és R egy egységelemes nem-triviális K–algebra az e multiplikat́ıv egysé-
gelemmel. Ekkor a ϕ: K → R, λ 7→ λe leképezés K beágyazása R–be, és bármely λ ∈ K és a ∈ R esetén
λa = (λe)a és λe ∈ C(R) .
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Bizonýıtás. Mivel R nem-triviális algebra, e 6= 0. Ha λ, µ ∈ K és λϕ = µϕ, azaz λe = µe, akkor
(λ− µ)e = 0, amiből λ− µ = 0 és λ = µ következik. Tehát ϕ injekt́ıv. Legyen ismét λ, µ ∈ K. Ekkor

(λ+ µ)ϕ = (λ+ µ)e = λe+ µe = λϕ + µϕ

és
(λµ)ϕ = (λµ)e = λ(µe) = λ(e(µe)) = (λe)(µe) = (λϕ)(µϕ),

és ezért ϕ beágyazás. Végül ha λ ∈ K és a ∈ R, akkor (λe)a = e(λa) = λa = (λa)e = a(λe), azaz λe ∈ C(R).

10.4. Megjegyzés. A 10.3. Tétel az R egységelemes nem-triviális K–algebrákba oly módon ágyazta
be a K testet, hogy a képelemek R centrumába estek, és K bármely λ elemével való szorzás megegyezik
λ beágyazás melletti képével való szorzással. Igy K elemeit azonośıthatjuk a beágyazás melletti képükkel,
és ezért feltehetjük, hogy K ⊆ R. Tehát minden egységelemes nem-triviális algebra a 10.2. Példa speciális
esete.

10.5. Tétel. Legyen (R; +) egy n-dimenziós vektortér a K test felett, és a1, . . . , an R egy bázisa. Legyenek
továbbá adottak a cij ∈ R (i, j = 1, . . . , n) elemek. Definiáljuk a szorzást R–en két lépésben:

aiaj = cij , i, j = 1, . . . , n

és
(

n
∑

i=1

λiai

)(

n
∑

i=1

µiai

)

=
n

∑

k=1

n
∑

l=1

(λkµl)(akal), λi, µi ∈ K, i = 1, . . . , n.

Ezzel a szorzással R egy K-algebra lett. Ha bármely i ∈ {1, . . . , n} esetén a1ai = aia1 = ai, akkor a1 R
multiplikat́ıv egységeleme. Ha bármely i, j, k ∈ {1, . . . , n} esetén (aiaj)ak = ai(ajak), akkor R szorzása
asszociat́ıv. Ha bármely i, j ∈ {1, . . . , n} esetén aiaj = ajai, akkor R szorzása kommutat́ıv.

10.6. Tétel. Legyen R és S két n rangú K–algebra. Legyen továbbá a1, . . . , an és b1, . . . , bn R és S olyan

bázisai, hogy bármely i, j ∈ {1, . . . , n} esetén valahányszor aiaj =
n

∑

i=1

λiai, mindannyiszor bibj =
n

∑

i=1

λibi.

Ekkor R és S izomorf algebrák.

10.7. Megjegyzés. A 10.5 és a 10.6 tételek szerint egy végesrangú K–algebra definiálásához elegendő
megadni a báziselemeket és bármely két báziselem szorzatát. Ugyanis, ha a báziselemek a1, . . . , an, akkor az

algebra tartóhalmaza a

n
∑

i=1

λiai kifejezések halmaza, mely természetes módon alkot n–dimenzós vektorteret,

és a szorzás 10.5 Tételben megadott módon való kiterjesztésével K–algebra lesz.

10.8. Példa. Legyen K egy test és ({a1, . . . , an}; ·) egy n–elemű félcsoport. Legyen az algebra bázisa
a1, . . . , an, és a báziselemek szorzata legyen a félcsoportbeli szorzat. Ily módon egy asszociat́ıv algebrát
kapunk.

10.9. Defińıció. Legyen K egy test és R egy K–algebra. Tetszőleges a, b, c ∈ R esetén az

[a, b, c] = (ab)c− a(bc)

R–beli elemet az a, b, c elemek asszociátorának nevezzük. (Világos, hogy R pontosan akkor asszociat́ıv, ha
bármely a, b, c ∈ R esetén [a, b, c] = 0.) Az R algebrát alternat́ıv algebrának nevezzük, ha bármely a, b, c ∈ R
elemekre

[a, b, c] = −[b, a, c] = −[c, b, a] = −[a, c, b].
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10.10. Tétel. Legyen R egy K–algebra. Tetszőleges a, b, c, u ∈ R és λ ∈ K esetén

[λa, b, c] = [a, λb, c] = [a, b, λc] = λ[a, b, c], [a+ u, b, c] = [a, b, c] + [u, b, c],

[a, b+ u, c] = [a, b, c] + [a, u, c], és [a, b, c+ u] = [a, b, c] + [a, b, u].

Ha R alternat́ıv algebra, és K karakterisztikája nem 2, akkor

a(ab) = (aa)b és a(bb) = (ab)b, a, b ∈ R. (∗)

Megford́ıtva, ha R–re teljesül (∗), akkor alternat́ıv algebra.

Az alternat́ıv algebrákra fontos példa a Cayley–algebra, melyet a következő fejezetben adunk meg.

11. Hiperkomplex rendszerek

11.1. Defińıció. Ha R egy egységelemes nem-triviális végesrangú R–algebra, akkor röviden hiperkomplex
rendszernek, elemeit pedig hiperkomplex számoknak nevezzük. A 10.4. Megjegyzés szerint R centruma
tartalmazza R–et úgy, hogy 1 ∈ R egyben R–nek is multiplikat́ıv egységeleme.

A 10.7. Megjegyzés szerint egy hiperkomplex rendszer definiálásához elegendő megadni a báziselemeket
és bármely két báziselem szorzatát. Az egyszerűség kedvéért első báziselemnek mindig 1–et, a multiplikat́ıv
egységelemet választjuk. Így csak a többi báziselem szorzatát kell megadni.

11.2. Tétel. Bármely 2 rangú hiperkomplex rendszer izomorfiától eltekintve a következő három lehet:
(1) A báziselemek 1, i és i2 = −1 (ezek a komplex számok).
(2) A báziselemek 1, i és i2 = 1 (ezek a hiperbolikus komplex számok).
(3) A báziselemek 1, i és i2 = 0 (ezek a Study-féle számok).

Bizonýıtás. Legyen az R 2 rangú hiperkomplex rendszer egy bázisa 1, a és a2 = x + ya, x, y ∈ R. Az
a2 = x+ ya egyenlőségből átrendezéssel

(

−y
2

+ a
)2

= x+
y2

4

adódik. Három eset lehetséges.

(1) x+
y2

4
= −u2, u ∈ R, u 6= 0. Legyen i = − y

2u
+

1

u
a. Ekkor 1, i is bázis és i2 = −1. Tehát R izomorf

a komplex számok testével.

(2) x +
y2

4
= u2, u ∈ R, u 6= 0. Ha i = − y

2u
+

1

u
a, akkor 1, i bázis és i2 = 1. Tehát R izomorf a

hiperbolikus komplex számok algebrájával.

(3) x +
y2

4
= 0. Ha i = −y

2
+ a, akkor 1, i bázis és i2 = 0. Tehát R izomorf a Study-féle számok

algebrájával.

A komplex számok tulajdonságait elég részletesen elemeztük a nyolcadik és kilencedik fejezetben. A
hiperbolikus komplex számok és a Study-féle számok szorzása a 10.5. Tétel szerint ugyan asszociat́ıv és
kommutat́ıv, de nem zérusosztómentes. Így ők kevésbé érdekesek.

11.3. Példa. ( A kvaterniók ferdeteste.) Legyen K olyan 4 rangú hiperkomplex rendszer, melynek egy
bázisa 1, i, j, k, valamint i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i és ki = −ik = j. Világos, hogy
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K szorzása nem kommutat́ıv, s könnyen ellenőrizhető, hogy a báziselemeken a szorzás asszociat́ıv. Ezért a
10.5. Tétel szerint K szorzása asszociat́ıv. K elemeit kvaternióknak nevezzük. Ha a = λ+µi+ νj+ τk ∈ K,
akkor λ–t a valós részének, µi+ νj + τk–t pedig a képzetes részének nevezzük, és őket rendre R(a) és I(a)
jelöli. Ha λ = 0, akkor azt mondjuk, hogy a tiszta képzetes kvaternió.

Az a = λ − µi − νj − τk elemet a konjugáltjának nevezzük. Könnyű ellenőrizni, hogy aa = aa =
λ2 + µ2 + ν2 + τ2. Az a elem abszolútértéke legyen |a| =

√
aa. Ha a 6= 0, akkor |a|2 6= 0, és ı́gy

a
( 1

|a|2 a
)

=
1

|a|2 (aa) = 1 =
1

|a|2 (aa) =
( 1

|a|2 a
)

a.

Ezért az a elemnek
1

|a|2 a a multiplikat́ıv inverze. Tehát K ferdetest.

Összefoglaljuk a kvaterniók aritmetikájára vonatkozó legfontosabb tényeket.

11.4. Tétel. Bármely nullától különböző a ∈ K–ra az a ∈ R, a = a és a2 ∈ R+, illetve az R(a) = 0,
a = −a és a2 ∈ R− álĺıtások ekvivalensek. Továbbá bármely a, b, c ∈ K és λ ∈ R esetén

λa = λa, a = a, |a| = |a|, aa = aa = |a|2, a+ b = a+ b,

ab = b · a, |ab| = |a||b|, 1

a
=

1

a
(a 6= 0) és |a+ b| ≤ |a| + |b|.

11.5. Tétel. Legyen K az






x y z t
−y x −t z
−z t x −y
−t −z y x






, x, y, z.t ∈ R,

alakú 4 × 4–es mátrixok halmaza. Ekkor K olyan részalgebra a 4 × 4–es mátrixok R–algebrájában, mely
izomorf a kvaterniók R–algebrájával.

Bizonýıtás. Tekintsük az

1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, i =







0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0






,

j =







0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0






és k =







0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0







mátrixokat. Világos, hogy 1, i, j, k a (K; +) vektortér bázisát alkotják, s könnyű ellenőrizni, hogy a szorzásban
ugyanúgy viselkednek, mint a megfelelő kvaterniók. Ezért egyrészt nem vezet ki a mátrixszorzás K–ból, és
ı́gy K valóban részalgebra, másrészt a 10.6. Tétel szerint K izomorf a kvaterniók R–algebrájával.

11.6. Defińıció. Jelölje R a valós számok, a komplex számok, illetve a kvaterniók R–algebrája közül
valamelyiket, és tekintsük az

R(2) = {a+ bE: a, b ∈ R},
halmazt, ahol E 6∈ R egy szimbólum. Értelmezzük az összeadást és a szorzást R(2)–n, valamint az R(2)–beli
elemeknek valós számmal való szorzását a következőképpen:

(a+ bE) + (c+ dE) = (a+ c) + (b + d)E,
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(a+ bE)(c+ dE) = (ac− db) + (da+ bc)E

és
λ(a+ bE) = λa+ (λb)E, a, b ∈ R, λ ∈ R.

Az ı́gy nyert R(2) algebrai struktúrát az R algebra megkettőzöttjének nevezzük.

11.7. Tétel. A valós számok, a komplex számok, illetve a kvaterniók megkettőzöttje hiperkomplex rendszer.
Speciálisan R megkettőzöttje izomorf C–vel, és C megkettőzöttje izomorf K–val.

11.8. Defińıció. A kvaterniók algebrájának megkettőzöttjét Cayley-algebrának, elemeit pedig Cayley-
számoknak nevezzük. Értelmezzük a Cayley-számok konjugáltját. Ha u = a+ bE (a, b ∈ K), akkor legyen

u = a− bE.

Ekkor
uu = (a+ bE)(a− bE) = (aa− (−b)b) + ((−b)a+ ba)E = aa+ bb = |a|2 + |b|2,

s hasonlóan látható be, hogy uu = |a|2 + |b|2 = uu. Értelmezzük u abszolútértékét a szokásos módon:

|u| =
√
uu.

Ha u 6= 0, akkor |u|2 6= 0, és ı́gy

u
( 1

|u|2u
)

=
1

|u|2 (uu) = 1 =
1

|u|2 (uu) =
( 1

|u|2u
)

u.

Ezért az u elemnek
1

|u|2u a multiplikat́ıv inverze. A következő tételben megmutatjuk, hogy a Cayley-algebra

zérusosztómentes. Ezt felhasználva könnyű belátni, hogy minden nullától különböző u Cayley-számnak csak

egyetlen multiplikat́ıv inverze van, s a hagyományokhoz h́ıven
1

u
–val jelöljük..

Most összefoglaljuk a Cayley-számok aritmetikájára vonatkozó legfontosabb tényeket.

11.9. Tétel.

(1) A Cayley-számok olyan zérusosztómentes alternat́ıv algebrát alkotnak, melyben

1, i, j, k, E, I = iE, J = jE, K = kE

bázis, ahol 1, i, j, k a megfelelő kvaterniók.
(2) Bármely v, w és u = x+ yi+ zj + tk + pE + qI + rJ + sK (x, y, z, t, p, q, r, s ∈ R) Cayley-számok

esetén
u = x− yi− zj − tk − pE − qI − rJ − sK,

uu = uu = |u|2 = x2 + y2 + z2 + t2 + p2 + q2 + r2 + s2,

λu = λu, u = u, |u| = |u|, u+ u = u+ u,

uv = v · u, |uv| = |u||v|, 1

u
=

1

u
(u 6= 0) és |a+ b| ≤ |a| + |b|.

(3) Bármely nullától különböző a ∈ K(2) Cayley-számra az a ∈ R, a = a és a2 ∈ R+, illetve az
R(a) = 0, a = −a és a2 ∈ R− álĺıtások ekvivalensek. (A Cayley-számok valós és képzetes részét a
kvaterniókéhoz hasonlóan definiálhatjuk.)
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12. Zérusosztómentes és normált algebrák

12.1. Frobenius-tétel. Bármely memtriviális, végesrangú, zérusosztómentes és asszociat́ıv R–algebrára a
következő három álĺıtás egyike teljesül:

(a) Rangja 1, és izomorf a valós számok testével.
(b) Rangja 2, és izomorf a komlex számok testével.
(c) Rangja 4, és izomorf a kvaterniók ferdetestével.

12.2. Tétel. Bármely nemtriviális végesrangú, zérusosztómentes és asszociat́ıv C–algebra izomorf a komp-
lex számok testével.

Bizonýıtás. Legyen R egy nemtriviális n rangú és zérusosztómentes C–algebra. Ekkor R tekinthető R–
algebrának is. Megmutatjuk, hogy R–nek — mint R–algebrának — 2n a rangja. Legyen a1, . . . , an bázisa
R–nek — mint C–algebrának —, és tekintsük az a1, . . . , an, ia1, . . . , ian elemeket, ahol i ∈ C a képzetes
egység. Ha a ∈ R, akkor vannak olyan λ1 + iµ1, . . . , λn + iµn ∈ C számok, hogy

a = (λ1 + iµ1)a1 + · · · + (λn + iµn)an = λ1a1 + · · · + λnan + µ1(ia1) + · · · + µn(ian).

Tehát az a1, . . . , an, ia1, . . . , ian elemek R–nek — mint R–algebrának — generátorrendszere. Ha
λ1µ1, . . . , λn, µn ∈ R és

λ1a1 + · · · + λnan + µ1(ia1) + · · · + µn(ian) = 0,

akkor
(λ1 + iµ1)a1 + · · · + (λn + iµn)an = 0.

Mivel a1, . . . , an bázisa R–nek — mint C–algebrának —, ezért mindegyik együttható nulla. Ebből pedig
λ1 = µ1 = · · · = λn = µn = 0 következik. Tehát az a1, . . . , an, ia1, . . . , ian elemek R–ben — mint R–
algebrában — lineárisan független rendszert, és ı́gy bázist alkotnak. Tehát R–nek — mint R–algebrának
2n a rangja. Ezért Frobenius-tétel szerint R izomorf C–vel vagy K–val. Az utóbbi esetben a 10.3. Tétel
és a 10.4. Megjegyzés szerint azt kapnánk, hogy C része K centrumának, ami nem igaz. Így csak az első
lehetőség marad.

Bizonýıtás nélkül megadjuk a Frobenius-tétel általánosabb alkját.

12.3. Általános Frobenius-tétel. Bármely nemtriviális, végesrangú, zérusosztómentes és alternat́ıv R–
algebrára a következő négy álĺıtás egyike teljesül:

(a) Rangja 1, és izomorf a valós számok testével.
(b) Rangja 2, és izomorf a komlex számok testével.
(c) Rangja 4, és izomorf a kvaterniók ferdetestével.
(d) Rangja 8, és izomorf a Cayley–számok alternat́ıv algebrájával.

12.4. Defińıció. Legyen R egy R–algebra. Egy σ:R2 → R leképezést skaláris szorzatnak nevezzük, ha
bármely a, b, c ∈ R és λ ∈ R esetén

σ(a, b) = σ(b, a), σ(λa, b) = λσ(a, b), σ(a+ b, c) = σ(a, c) + σ(b, c),

σ(a, a) ≥ 0 és σ(a, a) = 0 ⇔ a = 0.

Azt mondjuk, hogy R normált algebra a σ–skaláris szorzással, ha

σ(ab, ab) = σ(a, a) · σ(b, b)

minden a, b ∈ R esetén.

12.5. Tétel. Jelölje R a valós számok, a komplex számok, a kvaterniók illetve a Cayley-féle számok
R–algebrája közül valamelyiket. Legyen

σ:R2 → R, (a, b) 7→ 1

2
(ab + ba).

Ekkor σ olyan skaláris szorzás, mellyel R normált algebra.

Bizonýıtás. A skaláris szorzás defińıciójóban szereplő első három egyenlőség egyszerű számolással, a többi
tulajdonság pedig σ(a, a) = |a|2 felhasználásával igazolható.
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12.6. Hurwitz-tétel. Bármely nem-triviális végesrangú, egységelemes és normált R–algebrára a következő
négy álĺıtás egyike teljesül:

(a) Rangja 1, és izomorf a valós számok testével.
(b) Rangja 2, és izomorf a komlex számok testével.
(c) Rangja 4, és izomorf a kvaterniók ferdetestével.
(d) Rangja 8, és izomorf a Cayley–számok alternat́ıv algebrájával.
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