1. Absztrakt algebrai bevezet6

Legyen A nemiires halmaz, n pedig nemnegativ egész szam. Az f: A" — A leképezéseket A—n értelmezett
n—valtozos miiveleteteknek nevezzik. Az (ay,...,a,) € A™ elem f szerinti képét f(ai,...,a,) jeldli. Mivel
AY = {0}, a 0-valtozés miiveleteket egyértelmiien meghatarozza az f(()) € A elem, s ezért azonositani is
szoktuk vele.

Legyen F egy halmaz, és nevezziik elemeit miiveletjeleknek. Tegyiik fel, hogy F minden f eleméhez
egy n nemnegativ egész szam van rendelve. Ekkor F—et algebratipusnak, f—et pedig n—valtozos miivelet-
jelnek nevezziik. Azt mondjuk, hogy az (4; F') rendezett elempar F—tipusi algebrai struktira (vagy réviden
algebra), ha A nemiires halmaz (az algebra alaphalmaza) F = {f4: f € F} pedig A-n értelmezett mii-
veleteknek egy rendszere, ahol minden f € F esetén f4 egy A-n értelmezett n—valtozés miivelet (n az f
miiveletjel valtozészama). A gyakorlatban f4 helyett egyszertien f—et irunk. Az ebbdl eredé kétértelmiiség
csak ritkdn okoz problémét. Ha F véges, pl. F = {f1,..., fx}, akkor (A; F) helyett az (A; f1,..., fi) jelolést
is hasznaljuk, tobbnyire gy, hogy fi,..., fr valtozészamuk szerint csokkend sorrendben kovetik egymast.
Ha nem okoz félreértést, akkor az algebréat egyszeriien az alaphalmazdaval jeloljik. A kétvaltozos miiveleteket
altaldban a + vagy a - szimbdlumokkal jeloljik, és az (a, b) elempér képét e miiveletek sordn a+b, a-b (vagy
egyszeriien ab) jeloli, és az adott elemek Osszegének, illetve szorzatdnak nevezziik.

Egy algebrai struktirat grupoidnak neveziink, ha egyetlen kétvaltozos miivelettel rendelkezik. Ha a
miiveletnek van egységeleme, illetve a miivelet kommutativ, akkor egységelemes, illetve kommutativ grupo-
idrél beszéliink. Az asszociativ miiveletii grupoidokat félcsoportoknak, az olyan egységelemes félcsoportokat
pedig, melyekben minden elemnek van inverze, csoportoknak nevezziik.

Azt mondjuk, hogy egy (R;+,-) algebrai struktira félgytirti, ha (R;+) kommutativ és egységelemes
félcsoport, (R;-) félcsoport, és a szorzas disztributiv az Osszeaddsra nézve. Az (R;+, ) félgylirlit gytiriinek
nevezziik, ha (R;+) csoport. Ha egy félgylirii vagy gyfirii szorzésa egységelemes, illetve kommutativ akkor
egységelemes, illetve kommutativ félgytiriinek vagy gylirlinek hivjuk. Azt mondjuk, hogy az (R;+,-) gyfird
integritastartomany, ha kommutativ, egységelemes és zérusosztomentes, azaz barmely a,b € R esetén, ha
ab = 0, akkor @ = 0 vagy b = 0. Az olyan (R;+,-) kommutativ gyfiriiket, melyekre (R \ {0};-) csoport (0
az additiv egységelem), testeknek nevezzitk. Ha R a szorzds kommutativitdsdt esetleg leszdmitva a testek
minden tulajdonsigéval rendelkezik, akkor ferdetestnek nevezzitk. Ha (R;+,-) a szorzds asszociativitdsét
leszamitva minden gylri axiomat teljesit, akkor nem-asszociativ gytriinek hivjuk. A nem-asszociativ jelz6
csak annyit jelent, hogy a szorzas asszociativitdsa nem axiéma, de nem zarja ki érvényességét.

Legyen (A; F) és (B; F) két azonos tipusu algebra. Egy ¢: A — B leképezést homomorfizmusnak
neveziink, ha felcserélheté a miiveletekkel, azaz tetszéleges f € F n—valtozés (n > 0) mivelet és aq,...,a, €
A esetén

f(ala"'aa/n)(p = f(al(pa"'aan(p)'

Ha ¢ sziirjektiv, akkor a masodik struktirdt az els6 homomorf képének nevezziik. A bijektiv homomorfizmust
izomorfizmusnak, az injektivet pedig beagyazasnak hivjuk. Homomorfizmusok szorzata homomorfizmus, és
izomorfizmusok inverze is izomorfizmus.

Szamos miivelettulajdonsag o6roklodik sziirjektiv homomorfizus esetén. Ilyen tulajdonsdgok példaul a
kommutativitds, az asszociativitds, a disztributivitds, valamint az egységelem és inverz elem létezése. Igy
csoport, félgyfiri, illetve gylri homomorf képe is csoport, félgytiri, illetve gytirt.

Legyen (A; F') algebrai struktiira és p ekvivalenciareldci6é az A halmazon. Azt monjuk, hogy p kongru-
enciarelacio, és a hozza tartozé ekvivalenciareldcié kompatibilis osztalyozas, ha a miiveletek megérzik, azaz
tetszbleges f € F n—valtozés (n > 0) miivelet és a1,by ..., an, b, € A esetén

(a1,b1),...,(an,bp) €p = (flar,...,an), f(b1,...,b,)) € p.

Csoportok kompatibilis osztdlyozasai a norméloszté szerinti, gytiriik kompatibilis osztalyozéasai pedig az ideél
szerinti osztalyozasok. Ha f kétvaltozds, és az egyszerliség kedvéért - jeloli, akkor elegend6 megkovetelni a
kovetkez6 1atszolag gyengébb feltételt: Tetszdleges a, b, c € S esetén,

(a,b) €p = (ac,be) € p, (ca,cd) € p.

Ugyanis, ha (a,b) € p és (¢, d) € p, akkor (ac, bc) € p és (be,bd) € p, amibél p tranzitivitdsa miatt (ac, bd) € p
kovetkezik.



Legyen p az (A; F') algebra kongruenciareldciéja. Jelolje A/p az A halmaz p szerinti faktorhalmazat,
azaz p osztdlyainak halmazat, s ha a € A, akkor az a—t tartalmazé osztilyt jelolje a/p. Ha nem okoz
félreértést, akkor a/p helyett az @ jelolést is haszndljuk. Minden f € F n—valtozds (n > 0) miivelet segitsé-
gével természtes médon értelmezhetiink egy ugyancsak f-fel jelolt n—valtozds miiveletet az A/p halmazon:
Tetsz6leges a1/p,...,an/p € A/p esetén legyen

flar/p,-- - an/p) < flar,....an)/p.

ey az (A;F) algebraval azonos tipusu (A/p; F') algebrat definidltunk, melyet (A; F') p szerinti faktorstruk-
turdjanak vagy faktoralgebrdjanak nevezziik. Konnyen ellendrizhetd, hogy az A — A/p, a — a/p leképezés
sziirjektiv homomorfizmus.

Egy nemiires A halmazon értelmezett kétvaltozos p reliciot részbenrendezésnek neveziink, ha reflexiv,
antiszimmetrikus és tranzitiv. Ha p dichotom, azaz barmely a,b € A esetén a p b vagy b p a, akkor p—t
rendezésnek vagy linearis rendezésnek hivjuk.

2. Részbenrendezett csoportok és gyliriik

2.1. Definicié. Legyen (G;-) csoport és < részbenrendezés G—n. G részbenrendezett csoport <-re nézve,
ha tetszoleges a,b,c € G esetén a < b-bdl ac < be és ca < cb kovetkezik. Ha rdadasul < rendezés,
akkor azt mondjuk, hogy G rendezett, linedrisan rendezett vagy elrendezett csoport <-re nézve. Ha G
részbenrendezett csoport a < részbenrendezésre nézve, akkor az {a € G: 1 < a} halmazt a részbenrendezett

.....

2.2. Allitas. Legyen (G;-) egy csoport és < egy részbenrendezés G—n. A kovetkezd dllitdasok ekvivalensek:
(1) Tetszbleges a,b,c € G, ha a < b, akkor ac < bc és ca < cb.
(2) Tetszbleges a,b,c,d € G esetén, ha a < b és ¢ < d, akkor ac < bd és ca < db.
(3) Tetszbleges a,b,c € G esetén, ha a < b, akkor ac < be és ca < cb.

Bizonyités. (1)=(2). Ha a < b és ¢ < d, akkor (1) miatt ac < be és be < bd, amibél a tranzitivitds miatt
ac < bd kovetkezik. (2)=(1). Ha a <b és ¢ € G, akkor ¢ < ¢, és igy (2) miatt ac < bc és ca < cb.

(1)=(3). Haa <bésc e G, akkor a < b és a # b. Ezért (1) szerint ac < bc és ca < cb. Ha
valamelyik relacié egyenléséggel teljesiilne, akkor abbdl az a = b ellentmondds kovetkezne, mert csoportban
lehet egyszertisiteni. Tehat ac < bc és ca < cb.

(3)=(1). Legyen a < b és c € G. Ha a = b, akkor ac = bc és ca = ¢b. Ha a # b, azaz a < b, akkor (3)
szerint ac < be és ca < ¢b. Tehat mindkét esetben ac < be és ca < cb. [

2.3. Tétel. Legyen (G;-) részbenrendezett csoport a < részbenrendezésre nézve, és jelolje P a pozitivitasi
tartomédnydt. Ekkor a < b akkor és csak akkor, ha a='b € P (ba™' € P). G akkor és csak akkor linedrisan
rendezett <-re nézve, ha barmely x € G esetén x € P vagy x~' € P. Tovabba, P rendelkezik a kivetkezs
négy tulajdonsaggal:

(a) 1€ P.

(b) Haa € P ésa~! € P, akkor a = 1.

(c) Ha a,b € P, akkor ab € P.

(d) Haa € P és x € G, akkor x~tax € P.

Bizonyitds. Ha a < b, akkor 1 = a 'a < a7 ' (1 = aa™! < ba™?), és gy a= b € P (ba™t € P). Ha
a~tbe P (ba=! € P), akkor 1 < a='b (1 < ba~1'), amibsl a = al < a(a™ b =b) (a = la < (ba=)a = b)
kovetkezik. Ezzel az els6 allitast igazoltuk.

Ha G linedrisan rendezett, akkor barmely a € G esetén 1 < a vagy a < 1. Az els6 esetben a € P, a
masodik esetben pedig 1 = aa™! < la™! = a7 !, és fgy a=! € P. Tegyiik fel, hogy barmely x € G esetén
x € Pvagyz~t € P. Haa,be G, akkor a='b € Pvagy b=ta= (a='b)"t € P,azaz 1 < a 'bvagy 1 < b la.
Az elsé esetben a = al < a(a™1b) = b, a mésodik esetben pedig b = b1 < b(b~'a) = a. Tehdt G linedrisan
rendezett.



Most ratériink P tulajdonsidgainak igazoldsara. Mivel 1 < 1, ezért 1 € P. Haa € P és a~! € P, azaz
1<aésl<a !, akkor a masodik relaciébdl a = al < aa~! = 1 kovetkezik, és igy az antiszimmetria miatt
a=1 Haa,be P,azaz 1 <aés1<b, akkor 1 =11 < ab, vagyisab € P. Haa € P, azaz 1 < a, és = € G,
akkor 1 =z~ 11z < z=lax. Tehat z—tax € P. n

2.4. Tétel. Legyen (G;-) csoport és P C G olyan részhalmaz, mely rendelkezik a 2.3. Tételben megfogal-
mazot (a), (b), (c) és (d) tulajdonsdgokkal. Definidljunk egy < reldciét G-n a kévetkezSképpen:

agbiiéf a~tbe P, abeq.
Ekkor < részbenrendezés, melyre nézve G részbenrendezett csoport a P pozitivitasi tartomannyal.

Bizonyitas. Tegyik fel, hogy (G;-), P és < teljesitik a tétel feltételeit. Az (a) feltétel miatt 1 € P. Ezért
barmely a € G esetén a='a € P, ésigya<a. Haa<bésb<a,azaza 'be Pés (a )" =b"laecP,
akkor (b) miatt a='b =1ésa =0 Haa < bésb < c, vagyis a 'b € P és b=1c € P, akkor (c) szerint
a~te=(a71b)(b7lc) € P és a < c. Tehat < reflexiv, antiszimmetrikus és tranzitiv, és {gy részbenrendezés.
Ha a < b, azaz a='b € P, és ¢ € G, akkor egyrészt ((ca)~1)(cb) = (a7 tc7 1) (eb) = a=tb € P és ac < be,
mésrészt (d) miatt (ac)1(be) = (c7la™1)(be) = ¢ (a7 tb)c € P és ac < be. Tehdt G részbenrendezett
csoport a < reldciéra nézve. Mivel 1 < a ekvivalens azzal, hogy a = la = 17la € P, a pozitivitasi
tartomanyra vonatkozé allitas is igaz. ]

2.5. Definicid. Legyen (R;+, ) gylr{i és < részbenrendezés R—en. Azt mondjuk, hogy R részbenrendezett
gytirti a < reldcidra nézve, ha tetszéleges a,b,c € R esetén a < b-bdl a + ¢ < b + ¢ kovetkezik, azaz (R;+)
részbenrendezett csoport <-re nézve, és barmely a,b,c € R esetén, ha a < b és 0 < ¢, akkor ac < bc és
ca < cb. Ha rdadédsul < rendezés, akkor azt mondjuk, hogy R rendezett, linearisan rendezett vagy elrendezett
gytlirti a < részbenrendezésre nézve. Ha R részbenrendezett gyliri <-re nézve, akkor az {a € R: 0 < a}
halmazt a részbenrendezett gylrli pozitivitasi tartomanyanak nevezziik.

2.6. Allitas. Legyen (R; +, ) zérusosztémentes gytirii és < részbenrendezés R—en. A kivetkez6 két allitas
ekvivalens:

(1) Tetszbleges a,b,c € R esetén, ha a < b és 0 < ¢, akkor ac < bc és ca < cb.

(2) Tetszbleges a,b,c € R esetén, ha a < b és 0 < ¢, akkor ac < bc és ca < cb.

Bizonyitas. Mivel zérusosztomentes gyuriiben 0-tdl kiilonb6z6 tényezovel lehet egyszerisiteni, a 2.2. Tétel
bizonyitdsdnak (1)=(3) és (3)=-(1) részét szinte szd szerint dtvehetjiik. ]

2.7. Tétel. Legyen (R;+, ) részbenrendezett gylirii a < részbenrendezésre nézve, és jelélje P a pozitivitasi
tartomanyat. Ekkor a < b akkor és csak akkor, ha b —a € P. R akkor és csak akkor linedrisan rendezett
<-re nézve, ha barmely r € R esetén x € P vagy —x € P. Tovabba, P rendelkezik a kiévetkezé négy
tulajdonsaggal:
(i) 0 € P.

(ii) Haa € P és —a € P, akkor a = 0.

(iii) Ha a,b € P, akkor a +b € P.

(iv) Ha a,b € P, akkor ab € P.

Bizonyitds. Tegyiik fel, hogy (R;+,-), P és < teljesitik a tétel feltételeit. Mivel az (R;+) kommutativ
csoport részbenrendezett <-re nézve, a tétel allitdsai (iv)—et kivéve a 2.3. Tételbdl kovetkeznek. Legyen
a,be P, azaz 0 < a,b. Ha b=0, akkor ab = a0 = 0 € P. Ha pedig 0 < b, akkor 0 = 0b < ab, vagyis ab € Pm

2.8. Tétel. Legyen (R;+,-) gyiri és P C R egy olyan részhalmaz, mely rendelkezik a 2.7. Tételben
megfogalmazot (i), (ii), (iii) és (iv) tulajdonsdgokkal. Definidljunk egy < reldciét R—en a kévetkezSképpen:

agbiﬁef b—a€eP, abeR.
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Ekkor < részbenrendezés, melyre nézve R részbenrendezett gytirti a P pozitivitasi tartomannyal.

Bizonyitas. Tegyiik fel, hogy (R;+,:), P és < teljesitik a tétel feltételeit. Ekkor az (i), (ii) és (iii)
feltételek és + kommutativitdsa biztositjdk, hogy (R;+), P és < teljesitik 2.4. Tétel feltételeit. Ezért
(R;+) részbenrendezett csoport <-re nézve a P pozitivitdsi tartomdnnyal. Ha a < b és 0 < ¢, akkor
b—a,c=c—0¢€ P, ésigy (iv) szereint bc —ac = (b—a)c € P és cb—ca = ¢(b—a) € P, amibél < definicidja
miatt ac < be és ca < ¢b kovetkezik. [
2.9. Tétel. Legyen (R;+,-) részbenrendezett gylirti a P pozitivitdsi tartomannyal. Legyen tovabbd R’ az
R gylirii egy részbenrendezett részgytiriije a P’ pozitivitdsi tartomdnnyal. Ekkor R’ részbenrendezése akkor
és csak akkor megszoritdsa R részbenrendezésének, ha P’ C P. Az allitas érvényes csoportokra is.

2.10. Tétel. Ha (R;+,-) gyiiri, s jelolje R R részbenrendezéseinek halmazdt, P pedig R azon részhalma-
zainak halmazat, melyek rendelkeznek a pozitivitasi tartomanyok tulajdonsagaival. Ekkor

R—-P, <—{reGl<z}

tartalmazastarto bijektiv leképezés. Hasonlé allitas érvényes csoportok részbenrendezéseire és pozitivitasi
tartomanyaira.

2.11. Tétel. Legyen R egy linedarisan rendezett gytirii a < reldciéra nézve, és definidljuk R elemeinek
abszolut értékét a kovetkez6képpen:
|:c|{ x, haz>0;
—x, kiilénben.

Ekkor tetszéleges a,b € R esetén —|a| < a < |a|, |a| = | — al, |ab|] = |a] - |b

és la +b| < |a| + [b].

Bizonyitas. Az els6 két allitas azonnal adddik a definiciébdl. A harmadik allitas igazolasat az olvasora
bizzuk, mert attdl fiiggden, hogy a és b eleme a pozitivitdsi tartomédnynak vagy nem, az ab = (—a)(—b) és
a —ab = (—a)b = a(—b) egyenldségek felhasznaldsdval egyszerti szdmoldssal megkaphat6. Most nézzik a
negyedik allitast. Ha a +b > 0, akkor |[a +b| = a +b < |a| + |b]. Ha a + b < 0, akkor |a +b] = —(a +b) =
(—a) + (~b) < la] + 8] .

3. Természetes szamok

Azt mondjuk, hogy az N halmaz a természetes szamok halmaza, ha teljesiti az in. Peano-féle axiéma-
rendszert:

(P1) N nemiires halmaz és van egy 0 € N kitlintetett eleme.

(P2) Adott egy ': N — N leképezés.

(P3) Nincs olyan n € N, melyre n’ = 0.

(P4) Minden m,n € N esetén valahdnyszor m’ = n’, mindannyiszor m = n (azaz ' injektiv).
(P5) Ha U C N olyan, hogy 0 € U, és valahdnyszor u € U, mindannyiszor v’ € U, akkor U = N.

Az algebrai strukturak nyelvén a kévetkezéképpen fogalmazhatunk: A természetes szamok halmaza egy
olyan (N;',0) algebrai struktira, melyre (P1) és (P2) szerint 0 nullavéltozds, ' pedig egyvaltozds miivelet,
mely teljesiti a (P3) és (P4) axiémét. A (P5) axiéma pontosan azt jelenti, hogy (N;',0)-nak nincs va-
16di részstruktiraja. Ugyanis egy U C N halmaz pontosan akkor részstruktira, ha zart a 0 nullavéltozds
miiveletre, azaz 0 € U, és zart a ' egyvaltozds miiveletre, vagyis n € U esetén n’ € U is teljestil.

A halmazelmélet Zermelo-Frankel-féle axiémarendszerére épitve megmutathatd, hogy 1étezik az

N = {0, {0}, {0,{0}}, {0,{0},{0,{0}}},..}
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halmaz. Ekkor (N;*, () modellje a Peano-féle axidmarenszernek, ahol minden n € N-re n* = n U {n}.

A Peano-féle axiomrendszer nem biztositja a természetes szdmok halmazanak létezését, de — mint azt
hamarosan latni fogjuk — izomorfiatdl eltekintve egyértelmiien meghatarozza. Ennek igazolasahoz sziikségilink
van a rekurziv definiciéra, amit a kdvetkezo tétel biztosit:

3.1. Tétel. Legyen A nemiires halmaz, ag € A, és *: A — A egy leképezés. Tegyiik fel tovabba, hogy
(N ,0) teljesiti a Peano-féle axiémakat. Ekkor létezik pontosan egy olyan @o: N — A leképezés, melyre
0p = ag és minden n € N esetén n'p = (ny)*.

Bizonyitas. Definidljunk egy ¢ parcialis leképezést N-bél A-ba a kdvetkezdképpen: legyen 0y = ag, és ha
valamely n-re ny értelmezve van, akkor legyen n’p = (np)*. A (P4) axiéma biztositja ¢ egyértékiiségét, (P5)
pedig azt, hogy N minden elemére definidlva van. Tehat létezik a tétel feltételeinek eleget tevd leképezés.
Az egyértelmiiség igazoldsdhoz tegyiik fel, hogy egy ¢: N — A leképezésre is 01 = ag, és n'¢p = (ny)*
minden n € N esetén. Legyen U = {n € N: nyp = ny}. Ekkor 0 € U, és ha n € U, azaz ny = ny, akkor
n'p = (np)* = (nY)* = n'y, vagyisn’ € U. fgy (P5) szerint U = N és ¢ = 1. ]

3.2. Tétel. A természetes szamok halmaza a Peano-féle axiomarendszerrel izomorfiatdl eltekintve egyértel-
miien meghatarozott.

Bizonyitas. Tegyiik fel, hogy az (N;,0) és az (M;*,0) algebrai struktirdk kielégitik a (P1)—(P5) axiémé-
kat. A rekurziv definicié értelmében léteznek olyan ¢: N — M és ip: M — N leképezések, melyekre Op = o,
oy =0 és n'o = (np)*, m*Y = (my) minden n € N és m € M esetén. Elegendé azt megmutatni, hogy
@ izomorfizmus. Mivel ¢ felcserélheté6 mind a nullavaltozés mind pedig az egyvéltozos miivelettel, ezért
homomorfizmus. Legyen U = {n € N: n(pyp) = n}. Most 0(¢y)) = (0p)p = ot = 0, ezért 0 € U. Ha
n € U, azaz n(py) = n, akkor n'(p¢)) = (n'p)p = ((np)* ) = ((ne)y) = (n(ey)) = n', amibél n’ € U
kovetkezik. Igy (P5) miatt U = N, azaz ¢ = idx. Hasonlbéan ldthaté be v = idys is. Ezért ¢ bijektiv, és
igy izomorfizmus. ]

Legyen (Np;,0) a Peano-féle axiémarendszer egy rogzitett modellje. Mostantdl a természetes szdmok
halmazdnak mindig ezt a modellt tekintjiik. Vezessiik be a megszokott N = Ny \ {0} jelolést.

Az 6t6dik axiémét a teljes indukcié axiomajdnak is nevezik, mivel a teljes indukciés bizonyitasnak ez
az alapja.

.3. jes indukcié té . . kijelentés, amelynek megfogalmazasaban az n természetes szam min
3.3. Teljes indukcié tétele. A P, kijelentés, lynek fogal b t t t
paraméter eléfordul, igaz minden természetes szamra, ha Py igaz, és valahanyszor Py igaz, mindannyiszor
Py is igaz.

Bizonyitas. Jelolje U azoknak az n természetes szamoknak a halmazat, amelyekre P, igaz. A tétel feltételei
és (P5) miatt U = Np,. ]

3.4. Allitas. N = {n/: n € Ng}.

Bizonyitas. Vildgos, hogy az U = {0} U {n’: n € Ny} halmaz teljesiti (P5) feltételeit. Ezért U = Ny,
amibdl kovetkezik az allitas. |

3.5. Allitas. Minden n természetes szamra n’ #n.

Bizonyitas. Legyen U = {n € Ny: n’ # n}. (P3) miatt 0 € U. Ha n € U, akkor n’ € U, mert ellenkez§
esetben (n’)’ = n’/, amibél (P4) miatt n’ = n és n & U kovetkezik. [
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A természetes szamok halmazén az Osszeaddst, illetve a szorzast rekurziv definiciéval adjuk meg oly
médon, hogy tetszbleges m els6 tagra, illetve els6 tényezére megmondjuk, hogy hogyan kell m-hez hozzaadni
a masodik tagot, illetve hogyan kell megszorozni m-et a masodik tényezével:

3.6. Definicié. Tetszéleges m € Ny esetén legyen

m—l—Od:efm és m—i—n'd:ef(m—i—n)',

m~0d:ef és m~n'd:efm~n+m.

Vezessiik be a kovetkezd jelolést: 1 = 0'. Vegyiik észre, hogy minden n € No-re n’ = (n+0)' = n+0 =n+1.
A kovetkez6kben az Osszeadds és a szorzas tulajdonsdgait vizsgaljuk.
3.7. Az osszeadds asszociativ: (k+m)+n =k + (m + n) tetsz6leges k,m,n € Ny esetén.

Bizonyitas. A bizonyitas n szerinti teljes indukciéval torténik. Azt mutatjuk meg, hogy minden n termé-
felhaszndlva n = O-ra az allitds azonnal adédik: (k+m)+0=k+m =k + (m + 0). Tegyiik fel, hogy n-re
teljesiil az allitds. Ekkor (k+m)+n' = (k+m)+n) =(kk+(m+n)) =k+(m+n) =k+ (m+n).
Tehat n/-re is teljesiil az Allitas. [

3.8. A 0 additiv egységelem: n+ 0 = 0+ n = n minden n € Ny esetén.

Bizonyitas. Az Osszeadds definicija szerint n + 0 = n minden n-re. Ezért csak a kovetkezd allitdst
kell igazolni: 0 +n = n minden n-re. 04 0 = 0 az Gsszeadds definicidja miatt. Ha 0 + n = n, akkor
0+n' = (04 n) =n'. Tehét az &llitast teljes indukcidval igazoltuk. ]

3.9. Az Osszeadas kommutativ: m +n = n + m tetszéleges m,n € Ny esetén.

Bizonyitas. A bizonyitas n szerinti teljes indukcidval torténik. n = O-ra 3.8 miatt igaz. n = 1-re is igazoljuk
m szerinti teljes indukciéval az allitast: m + 1 =1 4+ m minden m € Ny-re. Ez m = 0-ra 3.8 miatt igaz. Ha
m+1 = 1+m, akkor 3.7-et felhaszndlva azt kapjuk, hogy m'+1= (m+1)+1=(1+m)+1=1+(m+1) =
1+m'.

Végiil tegyiik fel, hogy m+n =n+m. Ekkorm+n'=m+n+1)=(m+n)+1=n+m)+1=
n+(m+1l)=n+(1+m)=mn+1)+m=n"+m. ]

3.10. Az dsszeadas egyszertisitéses miivelet: k 4+ n = m + n-bdl m = k kévetkezik barmely k,m,n € Ny
esetén.

Bizonyitas. A bizonyitdst n szerinti teljes indukcidval végezziik. n = 0O-ra az Osszeadds definicigja miatt
igaz. Tegyiik fel, hogy n-re teljesiil az allitds. Ha k+n’ = m+n’, akkor a definicié miatt (k+n) = (m+n)’.
Ebbél a (P4) axiéma és az indukcids feltevés szerint k +n = m + n és m = k kovetkezik. ]

3.11. A 0 multiplikativ zéruselem: n -0 = 0-n = 0 minden n € Ng esetén.

Bizonyitas. A szorzds definicija szerint n -0 = 0 minden n-re. Ezért csak a kovetkezo allitast kell igazolni:
0-n = 0 minden n-re. 0-0 = 0 a szorzds definiciéja miatt. Ha 0-n = 0, akkor a definiciét és 3.8-at
felhaszndlva azt kapjuk, hogy 0-n’ =0-n+0=0+0=0. u

3.12. A szorzés jobbrdl disztributiv az dsszeaddsra nézve: (k + m)n = kn + mn tetsz6leges k,m,n € Ny
esetén.

e sz

(k+m)0 =0 =0+0 = k0+ m0. Ha az illitds n-re teljesiil, akkor az Osszeadds asszociativitdsat és
kommutativitdsat tobbszor kihasznalva kapjuk, hogy (k+m)n' = (k+m)n+(k+m) = (kn+mn)+(k+m) =
o= (kn+k)+ (mn+m)=kn' +mn'. n



3.13. Az 1 multiplikativ egységelem: 1-n =n -1 = n tetszbleges n € Ny esetén.

Bizonyitas. n = 0-ra 3.11 miatt igaz az allitds. Ha1-n=n-1=mn,akkor1-n'=1-n+1=n+1=n'és
n-l=m+1)-1=n-141-1=n+1-0=n+(1-0+1)=n+(0+1) =n+1=mn' adédik a szorzés
definicidja és 3.12 alapjan. ]

3.14. A szorzas kommutativ miivelet: mn = nm minden m,n € Ny esetén.

Bizonyitas. n szerinti teljes indukcidt alkalmazunk. n = 0-ra 3.11 miatt igaz az allitdas. Tegytlik fel, hogy
n-re is igaz. Ekkor 3.12-t felhasznélva adédik, hogy mn' =mn+m=nm+1-m = (n+ 1)m =n'm. |

3.12 és 3.14 kovetkezményeként adddik
3.15. A szorzas disztributiv az Gsszeaddsra nézve.
3.16. A szorzds asszociativ: (km)n = k(mn) tetszdleges k,m,n € Ny esetén.
Bizonyitas. n szerinti teljes indukciét alkalmazunk. n = 0-ra a szorzés definicidja biztositja az allités
helyességét: (km)0 = 0 = k0 = k(m0). Ha n-re igaz, akkor (km)n’ = (km)n + km = k(mn) + km =
k(mn 4+ m) = k(mn'). [
3.17. Ha két természetes szam Osszege 0, akkor mindkett6 egyenls 0-val.
Bizonyitas. Kontrapoziciéval bizonyitunk. Legyen m,n € Ny, és tegyiik fel, hogy valamelyik nem 0. Az
Osszeadas kommutativitasa miatt felteheto, hogy n # 0. Ekkor 3.4 miatt van olyan k természetes szam,
melyre n = k', ésigy m+n=m+k' = (m+k). A (P3) axiéma szerint (m + k)’ # 0. [
3.18. Ha két természetes szam szorzata 0, akkor legalabb az egyik egyenlé 0-val.
Bizonyitas. Kontrapoziciéval bizonyitunk. Legyen m,n € Ny, és tegyiik fel, hogy egyik sem 0. Ekkor 3.4
miatt vannak olyan k és [ természetes szamok, melyekre m =k, ésn=10". Igymn =K1l'=(k+1)(I+1) =
(kl+k+1)+1=(kl+k+1), ami a (P3) axiéma szerint nem lehet 0. [
Eddigi eredményeinket a kovetkezéképpen foglalhatjuk Ossze:
3.19. Tétel. Az (Ny;+,-,0,1) algebrai struktira olyan kommutativ és egységelemes félgy{irii, melyre 0 az
Osszeadds, 1 pedig a szorzds egységeleme. Az Gsszeadds egyszertisitéses, 0 Osszegként csak tgy allhat eld, ha

az Osszeg minden tagja 0, és az Ny \ {0} halmaz zart a szorzésra.

Most definidljuk a természetes szamok halmazanak rendezését, és megadadjuk legfontosabb tulajdonsa-
gait is.

3.20. Definicié. Az m,n természetes szamokra legyen

m<n (Le}f dk € No: m+ k =n.

Ha m < n és m # n, akkor erre a szokdsos m < n jelolést hasznéljuk. Tovabba m < n, illetve m < n helyett
az n > m, illetve n > m jelolést is hasznaljuk.

3.21. Tétel. Az Ny halmazon a < relacié egy olyan rendezés, melyre nézve 0 a legkisebb elem.
Bizonyitas. Tetszoleges m € Ny esetén m + 0 = m, ami éppen azt jelenti, hogy m < m. Tehat < reflexiv
relacié. Ha m < n és n < m, akkor a definicid szerint vannak olyan k, [ természetes szamok, hogy m+k =n

és n 4+ | = m. Behelyettesitve n-et a masodik egyenldségbe azt kapjuk, hogy m + (k + 1) = m + 0, amibdl
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k+1 = 0 kovetkezik, hiszen az Osszeadas egyszeriisitéses. Ebbol pedig 3.17 miatt k =1 = 0 és m = n addédik.
Tehat < antiszimmetrikus. Ha valamely m,n, s természetes szamokra m < n és n < s, akkor vannak olyan
k,l természetes szdmok, melyekre m +k=nésn+l=s, amibll s=n+Il=(m+k)+l=m+ (k+1) és
m < s adodik. Tehat < tranzitiv is, és igy részbenrendezés. 0 a legkisebb elem, hiszen tetszoleges m € Ny
esetén m=0+m és 0 < m.

Most mér csak azt kell igazolni, hogy barmely két természetes szam Osszehasonlithaté. Legyen m
tetsz6leges természetes szam, és legyen

U ={n €Ny m<nvagy n <m}.

Azt kell belatni, hogy U = Ng. 0 € U hiszen 0 a legkisebb elem. Tegyiik fel, hogy n € U, azaz m < n vagy
n < m. Az els6 esetben van olyan k, hogy n =m + k. Ekkorn’ =n+1=(m+k)+1=m+ (k+1), azaz
m < n/, ésezért n’ € U. A mésodik esetben van olyan [ # 0, melyre m = n+ 1. Mivel [ # 0, ezért 3.4 szerint
van olyan ¢, melyre | = ¢ =t +1. lgy m =n +1 =n+({t+1)=(n+1)+¢t=n"+t, amibbl n’ < m és
n' € U adédik. Igy a (P5) axiéma szerint U = N. [

A kovetkezd tétel a < relacid és a miiveletek kapcsolatdra vonatkozoé legfontosabb tudnivaldkat foglalja
ossze.

3.22. Tétel. Tetszbleges m,n, k,l € Ny esetén teljesiilnek a kévetkezlk:
(a) Az dsszeadds monoton miivelet: ha az m <n és k < I, akkor m + k < n+ 1. Ha tovdbbd m < n
vagy k <l akkorm+k <n+1.
(b) A szorzds monoton miivelet: ham < n és k <, akkor mk < nl. Ha tovdbbd m < n ésl # 0, vagy
k <l ésn#0, akkor mk < nl.
(¢) Haom+k <n—+k, akkorm <n. Ham+k <n+ k, akkor m < n.
(d) Ha mk < nk és k # 0, akkor m < n, Ha mk < nk és k # 0, akkor m < n.

3.23. Kovetkezmény. A szorzasnal 0-tol kiilonb6z6 tényezével lehet egyszeriisiteni: ha mk = nk és k # 0,
akkor m = n.

Bizonyitas. Ha mk = nk és k # 0, akkor mk < nk, nk < mk, és ezért 3.22(d) szerint m < n ésn < m,
amibdl m = n kovetkezik. ]

3.24. Definicié. Legyen (R ;+,-) félgylirii és p részbenrendezés R-en. Azt mondjuk, hogy (R;+,-)
részbenrendezett félgytiri p-ra nézve, ha barmely a,b,c € R esetén, ha a p b, akkor a 4+ ¢ p b+ ¢, ac p bc és
ca p cb. Ha raadasul p rendezés, akkor R-et rendezett vagy linearisan rendezett félgytiriinek nevezziik.

3.25. Tétel. A természetes szamok félgytiriije rendezett a < reldciéra nézve. A természetes szamok
félgyiirtijének két rendezése van: a < és a > rendezés.

Bizonyitas. Az elsé allitds lényegében Osszeloglalja néhany korabbi allitasunkat. Legyen < a természetes
szamok félgylriijének egy rendezése. Vegyiik észre, hogy ekkor a természetes szamok félgytrijének > is
rendezése.

Legyen el6szor 0 <X 1. Megmutatjuk, hogy < C <, amibdl <== kovetkezik, mert mindkét relacio
rendezés. Valéban, ha < C =<, és van olyan a,b € Ng, hogy a < b és a £ b, akkor b < a, b < a és a =b, ami
a £ b miatt nem teljesiilhet.

Az < C < tartalmazds igazoladsadhoz elegendd azt megmutatni, hogy tetszdleges m € Ng-ra az U,, =
{z € Ng:m = m + z} halmaz megegyezik Ny-lal. Vildgos, hogy 0 € U,,. Ha n € U, akkor m =< n és
m=m+0=n+1=n'ésn’ €U,. Ezért (P5) szerint U,,, = Ny. Végiil ha 1 < 0, akkor a fentiek szerint
-=<. |



4. Egész szamok

Az egész szamok gyliriijének konstrukcidja arra a tényre épiil, hogy minden egész szam két természetes
szam kiilonbsége.

4.1. Definicié. Az N3 halmazon értelmezziik az osszeadds és a szorzas miiveleteket, valamint egy kétvél-
tozés p reldciét a kovetkezOképpen: Teszéleges (a,b), (¢,d) € N2 esetén legyen

(a,b) + (¢,d) def (a+c,b+d),

(a,b) - (¢,d) def (ac + bd, ad + be)

és
(a,b) p (c,d) W atrd=b+ec
4.2. Tétel.
(1) Az (N2;+,-) algebrai struktiira kommutativ és egységelemes félgytirti, melynek p kongruenciarels-
cidja.

(2) Az (N32/p;+,-) faktorstruktira olyan integritdstartomdny, melyre az Ng — N2/p; n — (n,0)
leképezés az (No; .+, ) félgytirtinek (N2/p; +, -)—ba valé bedgyazasa.

(3) N2/p ={—(n,0): n € N}U{(0,0)} U{(n,0): n € N}, és az egyesitésben szereplé hdrom halmaz
paronként diszjunkt.

Bizonyitds. Egyszerii szdmoldssal ellenérizhetd, hogy NZ-en az dsszeadds és a szorzds kommutativ és
asszociativ, a szorzés disztributiv az Gsszeaddsra nézve, a (0,0) additiv, az (1,0) pedig multiplikativ egysé-
gelem. Példaul a szorzas asszociativitasat és az Osszeaddsra vonatkozo disztributivitasat a kovetkez6képpen
igazolhatjuk: Tetszbleges (a,b), (c,d), (e, f) € NZ esetén

((a,d) - (e,d)) - (e, f) = (ac+ bd,ad + bc) - (e, f) =
= ((ac+ bd)e + (ad + be) f, (ac + bd) f + (ad + be)e) =
= (a(ce + df) + b(cf + de),a(cf + de) + b(ce + df)) =
= (a,b) - (ce+df,cf +de) = (a,b) - ((¢c,d) - (e, f))
((a,0) + (¢, d)) - (e, f) = (a+ ¢, b+ d) - (e, f) =
=({(at+ce+b+d)f,(a+c)f+(b+d)e) =(ae+ce+bf +df,af +cf +be+de) =
= (ae+bf,af +be) + (ce + df,cf +de) = (a,b) - (e, f) + (¢, d) - (e, ).

Tehat (N2; +, ) kommutativ és egységelemes félgyfirti.

Most megvizsgaljuk a p reldcié tulajdonsdgait. A definicébdl kozvetleniil adédik, hogy p reflexiv és
szimmetrikus. Ha (a,b) p (¢,d) és (¢,d) p (e, f), akkora+d=b+césc+ f=d+e, amibla+d+c+ f =
b+ct+d+e a+ f=b+eés(a,b)p (e f) kovetkezik. Tehat p tranzitiv is, és ezért ekvivalenciareldcio.

Ahhoz, hogy p kongruenciarelci6 legyen, mar csak azt kell igazolni, hogy ha (a,b) p (¢, d) és (e, f) € N3,
akkor

(a,b)+ (e, f)=(a+eb+ f)p(c+ed+ f)=(c,d)+ (e f)
és
(aab) : (eaf) = (ae+bf,af+be) P (C€+df,cf+d€) = (C,d) ! (eaf)'
(a+e, b+ f) p (c+e,d+ f) ekvivalens azzal, hogy a+e+d+ f = b+ f+c+e, ami igaz, ha (a,b) p (¢,d), azaz
a+d=>b+c. (ae+bf,af+be) p (ce+df,cf+de) ekvivalens azzal, hogy ae+bf +cf+de = af +be+ce+df.
Ez igaz, ha a + d = b+ ¢, hiszen

ae+bf+cf +de=(a+de+(b+c)f =(b+cle+ (a+d)f =be+ce+af +df.
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Tehat p kongruenciarelacié. L

Mivel az N2 — N23/p, (a,b) — (a,b) leképezés homomorfizmus, az (NZ/p;+,-) faktorstruktira is
kommutativ és egységelemes félgyfiri, melynek (0,0) az additiv, (1,0) pedig a multiplikativ egységeleme.
Vegyiik észre, hogy (x,y) = (0,0) ekvivalens azzal, hogy x = y. Ezért (b,a) az (a,b) elem additiv inverze,
hiszen

(aab) + (bva) = (a+bab+a) - (an)
Tehét (NG/p; +,-) gytirii.
Tegytik fel, hogy (a,b)-(¢,d) = (ac + bd, ad + be) = (0,0), azaz ac+bd = ad+be. Ha valamelyik tényezo,
mondjuk (a,b) # (0,0), akkor a # b, és mivel a < b vagy b < a, van olyan k # 0 természetes szam, melyre
b=a+ k vagy a =b+ k. Az els6 esetben

ac+ad+ kd=ac+ (a+ k)d = ac+ bd = ad + bec = ad + (a + k)c = ad + ac + ke,

a masodik esetben pedig
be+kc+bd=(b+k)c+bd=ac+bd=ad+bc=(b+k)d+ bc=bd+ kd—+ bc.

Ebbél mindkét esetben kd = ke, ¢ = d és (c,d) = (0,0) kovetkezik. Tehdt (N3/p; +,-) zérusosztémentes is,
és igy integritastartomany.
Most tekintsiik a

- Ny — Ng/pv ar— (a,O)

leképezést. Ha ap = by, akkor (a,0) = (b,0), azaz (a,0) p (b,0), amib8l a = b kovetkezik. Tehdt ¢ injektiv.
 felcserélhet6 a miiveletekkel, ugyanis tetszoleges a,b € Ny esetén

(a+b)p = (a+0b,0)=(a,0)+ (b,0) = ap + by

és

(ab)e = (ab,0) = (a,0) - (b,0) = (a,0) - (b,0) = ap - bp.
Tehat ¢ beagyazas.
Az utolsé 4llitas igazoldsa céljabol tekintsiink egy (a,b) € N3/p elemet. Mivel a,b € Ny, ezért a < b,
a = b és b < a kozil valamelyik teljesil. Ha a = b, akkor (a,b) = (0,0). Ha a < b, akkor van olyan
n € Ng, n # 0, melyre b = a + n. Ezért

(a,b) = (a,a+n) = (0,n) = —(n,0).
Ha pedig b < a, akkor van olyan n € Ng, n # 0, melyre a = b+ n. Igy
(av b) - (b +n, b) - (TL, 0)

A (0,0) elem a rd vonatkozd észrevételiink miatt nem eleme az egyesitésben szerepld elsé és harmadik
halmaznak. Ha az els6 és harmadik halmaz nem volna diszjunkt, akkor valamely m,n € N, elemekre

(m,0) = —(n,0) = (0,n)
teljestilne, amibél m + n = 0 + 0 = 0 kévetkezne. Ez pedig lehetetlen. ]

4.3. Definicié. Jeloljiik az N2/p halmazt Z-vel, és az (n,0), n € Ny, alaki elemeket pedig egyszeriien
n-nel. Z elemeit egész szamoknak nevezziik. Ertelmezziink a < relaciét Z-n a kévetkezGképpen:

a<b € p_aeN,

4.4. Tétel. A (Z;+,-) olyan integritdsrtartomény, melynek (Ng; +, -) részfélgyiiriije, és minden eleme a — b,
a,b € Ny, alakd. Tovdbba (Z;+,-) linedrisan rendezett gytirii a < reldciéra nézve az N pozitivitdsi tarto-
mannyal, és a < relacié Ng-ra valé megszoritasa megegyezik N el6z6 fejezetben bevezetett rendezésével.

Bizonyitas. Ha (a,b) € Z, a,b € Ny, akkor

(a,b) = (a,0) + (0,b) = (a,0) — (b,0) = a —b.
Ebbdl és 4.2(2)-b6l mér kovetkezik az els6 allitds. No C Z tartalmazza a 0-t, zart az Osszeaddsra és a
szorzdsra. Tovdbba a 4.2(3) &llitas szerint, ha a, —a € Ny, akkor a = 0, és barmely a € Z esetén a € N

vagy —a € No. Ezért a 2.7 és 2.8. Tétel szerint (Z; +, -) linedrisan rendezett gylirti <-re nézve. A < reldcié
megszoritasara vonatkozo allitas kozvetleniil adodik a definiciékbol. ]
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Most méar definidlhatjuk egész szamok abszolit értékét:

| = z, hax>0;
—z, kiilonben.

A 2.11. Tétel specidlis eseteként kapjuk a kovetkezot:
4.5. Tetszbleges a,b € Z esetén —|a| < a < |a|, |a| = | — a| és |ab| = |a| - |b] és |a + b| < |a| + [b].

4.6. Tétel. Az egész szamok gyiiriijének a most bevezetett < részbenrendezés az egyetlen linedris rendezése.

5. Racionalis szamok

A racionélis szdamok testének alabbi konstrukciéja arra a tényre épiil, hogy minden racionélis szdm két
egész szam hanyadosa.

5.1. Definicié. Legyen S = {(a,b): a,b € Z, b # 0}, és értelmezziik az Osszeaddst, a szorzédst, valamint
egy kétviltozés p relaciét az S halmazon a kovetkezdképpen: Teszbleges (a,b), (¢c,d) € S esetén legyen

(a,b) + (¢,d) = (ad + be, bd),

(a,b) - (c.d) = (ac, bd)

és
(a,b) p (¢, d) & ad = be.

5.2. Tétel. A fent definidlt (S;+,-) algebrai struktirdra és p reldciéra érvényesek a kévetkezok:
(1) A +, illetve a - miivelet kommutativ, asszociativ és egységelemes a (0,1), illetve az (1,1) egysége-
lemekkel.
(2) p kongruenciareldcid. L
(3) Az (S/p;+,-) faktorstruktiira olyan test, melyre a Z — S/p, n — (n,1) leképezés az egész szamok
gytiriijének bedgyazdsa (S/p,+,-)-ba.
4) S/p = {—(m,n): m,n € N}U{(0,1)} U{(m,n): m,n € N} és az egyesitésben szerepl§ harom
halmaz paronként diszjunkt.

c sz

Osszeadds asszociativitdsat részletezziik. Tetszbleges (a,b), (¢, d), (e, f) € S esetén
((a,b) + (¢;d)) + (e, ) = (ad + be, bd) + (e, f) = ((ad + be) f + (bd)e, (bd) f) =

= (a(df) + b(cf + de), b(df)) = (a,b) + (cf + de, df) = (a,b) + (¢, d) + (e, [))-

Most megvizsgéljuk a p relacié tulajdonsagait. Az nyilvanvald, hogy p reflexiv és szimmetrikus. Ha
(a,b) p (c,d) és (c,d) p (e, f), akkor ad = bc és cf = de, amibdl szorzdssal adcf = bede, és egyszertisitéssel
acf = bee kovetkezik. Ha ¢ # 0, akkor tovabbi egyszeriisitéssel af = be adddik, azaz (a,b) p (e, f). Ha
¢ =0, akkor ad = bc =0 és de = ¢f = 0, amibél d, f # 0 miatt a = e = 0 kovetkezik. Ezért af = 0 = be, és
igy (a,b) p (e, f). Tehdt p tranzitiv is, és ezért ekvivalenciareldcid.

Ahhoz, hogy p kongruenciareldci6 legyen, mar csak azt kell igazolni, hogy ha (a,b) p (¢, d) és (e, f) €S,
akkor

(a,0) + (e, f) = (af +be,bf) p (cf +de,df) = (c,d) + (e, f)
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(a,b)~(e,f):(ae,bf)p (ce,df): (C,d)'(@,f).

Tegyiik fel, hogy (a,b) p (c,d), azaz ad = be. Ekkor egyrészt (af + be)df = adf? + bdef = bef? + bdef =
bf(cf + de), vagyis (af + be,bf) p (cf + de,df), masrészt (ae)(df) = adef = beef = (bf)(ce), vagyis
(a,b) - (e, f) = (ae,bf) p (ce,df) = (¢,d) - (e, f). Tehdt p valéban kongruenciareldcio.

Mivel az S — S/p, (a,b) — (a,b) leképezés homomorfizmus, (1) miatt az (S/p;+,-) faktorstruktira
mindkét miivelete kommutativ és asszociativ. Tovdbba (0,1) az additiv, (1,1) pedlg a multiplikativ egysé-
gelem. Vegyiik észre, hogy tetsz6leges (x,y) € S esetén (x,y) = (0,1), illetve (x,y) = (1,1) ekvivalens azzal,
hogy (z,y) p (0,1), azaz x = 0, illetve (z,y) p (1,1), azaz x = y. Ezert (—a,b) az ( b) elem additiv inverze,
hiszen

(a,0) + (=a,b) = (ab+ b(=a),b?) = (0,0?) = (0, 1).

Tovébba, ha (a,b) # (0,1), azaz a # 0, akkor (b, a) az (a, b) elem multiplikativ inverze, mert

(a,b) - (b,a) = (ab,ba) = (1,1).

Legyen (a,b), (c,d), (e, f) € S/p. Ekkor

((a,b) + (e, d)) - (e, f) = (ad + be, bd) - (e, f) = ((ade + bee, bdf ) =

- (a‘def + bcefa bdf2) - (aeabf) + (Ceadf) - (avb) ’ (eaf) + (C, d) ’ (eaf)a

mert a harmadik egyenléség ekvivalens az igaz
(ade 4 bee)bdf? = bdf (adef + beef)

egyenlGséggel, a tobbi egyenléség pedig a miiveletek definicidja miatt teljesiil. Tehéat a szorzas disztributiv
az Osszeaddsra nézve, és ezért (S/p;+,-) test.
Most tekintsiik a _
w: Z— S/p, a— (a,1)

leképezést. Ha ap = by, akkor (a,1) = (b, 1), vagyis (a, 1) p (b, 1), amib8l a = b kovetkezik. Tehdt ¢ injektiv.
 felcserélhet6 a miiveletekkel, ugyanis tetszoleges a,b € S esetén

(a+b)p=(a+b1l)=(a-1+1-b,1-1)=(a,1)+ (b,1) = ap + bp

és

(ab)sﬁ = (aba 1) - (av 1) ’ (ba 1) =ap - by.

Tehat ¢ beagyazas. L

A (4) allitas igazolasa céljabdl tekintsiink egy (a,b) € S/p elemet. Feltehetd, hogy b > 0, mert (a
(—a, —b), és ezért b < 0 esetén (a,b)-t helyettesithetjiik (—a, —b)-vel. Mér emlitettiik, hogy (a,b) = )
pontosan akkor, ha a = 0. Tegyiik fel, hogy a # 0. Ekkor az a egész szamra az —a € N és a € N
allitasok koziil pontosan az egyik teljesil. Ha —a € N, akkor (a,b) = —(—a,b) € {—(m,n): m,n € N}.
Ha a € N, akkor (a,b) € {(m,n): m,n € N}. Ahhoz, hogy a (4) éllitasban szereplé halmazok paromként
diszjunktak mér csak azt kell észrevenni, hogy (x,y) = (u,v) nem teljesiilhet x,y, —u,v € N esetén, hiszen
az egyenl6séghdl xv = yu kovetkezik. ]

Mo

5.3. Definicié. Jeloljik az S/p halmazt Q-val, és az (n,1), n € Z, alaku elemeket pedig egyszeriien
n-nel. Q elemeit raciondlis szimoknak nevezziik. Ha a,b € Q és b # 0, akkor ab~! helyett %—t vagy a/b-t
is frunk. Legyen tovabbd Q1 = {(m n): m,n € N} és Q- = {—(m,n): m,n € N} Q1 elemeit pozitiv
racionalis szamoknak, Q™ elemeit pedig negativ raciondlis szamoknak hivjuk. Ertelmezziink a < reldcidt

Q-n a kovetkezéképpen:

a<b ¥ b—aecQtuU{o}.
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5.4. Tétel. A (Q;+,-) algebrai struktira olyan test, melynek (Z;+,-) részgytiriije, és minden eleme %

(a,b € Z, b # 0) alakd. Tovdbbd (Q;-+,-) rendezett test a < reldciéra nézve, és a < reldcié Z-re valé
megszoritasa megegyezik Z el6z6 fejezetben bevezetett rendezésével.

Bizonyitds. Az elsé allitds az 5.2(3) allitdsbdl és az aldbbi észrevételbdl kovetkezik:

a

-1
@)= =D (BD) =3
Q71 U {0} tartalmazza a 0-t, zart az Osszeaddsra és a szorzdsra. Tovdbba az 5.2(4) allitds szerint ha

r,—r € QT U {0}, akkor r = 0, és barmely r € Q esetén r € QT U {0} vagy —r € QT U {0}. Ezért mésodik
allitasunk a 2.7, 2.8 és 2.9 tételekbol kovetkezik.

Az egész szamokéhoz hasonléan definidljuk a raciondlis szamok abszolut értékét:

| = z, hax >0;
| —z, kiilonben.

A 2.11. Tétel specidlis eseteként addédik a kovetkezs:

5.5. Allitas. Tetszéleges a,b € Q esetén —|a| < a < |a|, |a| = | — al, |ab| = |a| - |b] és |a+b] < |a| + |b].

5.6. Allitas. A raciondlis szdmhalmaz rendezése stiri: tetszéleges a,b € Q esetén, ha a < b, akkor van
olyan z € Q, hogy a < x < b. Barmely a € Q szamhoz van egyetlen olyan n egész szam, hogyn < a < n+1.

5.7. Definicid. Legyen a egy racionélis szdm. Az a szdm [a] egész része az 5.6 Allit4sban szerepld n szam,
tortrésze pedig {a} = a — [a].

5.8. Ko6vetkezmény. Tetszbleges a € Q szdmra [a] < a <[a]+1és0 < {a} < 1.

5.9. Tétel. A raciondlis szamok testének a most bevezetett < rendezés az egyetlen rendezése.

6. Valés szamok Cantor-féle konstrukcidja

A valés szamok testének Cantor-féle konstrukcidja arra a szemléletes tényre épiil, hogy a szamegye-
nes barmely pontjanak akarmilyen kis kérnyezetében van raciondlis koordinatdju pont. Kovetkezésképpen
minden valds szam racionalis szamsorozat hatarértéke.

6.1. Definicié. Tekintsiik a végtelen raciondlis szdmsorozatok QN halmazét, melynek elemeit (r;)-vel
jeloljiik, ahol r; a sorozat i-edik tagjét jeloli, ¢ € N. Ha r € Q, akkor (r) azt a sorozatot jeloli, melynek
minden tagja r. Egy (r;) € QN sorozatot alapsorozatnak vagy Cauchy—sorozatnak neveziink, ha teljesiti
a Cauchy—féle belsd konvergencia-kritériumot: Barmely ¢ € QF szdmhoz van olyan ng € N kiiszobszam,
melyre |r,, —r,| < € valahdnyszor m,n > ng. Egy (r;) € QN sorozatot nullsorozatnak nevezziik, ha barmely
e € QT szdmhoz van olyan nyg € N kiiszobszdm, melyre |r,| < & valahdnyszor n > ng. Jeldlje R az
alapsorozatok, I pedig a nullsorozatok halmazat. Ertelmezziik az dsszeadds és a szorzés miiveleteket az R
halmazon a kovetkez8képpen: Teszdleges (g;), (r;) € R esetén legyen

(@) + (ri) = (g +72),

(q:) - () < (qirs)

Vegyiik észre, hogy az Osszeadds és a szorzas a szamsorozatok szokdsos tagonkénti Osszeaddsa és szorzasa.
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6.2. Allitas. Minden nullsorozat alapsorozat, azaz I C R. Az alapsorozatok korldtosak: ha (r;) € R,
akkor van olyan K € Q*, hogy |r;| < K minden i € N esetén.

Bizonyitds. Legyen el8szor (r;) € I, és legyen € € QF tetszbleges. A definicé szerint van olyan ng € N,

3
hogy || < 3 valahdnyszor n > ng. Ezért, ha m,n > ng, akkor

9

215.

€
|7"n — Tm| < |7"m| + |7”n| < 5 +
Tehét (r;) alapsorozat.
Legyen mésodszor (r;) € R. A definicé szerint van olyan ng € N, melyre |ry, — rp,| < 1, azaz rn,, — 1 <

T'm < Tny + 1 valahdnyszor m > ng. Ha K1 = min(rg ..., "ng—1,"ne — 1), Ko = max(ro...,Tno—1,"n, + 1) és
K = max(| K|, |K2|), akkor |r;] < K minden i € N esetén. (]

6.3. Segédtétel. Tetszbleges (r;) € R\ I esetén a kivetkezb két dllitds koziil pontosan az egyik teljesiil:
(x) Van olyant € Q* ésng € N, hogy t < r,, minden n > ng esetén.
(xx) Van olyant € QT ésng € N, hogy r, < —t minden n > ng esetén.
A nullsorozatok egyik tulajdonsdggal sem rendelkeznek.

Bizonyitas. Legyen (r;) € R\ I. Mivel (r;) nem nullsorozat, van olyan ¢ € QT, hogy bdrmely n € N
€

esetén |r,,| > e valamely m > n-re. Mivel (r;) alapsorozat, ezért van olyan n; € N, hogy |r, — | < 5

€
valahdnyszor m,n > ny. Az el8bbiek szerint van olyan ng > n1, hogy |rn,| > . Legyen t = 3 Ha r,, > 0,

akkor barmely n > ng esetén

e €
Tn =Tne = (Tng — Tn) = |7"no|*(7"no*7"n)25*§ D) =t
Tehdat (x) teljesiil. Ha pedig r,, < 0, akkor bérmely n > ng esetén
e €
—Tn = —Tng — ("n = Tng) = |Tng| = (tn —10y) 2 € = 9= 97 t,

amib6l r,, < —t kovetkezik. Tehdt (xx) teljesiil. Mindkét esetben tigy csokkentettiink, hogy a kissebbitendét
csOkkentettiik a kivonandot pedig noveltiik. Az vildgos, hogy a két alitds egyszerre nem teljesiilhet, és a
nullsorozatok egyik allitdst sem teljesitik. ]

6.4. Definicié. Azokat az alapsorozatokat, melyekre (x), illetve (xx) teljesiil, pozitiv sorozatoknak, illetve
negativ sorozatoknak nevezziik. Jelolje Rt a pozitiv, R~ pedig a negativ alapsorozatok halmazat. Mivel
a nullsorozatok sem a (x) sem a (xx) tulajdonsidggal nem rendelkezhetnek, a 6.3 Segédtételbdl kapjuk a
kovetkezot:

6.5. Kévetkezmény. R = RT™ U R~ U I és az egyesitésben szereplé harom halmaz paronlént diszjunkt.

6.6. Allitas.
(a) Ha (i), (ri) € R és (si), (ti) € I, akkor (q; +14),(qiri) € R és (gisi), (si +ti), (—si) € 1.
(b) Ha (gi),(r;) € R és (s;) € I, akkor (¢; + 1), (¢i7i), (¢; + si) € RT és (—¢;) € R™.
(c) Ha (g;),(ri) € R~ és (s;) € I, akkor (q; +14),(¢i + si) € R~ és (—qi), (qiri) € RT.

6.7. Tétel. Az (R;+,-) algebrai strukturdra érvényesek a kovetkezOk:
(1) A (R;+,-) kommutativ és egységelemes gylirti, melynek (0) az additiv (1) pedig a multiplikativ
egységeleme. L
(2) I idedl az R gytiriiben, és az (R/I;+,-) faktorstruktira olyan test, melyre a Q — R/I, r +— (r) =
I+ (r) leképezés a (Q,+,-) test bedgyazdsa (R/I,+,-)-be.
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(3) R/T = {(r5): (r;) € R*}U{(0)} U{(r:i): (1) € R}, és az egyesitésben szerepls harom halmaz
paronként diszjunkt.

Bizonyités. 6.6(a) szerint R zart az Osszeaddsra és a szorzdsra. Tehat (R;+,-) algebrai struktira. Az elsé
allitas azon része, mely az Osszeadds és a szorzas tulajdonsagaira vonatkozik, egyszeri szamolassal igazolhato,
s ezért itt nem részletezziik.

Ismét 6.6(a) szerint I olyan részgyfir(i, melyre (¢;)(s;) € I bamely (¢;) € R és (s;) € I esetén. Tehdt I
idedl. Az (R/I;+,-) faktorstruktira kommutativ és egységelemes gytirti, melynek (0) az additiv, (1) pedig a
multiplikativ egységeleme, mert az (R;+, ) gylrt R — R/I, (r;) — (r;) = I + (r;) homomorfizmus melletti
képe.

Legyen (r;) € R/I, és tegyiik fel, hogy (r;) # (0) = I. Ekkor (r;) € I, és igy a 6.3. Segédtétel szerint
van olyan t € QT és ng € N, hogy ¢ < |a,| minden ny < n esetén. Ezért az (r;) sorozatnak csak az ng-nél
kisebb indexti tagjai lehetnek 0—val egyenlék. Definidljuk az (s;) sorozatot a kovetkezbképpen:

o — ri, ha i > ng;
*7 1 t, Kkiilonben.

Ekkor (s; — ;) € I, hiszen csak véges sok tagja kiilénbozik 0-t6l. Ezért (s;) = (s; — i) + (r;) alapsorozat,

— 1
és (s;) = (r;). Az (—) sorozat is alapsorozat. Ennek igazoldsahoz legyen ¢ € Q¥, és n; € N olyan, hogy
Si

|Sm — 8n| < €t? minden m,n > ny esetén. Ha m,n > ny, akkor

1 1 — 12
Sm. Sn

B EMEM t2

1 -
Tehdt (—) € R/I, és az (r;) = (s;) € R/I elemnek multiplikativ inverze, mert

K2

Tehdt (R/I;+, ) test.
Most tekintsiik a L
©: Q—=R/I, r— (1)
leképezést. Ha qp = ry, akkor (7"_) = @, vagyis a konstans (¢—r) sorozat I-ben van, amibél ¢ = r kovetkezik.
Tehdt ¢ injektiv. ¢ felcserélhet6 a miiveletekkel, ugyanis tetszéleges q,r € S esetén

(g+m)p=(q+7)=(q) + (1) =qp+r¢p

és

(qr)e = (qr) = (a) - (r) = qp - To.

Tehat ¢ beagyazas. L L

A (3) 4llitas igazoldsa céljabdl tekintsiink egy tetszbleges (r;) € R/I elemet. (r;) = (0) = I pontosan
akkor, ha (r;) € I. Tegyiik fel, hogy (r;) # (0), vagyis (r;) & I. Ekkor a 6.3. Segédtétel és a 6.4. Definicié
szerint (r;) € {(ri): (r;) € R"} vagy (r;) € {(r:): (r;) € R™}. Ahhoz, hogy a (3) allitdsban szerepls halmazok
paronként diszjunktak, mér csak azt kell észrevenni, hogy (¢;) = (r;), azaz (¢; — ;) € I, nem teljesiilhet
(gi) € R és (r;) € R~ esetén, hiszen ellenkezd esetben 6.6(b) szerint (¢; — ;) = (¢;) + (—7;) € RT, ami 6.3.
Segédtétel szerint lehetetlen. ]

6.8. Definicié. Jeloljikk az R/I halmazt R-rel, és az (r), r € Q, alakd elemeket pedig egyszeriien r—rel.
R clemeit valds szdamoknak nevezziik. Legyen tovabbd R = {(r;): (r;) € RT} és R™ = {(ry): (r:) € R™}.
R* elemeit pozitiv valés szamoknak R~ elemeit pedig negativ valés szamoknak hivjuk. Ertelmezziink a <
relaciét R-n a kovetkezdképpen:

a<b ¥ b—aecRTU{0}.
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6.9. Tétel. Az (R;+,:) algebrai struktira olyan test, melynek (Q;+,-) részgytiriije. Tovabbd (R;+,-)
linearisan rendezett test a < reldciora nézve, és a < relaci6 Q-ra valé megszoritasa megegyezik Q el6z6
fejezetben bevezetett rendezésével.

Bizonyitds. Az els6 4llitds az 6.7(2) allitdsbol kovetkezik. Mivel RT U {0} tartalmazza a 0-t, zart az
Osszeaddsra és a szorzdsra, valamint a 6.7(3) allitas szerint ha a, —a € RT U {0}, akkor a = 0, és barmely
a € R esetén a € RT U {0} vagy —a € R U {0}. Ezért mdsodik llitdsunk a 2.7, 2.8 és 2.9 tételekbdl
kovetkezik.

Terjessziik ki az abszolut érték fliggvényt a valds szamok halmazara is:

| = z, haz >0;
= —z, kiilonben.

A 2.11. Tétel specialis eseteként adodik most is a kovetkezd:

6.10. Allitas. Tetszéleges a,b € R esetén —|a| < a < |a|, |a| = | — al, |ab] = |a| - |b

és la +b| < lal + [b].
6.11. Allitas. Tetszoleges a valos szamhoz van egyetlen olyan n € Z, hogy n < a <n+ 1.

6.12. Definicié. Legyen a valds szdm. Az a szadm [a] egész része az 6.11. Allitédsban szerepld n szam,
tortrésze pedig {a} = a — [a].

6.13. Kovetkezmény. Tetszbleges a € R szdmra [a] <a < [a]+1 és0 < {a} < 1.

6.14. Allitas. A valds szamhalmaz rendezése strt: tetszoleges a,b € R esetén, ha a < b, akkor van olyan
x € R, hogy a < x < b. S6t x racionalis szamnak is valaszthato.

6.15. Definicié. Azt mondjuk, hogy az a,, n € N, valds szdmsorozatnak az a valds szam a hatarértéke,
ha barmely e € RT szdmhoz van olyan ng € N, hogy |a — a,| < & valahdnyszor n > ng. (Mivel minden
pozitiv valés szdmndl van kisebb pozitiv racionalis szam, ha ¢ € R™T helyett ¢ € QT-t irunk, akkor az
eredetivel ekvivalens definiciét kapunk. A kés6bbiekben ezt rendszeresen kihaszndljuk.) Ha egy sorozatnak
van hatarértéke, akkor konvergens sorozatnak nevezziikk. A raciondlis szdmsorozatokhoz hasonléan egy a,
n € N, valos szdmsorozatot Cauchy—sorozatnak neveziink, ha teljesiti a Cauchy—féle belsé konvergencia-
kritériumot: barmely e € R* szdmhoz van olyan ng € N, hogy |a, — am| < € valahdnyszor m,n > nq.

6.16. Tétel. Ha valamely a valés szdmra és (r;) alapsorozatra a = (r;), akkor a az r,, n € N, sorozat
hatarértéke. Tehat minden valés szam racionalis szamsorozat hatarértéke.

Bizonyitas. Sziikségiink lesz a kovetkez6 észrevételre: Tetszbleges (g;) valds szamra |(g;)| = (|¢s|). Ugyanis,
ha (g;) = 0, akkor (¢;) és igy (]¢;|) is nullsorozat, és ezért |(¢;)| = |0] = 0 = (|¢:|). Ha (g;) > 0, akkor (g;) €
R*. A definiciébdl kovetkezden (g;) tagjai valamely kiiszobszadmtol kezdve pozitivok, és igy megegyeznek
(lai|) tagjaival. A (¢; —|qs|) sorozat nullsorozat, mert az elébb emlitett kiiszobszamtol kezdve minden tagja
nulla. Tehat |(¢;)| = (¢:) = (|a;])- Ha (g;) < 0, akkor (—g;) > 0, és az el6z8 esetet felhaszndlva kapjuk, hogy

(@)l = [ = ()] =1(=¢0)| = (| = @l) = (lg:])-

Legyen a = (r;), és ¢ € Q7 tetszbleges. Mivel r,,, n € N, Cauchy-sorozat, van olyan ny € N, hogy

o

[Pm — Tn| < = valahdnyszor m,n > ng. Ha n > ng, akkor (¢ — |r; — 7,|) € RT, mert

[\

g
E—l’l‘i—T‘n|>E—§:§

minden 7 > ng esetén. Tehat

e = (Iri =rnl) = (e = |ri =) >0,

vagyis

@ =1l = (ri) = ral = |(ri =) = (Iri = rn]) <e

valahdnyszor n > ng. n

16



6.17. Tétel. Minden valés Cauchy—sorozatnak van hatarértéke.

Bizonyitas. Legyen a, = (r*), n € N, egy valds Cauchy-sorozat. A 6.16. Tétel szerint minden n-re

an = (rl*) az 7, i € N, sorozat hatdrértéke. Ezért minden n € N-re van olyan n’ € N, hogy

1
e, —an| < on”

Legyen ¢; = %, i € N. Megmutatjuk, hogy (g;) alapsorozat, és az a = (¢;) valés szdm az a,,, n € N, sorozat
hatarértéke.

Az ', — an, n € N sorozat konvergens, mert abszolit értékét a nulldhoz tarté 2% sorozat majoralja.
Ismert, hogy a konvergens sorozatok Cauchy-sorozatok. A raciondlis szamsorozatokra vonatkozé megfelel
bizonyitédst sz6 szerint megismételve megmutathatd, hogy valés Cauchy—sorozatok 6sszege is Cauchy—sorozat.
Mindezek miatt

Gn =1 = (ry —an) + an, n €N,

Cauchy-sorozat. Legyen ¢ € RT. A 6.16. Tétel szerint az a = (¢;) valds szam az ¢,, n € N, sorozat

€ 1 €
hatérértéke. Ezért van olyan n; € N, hogy |a — ¢, | < 2 ha n > nj. Olyan ny € N is van, melyre o < 3
valdnyszor n > ny. Legyen ng = max(ny, n2). Ha n > ng, akkor

€ 1
la —an| < (@ —=gn)| +(gn —an)| = la—gn| +|rp —an| < 5+ - <5 +5 =€
Tehét a az a,, n € N, sorozat hatarértéke. [ ]

6.20. Tétel. A valds szamok testének a 6.8. Definicicban bevezetett < rendezés az egyetlen linedris
rendezése.

8. Komplex szamok

8.1. Definicié. Az R? halmazon értelmezziik az 6sszeadds és a szorzéds miiveleteket a kovetkezéképpen:
Teszbleges (a,b), (c,d) € R? esetén legyen

(a,b) + (c,d) € (a+e,b+d)

és
(a,b) - (c,d) def (ac — bd, ad + be).

8.2. Tétel. Az (R?;+,-) algebrai struktiira olyan test, melynek (0,0) az additiv (1,0) pedig a multiplikativ
egységeleme, és az R — R?, a > (a,0) leképezés a valés szamok testének bedgyazédsa az (R?,+,-)-ba.

Bizonyitas. Egyszerii szamolassal ellen6rizhet6, hogy az 6sszeadas és a szorzas kommutativ és asszociativ,
a szorzas disztributiv az Osszeaddsra nézve, a (0,0) additiv, az (1,0) pedig multiplikativ egységelem, és
az (a,b) € R elemnek (—a,—b) az additiv inverze. Példdul a szorzds asszociativitdsat és az Osszeaddsra
vonatkozé disztributivitdsét a kovetkezéképpen igazolhatjuk: TetszSleges (a,b), (¢, d), (e, f) € R? esetén

((a,b) - (¢,d)) - (e, f) = (ac — bd,ad + bc) - (e, f) =
= ((ac — bd)e — (ad + be) f, (ac + bd) f + (ad + be)e) =
= ((a(ce — df) — b(cf + de), a(cf + de) + b(ce + df)) =

= (a,b) - (ce — df,cf +de) = (a,b) - ((¢,d) - (e, f))
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((a,0) + (¢, d)) - (e, f) = (a+c,b+d) - (e, f) =
=((a+ce—(b+d)f,(a+c)f +(b+d)e) =
= (ae+ce—bf —df,af + cf + be + de) = (ae — bf,af + be) + (ce — df,cf + de) =
= ((a,0) - (e, f)) + ((c, d) - (e, [))-
a (a,b) # (0,0), akkor a® + b # 0 és

a —b a? —b? ab —ab
) (——e. ——— ) = — = (1,0).
(a,) (a2+b2’a2+b2) (a2+b2 a2+b2’a2+b2+a2+b2> (1,0)

, a
Tehat (a, b)fnek (m, m

(R?%+, ) test.
Most tekintsiik a

) a multiplikativ inverze. Mindezeket figyelembe véve azt kapjuk, hogy

¢: R = R? ar (a,0)
leképezést. Vilagos, hogy ¢ injektiv. Ha a,b € R, akkor
(a+b)p=(a+b,0)=(a,0)+ (b,0) = ap + bp

és
(ab)p = (ab,0) = (ab—0-0,a-0+b-0) = (a,0) - (b,0) = ap - be.
Tehat ¢ beagyazas. ]

8.3. Definicié. Jeloljiik az R? halmazt C-vel, az (a,0), a € R, alaki elemeket egyszertien a-—val, a (0,1)
elemet pedig i—vel. C elemeit komplex szdmoknak nevezziik. (Vegyiik észre, hogy i2 = —1.)

8.4. Tétel. A (C;+,-) algebrai struktira olyan test, melynek (R;+,-) részteste, minden eleme a + bi
(a,b € R) alakban irhatd, és nincs linedris rendezése.

Bizonyitdas. Mivel 12 +i2 =1 —1 =0, a 2.13. Tétel szerint nincs C-nek linedris rendezése. Ha (a,b) € C,
akkor
(a,b) = (a,0) + (0,b) = (a,0) + (b,0) - (0,1) = a + bi.

Ebbdl és a 8.2 Tételbd]l mar kovetkezik allitasunk. n

8.5. Definicié. Egy z = a + bi € C komplex szdm Z konjugdltjat és |z| abszoliit értékét a kivetkez8képpen

értelmezziik:
Z=a—bi, |z|]=+va%+0b%

A komplex szamokra vonatkozé szamolasi szabalyokkal szinte mindegyik bevezetd jellegii felsébb algebra
tankonyv részletesen foglalkozik. Ezért most csak a legfontosabbakat ismertetjiik bizonyitas nélkil.

8.6. Tétel. Barmely z, z1, z0 € C esetén
z=2z, lz|=1z|, 2z=]|z|%, ;:W(Z#O),

|z122] = |z1]|22], 21+ 22 =Z1+ %2, Ziz2 =71 - 22,

Z1 z1 .
DB t0) b Joa e+l < ) + ool
%) %)

Az aldbbiakban két olyan konstrukciot ismertetiink, melynek ereménye a komplex szdmok teste.
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8.7. Tétel. Legyen C az ( 2) (a,b € R) alaki 2 x 2—es médtrixok halmaza. Ekkor C' a mé&trixok

a
—b
Osszeaddsara és szorzasara nézve a komplex szamok testével izomorf testet alkot.

Bizonyitas. Tekintsiik a

p: C—C, a+bi— (Z 2)

leképezést. Az nyilvanvald, hogy ¢ bijektiv. Ha a + bi,c+ di € C, akkor
((a+bi)+ (c+di))p=((a+c)+ (b+d)i)p =
a+c b+d a b c d
(ivh )= (5 2)= (L )
= (a+bi)p + (c+di)p

és
((a+bi)(c+di))p = ((ac — bd) + (ad + be)i)p =
_( ac — bd aderc)_( a b)( c d\ _
"\ —(ad+bc) ac—bd)  \-b a —d c¢)
=(a+bi)p- (c+di)p
Tehat ¢ felcserélhet6 az Osszeadéssal és a szorzéassal, és ezért izomorfizmus. ]

8.8. Tétel. Tekintsiik a valds szamok teste feletti egyhatdrozatlani polinomok (R[z]; +,-) gytirdjét. Ekkor
R[z]-ben az

I={(2®+1)q(x): q(z) € Rlz]}
halmaz idedlt alkot, és az R[x]/I faktorgytirii izomorf a komplex szdmok testével.

Bizonyitds. Ha f,g € I és h € RJz], akkor valamely f1,g1 € Rl[z] polinomokra f = (22 + 1)f; és
g= (22 +1)g;. Ezért

frog=@+0(fi+a), f-g=@"+D(h-g)el
és

fh=(*+1)(fih) € 1.

Tehdt I ideal. Az R[x]/I faktorgyfirii elemei az I + f (f € R[z]) alakd mellékosztalyok. Az egyszeriiség
kedvéért I + f helyett f—et, ha pedig a egy konstans polinom, akkor @ helyett egyszeriien a—t fogunk irni.
Vegyiik észre, hogy

P =22=224+1-1=0—1=—1.

Telintsiik a
p: C— Rlz])/I, a+bi— a+bT
leképezést. Ha a + bi,c+ di € C és (a + bi)p = (¢ + di)p, akkor a + bT = ¢+ dT. Ezért
(a—c)+(b—d)x=(a+bT)— (c+dz)=0=1,
amibél (a — ¢) + (b — d)x € I kdvetkezik. Tehat az (a — ¢) + (b — d)z elséfoki polinom az z? + 1 polinom
tobbszorose, ami csak Ugy teljesiilhet, ha a zérus polinom, azaz a = ¢ és b = d. Tehat ¢ injektiv. Ha

f € R[x]/I, akkor van olyan ¢,r € R[z], hogy f = (2 + 1)q + r, ahol r legleljebb elséfoki polinom, azaz
r = a + bx valamely a,b € R esetén. Ekkor
f=@2+1)g+r=224+1-g+7=0-q+7=7=a+bT = (a+bi)p.
Tehét ¢ sziirjektiv is. Legyen ismét a + bi, c + di € C. Ekkor
((a4+bi)+ (c+di))p=((a+c)+ (b+d)i)p =

=(a+c)+ (b+d)7T = (a+bT)+ (c+dT) = (a+ bi))p + (c + di)p.

és
((a+bi)(c+di))e = ((ac — bd) + (ad + be)i)p = (ac — bd) + (ad 4 be)T =
= (ac + bdz?) + (ad + be)T = (a + bT) - (c+ dT) = (a + bi))p - (c + di)p.
Tehat ¢ felcseréleté a miiveletekkel, és ezért izomorfizmus. ]
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9. Irracionadlis, algebrai és transzcendens szamok

A R\ Q elemeit irraciondlis szamoknak nevezziik. A halmazelmélet szdmossdgokra vonatkozé alapis-
meretei szerint R kontinuum szdamossagu, Q pedig megszamlalhatéan végtelen halmaz, s ebbol kévetkezden
R\ Q is kontinuum szémossdgi. Egyszeriien fogalmazva azt is mondhatjuk, hogy t6bb irraciondlis szdm
van, mint raciondlis. A legegyszeriibben gytkvonassal juthatunk irraciondlis szdmokhoz.

9.1. Allitas. Tetsz6leges n, k € N esetén /n € Q akkor és csak akkor, ha van olyan p € N, hogy n = p*.

Bizonyitas. Ha {/n raciondlis szdm, akkor vannak olyan relativ prim p,q € N szdmok, hogy

¥ = ]—;, vagyis ¢Fn = p*.

Mivel p és ¢ relativ primek, ezért p* és ¢* is relativ primek. Ismert, hogy ha egy egész szam osztéja egy
szorzatnak, és a szorzat egyik tényezOjéhez relativ prim, akkor osztéja a masik tényezének. Ezért a masodik
egyenléségbdl n|p*, pkin és n = pk kovetkezik. n

A valds szamok tizedestort alakjardl is leolvashatd, hogy racionélis szdm-e vagy sem.

9.2. Tétel. Egy valos szam akkor és csak akkor racionalis, ha tizedestort alakja valamelyik jegytél kezdédbéen
periodikus.

Bizonyitas. Egy raciondlis szam, azaz két egész szam hanyadosanak tizedestort alakjéhoz ugy jutunk,
hogy a szamlalot osztjuk a nevezovel, és ha a szamldlé jegyeibédl kifogytunk, a hanyadosban kitessziik a
tizedes vesszét, és a maradékhoz egy-egy 0-t {rva folytatjuk az osztast. A maradék mindig az oszténdl kisebb
nemnegativ szam. fgy az osztas soran sziikségképpen fel kell 1épni egy olyan maradéknak, mely korabban
mar szerepelt. Ezért a két egyforma maradéktdl kezdve a hanyados jegyei rendre megegyeznek. Tehét innen
kezdve, a tizedesjegyek sorozata perodikus.

Megforditva, legyen egy w pozitiv valés szam tizedestort alakja valamelyik jegytél kezdve periodikus,
azaz,

U= a1az...05,b102 ... bpC1Co ... CrCiCo .. . Cp ...

alaki. Legyen
a=aiaz...ag, b=0bibs... b, és c=7CiC3...Cpn.

Ekkor c c
10™u = 10™ b+ —+— +---
(7 a—+ +10n+102n+
és . .
10™ "y = 10™ 1" + 10™b — — -
u a+ +c+10n+102n+ )
amibol
(10’”*" —10M)u = (10’”*" —10™)a+ (10" = 1)b+ ¢
és
(10™+™ — 10™)a + (10" — 1)b + ¢
u =
10m+n — 10™
kovetkezik. Tehdat v raciondlis szam. n

A kovetkezo tétel segitségével tobbek kozott az e és a m szamok irracionalitasat igazolhatjuk.

9.3. Tétel. Legyen c egy pozitiv valds szam és f(x) egy olyan valds fiiggvény, mely a [0, ¢| zdrt intervallumon
folytonos, és a (0, c) nyitott intervallumon pozitiv. Legyen tovdabba fi(z), fo(x),... egy olyan fiiggvényso-
rozat, melyre fi(z) = f(z) és f;(xr) = fr—1(x) minden k > 2 esetén. Ha f(0) és fi(c) egész szamok,
k=1,2,..., akkor c irracionalis szam.
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Bizonyitas. Tegyiik fel, hogy ¢, f(z) és fi(x), fa(x),. .. teljesitik a tétel feltételeit. Legyen
P = {g(z) e R[z]: g™ (0),g"(c) € Z, k=0,1,2...},

ahol ¢®) a ¢ polinom k-adik dedrivéltja.
c
9.3.1. / f(z)g(x)dx egész szdm minden g(x) € P esetén.
0

A parcidlis integrdlas tobbszori alkalmazédsaval kapjuk, hogy

/Oc f@)g(x)de = | frg = fog' + fog" — -+ (=1)* 19D ;,
ahol d g fokszama. Ebbdl pedig kovetkezik 9.3.1.
Parcidlis derivalassal azonnal adodik a kovetkezo:
9.3.2. Ha g(z), h(z) € P, akkor g(x)h(z) € P.

m
Most a tétel allitasaval ellentétben tegyiik fel, hogy ¢ raciondlis szam, azaz ¢ = —, ahol m és n pozitiv
n

egész szamok. Konnyen ellen6rizhet6, hogy
m —2nx € P. (%)

Legyen

ka—nmk
gk(I):%, k:O71,2

9.3.3. gi(z) € P minden k-ra.

Allitdsunk igazoldsa k szerinti teljes indukciéval torténik. go(x) = 1 € P nyilvdnvals. Tegyiik fel, hogy
k>1és gp_1(x) € P. Mivel
95 = gr—1(x)(m — 2nx),

ezért 9.3.2 éllitast és (x)-ot figyelembe véve azt kapjuk, hogy g;.(z) € P. Ebbél és gr(0) = gr(c) = 0-bdl
gr(z) € P kovetkezik.

Mivel gi(x) és f(z) is pozitiv (0, c)—n, ezért
/ch(:c)gk(z)d:c >0, k=0,1,....
Ez az integrédl 9.3.1 miatt egész szam, és igy
/Cf(ac)gk(ac)dmzl, k=0,1,.... (%)
0

Legyen M az x(m — nz) fiiggvény maximuma [0, c]-n, L pedig f(z) maximuma [0, c]n. Ekkor

c c k k
| t@aos < [ 1 Srdr—cr S
; L i

ami
k
lim — =0
k—oo k!
miatt ellentmond (s*)-nak. Tehdt ¢ nem lehet raciondlis szdm. n
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9.4. Kovetkezmény. Ha 0 < |r| < 7 éssinr, cosr raciondlis szamok, akkor r irraciondlis szdm. Specidlisan
m irraciondlis.

Bizonyitds. Ha sinr, cosr raciondlis szdmok, akkor sin|r|, cos|r| is raciondlis szdmok. Ezért van olyan
n pozitiv egész szdm, hogy nsin|r|, ncos|r| egész szdmok. Alkalmazva a 9.2. Tételt ¢ = |r|-re és f(z) =
nsinz-re azt kapjuk, hogy |r| és r irracionélis szdmok.

9.5. Kovetkezmény. Ha r # 1 pozitiv raciondlis szdm, akkor Inr irraciondlis szam. e irraciondalis szam.

1
Bizonyitas. Feltehetd, hogy r > 1, és igy Inr > 0. (Ellenkezd esetben helyettesitsiik r—et ——rel.) Legyen
r

m
r = —, ahol m és n pozitiv egész szdmok. Alkalmazva a 9.2. Tételt ¢ = Inr-re és f(x) = ne®—re, az elsd

n
allitast kapjuk.
Ha e racionalis szam volna, akkor els6 allitasunk szerint 1 = In e irracionalis lenne. Tehat e irracionalis.

Az érdekesség kedvéért egy kozvetlen bizonyitast is adunk arra, hogy e irraciondlis. Ha e racionalis
n

volna, akkor elég nagy n—ekre nle egész szam, nle — n! g 5 pedig egy pozitiv egész szam lenne. Ezért
i!
i=0

Ez pedig n > 1 estén lehetetlen. n

9.6. Definicié. Egy a komplex szdmot algebrai szammak neveziink, ha van olyan f € Q[z], f # 0, polinom,
melyre f(a) = 0. Ha a € C nem algebrai, akkor transzcendens szdmmak hivjuk. Jelolje A az algebrai szdmok
halmazat. (Vegytik észre, hogy Q C A.)

9.7. Tétel. Az algebrai szamok A halmaza megszamlalhatéan végtelen.

Bizonyités. A bizonyitasban felhasznéljuk a halmazelmélet megszamlélhaté (véges vagy megszdmlalhatéan
végtelen) halmazokra vonatkozé kévetkezd eredményeit: Ha A megszdmldlhaté halmaz és n € N, akkor
A™ is megszamlalhaté halmaz. Specidlisan Q" megszamlalhatéan végtelen halmaz. Ha I és A;, i € I
megszamlalhaté halmazok, akkor Ui€ 1 A; is megszamlalhaté halmaz.

Tetszoleges n € N-re jelolje P, a legfeljebb n—edfokt racionélis-egytitthatds polinomok halmazat. Mivel

1
Qn+ *)Pna (G‘O;ala"'aan)’_’a0+alz+"'+anxn

bijektiv leképezés, P, megszamlalhato halmaz. Ezért

Qlz] = | Px

neN
is megszdmldlhaté halmaz. Tetszéleges f € Q[z]-re jelolje Gy az f polinom gySkeinek halmazat. Ekkor
A= |J ¢
feQlz\{o}

miatt A is megszamlalhat6 halmaz. ]
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9.10. Tétel. Az algebrai szamok testet alkotnak az Gsszeaddsra és szorzasra, azaz ha a és b algebrai szamok,
1

akkor a + b, a — b, ab is algebrai szamok, és amennyiben a # 0, akkor — is algebrai szam. St az algebrai
a

szamok teste algebrailag zdrt, azaz barmely f € A[z] polinomnak van gyéke A—ban.

Mivel C kontinuum szamossagi, A pedig megszamlalhatéan végtelen halmaz, a transzcendens szamok
C\ A halmaza is kontinuum szémosségi. Egyszeriien fogalmazva azt is mondhatjuk, hogy t&bb transzcen-
dens szam van, mint algebrai. Ezek utdn azt varnd az olvasd, hogy konnyen lehet konkrét példdkat adni
transzcendens szamokra. Ez azonban nem igy van. Az egyszerlinek ldtszé esetekben is komoly munké&t
igényel a transzcendencia igazolasa.

oo
1
9.15. Tétel. Az o = Z Tont szam transzcendens.
n=1

10. Algebrak

10.1. Definicié. Legyen K egy test és (R;+,-) egy nem-asszociativ gyliri. Azt mondjuk, hogy R algebra
a K test felett, ha értelmezve van R elemeinek a K test elemeivel valé szorzdsa ugy, hogy azzal (R;+)
vektorteret alkot K felett, valamint barmely a,b € R és X € K esetén A(ab) = (Aa)b = a(\b). Réviden azt
is szoktuk mondani, hogy R K-algebra. Ha az algebranak egyetlen eleme van, akkor trividlis algebranak
nevezziikk. Ha R — mint vektortér — véges dimenzidés (n—dimenzids), akkor véges rangti (n rangi) algebrédnak
nevezziik. (Vegyiik észre, hogy egy algebra pontosan akkor 0 rangt, ha trividlis.) Ha a szorzds asszociativ,
akkor R-et asszociativ algebranak nevezziik.

Valamely R K—algebra egy nemiires S részhalmazat részalgebrajanak nevezziik, ha S zart az 6sszeadésra,
a szorzasra és K elemeivel vald szorzasra. Konnyt belatni, hogy részalgebriak metszete is részalgebra. Ha
X C R, akkor az X—nél bovebb részalgebrak metszetét az X &ltal generalt részalgebranak nevezzik. Az R

"o

algebra (illetve gyfir(i) centruménak az
C(R) = {xz € R: Va € R esetén xa = azx}

részhalmazit nevezziik. Konnyen ellendrizhetd, hogy C(R) részalgebra (illetve részgyfiri). Ha R — mint
gylrli — kommutativ, egységelemes, illetve zérus-osztéomentes, akkor R—et kommutativ, egységelemes, illetve
zérusosztomentes algebranak hivjuk.

10.2. Példa. Legyen R egy egységelemes nem-asszociativ gylri és K olyan részteste R—nek, mely R
centruméban van. Ekkor R tekinthet6 K—algebranak, hiszen a feltételek miatt R elemeit lehet szorozni K
adédnak a kovetkezd példéak:
(1) R végtelen rangti Q-algebra, melyben az {a + bv/2: a,b € Q} halmaz 2 rangt részalgebra. C 2
rangi R-algebra.
(2) Ha K egy test, és K(a) a K test a elemmel valé testb6vitése, akkor K (a) végesrangi vagy végtelen
rangi K—algebra aszerint, hogy a algebrai vagy transzcendens elem K felett.
(3) Egy K test feletti n hatdrozatlant polinomok Klx1,...,z,] gylriije végtelen rangi K-algebra
(n >1). Ha f € K[x1,...,x,), akkor az {fg: g € K|[z1,...,2,]} részhalmaz részalgebra, mely
csak akkor egységelemes, ha f konstans polinom.
(4) Legyen K egy test, K, x, pedig a K feletti n x n—es matrixok gytirtije. A K — Kpxn, A — AE,
leképezés — ahol E az egységmatrixot jeloli — K bedgyazasa K, x,—be. Ezért tekinthetjik K-t
K, xn résztestének, és ekkor K, xn, n?-dimenziés K-algebra.

10.3. Tétel. Legyen K egy test és R egy egységelemes nem-trividlis K—algebra az e multiplikativ egysé-
gelemmel. Ekkor a ¢: K — R, A\ — )e leképezés K bedgyazdsa R—be, és barmely A € K és a € R esetén
da = (Ae)a és Ae € C(R) .
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Bizonyitds. Mivel R nem-trividlis algebra, e # 0. Ha A\ pu € K és A\p = up, azaz Ae = pe, akkor
(A= p)e =0, amibbl A — p = 0 és A = p kovetkezik. Tehdt ¢ injektiv. Legyen ismét A, u € K. Ekkor

A+ e = (A +ple=Are+ pe=Ap+ up

(A = (An)e = A(pe) = Ae(ue)) = (Ae)(ue) = (Ap)(uep),

és ezért o bedgyazéds. Végil ha A € K és a € R, akkor (Ae)a = e(Aa) = Aa = (\a)e = a(Ne), azaz Ae € C(R).
(]

10.4. Megjegyzés. A 10.3. Tétel az R egységelemes nem-trividlis K—algebrakba oly médon dgyazta
be a K testet, hogy a képelemek R centrumdaba estek, és K barmely A elemével valé szorzds megegyezik
A bedgyazéds melletti képével valo szorzassal. Igy K elemeit azonosithatjuk a bedgyazas melletti képiikkel,
és ezért feltehetjiik, hogy K C R. Tehat minden egységelemes nem-trividlis algebra a 10.2. Példa specialis
esete.

10.5. Tétel. Legyen (R;+) egy n-dimenzids vektortér a K test felett, és aq,...,a, R egy bazisa. Legyenek
tovdbba adottak a c;; € R (i,j =1,...,n) elemek. Definidljuk a szorzast R—en két lépésben:

;a5 = Cij, i,jz 1,...,n

és

n n n n

(Z )\ia/’i) (Z ,U/ia/’i) = Z Z()\k/j/l)(akal)a )\i7/j/’i € K7 1= 1) sy T

i=1 i=1 =11=1
Ezzel a szorzédssal R egy K-algebra lett. Ha bdarmely i € {1,...,n} esetén aja; = a;a1 = a;, akkor a1 R
multiplikativ egységeleme. Ha bdrmely i,j,k € {1,...,n} esetén (a;a;)ar = a;(ajax), akkor R szorzdsa
asszociativ. Ha bdrmely i,j € {1,...,n} esetén a;,a; = aja;, akkor R szorzdsa kommutativ.

10.6. Tétel. Legyen R és S két n rangu K—algebra. Legyen tovabba ai,...,a, €s by,...,b, R és S olyan
n n

bézisai, hogy barmely i,j € {1,...,n} esetén valahdnyszor a;a; = Z Aia;, mindannyiszor b;b; = Z Aib;.

i=1 i=1
Ekkor R és S izomorf algebrak.

10.7. Megjegyzés. A 10.5 és a 10.6 tételek szerint egy végesrangi K—algebra definialasdhoz elegend6
megadni a baziselemeket és barmely két baziselem szorzatat. Ugyanis, ha a baziselemek aq, ..., a,, akkor az
n

algebra tartéhalmaza a Z Aia; kifejezések halmaza, mely természetes modon alkot n—dimenzos vektorteret,
i=1
és a szorzas 10.5 Tételben megadott médon vald kiterjesztésével K—algebra lesz.

10.8. Példa. Legyen K egy test és ({a1,...,an};-) egy n—elemi félcsoport. Legyen az algebra bézisa
ai,...,an, és a baziselemek szorzata legyen a félcsoportbeli szorzat. Ily mdédon egy asszociativ algebrat
kapunk.

10.9. Definicié. Legyen K egy test és R egy K—algebra. Tetszéleges a, b, c € R esetén az

[a,b,c] = (ab)e — a(be)
R-beli elemet az a, b, c elemek asszocidtordnak nevezziik. (Vildgos, hogy R pontosan akkor asszociativ, ha
barmely a, b, c € R esetén [a,b,c] = 0.) Az R algebrét alternativ algebrdanak nevezziik, ha barmely a,b,c € R
elemekre

[a,b,c] = —[b,a,c] = —[c,b,a] = —[a, ¢, b].
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10.10. Tétel. Legyen R egy K-algebra. Tetszéleges a,b,c,u € R és A € K esetén
[Aa,b,c] = [a, Ab, c] = [a,b, \c] = A[a,b,c], [a+u,b,c]=]a,b,c]+[u,bd,c),
[a, b+ u,c] = [a,b,c] + [a,u,c], és [a,b,c+u]=]a,b,c]+ [a,b,u].
Ha R alternativ algebra, és K karakterisztikaja nem 2, akkor
a(ab) = (aa)b és a(bb) = (ab)b, a,b€ R. (%)
Megforditva, ha R—re teljesiil (x), akkor alternativ algebra.

Az alternativ algebrakra fontos példa a Cayley—algebra, melyet a kovetkezd fejezetben adunk meg.

11. Hiperkomplex rendszerek

11.1. Definicié. Ha R egy egységelemes nem-trivialis végesrangi R-algebra, akkor réviden hiperkomplex
rendszernek, elemeit pedig hiperkomplex szamoknak nevezzik. A 10.4. Megjegyzés szerint R centruma
tartalmazza R—et gy, hogy 1 € R egyben R—nek is multiplikativ egységeleme.

A 10.7. Megjegyzés szerint egy hiperkomplex rendszer definidlasdhoz elegendé megadni a baziselemeket
és barmely két baziselem szorzatat. Az egyszeriiség kedvéért els6 baziselemnek mindig 1—et, a multiplikativ
egységelemet valasztjuk. Igy csak a tobbi bédziselem szorzatat kell megadni.

11.2. Tétel. Barmely 2 rangu hiperkomplex rendszer izomorfiatdl eltekintve a kévetkezé harom lehet:
(1) A bdziselemek 1,i ési*> = —1 (ezek a komplex szdmok).
(2) A béziselemek 1,i ési? = 1 (ezek a hiperbolikus komplex szdmok).
(3) A béziselemek 1,i és i®> = 0 (ezek a Study-féle szamok).

Bizonyitas. Legyen az R 2 rangi hiperkomplex rendszer egy bédzisa 1,a és a®> = x + ya, z,y € R. Az

a® = x + ya egyenléségbdl atrendezéssel

2
Y
:E+4

/‘\
NI
+
=
~——

)
I

adodik. Harom eset lehetséges.

2 1
(1) z+ yz = —u?,ucR,u#0. Legyen i = 72& + —a. Ekkor 1,1 is bézis és i> = —1. Tehat R izomorf
u o

a komplex szamok testével.

2 1
(2) z + yz =v’,ueR, u#0 Hai= 72& + —a, akkor 1,7 bézis és i> = 1. Tehat R izomorf a
u U
hiperbolikus komplex szdmok algebrajaval.
y? y
3) z+ T = 0. Ha i = —5 + a, akkor 1,7 bézis és i> = 0. Tehat R izomorf a Study-féle szamok
algebrajaval. ]

A komplex szamok tulajdonsdgait elég részletesen elemeztiik a nyolcadik és kilencedik fejezetben. A
hiperbolikus komplex szamok és a Study-féle szamok szorzasa a 10.5. Tétel szerint ugyan asszociativ és
kommutativ, de nem zérusosztémentes. Igy 6k kevéshé érdekesek.

11.3. Példa. ( A kvaternidk ferdeteste.) Legyen K olyan 4 rangi hiperkomplex rendszer, melynek egy
bézisa 1,1, 7, k, valamint i = j2 = k> = —1,4j = —ji = k, jk = —kj = i és ki = —ik = j. Vildgos, hogy
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K szorzasa nem kommutativ, s kénnyen ellenérizhetd, hogy a baziselemeken a szorzas asszociativ. Ezért a
10.5. Tétel szerint K szorzéasa asszociativ. K elemeit kvaternidknak nevezzilkk. Haa = A+ pi+vj+ 7k € K,
akkor A\t a valds részének, pi + vj + 7k—t pedig a képzetes részének nevezziik, és 6ket rendre R(a) és Z(a)
jeloli. Ha A = 0, akkor azt mondjuk, hogy a tiszta képzetes kvaternio.

Az @ = XN — pi —vj — 7k elemet a konjugaltjanak nevezzilk. Konnyt ellenérizni, hogy aa = aa =
A2 4+ u? +v2 + 72, Az a elem abszoliitértéke legyen |a| = vaa. Ha a # 0, akkor |a|? # 0, és igy
1 _ 1, _ 1 _ 1 _
a(Wa> = W(aa) =1= W(aa) = (Wa>a.

1
Ezért az a elemnek Wa a multiplikativ inverze. Tehat K ferdetest.
a

Osszefoglaljuk a kvaternidk aritmetikdjéra vonatkozé legfontosabb tényeket.

11.4. Tétel. Bédrmely nullitdl kiilonbézé a € K-ra az a € R, @ = a és a®> € R™T, illetve az R(a) = 0,
@ = —a és a® € R~ allitdsok ekvivalensek. Tovabba barmely a,b,c € K és A € R esetén

Xa=X\a, @a=a, |a|=|a|, aa=7da=|a®, a+b=a+b,
- - 1 .
ab="0-a, |ab|=lallb|, == (a#0) és |a+0b| <la|+10]

11.5. Tétel. Legyen K az

8
<

N

~+

, z,y,z2t€eR,

alaku 4 x 4—es matrixok halmaza. Ekkor K olyan részalgebra a 4 x 4—es matrixok R—algebrajaban, mely
izomorf a kvaternick R—algebrajaval.

Bizonyitas. Tekintsiik az

100 0 010 0
o100 -1 00 0
001 0] 000 -1/
00 0 1 001 0
0 01 0 00 01
. o 00 1| |, 00 -1 0
I=lZ1 oo ®FL 01 0o
0 -1 0 0 10 0 0

métrixokat. Vildgos, hogy 1,4, j, k a (K; +) vektortér bazisdt alkotjik, s konnyti ellenérizni, hogy a szorzésban
ugyanugy viselkednek, mint a megfelel6 kvaterniék. Ezért egyrészt nem vezet ki a matrixszorzas K—bdl, és
igy K valéban részalgebra, masrészt a 10.6. Tétel szerint K izomorf a kvaternick R-algebrajaval. ]

11.6. Definicié. Jeldlje R a valds szamok, a komplex szamok, illetve a kvaterniok R-algebraja koziil
valamelyiket, és tekintsiik az

R® ={a+bE: a,be R},

halmazt, ahol £ € R egy szimbdlum. Ertelmezziik az dsszeadést és a szorzdst R®)-n, valamint az R -beli
elemeknek valds szdmmal valé szorzasat a kdvetkezSképpen:

(a+bE) + (c+dE) = (a+c)+ (b+d)E,
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(a+bE)(c+ dE) = (ac — db) + (da + be)E

és
AMa+bE)=Xa+ (A)E, a,be R, NeR.

Az igy nyert R algebrai struktirat az R algebra megkettézéttjének nevezziik.

11.7. Tétel. A valds szamok, a komplex szamok, illetve a kvaternick megkett6zottje hiperkomplex rendszer.
Specidlisan R megkettézottje izomorf C—vel, és C megkettézottje izomorf K—val.

11.8. Definicié. A kvaternidk algebréjdnak megkettézottjét Cayley-algebrdnak, elemeit pedig Cayley-
szamoknak nevezziik. Ertelmezziik a Cayley-szdmok konjugéltjat. Ha v = a + bE (a,b € K), akkor legyen

uw=a—bE.

Ekkor

wii = (a+ bE)(a — bE) = (aa@ — (—b)b) + ((—b)a + ba) E = aa + bb = |a|* + [b]?,
s hasonléan léthaté be, hogy Tu = |a|? + |b|? = uT. Ertelmezziik u abszolitértékét a szokdsos médon:
|u] = Vua.

Ha u # 0, akkor |u|? # 0, és igy
1 _ 1 _ 1 1 _

1

Ezért az u elemnek ?U a multiplikativ inverze. A kovetkez6 tételben megmutatjuk, hogy a Cayley-algebra
u

zérusosztomentes. Ezt felhaszndlva konnyt belatni, hogy minden nullatél kiillénb6z6 u Cayley-szémnak csak

egyetlen multiplikativ inverze van, s a hagyoméanyokhoz hiven ——val jeloljiik..
U

Most Gsszefoglaljuk a Cayley-szamok aritmetikdjara vonatkozoé legfontosabb tényeket.

11.9. Tétel.
(1) A Cayley-szamok olyan zérusosztémentes alternativ algebrat alkotnak, melyben

1,4, 45, k, E, [ =iE, J=jF, K=FkE
bazis, ahol 1,1, j, k a megfelelé kvaterniok.

(2) Bdrmely v,w ésu=x+yi+ zj+tk+pE+ql +rJ+sK (z,y,2,t,p,q,7,s € R) Cayley-szdmok
esetén

S|

=x—yi—2zj —th—pE —ql —rJ — sK,
=t = [u’ =2° + 3’ + 22+ +p" + @+ + 5,

u=\a, u=u, |u=I[a, utu=1u+7,
_ 1

T=0-1, |uv|=|ul]v], -~ = (u#0) és |a+b| <lal+ bl

SR

(3) Bdrmely nullatdl kiilonbézé a € K®) Cayley-szdmra az a € R, @ = a és a®> € R*, illetve az
R(a) =0, a = —a és a®> € R~ 4dllitdsok ekvivalensek. (A Cayley-szdmok valés és képzetes részét a
kvaterniékéhoz hasonléan definidlhatjuk.)
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12. Zérusosztomentes és normalt algebrak

12.1. Frobenius-tétel. Barmely memtrivialis, végesrangi, zérusosztomentes és asszociativ R—algebrara a
kévetkez6 harom allitas egyike teljestl:

(a) Rangja 1, és izomorf a valés szdmok testével.

(b) Rangja 2, és izomorf a komlex szamok testével.

(c) Rangja 4, és izomorf a kvaternick ferdetestével.

12.2. Tétel. Barmely nemtrivialis végesrangii, zérusosztomentes és asszociativ C—-algebra izomorf a komp-
lex szamok testével.

Bizonyitas. Legyen R egy nemtrividlis n rangi és zérusosztomentes C—algebra. Ekkor R tekintheté R—
algebranak is. Megmutatjuk, hogy R—nek — mint R-algebranak — 2n a rangja. Legyen aq,...,a, bazisa
R-nek — mint C—-algebranak —, és tekintsiik az aq,...,a,,%a1,...,1a, elemeket, ahol ¢ € C a képzetes
egység. Ha a € R, akkor vannak olyan A\ +iuq,..., A\, + i, € C szdmok, hogy
a= (A +ip)ar + -+ Ap +ipn)an = a1+ + Apan + pa(iar) + -+ pa(ian).
Tehat az aq,...,an,%0a1,...,1a, elemek R-nek — mint R-algebranak — generdatorrendszere. Ha
)\lﬂlw--a)\ruﬂn € R és
Aray + -+ Apay + pr(iar) + - A+ pg(ian) = 0,
akkor
(A1 +Fipr)ar + -+ (A +ipp)a, = 0.
Mivel ay,...,a, bazisa R—nek — mint C-algebranak —, ezért mindegyik egyiitthaté nulla. Ebbdl pedig
Al = pp = - = Ay = pp = 0 kovetkezik. Tehat az aq,...,an,%0a1,...,ta, elemek R-ben — mint R-
algebraban — linedrisan fiiggetlen rendszert, és igy bazist alkotnak. Tehdt R-nek — mint R—algebranak
2n a rangja. Ezért Frobenius-tétel szerint R izomorf C—vel vagy K—val. Az utébbi esetben a 10.3. Tétel
és a 10.4. Megjegyzés szerint azt kapnank, hogy C része K centrumanak, ami nem igaz. fgy csak az elso
lehet6ség marad. ]

Bizonyitas nélkiil megadjuk a Frobenius-tétel altaldnosabb alkjat.

12.3. Altalanos Frobenius-tétel. Barmely nemtrivialis, végesrangt, zérusosztomentes és alternativ R—
algebrara a kévetkezé négy allitas egyike teljestil:

(a) Rangja 1, és izomorf a valés szamok testével.

(b) Rangja 2, és izomorf a komlex szamok testével.

(c) Rangja 4, és izomorf a kvaternidk ferdetestével.

(d) Rangja 8, és izomorf a Cayley—szdmok alternativ algebrdjaval.

12.4. Definicié. Legyen R egy R-algebra. Egy o: R? — R leképezést skaldris szorzatnak nevezziik, ha
barmely a,b,c € R és A € R esetén
o(a,b) =o(b,a), o(Aa,b) = Ao(a,b), o(a+b,c)=0(a,c)+a(b,c),
o(a,a) >0 és o(a,a)=0 & a=0.
Azt mondjuk, hogy R normalt algebra a o—skaléris szorzédssal, ha
o(ab,ab) = o(a,a) - o(b,b)
minden a,b € R esetén.

12.5. Tétel. Jelolje R a valos szamok, a komplex szdmok, a kvaterniok illetve a Cayley-féle szamok
R-algebraja koziil valamelyiket. Legyen

1 -
o:R?* = R, (a,b) — a(ab—i— ba).

Ekkor o olyan skalaris szorzés, mellyel R normalt algebra.

c s

tulajdonsdg pedig o(a,a) = |a|? felhasznaldsaval igazolhaté. [
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12.6. Hurwitz-tétel. Barmely nem-trivialis végesrangi, egységelemes és normalt R—-algebrara a kévetkezd
négy allitas egyike teljestil:

(a) Rangja 1, és izomorf a valés szdmok testével.

(b) Rangja 2, és izomorf a komlex szdmok testével.

(c) Rangja 4, és izomorf a kvaternidk ferdetestével.

(d) Rangja 8, és izomorf a Cayley—szamok alternativ algebrdjdval.

29



