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A számfogalom felépítése, második házi feladat

1.) (5 pont) Igazolja, hogy a valós számsorozatok
(
RN; +, ·

)
részbenrendezett

gy¶r¶jét tekintve a

P =
{
f ∈ RN : f (n) ≥ 0 minden n ∈ N-re, és f ∈ S

}
halmaz pozitivitási tartomány, ha S a korlátos sorozatok halmaza, vagy a kon-

vergens sorozatok halmaza, vagy azoknak a sorozatoknak a halmaza, melyeknek

véges sok nullától különböz® tagja van, vagy a sorozatok bármely olyan hal-

maza, mely tartalmazza a nullát, és zárt az összeadásra és a szorzásra.

Megoldás:

Tekintsük a valós számsorozatok
(
RN; +, ·

)
részbenrendezett gy¶r¶jét, ahol+ és ·m¶veletek

a valós számsorozatokon értelmezett klasszikus összeadást és szorzást jelölik. Tudjuk

továbbá, f : N → R függvény minden f ∈ RN esetén, valamint 0 = (0, 0, 0, ...) = (0)n∈N
és 1 = (1, 1, 1, ...) = (1)n∈N.

El®ször jelölje S a korlátos sorozatok halmazát. Ekkor bármely f ∈ S esetén léteznek

olyan k és K valós számok, hogy k ≤ f (n) és K ≥ f (n) bármely n ∈ N esetén. Azonnal

látszik, hogy 0 ∈ P , hiszen 0 ∈ S bármely 0 ≤ k és 0 ≤ K esetén, továbbá a részbenrendezés

de�níciója miatt 0 ≤ 0.
Most tegyük fel, hogy a ∈ P és −a ∈ P , de a 6= 0. P de�níciója miatt 0 ≤ a (n),

valamint 0 ≤ −a (n) minden n ∈ N-re. Mivel
(
RN; +

)
részbenrendezett csoport ≤-re

nézve, ezért 0 ≤ −a (n)-b®l
0 + a (n)︸ ︷︷ ︸

a(n)

≤ −a (n) + a (n)︸ ︷︷ ︸
0

következik minden n ∈ N esetén. Mivel a részbenrendezés antiszimmetrikus, ezért a (n) ≤ 0-
ból és 0 ≤ a (n)-b®l a (n) = 0 következik minden n ∈ N esetén. Ez azt jelenti, hogy a = 0,
ami ellentmondás.

Most tegyük fel, hogy a, b ∈ P . Ekkor 0 ≤ a (n) és 0 ≤ b (n) minden n ∈ N esetén.

Legyen c (n) = a (n)+b (n), ∀n ∈ N. Felhasználva a közismert tételt, amely szerint korlátos

sorozatok összege is korlátos, kijelenthetjük, hogy a c sorozat korlátos.
Azt kell még belátnunk, hogy 0 ≤ a (n) + b (n) minden n ∈ N esetén. Mivel 0 ≤ a (n),

ezért 0 + b (n)︸ ︷︷ ︸
b(n)

≤ a (n) + b (n), és hasonlóan, 0 ≤ b (n) miatt 0 + a (n)︸ ︷︷ ︸
a(n)

≤ a (n) + b (n)

írható fel minden n ∈ N esetén. A részbenrendezés tranzitivitása miatt 0 ≤ a (n) és

a(n) ≤ a (n)+b (n) implikálja, hogy 0 ≤ a (n)+b (n) minden n ∈ N esetén, ezért a+b ∈ P .

A negyedik tulajdonság igazolásához ismét tegyük fel, hogy a, b ∈ P . Ekkor 0 ≤ a (n)
és 0 ≤ b (n) minden n ∈ N esetén. Legyen c (n) = a (n) · b (n), ∀n ∈ N. Mivel korlátos

sorozatok szorzata is korlátos, kijelenthetjük, hogy a c sorozat korlátos.
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Most azt kell belátnunk, hogy 0 ≤ a (n) · b (n) minden n ∈ N esetén. Mivel 0 ≤ a (n)
és 0 ≤ b (n), ezért 0 · b (n)︸ ︷︷ ︸

0

≤ a (n) · b (n), ezért a · b ∈ P .

Jelölje most S a konvergens sorozatok halmazát. Ekkor 0 ∈ P triviálisan teljesül, hiszen

a konstans nulla sorozat konvergens (határértéke 0), ezért 0 ∈ S, valamint ≤ re�exivitása

miatt 0 ≤ 0.
A második tulajdonság bizonyítása az el®z®ekben ismertetett módon történik. A har-

madik és a negyedik tulajdonság bizonyítása is teljesen hasonló, azzal a különbséggel, hogy

a konvergens sorozatokra vonatkozó tételeket szükséges felhasználni. Ezek szerint konver-

gens sorozatok összege és szorzata is konvergens.

Ha S a véges sok nullától különböz® taggal rendelkez® sorozatok halmaza, a bizonyítás

ugyanígy történik. Az világos, hogy 0 ∈ S, ezért az els® tulajdonság a korábban ismertet-

teknek megfelel®en teljesül. A harmadik és a negyedik tulajdonság igazolásához csak annyit

kell megmutatnunk, hogy ha a, b ∈ S, akkor a + b ∈ S és a · b ∈ S. Vegyük észre, hogy

tulajdonképpen itt S zártságát bizonyítjuk erre a speciális esetre.

Legyen a ∈ S olyan, hogy m darab nullától különböz® tagja van, míg b ∈ S olyan, hogy

a nullától különböz® tagok száma l. Ekkor a + b-nek legfeljebb m + l nullától különböz®
tagja lesz. Ez véges, ezért a + b ∈ S. Szorzatuk esetén gondoljuk meg, hogy a nullától

különböz® tagok számra legfeljebb min {m, l}. Világos, hogy ez is véges, ezért a · b ∈ S, S
tehát zárt az összeadásra és a szorzásra.

Ezek alapján világos, hogy a bizonyítás els® részében megmutatottakon túl kizárólag

S zártságát kell megkövetelni 0 ∈ S mellett ahhoz, hogy P pozitivitási tartomány legyen. �

2.) (5 pont) Igazolja, hogy a komplex számok testének nincs lineáris rendezése,

majd adja meg egy részbenrendezését. (A pozitivitási tartomány megtalálása

igazából a feladat.)

Megoldás:

Jelölje (C; +, ·) a komplex számok testét. Tekintettel arra, hogy a testek integritástar-

tományok, alkalmazható a jegyzet 2.13. Tétele. A tétel szerint a (C; +, ·) integritástar-

tománynak akkor és csak akkor van lineáris rendezése, ha bármely z1, ..., zm ∈ C esetén

z21 + ...+ z2m = 0-ból z1 = ... = zm = 0 következik.

Legyen z1 = 1 és z2 = i. Ekkor z21 + z22 = 12 + i2 = 1 − 1 = 0, ezért C-nek nincsen

lineáris rendezése.

Bár a komplex számok testének nincsen lineáris rendezése, megadható egy részbenren-

dezése. Az alábbiakban megmutatjuk, hogy

∀ (a+ bi) , (c+ di) ∈ C esetén (a+ bi) � (c+ di)⇐⇒ a ≤ c és b ≤ d

esetén � egy részbenrendezése C-nek.

El®ször megmutatjuk, hogy (C; +) részbenrendezett csoport �-re nézve. Legyen z1 =
a + bi, z2 = c + di és z3 = e + fi, ahol a, b, c, d, e, f valósak. Azt kell ellen®riznünk, hogy

tetsz®leges z1, z2, z3 ∈ C esetén z1 � z2-b®l z1 + z3 � z2 + z3 következik:

z1 � z2 ⇐⇒ (a+ bi) � (c+ di)⇐⇒ a ≤ c és b ≤ d,

z1+z3 � z2+z3 ⇐⇒ (a+e)+(b+f)i � (c+e)+(d+f)i⇐⇒ a+e ≤ c+e és b+f ≤ d+f.

Végül megmutatjuk, hogy bármely z1, z2, z3 ∈ C esetén, ha z1 � z2 és 0 ≺ z3, akkor
z1z3 � z2z3:

z1 � z2 ⇐⇒ (a+ bi) � (c+ di)⇐⇒ a ≤ c és b ≤ d,
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0 � z3 ⇐⇒ (0 + 0i) � (e+ fi)⇐⇒ 0 < e és 0 < f,

z1z3 � z2z3 ⇐⇒ (ae− bf) + (af + eb)i � (ce− df) + (de+ cf)i,

akkor és csak akkor, ha

(ae− bf) ≤ (ce− df) és (af + eb) ≤ (de+ cf).

A pozitivitási tartomány megtalálásához induljunk ki a de�nícióból:

P = {z ∈ C : 0 � z} .

Világos, hogy P -t azon z = a + bi, z ∈ C komplex számok alkotják, melyekre 0 ≤ a és

0 ≤ b:
P = {z = a+ bi, z ∈ C : 0 ≤ a és 0 ≤ b} .�

(Korrekció: a fenti feladatmegoldás hibás. Az olvasó fontolja meg, hogy a megadott pozi-

tivitási tartomány miért nem elégíti ki P zártságának feltételét. Adjon rá egy példát!)

3.) (5 pont) Az 5. feladat hibás, mert nem (lineáris) rendezést adtam meg.

S®t, az elnevezés is hibás. Találja meg a lexikogra�kus rendezés pozitivitási

tartományát.

Megoldás:

Tekintsük a valós számsorozatok
(
RN; +

)
additív csoportját, és a � reláció de�niáljon

lexikogra�kus rendezést RN-en. Legyen f, g ∈ RN tetsz®leges. Azt mondjuk, hogy f
lexikogra�kusan kisebb g-nél (f � g), ha az els® olyan j ∈ N esetén, ahol f és g eltérnek,

f(j) < g(j).
Jelölje P a lexikogra�kus rendezés pozitivitási tartományát. Világos, hogy itt 0 =

(0, 0, 0, ...), továbbá 0 ∈ P . A pozitivitási tartomány de�níciója szerint

P =
{
a ∈ RN : 0 � a

}
.

Az eddigiek alapján P de�níciója a következ® lehetne:

P =
{
f ∈ RN : f = 0, vagy f : ∃j ∈ N úgy, hogy 0 < f(j) és ∀k < j, k ∈ N, f(k) = 0

}
.�
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