
5. Konvolúció 



Konvolúció (analóg, 1D-2D) 



Konvolúció (analóg, 1D) 



Konvolúció (analóg, 1D) 



1D konvolúció 

Input   (M- és N-elemű): 
 
 
 

 
 

Output  ((M+N-1)-elemű): 



1D konvolúció 



1D konvolúció 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) → 

M=N=3                 h = f * g 

kiindulási helyzet 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) → 

M=N=3                 h = f * g 

h(0) = f(0)·g(0) 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) → 

M=N=3                 h = f * g 

h(1) = f(0)·g(1)+ f(1)·g(0) 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) → 

M=N=3                 h = f * g 

h(2) = f(0)·g(2)+ f(1)·g(1)+ f(2)·g(0) 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) → 

M=N=3                 h = f * g 

h(3) =  f(1)·g(2)+ f(2)·g(1) 



Példa konvolúcióra 

← g(0) g(1) g(2) 

f(2) f(1) f(0) 

M=N=3                 h = f * g 

h(4) =  f(2)·g(2) 

→ 



Példa konvolúcióra 

g(2) g(1) g(0) 

f(2)g(2) f(2)g(1) f(2)g(0) 

f(1)g(2) f(1)g(1) f(1)g(0) 

f(0)g(2) f(0)g(1) f(0)g(0) 

∑ ∑ ∑ ∑ ∑ 

h(4) h(3) h(2) h(1) h(0) 

M=N=3                 h = f * g 

f(2) 

f(1) 

f(0) 



Polinomok szorzása 
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Polinomok: 



Számok mint polinomok 

m-jegyű decimális szám: 
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Műveletek nagy számokkal vagy 

számítások nagy precizitással 

Bejelentés 2019. március 14-én (a Pi-napon): 

Emma Haruka Iwao, a Google programozónője 

rekordot döntött azzal, hogy 31 ezermilliárd 

számjegy pontosságig számolta ki a Pi értékét – 

átadva a múltnak a korábbi 22 ezermilliárd 

számjegyű pontosságot.  

A számítás 25 virtuális számítógépen 125 napig 

tartott (170 terabyte tárigénnyel). 

https://www.bbc.com/news/technology-47524760 



1D konvolúció –  

mátrix-vektor szorzás 
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Az 1D konvolúció műveletigénye 
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2D konvolúció 

Input: 

 
 
 

 

 

Output: 



Képek konvolúciója a 

gyakorlatban 

Input: 
 

 

 

 
Output: 



Képek konvolúciója a gyakorlatban 

input kép   

output kép 

maszk 

lefedett 

szomszédság 

 

kérdéses 

pixel 
 

a találkozó maszkelemek 

és intenzitások összeszorzása 
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Példa 1/10 1/10 1/10 

1/10 1/5 1/10 

1/10 1/10 1/10 
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9 

A g maszk 

mérete: 

3x3 (K=1) 

6 

A h=f*g konvolvált 

kép adott pontjának 

számítása: 

1·1/10+3·1/10+ 6·1/10+ 

8·1/10+10·1/5+ 2·1/10+ 

9·1/10+4·1/10+ 7·1/10= 

6 



Példa 



Példa 



A „kilógó” terület problémája 

 (mérettartó konvolúció esetén) 

(M+K)x(N+K) 

M x N 

(2K+1)x(2K+1) 



A „kilógó” terület problémája 

 (mérettartó konvolúció esetén) 

PAD 

(kipárnázás 

0 értékű pixelekkel) 



A „kilógó” terület problémája 

 (mérettartó konvolúció esetén) 

EXTEND 

(a határ kiterjesztése) 



A „kilógó” terület problémája 

 (mérettartó konvolúció esetén) 

WRAP 

(becsomagolás) 



A konvolúció tulajdonságai 
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Korreláció 

(f=g :  auto-korreláció;    f≠g :  kereszt-korreláció) 

komplex konjugált 



Konvolúció és korreláció 



Konvolúciós, korrelációs tétel 

)()()(

)()(  )(

gFfFgfF

gFfFgfF




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Konvolúciós tétel 

Alternatív formulák: 
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(A második a mintavételezési tétel kulcsa.) 



Konvolúció, korreláció időigénye 

Az M-elemű 1D  f  és  g  jelek konvolúciója és 

korrelációja egyaránt  O(M2)  műveletet igényel. 

Az FFT alkalmazásával elérhető az  O(M·log2M)  

komplexitás. 
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O(M·log2M) O(M·log2M) O(M·log2M) O(M) 



Példa a konvolúciós tételre 

* = 

= · 

pontonkénti szorzás 

konvolúció 

Fourier tr. inverz Fourier tr. 
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sinc függvény 
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sinc(x) 
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Fourier 

A sinc és a doboz függvény 

kapcsolata 

П1/2(x) 
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A sinc és a doboz függvény 

kapcsolata 

2D doboz függvény 2D sinc függvény 

Fourier 



Pontonkénti szorzás doboz függvénnyel 
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A δ-függvény és eltoltja 
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Dirac fésű (Shah function) 

0 x k 2k 3k 4k 5k -2k -k -4k -3k -5k 

1 



A Dirac fésű 

Fourier transzformáltja 

x   k 2k 3k 5k 4k 

-1/k 
0 1 2 -2 -1 

(k=1/2) 1/k 

-k -2k -3k -4k -5k 



Pontonkénti szorzás a Dirac fésűvel 

–  mintavételezés 

f(x) 

g(x) 

combk(x) 



Konvolúció a Dirac fésűvel 

–  periodikus másolás 

F(X) 

G(X)=F(X)*combk(X) 

combk(X) 



Konvolúció a Dirac fésűvel 

–  periodikus másolás 

F(X) 

combk(X) 

G(X)=F(X)*combk(X) 



Konvolúció a Dirac fésűvel 

–  periodikus másolás 

F(X) 

combk(X) 

G(X)=F(X)*combk(X) 



Átfedés, álcázás (aliasing) 

G(X) = 

F(X)*combk(X) 

F(X) 

combk(X) 

k 2w 

átfedések 

 lépnek fel, mivel  2w > k . 



Átfedés, álcázás (aliasing) 

G(x) F(x) 

2w>k 
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Átfedés, álcázás (aliasing) 



Átfedés, álcázás (aliasing) 
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Ha nincs átfedés 
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Ha van átfedés 
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Átfedés, álcázás (aliasing) 

a képen 

hamis/fantom 

minták jelennek 

meg 



Átfedés, álcázás (aliasing) 



Átfedés, álcázás (aliasing) 

 korrekt mintavételezés  alul-mintavételezett 

http://upload.wikimedia.org/wikipedia/commons/3/31/Moire_pattern_of_bricks.jpg


Átfedés, álcázás (aliasing) 



Átfedés, álcázás (aliasing) 



Anti-aliasing 

A mintavételezés hibáinak korrigálása (pl. lépcsős élek 

lekerekítésével), az álcázás hatásainak csökkentése. 



Folytonos függvény megadása 

néhány pontjával 

Bármely  n-edfokú  polinomot egyértelműen meghatároz  n+1 

tetszőlegesen kiválasztott pontja. 

Következésképpen: egy (mintavételezett) diszkrét jelből 

helyreállítható lehet a kiindulási (végtelen sok pontból álló) analóg jel. 
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y y
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A digitalizálás (mintavételezés) 

alapkérdése 

Milyen (uniform) mintavételezés mentén hordoz 

ugyanannyi információt a mintavételezett kép, 

mint a folytonos? 

(Hangsúlyozandó, hogy ezúttal csak az értelmezési 

tartomány digitalizálásával (vagyis a mintavételezéssel) 

foglalkozunk, az értékkészletével (a kvantálással) nem.) 



Sávhatárolt (bandlimited) 

függvények 

Az f(x) függvény sávhatárolt, ha létezik olyan w, hogy F(X)  

(vagyis az f(x)  Fourier transzformáltja) nem tartalmaz  w-nél 

nagyobb frekvenciákat, azaz: 
 

                                 F(X)=0,   ha  |X|>w .  

 

w-t  Nyquist-frekvenciának nevezzük, ha 
 

 F(X)=0,  ha  |X|>w , ugyanakkor  F(-w) ≠ 0  vagy  F(w) ≠ 0 .  



Sávhatárolt 1D függvény 

|F(X)| 

w -w 

=0 ≠0 =0 



Mintavételezés az Nyquist-

frekvencia fölött 
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Mintavételezés az Nyquist-

frekvenciánál és az alatt 
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Konvolúciós tétel 

(felidézés) 
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Folytonos képfüggvény 

visszaállítása mintákból 
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képtér frekvencia-tér 

‡ 

‡ A konvolúciós tétel 2. formulájából adódóan. 
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Whittaker-Shannon 

mintavételezési tétele 

Az 1D folytonos, w-nél nagyobb frekvenciákat 

nem tartalmazó (sávhatárolt) jel akkor és csakis 

akkor állítható vissza a mintavételezettjéből, ha 

a  Δx  mintavételezési léptékre teljesül az 

alábbi feltétel: 
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Mintavételezés az Nyquist-

frekvencia fölött 



Mintavételezés az Nyquist-

frekvenciával 



Mintavételezés az Nyquist-

frekvencia alatt 



A 2D Dirac kefe 
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A Dirac kefe tulajdonságai 

),()),(( /1,/1, yxbrushyxbrushF yxyx  

Pontonkénti szorzás (képtérben): mintavételezés 
 

Konvolúció (frekvenciatérben): periodikus másolás 

)),(( yxfF



Sávhatárolt 2D függvény 

f(x,y)                                     |F(X,Y)| 

w sugarú kör 

=0 

≠0 



Whittaker-Shannon 

mintavételezési tétele 2D-ben 

Az 1D folytonos, w-nél nagyobb frekvenciákat 

nem tartalmazó (sávhatárolt) jel akkor és csakis 

akkor állítható vissza a mintavételezettjéből, ha 

a  Δx  és a Δy mintavételezési léptékekre 

teljesülnek az alábbiak: 
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