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Algebrai (és geometriai) módszerek a
kombinatorikában, beadandó feladatok

10/a) Oldjuk meg a következ® lineáris rekurziót:

a0 = 1, a1 = 6; an = 5an−1 − 6an−2 (ha n ≥ 2) .

Megoldás:

A tanult algoritmus szerint járunk el:

an − 5an−1 + 6an−2 = 0 (ha n ≥ 2) .

A (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . .

− 5xA (x) = −5a0x− 5a1x
2 − 5a2x

3 − 5a3x
4 + . . .

6x2A (x) = 6a0x
2 + 6a1x

3 + 6a2x
4 + . . .

A három egyenletet összeadva(
1− 5x+ 6x2

)
A (x) = a0 + (a1 − 5a0)x = 1 + x

adódik, ezért

A (x) =
1 + x

1− 5x+ 6x2
.

1− 5x+ 6x2 =

(
1− 5

2
x

)2

︸ ︷︷ ︸
1−5x+ 25

4
x2

−25

4
x2 + 6x2 =

(
1− 5

2
x

)2

− 1

4
x2 =

(
1− 5

2
x

)2

−
(
1

2
x

)2

=

= (1− 3x) (1− 2x) .

A fentiek miatt

A (x) =
1 + x

1− 5x+ 6x2
=

α

1− 3x
+

β

1− 2x
, valamely α, β ∈ R esetén.

Innen

α (1− 2x) + β (1− 3x) = α− 2αx+ β − 3βx = 1 + x.

Az együtthatókat vizsgálva: {
α+ β = 1,

−2α− 3β = 1.
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Innen α = 4 és β = −3, tehát

A (x) =
4

1− 3x
− 3

1− 2x
.

Ehhez:

1

1− 3x
=

∞∑
n=0

(3x)n =

∞∑
n=0

3nxn, továbbá

1

1− 2x
=
∞∑
n=0

(2x)n =
∞∑
n=0

2nxn.

Végül felírva A (x)-et:

A (x) = 4
∞∑
n=0

3nxn − 3
∞∑
n=0

2nxn =
∞∑
n=0

(4 · 3n − 3 · 2n)xn.

Az együtthatót leolvasva kapjuk a lineáris rekurzió megoldását:

an = 4 · 3n − 3 · 2n, n ≥ 0.

15) Bizonyítsuk be a Newton-formula segítségével, hogy

1√
1− 4x

=
∞∑
n=0

(
2n

n

)
xn.

Megoldás:

Bizonyítás. Alakítsuk át a törtet, majd használjuk a Newton-formulát:

1√
1− 4x

= (1− 4x)−
1
2 = (1 + (−4x))−

1
2 =

∞∑
n=0

(
−1/2
n

)
(−4x)n =

∞∑
n=0

(
−1/2
n

)
(−4)n xn.

Most tekintsük csak az együtthatót:(
−1/2
n

)
(−4)n =

(
−1

2

) (
−1

2 − 1
) (
−1

2 − 2
)
. . .
(
−1

2 − n+ 1
)

n!
(−4)n .

Mivel

−1

2
− n+ 1 =

−1− 2n+ 2

2
=
−2n+ 1

2
= −2n− 1

2
, ezért

(
−1

2

) (
−1

2 − 1
) (
−1

2 − 2
)
. . .
(
−1

2 − n+ 1
)

n!
(−4)n =

(
−1

2

) (
−3

2

) (
−5

2

)
. . .
(
−2n−1

2

)
n!

(−4)n =

=
(−1)n · 12 ·

3
2 ·

5
2 . . . ·

(
2n−1

2

)
n!

(−1)n 4n =
(−1)2n 1 · 3 · 5 . . . · (2n− 1)

2n · n!
4n =

=
1 · 3 · 5 . . . · (2n− 1)

n!

(
4

2

)n

=
1 · 3 · 5 . . . · (2n− 1)

n!
· 2n.

2. oldal



Unger Tamás István FTD1YJ

B®vítsük a törtet 2 · 4 · 6 . . . (2n) = 2n · n!-sal:

1 · 3 · 5 . . . (2n− 1)

n!
2n =

1 · 2 · 3 · 4 · 5 . . . (2n)
2n · n! · n!

2n =
(2n)!

n! · n!
,

ami a binomiális együttható ismert képlete szerint

(2n)!

n! · n!
=

(
2n

n

)
.

Ez már maga után vonja a feladat állítását.

16) Igazoljuk, hogy
n∑

k=0

(
2k

k

)(
2n− 2k

n− k

)
= 4n.

Megoldás:

Bizonyítás. Tekintsük az

1√
1− 4x

· 1√
1− 4x

=
1

1− 4x

összefüggést. A jobb oldalt vizsgálva tudjuk, hogy

1

1− 4x
=

∞∑
n=0

(4x)n =

∞∑
n=0

4nxn.

Most pedig vizsgáljuk meg az egyenlet bal oldalát. Az el®z®ekben közölt bizonyítás értel-

mében
1√

1− 4x
=
∞∑
n=0

(
2n

n

)
xn.

Legyen

A (x) =
∞∑
n=0

anx
n =

∞∑
n=0

(
2n

n

)
xn és B (x) =

∞∑
n=0

bnx
n =

∞∑
n=0

(
2n

n

)
xn.

A kérdés a két formális hatványsor szorzata, azaz A (x) · B (x). Jelölje ezt a szorzatot

C (x). A formális hatványsorok szorzatának de�níciója alapján

C (x) =

∞∑
n=0

cnx
n,

ahol cn = a0bn + a1bn−1 + . . .+ anb0. Vizsgáljuk ezeket az együtthatókat:

c0 =

(
0

0

)
·
(
0

0

)
,

c1 =

(
0

0

)
·
(
2

1

)
+

(
2

1

)
·
(
0

0

)
,

c2 =

(
0

0

)
·
(
4

2

)
+

(
2

1

)
·
(
2

1

)
+

(
4

2

)
·
(
0

0

)
,

...

cn =
n∑

k=0

(
2k

k

)(
2n− 2k

n− k

)
.
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Mivel a cn együttható felírható zárt alakban, ezért

C (x) =
∞∑
n=0

n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
xn.

Ezeket visszaírva a kezdeti összefüggésbe azt kapjuk, hogy

∞∑
n=0

n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
xn =

∞∑
n=0

4nxn.

Két formális hatványsort akkor tekintünk egyenl®nek, ha az együtthatósorozatuk megegye-

zik, azaz fennáll a

n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 4n

egyenl®ség. Ezzel a bizonyítás kész.
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