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Abstract—By transforming the state equation for Chua’s circuit

into a third order scalar differential equation, an explicit solution

is obtained. This explicit solution can be used to make a computer
program to calculate the trajectory of the circuit. The eigenvalues of
the characteristic equation for each linear region can be categorized
into different patterns. The diagrams of the eigenvalue patterns
are found to belong to two groups. Within each group, the maps
resemble each other qualitatively. Finally, the explicit solution is
applied to trace period doublings up to a high period. The data are
found to agree with the Feigenbaum number, ’

1 Introduction

In this paper, we will present results obtained on Chua’s circuit
by considering the exact solution of the differential vector equa-
tion representing the circuit. There has been a great number
of literatures on this circuit and we will not attempt to repeat
materials that are available elsewhere (see Chronological Bib-
liography). Rather, the three separate topics included in this
paper are new materials and we find them worthwhile to-be
presented.

Chua’s circuit (Figure 1) is a simple piecewise-linear third-
order circuit. The state equation is given by

dvc,
g

d’vc'2
O g
dt
‘where g(vc;) = Gyve, + 3(Ga — Gi)llvc, + Byl — Jvc, — By|i.
By rescaling the variables, we can transform the state equation
into a dimensionless form:
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ar = —Py (3)
where .
, mz+mg—my, z>1
fz) =< moz, ~1<z<1 -
_ ’ mz ~mo+m;, z<-1,
and
z= ”C]/-pr y= sz/BP) z= iL/(BPG)v
T=tG/C, mo=G./G, mi=Gy/G,

a=Cy/Ch, B=Cy/(LGY).
For simplicity, we will be working in the dimensionless form
and using ¢ in place of 7. When mg < —1 and —1 <.m; < 0,
there are three equilibrium points of the form (d, 0, —d),
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Figure 1: (a) Chua’s circuit, and (b) v-i characteristic of the
piecewise linear resistor.

{ e, z>1
d={0, -1<z<1
%’-, z < -1

The above system of differential equation can be solved nu-
merically using integration methods such as Runge-Kutta or
Forward Euler. In Section 2, we will show that explicit solu-
tions can be obtained which can be used to model the trajec-
tory of the circuit with higher accuracy and speed. In Section
3, we will use the characteristic equation from Section 2 to in-
vestigate the eigenvalues patterns of the equation. In Section
4, we will show how the explicit equations make it possible to

-trace period doublings up to a high period and to verify the

Feigenbaum number using data obtained.

2 Explicit Equations

In this section, we want to show that the Chua’s circuit can
be represented by a set of explicit equations. The derivation is
based on the fact that within each linear region of the non-linear
resistor, the differential equation representing Chua’s ciruit is
linear. We begin by transforming the differential vector equa-
tion into a third-order scalar differential equation. From (3),
we have



y = -2 (4)

i ©
From (2), (4), and (5),

._.1_2 = z+ li +z
B
= —(gi+gita) ®
P ~(’lgz(a) + .;.5 +3). (7)

Substituting (4), (6) and (7) into (1) and simplifying, we obtain
a third-order differential equation in z:

—é— %é+a(1+m)(%2+%é+2)+a(1+m)d
&4 (1+a+am)i+(am+B)z+af(l+m)z+af(l+m)d = 0.

where m is equal to mg or 7n;, depending on which linear region
is being considered. The characteristic equation is

1
—(Ez‘3)+ P+z)=—

£ 4 (1 +a+am)s® + (am+ B)s+ af(l + m) = 0.

and can be solved using Cardan’s formulas. These formulas
are available in mathematical handbooks and will not be given
here. Let us call the three roots of this characteristic equation
31,52, and sa. The solution for z(t) is given by

2(t) = kye®™ + kpe™t + kze®™' — d.

From (4),
1.
y(t) = -3
1 1 1
= _"ﬂ"klsle"t - Ekzsze”.' —.Ek3S3e‘“',
and from (6),

() = j+y—z
1 1 .
= "Ekx(sf + 51+ et — Eka(sg + 52+ B)et —

1
Eka(sg + 53+ B)e™t +d.

To solve for ky, ks, and k3, we first notice that the initial
condition (2(0),y(0),2(0)) can be transformed into an equiva-
lent initial condition in terms of z and its two derivatives at
t=0:

2(0) = 2(0)
2(0) = —By(0)
20) = -py(0)

= —B[=(0) - y(0) + 2(0)}.

From the equation for 2(t),

So that
ks T 1 177" 2(0)+d]
kg = 81 82 83 Z(O)
HEEFEE
2(0) +d
= M{ _ﬂy(o) ’
~Blz(0) - y(0) + 2(0)]
where

o Mok 1
(s1-22)(51-33) (‘l—h).(::l‘ls) (u—n)l(n—aa)
3381 -
M= (82~33)(32—51) (az—:2)+in—a1) (n—aﬁlin—ni ‘
N - .
isafax)(-s—-zi _(n:.--,t(ss—a;) (33=21)(33—22) ]

With these information available, it is possible to develop
a computer program to find the trajectory of Chua’s circuit
using explicit equations. The program must keep track of the
current linear region and use the appropriate eigenvalues for
that region. Whenever the trajectory crosses a boundary of
these regions (when z = 1 or z = —1), we use the values of z,
y, and z at crossing, which can be obtained using the bisection
or the Newton-Raphson method, as the initial condition for the
next region.

3 Eigenvalue Patterns

\ .
/In {8], it-has been shown ‘that two members of Chua’s cir-
\cuit family have the same qualitative behaviors if they have
an ideptical set of eigenvalues in each linear region. It is use-
ful tiérefore to obtain a relationship among a, 8, and m such
that the eigenvalues follow a ‘certain pattern and to tabulate
the possible patterns in the circuit. We will be interested in
the signs and the relative magnitudes of the real components
of the eigenvalues.

3.1 One Real and One Complex Conjugate
Pair of Eigenvalues

Let us denote the eigenvalues by 7,0 + jw, and ¢ — jw. The
. characteristic equation is thus

S+ (=20 —)s? + (0% + 207 + wP)s + (—o?y - W) =0.

Equating the coefficients of the left hand side term by term
with those of the characteristic equation, we have

l+at+am = —20-7
am+ B = o+ 207+’
af(l+m) = —o’y—w.

We are interested in the values of the parameters such that
0 =0,7=0,7=0,7 = ~0, and w = 0. These can be obtained
through algebraic manipulations on the above equations and
are given below. Since these equations only work when: there
is a pair of complex conjugate eigenvalués, we disregard the

z(O) = bith+k-d segments of these curves that lie inside the all real eigenvalues
20) = Fkis1+ kosz + ksss regions. The boundary of the real eigenvalues regions is the
30) = kis?+ kys? + kas3. curve w = 0.
o=0: pf=-am(l+a+am)
4y=0: a=0o0rf=0
| -I ._n__—__—t RS —— -T



(14 a+ am)(am — 2(1 + a + am)?)
2a+2am -1 )
1+ a+ aem)(am +2(1 + a +am)?)
- 2a+2am +1

ﬂ =
{ o= _a-za‘-‘+ajf(1+2a)/(l+m)

20420om+m 0]
= —¢ —o? —a',/-(l +20)/(1 +m)

=20 =0+ /(1+20)/(14m)

{ B=—-0c— a:d-f;mﬁ.(l +20)/(1+m)

y=—0: -

w=0:

3.2 Three Real Eigenvalues

"The equation for three real eigenvalues is given by
S+ (=m=n =)+ (nn+11+rm)s + (~n72m) =0

where 71,72, and 73 are the roots, such that v < 72 < 73.
Comparing the last term on the left hand side with that of
the characteristic equation, we see that the condition for one
eigenvalue to be zerois =0 or § = 0.

3.3 Eigenvalue Pattern Diagrams

The equations given in Subsections 3.1 and 3.2 have been plot-

ted on the a, 8 plane for mo = —8/7 and my = —5/7 in Figure’

2. These curves describe the boundaries of regions with the
same eigenvalue pattern. In these diagrams, the patterns are
coded as following:

RCO <+ v<o<0 -x—:|—
CRO = o<v<0 :—x—f-———
TOR <« o<0<7,lo|> Nl i-]-H
COR < <0<y, |of < —i*—x—
OCR <+ 0<o<y —|—-;<<—x-
ORC <= 0<~v<o —|—a<—:
ROC <+ v<0<a,]o|> —-x-l—:
ROC ¢ y<0<o,lol<h| »—%—
RRRO <= m<1<v<0 -x-x-x-l—
RROR = m<m<0<yu  —woche—
RORR <= m1<0<y:<7 ——)e—*—*x-
ORRR <= 0<m<72<7s —I—x-x—x—
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The mnemonics is as follow: R stands for a real eigenvalue, C
stands for the real part of the complex conjugate eigenvalues,
and O stands for 0. The letters are arranged in increasing
order and a bar on top is used to denote the one with larger

-magnitude when R and C are on opposite sides of O. In the

O region, my is used for m and in P* region, m, is used. The
pattern combination will be written in the form

(code for O, code for P*).

It is found that the diagram for mo = —8/7 also gives a qual-
itative picture for all mg < —1. In other words, all diagrams
for mg < —1 resemble that of mo = —8/7 in connections and
positions of curves. Similarly, the diagram for my = —5/7 also
gives a qualitative picture for all —1 < m; < 0. As a result,
the diagrams can be divided into two groups: mg < —1 in O
region and —1 < m; < 1 in P¥ region.

By varying mo from —oo to -1 and m, from -1 to 0, we
have tabulated the possible combinations of eigenvalues for the
circuit. They afe given in Table 1.

We would like to note that since the curve for ¢ = 0 does
not exist for mg < —1, there is no Hopf at O. Looking at the
diagrams, we see that Hopf at P* occurs when the eigenvalue
combination varies from (COR, RCO) into (COR, ROC) in the
first quadrant. The parameters for Hopf can be calculated ex-
actly using the equation for o = 0 in P* region. In the third
quadrant (o and § are both negative), there is another path
for Hopf at P% across the boundary between (COR, RCO) and
(COR,ROC), but this region has not been fully investigated
due to time constraint of this writing. In Chua’s Circuit, pe-
riod bifurcations and chaotic attractors have been found in the
(COR, ROC) region.

4 Period Doublings

We will fix 8 at 16, mo at -8/7, and m, at -5/7, and calculate
the o’s at which period doublings occur. These a's are then
used to verify the Feigenbaum number.

Our method includes finding a periodic trajectory for a given
set of parameters , §,mo, and m, and testing for the stability
of the trajectory. Suppose a trajectory ®*(zo,yo,20) originat-
ing from ®° = (zo,yo,20) has period T, then just before it
loses stability to double in period, two of the three eigenval-
ues of the Jacobian (D®T )., .x) has magnitude unity (two
characteristic exponents are zero and the third one is negative).
One magnitude unity eigenvalue is due to the fact that the tra-
jectory is periodic. The second one is due to the fact that the
trajectory is almost a saddle-type periodic orbit.

The periodic trajectory was obtained by solving for an equi-
librium point ®° such that $7(®°) = &°. This was not trivial
and involved much trial and error work. As a result, we will
not give details on this.

The Jacobian matrix (D®7 )z of the periodic orbit is ob-
tained using the following method. From the equations for
z(t),y(t), and 2(t) in Section 2, we see that the trajectory ®*
depends linearly on ki, k2, and ks which in turn depend linearly
on &, the initial condition of the current linear region. There-
fore, (D®*)g0 is independent of the initial condition. Knowing
the time t a trajectory spends continuously in a linear region
enables us to calculate the Jacobian for the segment of the tra-
jectory that lies in the region. The columns of the matrix are
given by #(1,0,0), (0, 1,0), and (0,0, 1). To calculate the
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Figure 2: Eigenvalue patterns diagrams. Left column: mq < —1 (O region).
Right column: —1 < my < 1 (P* region). 1: ORRR, 2: RROR, 3: RRRO.
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P= Region

Region | COR | COR | OCR | ORC | CRO

RCO

RRRO | RROR | RORR | ORRR
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RoC
Y

i

COR

'<'<g
Al

OCR

ORC

CRO

<
|

RCO

ROC

ROC

RRRO| Y Y Y Y

RROR Y

RORR

ORRR

Table 1: Possible eigenvalues patterns combinations. Y: yes, blank: no..

overall Jacobian, we start with a 3 x 3 unit matrix and premul-
tiply by the Jacobian for each region until the trajectory has

completed its period. The overall Jacobian can then be used

to solve for the eigenvalues.

The o’s at which a periodic trajectory loses stability are
listed in Table 2. The ratios of successive Aa’s agree with the
Feigenbaum number almost up to five digits at period 256. The
bifurcation diagram in Figure 3 shows the bifurcation evolution
as. « increases. ' :

Onset of Period | o at Onset Ratio of Difference

2 8.855726163

4 9.1080893023

8 9.1591511652 4.94230

16 9.16997924215 4.71569

32 9.17229337816 4.67910

64 9.17278877717 4.67126

128 9.172894866343 4.66965

256 9.172917586935 4.66930

Table 2: Period doublings for 8 = 16,m¢ = —8/7, and m; =
—5/7. The value in the last column is calculated using the
last three o's. Fof example, the first value is equal to (ay —
a2)/(as — as).

a2 .
i i

890 ' 900

Oy

9.10

| o8,
{

£
8.80

Figure 3: Period doublings as a is increased from period 1.
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