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Statisztikai alapfogalmak

Tekintsünk egy eloszláscsaládot és legyen X véletlen változó
eloszlása ebből az eloszláscsaládból ismeretlen. Paraméteres
probléma esetén a paraméteres eloszláscsalád paramétere a
Θ ⊂ Rk paramétertér eleme. A θ ∈ Θ paraméter értékét időnként
kihangsúlyozzuk Pθ, Eθ(X ), D2

θ(X ) (= Varθ(X )) alsó indexében.

Defińıció
Az X = (X1, . . . ,Xn) statisztikai minta elemei független véletlen
változók, eloszlásuk megegyezik az X háttérváltozó eloszlásával.
Egy véletlen ḱısérlet x = X(ω) kimenetele a minta realizációja.
A lehetséges realizációk X halmaza a mintatér.

A matematikai statisztika alapvető feladatai:

Célok: a háttérváltozó eloszlásának (paraméterének) becslése,
illetve ezekre vonatkozó hipotézisek vizsgálata.
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Statisztikai alapfogalmak

Defińıció
Tekintsük az X1, . . . ,Xn mintát. Az X ∗1 , . . . ,X

∗
n az n elemű

rendezett minta, ha minden ω ∈ Ω-ra X ∗1 (ω) ≤ . . . ≤ X ∗n (ω) az
X1(ω), . . . ,Xn(ω) realizáció permutációja.

Defińıció
Legyen T : Rn → Rk mérhető függvény. A T (X1, . . . ,Xn) véletlen
(vektor)változót statisztikának nevezzük.

Alapstatisztikák

I X =
X1 + . . .+ Xn

n
mintaátlag,

I X ∗1 legkisebb, X ∗n legnagyobb mintaelem,

I X ∗n − X ∗1 mintaterjedelem,

I tapasztalati medián: X ∗n+1
2

ha n ptl,
X∗
n/2

+X∗
n/2+1

2 ha n ps,

I (X ∗1 , . . . ,X
∗
n ) teljes rendezett minta.
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Becslések

Legyen θ az X eloszlásának egy paramétere, θ̂n := θ̂(X1, . . . ,Xn).

Defińıció
Az θ̂n statisztika torźıtatlan becslése θ-nak, ha a paraméterhalmaz
minden θ elemére Eθ(θ̂n) = θ. A θ̂n és θ̃n torźıtatlan becslések
közül θ̂n hatásosabb, ha D2

θ(θ̂n) < D2
θ(θ̃n) minden θ ∈ Θ-ra. A θ̂n

hatásos becslése θ-nak, ha nincs nála hatásosabb becslése.

Defińıció
θ̂n (n = 1, 2, . . .) sorozat gyengén konzisztens becslése θ-nak, ha

θ̂n
szt−→ θ, n→∞,

azaz minden ε > 0, θ ∈ Θ esetén limn→∞ Pθ(|θ̂n − θ| > ε) = 0.
θ̂n (n = 1, 2, . . .) sorozat erősen konzisztens becslése θ-nak, ha

θ̂n
mb−→ θ, n→∞,

azaz Pθ(limn→∞ θ̂n = θ) = 1 minden θ ∈ Θ-ra.
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Valósźınűség becslése

Defińıció
A egy esemény, amire P(A) = p, X = I (A) ∼ Bernoulli(p) = B1(p)
a hozzá tartozó indikátorváltozó. Végezzünk el függetlenül n
ḱısérletet, tekintsük az X1, . . . ,Xn mintát. Ekkor

A gyakorisága a mintában
∑n

i=1 Xi , a bekövetkezéseinek száma,
A relat́ıv gyakorisága

p̂ =

∑n
i=1 Xi

n
.

Álĺıtás
p̂ torźıtatlan és erősen konzisztens becslés p-re.

Bizonýıtás

E(p̂) = E
(∑n

i=1 Xi

n

)
=

∑n
i=1 E(Xi )

n = np
n = p.

A nagy számok erős törvénye miatt p̂ =
∑n

i=1 Xi

n
mb−→ E(X ) = p.
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Defińıció (empirikus eloszlásfüggvény)

Legyen Kn,x =
∑n

i=1 I (Xi ≤ x), ahol I indikátorfüggvény.

F ∗n (x) =

n∑
i=1

I (Xi ≤ x)

n
=


0, x < X ∗1
k
n , X ∗k ≤ x < X ∗k+1, k = 1, . . . , n − 1
1, X ∗n ≤ x

.

Álĺıtás
E(F ∗n (x)) = F (x), D2(F ∗n (x))→ 0, ha n→∞,

valamint F ∗n (x)
mb−→F (x), ha n→∞ minden x ∈ R esetén.

Bizonýıtás.

I (Xi ≤ x) ∼ B1(F (x)), i = 1, . . . , n fgn vv-k, Kn,x ∼ Bn(F (x))

E(F ∗n (x)) = 1
nE(Kn,x) = 1

n · nF (x).

D2(F ∗n (x)) = 1
n2 D2(Kn,x) = n

n2F (x)(1− F (x))→ 0, ha n→∞.

Az erős konzisztencia a nagy számok erős törvényéből következik.
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Tétel (Glivenko–Cantelli (A statisztika alaptétele))

∆n = sup
x∈R
|F ∗n (x)− F (x)| mb−→ 0, n→∞.

Bizonýıtás (folytonos eset)

Legyen m ∈ Z+ tetszőleges, xi = inf{x : F (x) = i
m}.

(x0 = −∞, xm =∞ is lehet) Ha xi−1 < x < xi , akkor

F ∗n (x)− F (x) ≤ F ∗n (xi )− F (xi−1) = F ∗n (xi )− F (xi ) + 1
m ,

F ∗n (x)− F (x) ≥ F ∗n (xi−1)− F (xi ) = F ∗n (xi−1)− F (xi−1)− 1
m ,

ebből
|F ∗n (x)− F (x)| ≤ max

1≤i≤m−1
|F ∗n (xi )− F (xi )|+

1

m

⇒ ∆n ≤ max
1≤i≤m−1

|F ∗n (xi )− F (xi )|+
1

m

A nagy számok erős törvényéből lim
n→∞

F ∗n (xi )
mb−→ F (xi )

⇒ P

(
lim sup
n→∞

∆n >
1

m

)
= 0 ∀m ∈ Z+ ⇒ P( lim

n→∞
∆n = 0) = 1.
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A sűrűségfüggvény becslése

Az empirikus eloszlásfüggvény szakaszonként konstans függvény,
deriváltja nem lesz jó becslése az f sűrűségfüggvénynek.

Defińıció
I1, I2, . . . páronként diszjunkt hn hosszú intervallumok,⋃∞

i=1 Ii = R. Legyen νk =
∑n

i=1 I (Xi ∈ Ik),

f ∗n (x) =
νk
nhn

, ha x ∈ Ik .

Az fn függvényt sűrűséghisztogramnak nevezzük.

Megjegyzések

I Véges sok intervallumban vesz fel nem 0 értéket f ∗n (x).

I Belátható, hogy ha x az f sűrűségfüggvény folytonossági
pontja, limn→∞ hn = 0 és limn→∞ nhn =∞, akkor
limn→∞ f ∗n (x) = f (x) 1 valósźınűséggel.
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Ábrázolás

Kör- és oszlopdiagram

Diszkrét eloszlás ábrázolására.

Boxplot

Minimum,
maximum, tapasztalati kvartilisek egy ábrán.

Sűrűséghisztogram

A sűrűségfüggvény
becslésének ábrázolása.
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A várható érték becslése

Álĺıtás
Ha E(X ) létezik, X torźıtatlan és erősen konzisztens becslése is
E(X )-nek.

Bizonýıtás

A várható érték linearitása miatt

E(X ) = E

(
X1 + . . .+ Xn

n

)
=

E (X1) + . . .+ E(Xn)

n
=

1

n
nE(X ).

Az álĺıtás második fele éppen a nagy számok erős törvénye.

Kérdés
Mi lehet a magyarázata, hogy az emberek többségének fizetése az
átlagfizetés alatt van?
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A variancia becslése

Defińıció

Empirikus (tapasztalati) variancia: S2 = S2
n =

1

n

n∑
i=1

(Xi − X )2

S =
√
S2 az empirikus (tapasztalati) szórás.

Tétel (Steiner)

x1, . . . , xn, c ∈ R. 1
n

∑n
i=1(xi − c)2 = 1

n

∑n
i=1(xi − x)2 + (x − c)2.

Bizonýıtás

1

n

n∑
i=1

(xi−x+x−c)2 =
1

n

n∑
i=1

(xi−x)2+
2

n
(x−c)

n∑
i=1

(xi − x)︸ ︷︷ ︸
0

+(x−c)2.

Következmény

S2 = X 2 − X
2

= 1
n

∑n
i=1(Xi − E(X ))2 − (X − E(X ))2.
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Tétel
Ha D(X )<∞, akkor E(S2) = n−1

n D2(X ), S2
n

mb−→ D2(X ), n→∞.

Bizonýıtás

E(S2) = E

(
1

n

n∑
i=1

(Xi − E(X ))2 − (X − E(X ))2

)

=
1

n

n∑
i=1

E(Xi − E(X ))2 − E((X − E(X ))2)

=
n

n
D2(X )−D2

(
1

n

n∑
i=1

Xi

)
=
(

1− n

n2

)
D2(X ).

X
mb−→ E(X ) ⇒ X 2 − X

2 mb−→ E(X 2)− E2(X ), n→∞.

Defińıció
Korrigált empirikus variancia és szórás: S∗2 = n

n−1S
2, S∗ =

√
S∗2.

Következmény

S∗2 torźıtatlan és erősen konzisztens becslése D2(X )-nek.
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Magasabb momentumok

Defińıció
k ∈ Z+ esetén az

I Mk =
1

n

n∑
i=1

X k
i a k. empirikus momentum,

I Mc
k =

1

n

n∑
i=1

(Xi − X )k a k. empirikus centrális momentum,

I az
Mc

3

(Mc
2 )3/2

statisztikát ferdeségnek,

I az
Mc

4

(Mc
2 )2
− 3 statisztikát lapultságnak (csúcsosságnak)

nevezzük.

Megjegyzés

A nagy számok erős törvényéből következik a fenti becslések erős
konzisztenciája.
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Kovariancia, korreláció becslése

Tekintsük (X ,Y ) háttérváltozót és (X1,Y1), . . . , (Xn,Yn) mintát.

Defińıció

Empirikus kovariancia: Ĉ = Cn(X ,Y ) =
1

n

n∑
i=1

(Xi − X )(Yi − Y ),

Álĺıtás
Ĉ = 1

n

∑n
i=1 XiYi − X · Y mb−→ C(X ,Y ), ha n→∞.

Bizonýıtás

Ĉ =
1

n

(
n∑

i=1

XiYi − X
n∑

i=1

Yi − Y
n∑

i=1

Xi + nX · Y

)
= X · Y + (−2 + 1)X · Y .

Z = XY ,
1

n

n∑
i=1

Zi − X · Y mb−→ E(Z )− E(X )E(Y ) = C(X ,Y ).
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Tétel

Ha C(X ,Y ) létezik, akkor E(Ĉ) =
n − 1

n
C(X ,Y ).

Bizonýıtás

E(Ĉ) = E

(
1

n

n∑
i=1

XiYi −

(
1

n

n∑
i=1

Xi

)(
1

n

n∑
i=1

Yi

))

=
1

n

n∑
i=1

E(XiYi )︸ ︷︷ ︸
nE(XY )

− 1

n2

(
n∑

i=1

E(XiYi )︸ ︷︷ ︸
nE(XY )

+
∑
i 6=j

E(XiYj)︸ ︷︷ ︸
n(n−1)E(X )E(Y )

)
.

Defińıció
Korrigált empirikus kovariancia:

Ĉ∗ = C∗n(X ,Y ) =
n

n − 1
Ĉ =

1

n − 1

n∑
i=1

(Xi − X )(Yi − Y ).

Következmény

Ĉ∗ torźıtatlan és erősen konzisztens becslése C(X ,Y )-nak.
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Defińıció
(Pearson-féle) empirikus korrelációs együttható:

r̂ = rn(X ,Y ) =
Ĉ

SXSY
.

Álĺıtás
|̂r| ≤ 1.

Bizonýıtás

A Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség alapján

|nĈ| ≤
n∑

i=1

|Xi − X | · |Yi − Y |

≤

√√√√ n∑
i=1

(Xi − X )2

n∑
i=1

(Yi − Y )2 =
√
nSX
√
nSY .

Megjegyzés

Ĉ∗

S∗XS
∗
Y

=

∑n
i=1(Xi − X )(Yi − Y )(∑n

i=1(Xi − X )2
∑n

i=1(Yi − Y )2
)1/2

=
Ĉ

SXSY
= r̂.
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Maximum likelihood becslés

θ az X változó ismeretlen paramétere, ezt szeretnénk becsülni.

Defińıció
Legyen X diszkrét háttérváltozó, tekintsük az x1, . . . , xn
realizációt. A hozzá tartozó likelihood-függvény a következő:
L(θ) = Pθ(X1 = x1, . . . ,Xn = xn) = Pθ(X = x1) · . . . · Pθ(X = xn).

Legyen X abszolút folytonos háttérváltozó. Tekintsük a x1, . . . , xn
realizációt. A hozzá tartozó likelihood függvény a következő:
L(θ) = fθ,X1,...,Xn(x1, . . . , xn) = fθ(x1) · . . . · fθ(xn).

Defińıció
A θ paraméter maximum likelihood (ML) becslése a θ̂ statisztika,
ha minden x1, . . . , xn realizációra L(θ̂) = max

θ
L(θ, x1, . . . , xn).

Megjegyzés

Az `(θ) = ln L(θ) log-likelihood függvény ugyanott veszi fel
szélsőértékeit mint L(θ).
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Példák

Normális eloszlás paramétereinek ML becslése

L(µ, σ2) =
n∏

i=1

1√
2πσ

e−
1

2σ2 (xi−µ)2

= (
√

2πσ)−ne−
1

2σ2

∑n
i=1(xi−µ)2

,

ahol µ ∈ R és σ > 0.

`(µ, σ2) = −n ln
√

2π − n lnσ − 1

2σ2

n∑
i=1

(xi − µ)2,

ami kétszer deriválható. Írjuk fel a likelihood egyenleteket:

∂`

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0 (1)

∂`

∂σ2
=
−n
2σ2

+
1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0, (2)
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(1)-ből kapjuk, hogy µ̂ =
∑n

i=1 xi
n = x , ezt (2)-be helyetteśıtve pedig

n

2σ̂2
=

1

2(σ̂2)2

n∑
i=1

(xi − x)2

σ̂2 =
1

n

n∑
i=1

(xi − x)2 = s2
n .

∂2`
∂µ2 = − n

σ2 , ∂2`
∂(σ2)2 = n

2(σ2)2 + −2
2(σ2)3

∑n
i=1(xi − µ)2,

∂2`
∂µ∂σ2 = −1

(σ2)2

∑n
i=1(xi − µ), ∂2`

∂σ2∂µ
= 2

2(σ2)2

∑n
i=1(xi − µ).

Vizsgáljuk a Hesse-mátrixot (µ̂, σ̂2) = (x , s2
n) helyen:

H =

(
− n

s2
n

0

0 − n
2(s2

n )2

)

H negat́ıv definit ⇒ (µ̂, σ̂2) valóban maximumhelye L(µ, σ2)-nek
tetszőleges realizáció mellett.
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Egyenletes eloszlás paramétereinek ML becslése

L(a, b) =

{
(b − a)−n, ha a ≤ x1, . . . , xn ≤ b,
0 különben

a ≤ x1, . . . , xn ≤ b ⇔ a ≤ x∗1 és x∗n ≤ b tartományon L az a
monoton csökkenő, b monoton növő függvénye ⇒ maximumhelye
(x∗1 , x

∗
n ), ahol L nem deriválható!

Tétel
Tegyük fel, hogy X eloszlása egy θ paramétertől függ. Bizonyos
regularitási feltételek mellett a θ paraméter θ̂n ML becslésére a
következők teljesülnek:

I θ̂n
mb−→ θ, ha n→∞, azaz θ̂n erősen konzisztens,

I E(θ̂n)→ θ, ha n→∞, azaz θ̂n aszimptotikusan torźıtatlan,

I ha D2(θ̂n)→ σ2, ha n→∞, akkor nincs olyan θ̃ torźıtatlan
becslése θ-nak, amelyre D2(θ̃) < σ2, azaz θ̂n aszimptotikusan
hatásos becslése θ-nak.
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Momentumok módszere

Több paraméter együttes becslésére használják. Tegyük fel, hogy
X eloszlása θ = (θ1, . . . , θk) paramétertől függ és létezik az első k
momentum: E(X i ) = mi = gi (θ), i = 1, . . . , k . Ha létezik a

gi (θ) = Mi i = 1, . . . , k

egyenletrendszernek megoldása, az θ momentum becslése.

Példa
X ∼ N (µ, σ2), m1 = µ, m2 = σ2 + µ2 ⇒ µ̂ = M1, σ̂2 = M2−M2

1 .

A tapasztalati momentumok erős konzisztenciája miatt igaz a köv.

Tétel
Ha gi , . . . , gk függvények folytonosak, léteznek elsőrendű parciális
deriváltjaik és a J = det(∂gi/∂θj) Jacobi-determináns nem eltűnő
függvény Θ-n, akkor θ momentum becslése erősen konzisztens.
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Bayes becslés

Tegyük fel, hogy θ (egydimenziós) paraméter diszkrét véletlen
változó P(θ = t) = qt (t ∈ Θ) a priori eloszlással. Tekintsük az
x = (x1, . . . , xn) mintarealizációt. Ekkor L(t) = P(X = x|θ = t) az
X minta feltételes eloszlása a θ = t feltétel mellett.
P(X = x, θ = t) = L(t) · qt . A Bayes-tétel alapján θ a posteriori
feltételes eloszlása X = x feltétel mellett

P(θ = s|X = x) =
L(s) · qs

P(X = x)
=

L(s) · qs∑
t∈Θ L(t) · qt

.

Vegyük θ feltételes várható értékét X = x feltétel mellett:

E(θ|X = x) =
∑
t∈Θ

t · P(θ = t|X = x) =

∑
t∈Θ t · L(t) · qt∑
t∈Θ L(t) · qt

= T (x),

ami csak a realizáció függvénye, becslésünk a T (X) statisztika.
(Abszolút folytonos esetben az eljárás hasonló.)
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Defińıció
T (X) statisztika a θ paraméter q a priori eloszlás alapján
konstruált Bayes-becslése.

Megjegyzés

E((θ − θ̂)2) ≥ E((θ − T (X))2) minden θ̂ statisztikára (ahol a
várható értéket az x, t együttes eloszlása alapján vesszük), azaz
T (X) minimalizálja a négyzetes rizikót.

Példa
X1, . . . ,Xn ∼ B1(p), ahol p ∼ B(a, b). Ekkor L(t) = tk(1− t)n−k ,
ahol k =

∑n
i=1 xi .

q(t) =
Γ(a + b)

Γ(a)Γ(b)
ta−1(1− t)b−1 (0 ≤ t ≤ 1)

q(t|x) =
Γ(n + a + b)

Γ(k + a)Γ(n − k + b)
tk+a−1(1−t)n−k+b−1 (0 ≤ t ≤ 1)

E(t|X = x) =
k + a

n + a + b
=⇒ T (X) =

∑n
i=1 Xi + a

n + a + b
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Normális eloszlásból származtatott eloszlások

Defińıció
Legyenek X0, . . . ,Xn+m ∼ N (0, 1) függetlenek.

χ2 = X 2
1 + . . .+ X 2

n

n szabadságfokú χ2 eloszlású Fχ2,n eloszlás- és fχ2,n

sűrűségfüggvénnyel.

t =
X0
√
n√

X 2
1 + . . .+ X 2

n

n szabadságfokú Student (t) eloszlású Φn eloszlás- és φn
sűrűségfüggvénnyel.

F =
n

m
· X 2

1 + . . .+ X 2
m

X 2
m+1 + . . .+ X 2

m+n

(m, n) szabadságfokú F eloszlású Fm,n eloszlás- és fm,n
sűrűségfüggvénnyel.
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Álĺıtás

fχ2,n(x) = x
n
2−1e−

x
2

2
n
2 Γ( n

2 )
(x > 0), φn(x) =

Γ( n+1
2 )

√
πnΓ( n

2 )

(
1 + x2

n

)− n+1
2

fm,n(x) =
nΓ( n+m

2 )( n
m
x)

n
2−1

mΓ( n
2 )Γ(m

2 )(1+ n
m
x)

n+m
2
.

Defińıció
Γ(a) =

∫∞
0 ya−1e−ydy , a > 0.

Tulajdonságai

Γ(x + 1) = xΓ(x) és Γ(1) = 1 ⇒ ha n egész, Γ(n) = (n − 1)!,

Γ
(

1
2

)
=
√
π
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Álĺıtás

I Ha χ2
n ∼ χ2(n), χ2

m ∼ χ2(m) függetlenek, akkor

χ2
n + χ2

m = X 2
1 + . . .+ X 2

n + X 2
n+1 + . . .+ X 2

n+m ∼ χ2(n + m).

I Ha tn ∼ t(n), n = 1, 2, . . ., akkor tn
D→X ∼ N (0, 1).

I Ha t ∼ t(n), akkor t2 ∼ F(1, n).

I Ha F ∼ F(n,m), akkor 1/F ∼ F(m, n). Ebből, ha x > 0,

Fn,m(x) = P(F < x) = P(1/F > 1/x) = 1− Fm,n(1/x).

I Ha Fn ∼ F(n,m), n = 1, 2, . . ., ⇒ mFn
D→X ∼ χ2

m, n→∞.

Megjegyzés

Fχ2,n(x), Φn(x) és Fm,n(x) függvényekre nincs zárt formula.
Némely χ2, Student és F eloszlás néhány kvantilisének közeĺıtő
értékét statisztikai táblázatok tartalmazzák.
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Többdimenziós normális eloszlás

Defińıció
A d-dim. Z véletlen vektor többdimenziós standard normális
eloszlású, ha komponensei független standard normális eloszlásúak.
Jel: Z ∼ Nd(0, Id).

Észrevétel
Ha Z ∼ Nd(0, Id), akkor Z>Z ∼ χ2(d).

Defińıció
X = (X1, . . . ,Xd)> d-dimenziós véletlen vektor, E(X 2

i ) <∞ ∀i .
Várható érték vektora E(X) = (E (X1), . . . ,E(Xd))>,

kovarianciamátrixa Cov(X) = E((X− E(X))(X− E(X))>), amely
komponensei Cov(Xi ,Xj) = E((Xi − E(Xi ))(Xj − E(Xj))).

Álĺıtás
Ha Z ∼ Nd(0, Id), akkor E(Z) = 0 és Cov(Z) = Id .
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A várható érték vektor és kovarianciamátrix tulajdonságai

Legyen X egy d-dimenziós véletlen vektor, amely
kovarianciamátrixa létezik. Cov(X) = C

I szimmetrikus, azaz C = C>,

I pozit́ıv szemidefinit, azaz x>Cx ≥ 0 minden x ∈ Rd -re.

I Ha A ∈ Rr×d ,b ∈ Rd , akkor E(AX + b) = AE(X) + b és
Cov(AX + b) = ACA>

Defińıció
Ha A egy d × d-s (nemszinguláris) mátrix és m egy d dim. vektor,
X = AZ + m ∼ Nd(m,C) (nem elfajult) többdimenziós normális
eloszlású, ahol C = AA>.

Álĺıtás
E(X) = m, Cov(X) = C.
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Álĺıtás
Ha C invertálható, X ∼ Nd(m,C) sűrűségfüggvénye

f (x) = (2π)−d/2|C|−1/2e−
1
2

(x−m)>C−1(x−m) x ∈ Rd .

Következmény

Az X ∼ Nd(m,C) véletlen vektor komponensei normális
eloszlásúak és pontosan akkor függetlenek, ha C diagonális.
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Tétel (Többdimenziós CHT)

Legyenek X1,X2 . . . azonos eloszlású független d dimenziós
vektorváltozók, E(Xi ) = m és Cov(Xi ) = C (nem feltétlenül
invertálható) és Sn =

∑n
i=1 Xi . Ekkor

1√
n

(Sn − nm)
D−→ Nd(0,C), ha n→∞.

Álĺıtás
Legyen X = (X1, . . . ,Xd)> ∼ Nd(0,C). Ekkor

X>X =
d∑

i=1

X 2
i =

d∑
i=1

λiY
2
i ,

ahol Y ∼ Nd(0, Id), λ1 ≥ . . . ≥ λd ≥ 0 a C mártix sajátértékei.

Bizonýıtás

C = UΛU>, Y = Λ−1/2U>X ⇒ ||X||2 = ||U>X||2 = ||Λ1/2Y||2.
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Statisztikák eloszlása

Tétel (Lukács Jenő)

Legyen X1, . . . ,Xn egy N (µ, σ2) eloszlásból vett minta.

(1) X ∼ N

(
µ,
σ2

n

)
,

(2)
n

σ2
S2 ∼ χ2(n − 1),

(3) X és S2 függetlenek,

(4)
X − µ
S∗/
√
n
∼ t(n − 1).

Bizonýıtás

X = (X1, . . . ,Xn)> ∼ Nn(µ1, σ2In). Legyen U egy n × n-es
ortonormált mátrix, amely első sora 1>/

√
n és legyen Y = UX.
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n∑
i=1

Y 2
i = Y>Y = X>U>UX = X>X =

n∑
i=1

X 2
i ,

amiből nS2 =
∑n

i=1 X
2
i − nX

2
=
∑n

i=1 Y
2
i − Y 2

1 =
∑n

i=2 Y
2
i ,

mivel U defińıciója miatt Y1 =
√
n · X . Továbbá

Y = UX ∼ Nn(U(µ1),U(σ2In)U>) = Nn(
√
nµe1, σ

2I) ⇒

(1) X = Y1/
√
n ∼ N

(
µ, σ

2

n

)
⇒ X−µ

σ/
√
n
∼ N (0, 1)

(2) i > 1 : Yi
σ ∼ N (0, 1) ⇒ nS2

σ2
=

n∑
i=2

Y 2
i

σ2
∼ χ2(n − 1) és

(3) ezek függetlensége (a korrelálatlanságból) közvetlenül adódik.

(4)

(
X−µ
σ/
√
n

)√
n − 1√

nS2

σ2

=
(X − µ)

√
n − 1√

n(n − 1)S∗2
= t ∼ t(n − 1).
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Tétel
Legyen X1, . . . ,Xn1 egy N (µ1, σ

2
1), Y1, . . . ,Yn2 egy N (µ2, σ

2
2)

eloszlásból vett független minta. A következők teljesülnek:

(1)
X − Y − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N (0, 1).

(2) ha σ1 = σ2, akkor

X − Y − (µ1 − µ2)√
n1S2

X + n2S2
Y

·

√
n1n2(n1 + n2 − 2)

n1 + n2
∼ t(n1 + n2 − 2)

(3)
S∗2X σ2

2

S∗2Y σ2
1

∼ F(n1 − 1, n2 − 1).
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Bizonýıtás

Előző tétel alapján X ∼ N
(
µ1,

σ2
1

n1

)
, Y ∼ N

(
µ2,

σ2
2

n2

)
,

n1

σ2
1

S2
X ∼ χ2(n1 − 1),

n2

σ2
2

S2
Y ∼ χ2(n2 − 1) függetlenek.

(1) X − Y ∼ N
(
µ1 − µ2,

σ2
1

n1
+

σ2
2

n2

)
,

(2) X−Y−(µ1−µ2)√
σ2(n1+n2)

n1n2

∼ N (0, 1),
n1S2

X +n2S2
Y

σ2 ∼ χ2(n1 + n2 − 2)

⇒

X−Y−(µ1−µ2)√
σ2(n1+n2)

n1n2

·
√
n1 + n2 − 2

√
n1S2

X +n2S2
Y

σ2

∼ t(n1 + n2 − 2),

(3)
n2 − 1

n1 − 1
·

n1

σ2
1
S2
X

n2

σ2
2
S2
Y

=
n2 − 1

n1 − 1
·
n1−1
σ2

1
S∗2X

n2−1
σ2

2
S∗2Y
∼ F(n1 − 1, n2 − 1).
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Konfidencia intervallumok

Legyen θ ismeretlen paraméter. Az intervallumbecslés lényege olyan
intervallum konstruálása statisztikák seǵıtségével, amelybe θ nagy
valósźınűséggel (általában 0,95 vagy 0,99) beleesik.

Defińıció
Legyen Sn < Tn két statisztika, amelyre Pθ(Sn < θ < Tn) = 1− α.
Ekkor azt mondjuk, (Sn,Tn) egy 1− α megb́ızhatósági szintű
konfidencia intervallum θ-ra.

A konfidencia-intervallum szerkesztésének sémája

I Keresünk egy Zn(θ) változót, aminek eloszlása ismert.

I Zn(θ)-ra szerkesztünk intervallumot:
Pθ(a < Zn(θ) < b) = 1− α, ahol a, b konstansok.

I A Zn(θ)-ra feĺırt egyenlőtlenségeket átalaḱıtjuk θ-ra feĺırt
egyenlőtlenségekké: Pθ(Sn(a, b) < θ < Tn(a, b)) = 1− α,
ahol Sn(a, b),Tn(a, b) statisztikák.
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Konfidencia intervallum normális eloszlás várható értékére
Legyen X1, . . . ,Xn N (µ, σ2)-ből vett minta, ahol σ ismert. µ-re
keresünk 1− α megb́ızhatósági szintű konfidencia intervallumot.

X ∼ N (µ, σ2/n) ⇒ Zn(µ) =
X − µ
σ/
√
n
∼ N (0, 1).

P(−xα < Zn(µ) < xα) = P(Zn(µ) < xα)− P(Zn(µ) < −xα)

= Φ(xα)− Φ(−xα) = 2Φ(xα)− 1 = 1− α,

amiből xα = Φ−1(1− α
2 ).

1− α = P

(
−xα <

X − µ
σ/
√
n
< xα

)
= P

(
X − xα

σ√
n
< µ < X + xα

σ√
n

)
.

Az intervallum hossza |Tn − Sn| = 2xασ/
√
n→ 0, ha n→∞.
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Ha σ ismeretlen, vegyük a becslését. Ekkor

Zn(µ) =
X − µ
S∗/
√
n
∼ t(n − 1).

A t(n − 1) eloszlás szimmetriáját felhasználva a
P(−xα < Zn(µ) < xα) = 2Φn−1(xα)− 1 = 1− α összefüggésből az
előzőhöz hasonlóan adódik xα = Φ−1

n−1(1− α
2 ). Ebből

1− α = P

(
−xα <

X − µ
S∗/
√
n
< xα

)

= P

(
X − xα

S∗√
n
< µ < X + xα

S∗√
n

)
.

Az intervallum hossza |Tn − Sn| = 2xαS
∗/
√
n

mb−→ 0, ha n→∞.
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Konfidencia intervallum normális eloszlás szórására
Tudjuk, hogy Zn(σ) = nS2/σ2 ∼ χ2(n − 1).

Legyen aα = F−1
χ2,n−1

(α/2) és bα = F−1
χ2,n−1

(1− α/2),

P(aα < Zn(σ) < bα) = Fχ2,n−1(bα)−Fχ2,n−1(aα) =
(

1− α

2

)
− α

2
.

1− α = P

(
aα <

nS2

σ2
< bα

)

= P

√nS2

bα
< σ <

√
nS2

aα

 .
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Konf. intervallum normális eloszlások vé. különbségére

Legyenek X1, . . . ,Xn1 ∼ N (µ1, σ
2
1) és Y1, . . . ,Yn2 ∼ N (µ2, σ

2
2)

fgn. minták. µ1 − µ2-re keresünk konfidencia intervallumot.

Zn1,n2(µ1 − µ2) =
X − Y − (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

∼ N (0, 1).

Mivel P(−x < Zn1,n2(µ1 − µ2) < x) = 2Φ(x)− 1, az

xα = Φ−1(1− α/2) választással kapjuk:

1− α = P

−xα < X − Y − (µ1 − µ2)√
σ2

1
n1

+
σ2

2
n2

< xα



= P

X − Y − xα

√
σ2

1

n1
+
σ2

2

n2
< µ1 − µ2 < X − Y + xα

√
σ2

1

n1
+
σ2

2

n2

 .
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Ha σ1 = σ2 = σ ismeretlen, legyen

Zn1,n2(µ1 − µ2) =
X − Y − (µ1 − µ2)

D∗
∼ t(n1 + n2 − 2),

ahol

D2
∗ = (n1S

2
X + n2S

2
Y )

n1 + n2

n1n2(n1 + n2 − 2)
.

P(−x < Zn1,n2(µ1 − µ2) < x) = 2Φn1+n2−1(x)− 1, ı́gy az

xα = Φ−1
n1+n2−2(1− α/2) választással kapjuk:

1− α = P

(
−xα <

X − Y − (µ1 − µ2)

D∗
< xα

)

= P
(
X − Y − xαD∗ < µ1 − µ2 < X − Y + xαD∗

)
.
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Konf. intervallum normális eloszlások szóráshányadosára

X1, . . . ,Xn1 ∼ N (µ1, σ
2
1) és Y1, . . . ,Yn2 ∼ N (µ2, σ

2
2) fgn. minták.

σ1/σ2-re keresünk konfidencia intervallumot. Legyen

Zn1,n2(σ1/σ2) =
S∗2X · σ2

2

S∗2Y · σ2
1

∼ F(n1 − 1, n2 − 1).

Ha aα = F−1
n1−1,n2−1(α/2) és bα = F−1

n1−1,n2−1(1− α/2), akkor

1− α = Fn1−1,n2−1(bα)− Fn1−1,n2−1(aα)

= P

(
aα <

S∗2X · σ2
2

S∗2Y · σ2
1

< bα

)

= P

(√
S∗2X

S∗2Y bα
<
σ1

σ2
<

√
S∗2X

S∗2Y aα

)
.
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Statisztikai próbák

Az ismeretlen P ∈ P eloszlásra (paraméteres esetben θ ∈ Θ-ra)
vonatkozó hipotéziseket vizsgálunk. A fogalmakat paraméteres
próbákra vezetjük be, nemparaméteresekre hasonlóan definiálhatók.

Legyen Θ = Θ0 ∪Θ1 a paramétertér egy osztályozása. A következő
hipotézispárt vizsgáljuk:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1.

H0-t nullhipotézisnek, H1-et ellenhipotézisnek vagy alternat́ıv
hipotézisnek nevezzük. Ha |Θ0| = 1, H0 egyszerű, különben
összetett. A nullhipotézis általában H0 : θi = c alakú. Ekkor ha
H1 : θi 6= c , akkor kétoldali, ha H1 : θi < c vagy H1 : θi > c , akkor
egyoldali ellenhipotézis, a hipotézispárról döntő próbát is ennek
megfelelően nevezzük majd egy- illetve kétoldalinak.

Cél: nagy valósźınűséggel helyesen dönteni a hipotézisekről.
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Defińıció
Legyen X = Xe ∪ Xk felbontás, amelyre Pθ(X ∈ Xk) = α minden
θ ∈ Θ0 esetén és tekintsük az x realizációt. A fenti hipotézispárt
tesztelő, Xk kritikus tartománnyal értelmezett α terjedelmű próba
elfogadja H0-t, ha x ∈ Xe és elutaśıtja, ha x ∈ Xk .
Xe-t elfogadási tartománynak nevezzük. Ha θ ∈ Θ0 és x ∈ Xk ,
akkor elsőfajú, ha θ ∈ Θ1 és x ∈ Xe , másodfajú hibáról beszélünk.

Megjegyzés

α-t nevezik szignifikancia-szintnek is és általában 0,05-nak vagy
0,01-nak, ritkán 0,1-nek választják.

A próbák általános menete

Veszünk egy Tn próbastatisztikát, amely eloszlása ismert H0

mellett. Legyen cα kritikus érték ennek az eloszlásnak az 1− α
kvantilise. x ∈ Xk ⇔ Tn ≥ cα. Kétoldali próba esetén néha két
kritikus értéket adnak meg, az aα α/2 és a bα 1− α/2 kvantilist,
x ∈ Xe ⇔ aα < Tn < bα.
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Példa: u próba

Tekintsünk egy N (µ, σ2) eloszlásból vett mintát. Tegyük fel, hogy
σ ismert. Rögźıtett µ0 esetén vizsgáljuk a következő hipotéziseket:

H0 : µ = µ0, H1 : µ 6= µ0.

I Tekintsük a következő próbastatisztikát:

u =
X − µ0

σ/
√
n
,

ami H0 teljesülése esetén standard normális eloszlású.

I Ehhez és α > 0-hoz keressük az uα kritikus értéket úgy, hogy

PH0(−uα < u < uα) = Φ(uα)−Φ(−uα) = 2Φ(uα)−1 = 1−α

legyen, ı́gy uα = Φ−1(1− α/2) adódik, Xk = {x : |u| ≥ uα}.
I Döntés: ha |u| < uα, akkor H0-t elfogadjuk, különben elvetjük.
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Példa
Megmérték 10 ember IQ-ját, a következő adatokat kapták:
133, 144, 103, 90, 83, 133, 140, 88, 81, 89. Tegyük fel, hogy a
szórás 25. Teszteljük a H0 : µ = 100 vs H1 : µ 6= 100 hipotézispárt!

I A próbastatisztika

u =
X − µ0

σ/
√
n

=
108,4− 100

25/
√

10
≈ 1,06.

I Mivel α = 0,05, a kritikus érték u0,05 = Φ−1(0,975) = 1,96.

I Döntés: |u| ≤ u0,05, ezért elfogadjuk a nullhipotézist.

I A 0,95 megb́ızhatósági szintű konfidencia intervallum µ-re(
108,4− 1,96 · 25√

10
; 108,4 + 1,96 · 25√

10

)
≈ (92,9; 123,89).
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Példa: egyoldali u próba (,,nagyobb” eset)

Most a következő hipotéziseket vizsgáljuk:

H0 : µ = µ0, H1 : µ > µ0.

I A próbastatisztika most is

u =
X − µ0

σ/
√
n
,

ami H0 teljesülése esetén standard normális eloszlású.

I Ehhez és α > 0-hoz keressük az uα kritikus értéket úgy, hogy

PH0(u < uα) = Φ(uα) = 1− α

legyen amiből uα = Φ−1(1− α) adódik, Xk = {x : u ≥ uα}.
I Döntés: ha u < uα, akkor H0-t elfogadjuk, különben

elutaśıtjuk.
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Tévedési lehetőségek

I Elsőfajú hiba: H0 teljesül, de elvetjük. Ennek H0 melletti
feltételes valósźınűsége α terjedelmű próba esetén
p1 = PH0(X ∈ Xα) = P(X ∈ Xk |θ ∈ Θ0) = α.

I Másodfajú hiba: H0 nem teljesül, de elfogadjuk. Ennek H1

melletti feltételes valósźınűsége p2 = PH1(X /∈ Xk).

Defińıció
en(α, θ) = 1− p2 = PH1(X ∈ Xk) a próba erőfüggvénye (ereje).

Defińıció
Egy α terjedelmű próba torźıtatlan, ha en(α, θ) ≥ α és konzisztens,
ha minden θ ∈ Θ1 esetén limn→∞ en(α, θ) = 1.

Megjegyzés

A konzisztencia azt jelenti, hogy a mintaelemszám növelésével a
másodfajú hiba tetszőlegesen kicsivé tehető.
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Álĺıtás
Az egyoldali u próba torźıtatlan és konzisztens.

Bizonýıtás

en(α, µ) = 1− p2 = 1− PH1

(
X − µ0

σ/
√
n
≤ uα

)
= 1− PH1

(
X − µ
σ/
√
n
≤ uα +

µ0 − µ
σ/
√
n

)
= 1− Φ

(
uα +

µ0 − µ
σ/
√
n

)
≥ 1− Φ (uα) = 1− (1− α).

Továbbá µ0−µ
σ/
√
n
→ −∞, ha n→∞, ı́gy

en(α, µ) = 1− p2 = 1− Φ

(
uα +

µ0 − µ
σ/
√
n

)
→ 1, ha n→∞.
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Álĺıtás
Az u próba torźıtatlan és konzisztens.

Bizonýıtás

en(α, µ) = 1− PH1

(∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ < uα

)

= 1− PH1

(
−uα +

µ0 − µ
σ/
√
n
<

X − µ
σ/
√
n
< uα +

µ0 − µ
σ/
√
n

)
= 1− Φ

(
uα +

µ0 − µ
σ/
√
n

)
+ Φ

(
−uα +

µ0 − µ
σ/
√
n

)
?
>α.

Kell: e∗n(µ) = 1− Φ
(
uα + µ0−µ

σ/
√
n

)
+ Φ

(
−uα + µ0−µ

σ/
√
n

)
minimumhelye µ = µ0-ban van.
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µµ0

α

1

(e∗n)′(µ) =

(
1− Φ

(
uα +

µ0 − µ
σ/
√
n

)
+ Φ

(
−uα +

µ0 − µ
σ/
√
n

))′
= −φ

(
uα +

µ0 − µ
σ/
√
n

)
−
√
n

σ
+ φ

(
−uα +

µ0 − µ
σ/
√
n

)
−
√
n

σ
,

φ szimmetriája és monotonitási tulajdonágai miatt ez pontosan
akkor 0, ha µ = µ0.

(e∗n)′′(µ0) = −φ′(uα)

(
−
√
n

σ

)2

+φ′(−uα)

(
−
√
n

σ

)2

= 2φ′(uα)
−n
σ2

< 0.
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Konzisztencia: ha µ 6= µ0,

1− Φ

(
uα +

µ0 − µ
σ/
√
n

)
+ Φ

(
−uα +

µ0 − µ
σ/
√
n

)
→∞ n→∞.

Továbbá ha µ > µ0, µ0−µ
σ/
√
n
→ −∞, ha n→∞, és ha µ < µ0,

µ0−µ
σ/
√
n
→ 1, ha n→∞, amiből következik a konzisztencia.

Megjegyzések

I Az u próba pontosan akkor fogadja el a nullhipotézist, ha µ0

beleesik a várható értékre vonatkozó 1− α megb́ızhatósági
szintű konfidencia intervallumba ismert szórás esetén.

I A CHT miatt az u próba nagy minták esetén nem csak
normális eloszlásból származó mintára alkalmazható.
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Megjegyzések

I A próbák gyakorlati alkalmazásában a kritikus érték
meghatározása helyett azt a p-értéket (más néven
szignifikancia értéket) határozzák meg, amelyre up = u. Az u
próbára egyoldali esetben

Φ−1(1− p) = u

p = p = 1− Φ(u),

kétoldali esetben

Φ−1(1− p/2) = |u|
p = p = 2(1− Φ(|u|)).

Döntés: Ha p > α, H0-t elfogadjuk.
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A hibák valósźınűségével kapcsolatos problémák

I p2-t általában nem ismerjük.

I Az elsőfajú hiba valósźınűségének értelmezésével is vigyázni
kell:

P(X ∈ Xk |H0) = p1 = α
P(X /∈ Xk |H1) = p2 ⇒ P(X ∈ Xk |H1) = 1− p2

Legyen P(H0) = q, ekkor

P(H0|X ∈ Xk) =
P(X ∈ Xk |H0)P(H0)

P(X ∈ Xk |H0)P(H0) + P(X ∈ Xk |H1)P(H1)

=
α · q

α · q + (1− p2)(1− q)
.

⇒ ha p2 és q nagy, akkor P(H0|X ∈ Xk) is nagy!

I Publikációs torźıtás
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Likelihood-hányados próbák

Általánosan használható módszer próbák konstrukciójára.
Tegyük fel, hogy dim(Θ) = r véges és dim(Θ0) = k < r . A

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1

hipotézispárt eldöntő likelihood-hányados próba statisztikája

λn(X) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
.

Álĺıtás
Bizonyos regularitási feltételek mellett, H0 teljesülése esetén

−2 lnλn(X)
D−→ χ2(r − k), ha n→∞.

Tehát a kritikus érték −2 lnλα = F−1
χ2,r−k(1− α), a kritikus

tartomány Xk = {x : λn(X) ≤ λα}.
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Példa
Legyen X1, . . . ,Xn ∼ N (µ, σ2

0), ahol σ0 ismert. H0 : µ = µ0,
H1 : µ 6= µ0.

λn(X) =
supµ=µ0

L(θ)

supµ∈R L(θ)

=∗
(
√

2πσ0)−ne
− 1

2σ2
0

∑n
i=1(Xi−µ0)2

(
√

2πσ0)−ne
− 1

2σ2
0

∑n
i=1(Xi−X )2

= e
− 1

2σ2
0

(
∑n

i=1(Xi−µ0)2−
∑n

i=1(Xi−X )2)

=∗∗ e
− n

2σ2
0

(X−µ0)2

.

∗ A számlálóban µ értéke rögźıtett, a nevezőben a µ paraméter ML
becslését ı́rjuk: µ̂ = X . ∗∗ Steiner egyenlőséget alkalmazzuk.

−2 lnλn(X) = n(X−µ0)2

σ2
0

= u2 ∼ χ2(1), ahol u az u próba

statisztikája.
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Paraméteres próbák

t próba (Student próba)

Tekintsünk egy N (µ, σ2) eloszlásból vett mintát, ahol σ
ismeretlen.

H0 : µ = µ0, H1 : µ 6= µ0.

I A próbastatisztika t =
X − µ0

S∗/
√
n
∼ t(n − 1) H0 mellett,

I tα = Φ−1
n−1(1− α/2) és Xk = {x : |t| ≥ tα}.

Egyoldali t próba

H0 : µ = µ0, H1 : µ > µ0

I A próbastatisztika ugyanaz mint fent,

I tα = Φ−1
n−1(1− α) és Xk = {x : t ≥ tα}.
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Példa
Megmérték 10 ember IQ-ját, a következő adatokat kapták:
133, 144, 103, 90, 83, 133, 140, 88, 81, 89.

H0 : µ = 100, H1 : µ 6= 100

X = 108,4 és S∗ ≈ 25,89, t0,05 = Φ−1
9 (0,975) = 2,262.

t =
X − µ0

S∗/
√
n

=
108,4− 100

25,89 ·
√

10
≈ 0,1

|t| ≤ t0,05, ezért elfogadjuk a nullhipotézist.

Az 1− α megb́ızhatósági szintű konfidencia intervallum(
108,4− 2,262

25,89√
10

; 108,4 + 2,262
25,89√

10

)
= (89,88; 126,92).
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Megjegyzések

I Belátható, hogy a két- és egyoldali t-próba is konzisztens.

I Könnyen látható, hogy az α terjedelmű kétoldali t-próba
pontosan akkor fogadja el H0-t, ha µ0 benne van az
ismeretlen σ esetén µ-re konstruált 1− α megb́ızhatósági
szintű konfidencia intervallumban.

I t aszimptotikus normalitása miatt nagy minta esetén ugyanazt
a kritikus értéket használhatjuk, mint az u-próbánál.

I Nagy mintaelemszám esetén – a centrális határeloszlástétel
miatt – mind az u-, mind a t-próba tetszőleges eloszlásból vett
minta esetén alkalmazható.

I Az egyoldali u- és t-próbának van H0 : µ = µ0,H1 : µ < µ0

alternat́ıvákat vizsgáló változata is, ekkor a próbastatisztika
helyett annak −1-szeresét használjuk. Általában az egyoldali
próbák statisztikája ugyanaz, mint a kétoldali változat, csak
az elfogadási és a kritikus tartományt módośıtják.
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Páros t próba

Összetartozó (nem független) minta esetén a különbségváltozóra
vonatkozó, ún. önkontrollos vizsgálat alkalmazható.

Legyen (X ,Y ) olyan vektorváltozó, amely komponenseinek létezik
a várható értéke: E(X ) = µ1 és E(Y ) = µ2, továbbá Z = X − Y
normális eloszlású. Tekintsük a (X1,Y1), . . . , (Xn,Yn) mintát. A

H0 : µ1 = µ2, H1 : µ1 6= µ2

hipotézispárt vizsgáljuk. Az eljárás a következő:

I Képezzük a Zi = Xi − Yi változókat, amik függetlenek és
normális eloszlásúak µ = µ1 − µ2 várható értékkel.

I A Z1, . . . ,Zn minta seǵıtségével egymintás t-próbával
teszteljük a H0 : µ = 0 nullhipotézist. Ha H1 : µ1 > µ2, akkor
az egyoldali t próbát alkalmazzuk.
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Kétmintás t-próba

Legyenek X1, . . . ,Xn1 ∼ N (µ1, σ
2) és Y1, . . . ,Yn2 ∼ N (µ2, σ

2)
fgn. minták.

H0 : µ1 = µ2, H1 : µ1 6= µ2.

I A próbastatisztika t =
X − Y√

n1S2
X + n2S2

Y

√
n1n2(n1 + n2 − 2)

n1 + n2

∼ t(n1 + n2 − 2) H0 mellett,

I tα = Φ−1
n1+n2−2(1− α/2) és Xk = {x : |t| ≥ tα}.

Egyoldali változat

I H1 : µ1 > µ2, a próbastatisztika ua.

I tα = Φ−1
n1+n2−2(1− α) és Xk = {x : t ≥ tα}.
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Welch próba

Tekintsük az X1, . . . ,Xn1 ∼ N (µ1, σ
2
1) és Y1, . . . ,Yn2 ∼ N (µ2, σ

2
2)

független mintákat.

H0 : µ1 = µ2, H1 : µ1 6= µ2.

I A próbastatisztika t =
X − Y√
S∗2
X
n1

+
S∗2
Y
n2

∼ t(df ) közeĺıtőleg H0

mellett,

ahol df ≈
(

c2

n1−1 + (1−c)2

n2−1

)−1
és c =

S∗2
X /n1

S∗2
X /n1+S∗2

Y /n2
.

I tα = Φ−1
df (1− α/2) és Xk = {x : |t| ≥ tα}.

Egyoldali változat

I H1 : µ1 > µ2, a próbastatisztika ua.

I tα = Φ−1
df (1− α) és Xk = {x : t ≥ tα}.
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Megjegyzések

I Belátható, hogy a kétmintás t próba konzisztens, és nagy
minta esetén tetszőleges eloszlásra alkalmazható.

I Könnyen látható, hogy az α terjedelmű kétmintás t-próba
pontosan akkor fogadja el a nullhipotézist, ha 0 benne van az
ismeretlen szórás esetén µ1 − µ2-re konstruált 1− α
megb́ızhatósági szintű konfidencia intervallumban.

I A kétmintás t-próba feltétele a szórások egyezése, ezért a
várható értékek egyenlőségének tesztelése a következő eljárás
szerint megy:
I A szórások egyenlőségét teszteljük a később ismertetendő

F-próbával.
I Ha elfogadjuk az F próba nullhipotézisét, akkor alkalmazzuk a

kétmintás t próbát.
I Ha elutaśıtjuk az F próba nullhipotézisét, akkor a Welch

próbát alkalmazzuk.

(Mi a probléma ezzel az eljárással?)
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A (varianciára vonatkozó) χ2 próba

Tekintsünk egy N (µ, σ) eloszlásból vett mintát.

H0 : σ = σ0, H1 = σ 6= σ0.

I A próbastatisztika χ2 =
nS2

σ2
0

∼ χ2(n − 1) H0 mellett,

I χ2
1,α = F−1

χ2,n−1
(α/2), χ2

2,α = F−1
χ2,n−1

(1− α/2) és

Xk = {x : χ2 ≤ χ2
1,α} ∪ {x : χ2 ≥ χ2

2,α}.

Egyoldali változat

I H1 : σ > σ0, a próbastatisztika ua.

I χ2
α = F−1

χ2,n−1
(1− α) és Xk = {x : χ2 ≥ χ2

α}.
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F próba

Tekintsük az X1, . . . ,Xn1 ∼ N (µ1, σ
2
1) és Y1, . . . ,Yn2 ∼ N (µ2, σ

2
2)

független mintákat.

H0 : σ2
1 = σ2

2, H1 : σ2
1 6= σ2

2.

I A próbastatisztika F =
S∗2X
S∗2Y
∼ F(n1 − 1, n2 − 1) H0 esetén.

I f1,α = F−1
n1−1,n2−1(α/2) és f2,α = F−1

n1−1,n2−1(1− α/2).

Xk = {x : F ≤ f1,α} ∪ {x : F ≥ f2,α}.

Megjegyzések

I A gyakorlatban F ∗ = max{F , 1/F} (ha 1/F > 1, akkor
tulajdonképpen a két minta szerepét felcseréljük) és elegendő
F ∗-hoz a felső kritikus értéket nézni.

I Az α terjedelmű F próba pontosan akkor fogadja el a
nullhipotézist, ha 1 benne van a σ1/σ2-re konstruált 1− α
megb́ızhatósági szintű konfidencia intervallumban.
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Nemparaméteres próbák

Valósźınűségek tesztelése χ2 próbával

Legyen A1, . . . ,Ar teljes eseményrendszer, pi > 0 minden i-re és
p1 + . . .+ pr = 1. Végezzünk n független megfigyelést.

H0 : P(Ai ) = pi , i = 1, . . . , r ,

H1 pedig H0 tagadása.

I Jelölje νi az Ai bekövetkezéseinek számát. A próbastatisztika

χ2 =
r∑

i=1

(νi − npi )
2

npi

Tétel
H0 esetén χ2 D−→ χ2(r − 1), ha n→∞.
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Bizonýıtás

ν = (ν1, . . . , νr )> ∼ Polyn(p1, . . . , pr ) (pi > 0 ∀i).

E(ν) = np, Cov(ν) = P− pp>, ahol P = diag(p). CHT:

Sn = P−1/2ν ⇒ 1√
n

P−1/2ν
D−→ X ∼ Nd(0,P−1/2CP−1/2)

P−1/2CP−1/2 = Ir − qq>, ahol q = (
√
p1, . . . ,

√
pr )>

qq> a q irányra való 1 rangú vet́ıtés ⇒ P−1/2CP−1/2 r − 1 rangú
vet́ıtés, sajátértékei λ1 = . . . = λr−1 = 1, λr = 0. Az előző álĺıtás
alapján ha X ∼ Nd(0,P−1/2CP−1/2), akkor X>X ∼ χ2(r − 1),
valamint

1

n
P−1/2ν · ν>P−1/2 =

r∑
i=1

(νi − npi )
2

npi
.

I χ2
α = F−1

χ2,r−1
(1− α) és Xk = {x : χ2 ≥ χ2

α}.
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Tiszta illeszkedésvizsgálat χ2 próbával

Legyen X1, . . . ,Xn minta ismeretlen F eloszlásfüggvénnyel.

H0 : F (x) = F0(x) ∀x ∈ R,

ahol F0 egy adott eloszlásfüggvény.

I Legyenek −∞ = x0 < x1 < . . . < xr−1 < xr =∞
osztópontok, valamint Ai = {X ∈ [xi−1, xi )}, i = 1, . . . , r .

P(Ai ) = P(xi−1 ≤ X < xi ) = F (xi )− F (xi−1).

I Legyen pi = F0(xi )− F0(xi−1) > 0 minden i-re.

I A fentiek alapján H0 maga után vonja az alábbi hipotézist:

H ′0 : P(Ai ) = pi , i = 1, . . . , r ,

tehát a feladatot visszavezettük valósźınűségek tesztelésére.
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Megjegyzések

I Ha X értékkészlete véges: x1, . . . , xr , akkor nincs szükség
osztópontokra, hanem az Ai = {X = xi} választással a
valósźınűségek tesztelését közvetlenül alkalmazhatjuk.

I Jól használható ökölszabály a mintaelemszámra:
n > max1≤i≤r{10/pi}.

Becsléses illeszkedésvizsgálat χ2 próbával

H0 : F (x) = Fθ1,...,θk (x) ∀x ∈ R,

ahol Fθ1,...,θk adott eloszlásfüggvény θ1, . . . , θk ismeretlen
paraméterekkel.

Vegyük a paraméterek θ̂1, . . . , θ̂k becsléseit és legyen F0 = Fθ̂1,...,θ̂k
.

Az eljárás ugyanaz, mint a tiszta illeszkedésvizsgálatnál, de itt H0

mellett n→∞ esetén χ2 D−→ χ2(r − k − 1).
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Homogenitásvizsgálat χ2 próbával

Tekintsünk két mintát: X1, . . . ,Xn1 és Y1, . . . ,Yn2 .

H0 : P(X < x) = P(Y < x) ∀x ∈ R.

I Legyenek most is −∞ = x0 < x1 < . . . < xr−1 < xr =∞
osztópontok és µi az [xi−1, xi ) intervallumba eső első, νi a
második mintabeli elemek száma, µi + νi > 0 minden i-re.

χ2 = n1n2

r∑
i=1

1

µi + νi

(
µi
n1
− νi

n2

)2

.

H0 esetén n1 →∞, n2 →∞ esetén χ2 D−→ χ2(r − 1).

I Tehát most is χ2
α = F−1

χ2,r−1
(1− α) és Xk = {x : χ2 ≥ χ2

α}.

Megjegyzés

Diszkrét véges értékkészletű változók esetén itt sincs szükség az
osztópontokra: intervallumokba esés helyett xi értéket keresünk.
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Függetlenségvizsgálat χ2 próbával

Legyen X értékkészlete x1, . . . , xr és Y -é y1, . . . , ys .

H0 : P(X = xi ,Y = yj) = P(X = xi )P(Y = yj), 1 ≤ i ≤ r , 1 ≤ j ≤ s,

azaz X és Y függetlenek. Vegyük az (X1,Y1), . . . , (Xn,Yn) mintát.

I Legyen νij az (xi , yj) gyakorisága a mintában (a νij értékeket
az ún. kontingenciatáblázat tartalmazza), νi · =

∑s
j=1 νij és

ν·j =
∑r

i=1 νij .

χ2 = n
r∑

i=1

s∑
j=1

(νij −
νi·ν·j
n )2

νi ·ν·j
,

H0 mellett n→∞ esetén χ2 D−→ χ2((r − 1)(s − 1)).

I Tehát χ2
α = F−1

χ2,(r−1)(s−1)
(1− α) és Xk = {x : χ2 ≥ χ2

α}.

Megjegyzés

Ennek speciális esete a homogenitásra vonatkozó χ2 próba.
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Példa
Azt szeretnénk tesztelni, hogy a dohányzás nemtől független-e.
Megkérdeztük az utcán szembejövő első 50 embert. Köztük 6
dohányos nő, 18 nemdohányos nő, 14 dohányos férfi és 12
nemdohányos férfi volt.

Legyen X : nem, Y : dohányzás indikátorváltozója, H0 : X ,Y fgn.

megf. X =1 X =2
∑

Y =0 12 18 30
Y =1 14 6 20∑

26 24 50

elvárt X =1 X =2
∑

Y =0 15,6 14,4 30
Y =1 10,4 9,6 20∑

26 24 50

χ2 =
(12−15,6)2

15,6
+

(18−14,4)2

14,4
+

(14−10,4)2

10,4
+

(6−9,6)2

9,6
= 4,326.

χ2
0,05 = F−1

χ2,1
(0,95) = 3,841 < χ2 =⇒ elvetjük H0-t.
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Kolmogorov-Szmirnov próba (tiszta illeszkedésvizsgálat)

H0 : P(X < x) = F0(x) ∀x ∈ R.

I A próbastatisztika

∆n = sup
x∈R
|F ∗n (x)− F0(x)|.

H0 mellett
√
n∆n aszimptotikusan Kolmogorov-eloszlású.

I kα = K−1(1− α)/
√
n és Xk = {x : ∆n ≥ kα}.

Megjegyzések

I ∆n meghatározásához elég 2n különbséget meghatározni,
mivel F0 monoton növő, F ∗n pedig lépcsős függvény.

I Egyoldali változatban a próbastatisztika abszolutérték nélküli
és közeĺıtőleg Szmirnov-eloszlású.
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Kétmintás Kolmogorov-Szmirnov próba (homogenitásteszt)

H0 : P(X < x) = P(Y < x) ∀x ∈ R.

Tekintsük az X1, . . . ,Xn1 és Y1, . . . ,Yn2 mintákat és a hozzájuk
tartozó F ∗n1

és G ∗n2
empirikus eloszlásfüggvényeket.

I A próbastatisztika

∆n1,n2 = sup
x∈R
|F ∗n1

(x)− G ∗n2
(x)|.

H0 mellett
√

n1n2
n1+n2

∆n1,n2 közeĺıtőleg Kolmogorov-eloszlású.

I Tehát kα =
√

n1+n2
n1n2

K−1(1− α) és Xk = {x : ∆n ≥ kα}.

Az illeszkedésvizsgálat megjegyzései itt is érvényesek.
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Wilcoxon-próba

Legyen X folytonos, a mediánra szimmetrikus eloszlású vv.

H0 : P(X < m0) =
1

2
.

I Rendezzük sorba |X1 −m0|, . . . , |Xn −m0| mintát és legyen Ri

rangszám |Xi −m0| sorszáma ebben a rendezett mintában.

I Legyen T+ =
∑

i :Xi>m0

Ri . H0 mellett

I kis n esetén T+ eloszlásának tα,n kvantiliseit táblázat
tartalmazza.

I Nagy n-re T+−E(T+)
D(T+) ∼ N (0, 1) közeĺıtőleg,

E(T+) = 1
2

∑n
i=1 i = n(n+1)

4 és D2(T+) = n(n+1)(2n+1)
24 .

I A kritikus tartomány

I Xk =
{

x : tα/2,n ≥ T+
}
∪
{

x : T+ ≥ n(n+1)
2 − tα/2,n

}
,

I nagy n-re Xk =
{

x :
∣∣∣T+−E(T+)

D(T+)

∣∣∣ ≥ Φ−1(1− α/2)
}

.
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Páros Wilcoxon-próba

X ,Y folytonos eloszlásúak. Önkontrollos vizsgálatot alkalmazunk a
következő hipotézis vizsgálatára:

H0 : P(X < Y ) =
1

2

Tekintsük a (X1,Y1), . . . , (Xn,Yn) mintát. Legyen Zi = Xi −Yi , ı́gy

H0 : P(Z < 0) =
1

2
,

amit egymintás Wilcoxon-próbával tesztelhetünk, ha Z eloszlása
folytonos és a mediánjára szimmetrikus.

Megjegyzés

A páros t-próba nemparaméteres alternat́ıvájaként alkalmazzák. H0

értelmezése okozhat problémát (a mediánnak nincs a várható
értékhez hasonló addit́ıv tulajdonsága).
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Kétmintás Wilcoxon (Mann-Whitney) próba

Yi = Xi , i = 1, . . . , n1 és Zj = Xj + θ, j = n1 + 1, . . . , n1 + n2

minták, ahol X1, . . . ,Xn1+n2 független, azonos folytonos eloszlású
változók.

H0 : θ = 0.
I Rendezzük sorba az egyeśıtett mintát és legyen Ri a Yi rangja

az egyeśıtett mintában.
I RY =

∑n1
i=1 Ri . H0 mellett

I kis elemszám esetén RY eloszlásának rα,n1,n2 kvantiliseit
táblázat tartalmazza.

I Nagy elemszámnál RY−E(RY )
D(RY ) ∼ N (0, 1) közeĺıtőleg, ahol

E(RY ) = n1(n1+n2+1)
2 és D2(RY ) = n1n2(n1+n2+1)

12 .

I A kritikus tartomány
I Xk = X −

{
x : rα/2,n1,n2

< RY < n1(n1 + n2 + 1)− rα/2,n1,n2

}
,

I nagy elemszámra Xk =
{

x :
∣∣∣RY−E(RY )

D(RY )

∣∣∣ ≥ Φ−1(1− α/2)
}

.
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Kruskal-Wallis teszt
Adott r független minta, az i . minta elemszáma ni ,
eloszlásfüggvénye Fi folytonos, az eloszlások legfeljebb eltolási
paraméterben térnek el.

H0 : F1(x) = . . . = Fr (x), ∀x ∈ R

Vegyük az egyeśıtett mintabeli rangokat legyen Ri az i . mintabeli
elemek rangösszege és N =

∑r
i=1 ni .

H =
12

N(N + 1)

r∑
i=1

1

ni

(
Ri −

ni (N + 1)

2

)2

H0 mellett H
D−→ χ2(r − 1), ha n1, . . . , nr →∞, ı́gy

Xk =
{

x : H ≥ F−1
χ2,r−1

(1− α)
}
.
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Többváltozós módszerek

Hotelling-féle T 2 próba

Legyen X ∼ Nd(m,C) és tekintsük az X1, . . . ,Xn mintát (n > d).

H0 : m = m0, H1 : m 6= m0

I T 2 = n(X−m0)>Ĉ∗
−1

(X−m0), ahol

Ĉ∗ =
1

n − 1
S =

1

n − 1

n∑
i=1

(Xi − X)(Xi − X)>

a korrigált empirikus kovarianciamátrix. H0 mellett

F =
n − d

d
· T 2

n − 1
∼ F(d , n − d).

I Fα = F−1
d ,n−d(1− α) és Xk = {x : F ≥ Fα}.
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Kétmintás Hotelling teszt

Legyen X ∼ Nd(m1,C) és Y ∼ Nd(m2,C). Tekintsük az
X1, . . . ,Xn1 és Y1, . . . ,Yn2 független mintákat (n1, n2 > d).

H0 : m1 = m2, H1 : m1 6= m2

I T 2 = n1n2
n1+n2

(X− Y)>Ĉ∗
−1

(X− Y), ahol Ĉ∗ = 1
n1+n2−2S,

S =

n1∑
i=1

(Xi − X)(Xi − X)> +

n2∑
i=1

(Yi − Y)(Yi − Y)>.

H0 mellett

F =
n1 + n2 − d − 1

d
· T 2

n1 + n2 − 2
∼ F(d , n1 + n2 − d − 1).

I Fα = F−1
d ,n1+n2−d−1(1− α) és Xk = {x : F ≥ Fα}.
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Egyszempontos varianciaanaĺızis (ANOVA)

Tekintsük az Xi ,j ∼ N (µi , σ
2), i = 1, . . . , r , j = 1, . . . , ni

független mintákat. A várható értékek feĺırhatók a következő
formában: µi = µ+ ai , ahol µ a várható értékek ni értékekkel
súlyozott átlaga, ai pedig az i-edik csoporthatás.

H0 : µ1 = . . . = µr ,

azaz minden csoporthatás 0.
Legyen n = n1 + . . .+ nr . Képezzük a következő statisztikákat:

X i =

∑ni
j=1 Xi ,j

ni
, X =

∑r
i=1

∑ni
j=1 Xi ,j

n
, Qt =

r∑
i=1

ni∑
j=1

(Xi ,j−X )2,

Qa =
r∑

i=1

ni (Xi − X )2, Qe =
r∑

i=1

ni∑
j=1

(Xi ,j − Xi )
2,

Qa a csoportok közötti, Qe a csoporton belüli eltérések
négyzetösszege.

Nagy-György Judit Statisztika



Tétel (Fisher-Cochran)

Legyen X = (X1, . . . ,Xn)> ∼ Nn(0, In) és Q = X>X és
Qj = X>AjX, j = 1, . . . , k kvadratikus alakok, ahol Aj -k
szimmetrikus mátrixok és tfh. Q = Q1 + . . .+ Qk teljesül.
Q1 ∼ χ2(rang(A1)), . . . ,Qk ∼ χ2(rang(Ak)) és függetlenek
pontosan akkor, ha

∑k
j=1 rang(Aj) = n.

Tétel
Qt = Qa + Qe , továbbá H0 mellett Qe/σ

2 ∼ χ2(n − r) és
Qa/σ

2 ∼ χ2(r − 1) függetlenek.

Bizonýıtás

A nevezetes statisztikákra vonatkozó tétel miatt H0 mellett
Qt/σ

2 ∼ χ2(n − 1) és
∑

j=1ni (Xij − X i )
2/σ2 ∼ χ2(ni − 1), amiből

következik, hogy Qe/σ
2 ∼ χ2(n − r), ahol n = n1 + . . .+ nr .

Továbbá Steiner tétele miatt
ni∑
j=1

(Xij − X i )
2 =

ni∑
j=1

(Xij − X )2 − ni (X i − X )2,

ebből Qt = Qa + Qe , majd alkalmazzuk a Fisher-Cochran tételt.
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H0 vizsgálata

I a próbastatisztika F =
Qa

Qe
· n − r

r − 1
∼ F(r − 1, n − r) H0

mellett.

I Tehát Fα = F−1
r−1,n−r (1− α) és Xk = {x : F ≥ Fα}.

Megjegyzések

I ANOVA a kétmintás t-próba általánośıtása.

I A szórások egyenlősége Levene, Hartly vagy Bartlett próbával
tesztelhető. Ha a szórások nem egyenlőek, akkor ANOVA
helyett a többmintás Welch-próbát alkalmazzák (hasonló
problémák adódnak mint a kétmintás t próba esetén).

I PostHoc tesztek

I Ha a csoportokat több csoportośıtó változó seǵıtségével
képezzük, többszempontos varianciaanaĺızist alkalmazunk.

I Függetlenség tesztelésére is alkalmazzák.
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Lineáris regresszió

Emlékeztető
Tekintsük a (X ,Y ) véletlen vektort. Keressük Y -t legjobban
közeĺıtő lineáris függvényt, azaz a-t és b-t, amelyre
E((Y − (aX + b))2) négyzetes eltérés minimális:

a =
Cov(X ,Y )

D2(X )
= r(X ,Y )

D(Y )

D(X )
,

b = E(Y ) +
Cov(X ,Y )

D2(X )
E(X ).

Defińıció
A fenti paraméterekkel feĺırt y = ax + b egyenes a regressziós
egyenes, a, b paraméterek a lineáris regressziós együtthatók.

Megjegyzés

a = 0 pontosan akkor, ha X és Y korrelálatlanok.
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Determinisztikus változók esete
Tekintsük a (x1,Y1), . . . , (xn,Yn) mintát, ahol xi értékek
determinisztikusak és az (x1, y1), . . . , (xn, yn) realizációt. Legyen
Yi = axi + b + εi , ahol ε1, . . . , εn ∼ N (0, σ2) függetlenek,
eloszlásuk nem függ sem a-tól, sem b-től, sem xi értékektől. Tehát
Y1, . . . ,Yn függetlenek, Yi ∼ N (axi + b, σ2).

Regressziós egyenes paramétereinek ML becslése

Jelölje Yi sűrűségfüggvényét fi

L(a, b) =
n∏

i=1

fi (yi ) =
1

(
√

2πσ)n
e−

1
2σ2

∑n
i=1(yi−axi−b)2

.

L(a, b) akkor maximális, ha Q(a, b) =
∑n

i=1(yi − axi − b)2

minimális (legkisebb négyzetes becslés).
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Q(a, b) =
∑n

i=1(yi − axi − b)2 mindkét változó szerint deriválható,
a deriváltak zérushelyei Q(a, b) lehetséges szélsőértékhelyei.

∂Q

∂a
= −2

n∑
i=1

xi (yi − axi − b) = 0

∂Q

∂b
= −2

n∑
i=1

(yi − axi − b) = 0

A lehetséges szélsőértékhelyek teljeśıtik a következő egyenlőséget

n
∂Q

∂a
−

n∑
i=1

xi
∂Q

∂b
= 0

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi − â

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2
 = 0.
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Ebből

â =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi )

2

=
n2Ĉ

n2S2
x

= rn(x ,Y )
SY
Sx
.

â-t béırva
∂Q

∂b
=

n∑
i=1

yi − a
n∑

i=1

xi − nb = 0 egyenletbe

b̂ =

∑n
i=1 yi
n

− â

∑n
i=1 xi
n

.

Belátható, hogy (â, b̂) valóban Q minimumhelye.
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Megjegyzések

I A legkisebb négyzetek módszere más modelleken is
alkalmazható.

I A regressziót gyakran Yn+1 érték becslésére használják, ha
csak a független változók adottak. (Vigyázat: extrapoláció!)

I Tipikus hiba: kapcsolat mögött okságot feltételezni nem
determinisztikus változók esetén.

I A regressziós egyenes becslése érzékeny a kiugró adatokra.

Nagy-György Judit Statisztika

http://www.math.u-szeged.hu/~ngyj/abra/regani.gif


Varianciaanaĺızis lineáris modellben
Tekintsük a Y = ax + b + ε, ε ∼ N (0, σ2) regressziós modellt és
az (x1,Y1), . . . , (xn,Yn) mintát.

H0 : a = 0 H1 : a 6= 0.

Vegyük a regressziós egyenes paramétereinek â, b̂ ML becsléseit és
legyen Ŷi = âxi + b̂. Képezzük a következő négyzetösszegeket:

Qt =
n∑

i=1

(Yi − Y )2, Qr =
n∑

i=1

(Ŷi − Y )2, Qe =
n∑

i=1

(Yi − Ŷi )
2.

Tétel
Qt = Qr + Qe , továbbá H0 mellett Qe/σ

2 ∼ χ2(n − 2) és
Qr/σ

2 ∼ χ2(1) függetlenek.

Bizonýıtás vázlat

A nevezetes statisztikák eloszlása, a Steiner és a Fisher-Cochran
tételek alkalmazásával.
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H0 vizsgálata

I a próbastatisztika F =
Qr

Qe
(n − 2), ami H0 mellett F(1, n − 2)

eloszlású.

I Fα = F−1
1,n−2(1− α) és Xk = {x : F ≥ Fα}.

Álĺıtás
Qr = Qt · r2

n (x ,Y ).

Bizonýıtásn∑
i=1

(âxi − b̂ − Y )2 = â2
n∑

i=1

(xi − x)2 = r2
n (x ,Y )

S2
Y

S2
x

nS2
x .

Következmény
Qe = Qt(1− r2

n (x ,Y )) és
Qr

Qe
=

r2
n (x ,Y )

1− r2
n (x ,Y )

.
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Korrelációtesztek

Pearson
A háttérváltozó (X ,Y )> ∼ N2(m,C). H0 : X ,Y fgn.

t =
√
n − 2 rn(X ,Y )√

1−r2
n(X ,Y )

D−→ t(n − 2) H0 mellett, ha n→∞ tehát

Xk =
{

x : |t| ≥ Φ−1
n−2(1− α/2)

}
.

Spearman

(X ,Y )> abszolút folytonos háttérváltozó. H0 : X ,Y fgn.
Tekintsük az (X1,Y1), . . . , (Xn,Yn) mintát, legyen Ri az Xi és Si
az Yi rangszáma. A Spearman-féle rangkorrelációs együttható

%n =

∑n
i=1(Ri − R)(Si − S)√∑n

i=1(Ri − R)2
√∑n

i=1(Si − S)2
.

√
n − 1ρn

D−→ N (0, 1) H0 mellett, ha n→∞, ı́gy
Xk = {x : |

√
n − 1ρn| ≥ Φ−1(1− α/2)}.
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Többváltozós regresszió

X egy d dimenziós magyarázó változó, a regressziós függvény
E((Y − g(X))2)-t minimalizálja. Ha Y és X együtt többdimenziós
normális eloszlású, a legjobb regressziós függvény a lineáris.

Defińıció
rY (X) = r(`(X),Y ) a többszörös korrelációs együttható, ahol

`(x) = a>x + b a lineáris regressziós függvény.

Lineáris regresszió (determinisztikus változók esete)

A modell Yi = a>xi + b + ε, ε ∼ N (0, σ2).

H0 : a = 0.

I Vesszük a, b legkisebb négyzetes becsléseit, Ŷi = â>xi + b̂i és
képezzük Qt ,Qr és Qe négyzetösszegeket.

I A próbastatisztika most F =
Qr

Qe
· n − d − 1

d
, ami H0 mellett

F(d , n − d − 1) eloszlású.
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Megjegyzések

I A többszörös korrelációs együttható nem általánośıtása a
korrelációs együtthatónak (de négyzetükre igaz).

I X komponenseit független, Y -t függő változónak nevezik.

I A többszörös korrelációs együttható értelmezése: X
komponensei Y varianciájának r2

Y (X) részét magyarázzák.

r2
Y (X)-t meghatározottsági együtthatónak is nevezik.

I Többdimenziós normális eloszlású változók esetén is
alkalmazható a varianciaanaĺızis lineáris modellben.

I Qr
Qe

= R2

1−R2 , ahol R a becsült többszörös korrelációs
együttható. H0 rY (X) = 0-val ekvivalens.

I A nemlineáris regressziót gyakran a lineárisra vezetik vissza.
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Jegyzettár
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