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Statisztikai alapfogalmak

Tekintslink egy eloszlascsaladot és legyen X véletlen valtozd
eloszldsa ebbdl az eloszlascsaladbdl ismeretlen. Paraméteres
probléma esetén a paraméteres eloszlascsalad paramétere a

© C R¥ paramétertér eleme. A 6 € © paraméter értékét idénként
kihangstilyozzuk Py, Eg(X), D3(X) (= Varg(X)) alsé indexében.
Definicié

Az X = (X1,...,X,) statisztikai minta elemei fiiggetlen véletlen
valtozok, eloszlasuk megegyezik az X hattérvaltozo eloszlasaval.

Egy véletlen kisérlet x = X(w) kimenetele a minta realizacidja.
A lehetséges realizicick X halmaza a mintatér.

A matematikai statisztika alapvet6 feladatai:

Célok: a hattérvéltozé eloszldsdnak (paraméterének) becslése,
illetve ezekre vonatkozé hipotézisek vizsgalata.
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Statisztikai alapfogalmak

Definicié

Tekintsiik az X1, ..., X, mintat. Az X{,..., X} az n elemii
rendezett minta, ha minden w € Q-ra X{(w) < ... < X} (w) az
Xi1(w), ..., Xn(w) realizdcié permutdcidja.

Definicié

Legyen T : R" — R¥ mérheté fiiggvény. A T(X1,...,X,) véletlen
(vektor)vdltozot statisztikanak nevezziik.
Alapstatisztikak

- Xi+...+ X
X = At mintadtlag,
n

X{ legkisebb, X} legnagyobb mintaelem,

Xy — X{ mintaterjedelem,

Xn*/2+l
tapasztalati median: X,,+1 ha n ptl, f ha n ps,

vV v.vvyYy

(X7, ..., X7) teljes rendezett minta.
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Becslések

Legyen 6 az X eloszldsanak egy paramétere, 6 (Xl, ooy Xn).

Definicié

Az 0, statisztika torzitatlan becslése 0-nak, ha a paraméterhalmaz

minden 0 elemére Ey(0,) = 0. A 0, és 0, torzitatlan becslések

koziil 0, hatdsosabb, ha Dg(@n) < Dg(@n) minden 0 € ©-ra. A 0,

hatdsos becslése 0-nak, ha nincs ndla hatdsosabb becslése.

Definicié

On (n=1,2,...) sorozat gyengén konzisztens becslése 0-nak, ha
0, N 0, n— oo,

azaz minden € > 0,6 € © esetén lim, o0 Po(|0, — 0] > ) = 0.

On (n=1,2,...) sorozat er6sen konzisztens becslése 6-nak, ha

~  mb
0, — 0, n— oo,
azaz Py(limp_ 00 0, = 0) = 1 minden 0 € ©-ra.
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Valészinliség becslése

Definicié
A egy esemény, amire P(A) = p, X = I(A) ~ Bernoulli(p) = Bi(p)
a hozzd tartozo indikatorvaltozo. Viégezziink el fiiggetleniil n
kisérletet, tekintsiik az X1, ..., X, mintat. Ekkor
A gyakorisdga a mintdban Y i_; Xi, a bekévetkezéseinek szama,
A relativ gyakorisaga
n
R i1 Xi
p= Zl—l )
n
Allitas
p torzitatlan és erésen konzisztens becslés p-re.
Bizonyitas
. nX " E(X

n
21 Xi mb
n

A nagy szamok erGs torvénye miatt p =
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Definicié (empirikus eloszlasfiiggvény)
Legyen Knx = Y71 I(Xi < x), ahol | indikatorfiiggvény.

n

> (X < x)

¢ 0, x<Xy
Fix)="——— =0 b Xp<x< X, k=1..n-1
" 1, X:<x
Allits
E(F(x)) = F(x), D?(F}(x)) = 0, ha n — oo,

valamint F}(x) b, F(x), ha n — oo minden x € R esetén.

Bizonyitas.
1(X; < x) ~ By(F(x)),i = 1,...,n fgn w-k, Knx ~ By(F(x))
E(Fs(x)) = 5E(Knx) = 7 - nF(x).

D2(F;(x)) = 5D?(Knx) = %F(x)(1 - F(x)) = 0, ha n = oc.

Az er6s konzisztencia a nagy szamok erds torvényébdl kovetkezik.
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Tétel (Glivenko—Cantelli (A statisztika alaptétele))

A, =sup|F;(x) — F(x)] LY 0, n— 0.
xeR

Bizonyitas (folytonos eset)

Legyen m € Z* tetsz8leges, x; = inf{x : F(x) = L}.

(xo = —00,xm = 00 is lehet) Ha x;_1 < x < x;, akkor

F(x) = F(x) < Fi(xi) = F(xie1) = F5(x) — F(x) + 7,
Fr(x) = F(x) = Fi(xi1) = F(xi) = Fy(xi-1) = F(xi-1) = 7.,
ebb| 1
[Fa(x) = FO)L = max [ (xi) = FOa)l + —

1<i<m-1

) 1
= B, < max [F() = FOa)l+

. PR P b
A nagy szamok er8s torvényébdl lim F*(x;) — F(x;)
n—o00

1
:P(IimsupAn>> =0 YmeZ" = P(lim A,=0)=1.

n—o0 m n—oo
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A siirliségfliggvény becslése

Az empirikus eloszlasfliggvény szakaszonként konstans fliggvény,
derivéltja nem lesz j6 becslése az f siirliségfiiggvénynek.
Definicié

11,15, ... paronként diszjunkt h, hosszu intervallumok,

U2 L =R. Legyen v = 11 I(Xi € L),

fy(x) = nk ,  ha x €l

Az f, fiiggvényt sliriiséghisztogramnak nevezziik.
Megjegyzések

> Véges sok intervallumban vesz fel nem 0 értéket £,"(x).

> Belathatd, hogy ha x az f slirliségfiiggvény folytonossagi
pontja, lim,_— o hp, = 0 és lim,_o, nh, = 00, akkor
limp—o0 f,7(x) = f(x) 1 valdszinliséggel.
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razolas

Kor- és oszlopdiagram ‘
Diszkrét eloszlds dbrazoldsara.
Boxplot : D

3

Minimum,
maximum, tapasztalati kvartilisek egy dbran.

Sirlséghisztogram

A siriségfliggvény
becslésének dbrazoldsa.
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A varhatd érték becslése

Allitas
Ha E(X) létezik, X torzitatlan és er6sen konzisztens becslése is
E(X)-nek.

Bizonyitas
A varhatd érték linearitdsa miatt

X1+...+X,,> O EX) 4. 4+ EX,) 1

- = —nE(X).

E(XX)=E
-5 ( - !
Az allitds masodik fele éppen a nagy szamok erds torvénye.
Kérdés

Mi lehet a magyardzata, hogy az emberek tobbségének fizetése az
atlagfizetés alatt van?
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A variancia becslése

Definicid

1 -
Empirikus (tapasztalati) variancia: S*> = S2 = — g (Xi — X)?
n
i=1
S = V52 az empirikus (tapasztalati) szdrds.

Tétel (Steiner)
Xty XpC €RIST (G — )2 =151 (- %)+ (X —c)%

Bizonyl'tés
= Z —X+x—c)? % Z(x,-—x)2+2(x—c) Z(x,- —X) +(x—c)2

Kovetkezmény
SP=X2-X* =17 (X —E(X))? - (X — E(X))%.
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Tétel
Ha D(X) < 00, akkor B(S?) = 2=1D2(X), $2 % D?(X), n — oc.

Bizonyitas

E(s) = E (1 306~ BOR - (X - E(X)f)

i=1

_ %ZE(X; _RB(X))? — E((X - E(X))?)
= p2(x ( ZX) (1——) D?(X).

X ™ EX) = X2-X T E(X?) - EX(X),n— .
Definicié
Korrigdlt empirikus variancia és szérds: S*2 = nf”152./ S* = V5%,

Kovetkezmény

S*2 torzitatlan és erésen konzisztens becslése D?(X)-nek.
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Magasabb momentumok

Definicid
k € 7t esetén az

1 o .
> M, = . ZX/‘ a k. empirikus momentum,
i=1
n

1

> Mg =— Z(X,- — X)* a k. empirikus centrdlis momentum,
g
5
> az — = statisztikat ferdeségnek
(Mg)272 e
c
az ( M;)Q — 3 statisztikat lapultsagnak (csticsossagnak)
nevezziik.
Megjegyzés

A nagy szamok erés torvényébdl kovetkezik a fenti becslések erés
konzisztencidja.
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Kovariancia, korrelacié becslése

Tekintsiik (X, Y) hattérvaltozst és (X, Y1),. .., (Xn, Yn) mintat.

Definicid
i —

Empirikus kovariancia: C = Cn(X,Y) = . Z(Xi - X)(Yi =),

Allitss
C=1 ZLIX;Yi—Y-V mb, C(X,Y), han— oc.

~n
Bizonyitas
1 n _.n o o
¢ = n(;x,n—x;\/,—Y;X,Jrnx-Y)
1= 1= 1=

= X-Y+(-2+1)X Y.

Z=XY, ,172”:2,- —X-Y 2% E(Z) - E(X)E(Y) = C(X, Y).
i=1
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Tétel
Ha C(X, Y) létezik, akkor E(C) =

).

Bizonyitds

E(0) = E(ifjmn—(iix,-) (f,zv»

= —ZEXY (ZEXY > E(Xi )

i#
nE(XY) nE(XY) n(n—1)E(X)E(Y)
Definicié
Korrigalt empirikus kovariancia:
A~ n —
Cr=Cp(X. V) = — n_lg )
Kovetkezmény

C* torzitatlan és ersen konzisztens becslése C(X, Y)-nak.
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Definicié
(Pearson-féle) empirikus korreldcids egyiitthato:

C
r=r,(X,Y) = .
r, ta(X, Y) SxSy
Allitas
7 < 1.

Bizonyitas
A Cauchy-Bunyakovszkij-Schwarz egyenlétlenség alapjan

nCl < D X=X Yi-Y]
i=1

< Z(Xi - X)? Z(Yi —Y)2 =/nSx\/nSy.
i=1 i=1
Megjegyzés
¢ (X = X)(Yi—Y) ¢

— — —f

SV (S (X — X2, (Y — Y)R)2 SxSy




Maximum likelihood becslés

0 az X valtozé ismeretlen paramétere, ezt szeretnénk becsiilni.
Definicié
Legyen X diszkrét hattérvaltozd, tekintsiik az xi, ..., Xy

realizaciot. A hozzd tartozé likelihood-fiiggvény a kovetkezo:
L(g) - P@(Xl =X1,... 7Xn — Xn) - PH(X == Xl) E—— P()(X = Xn)-

Legyen X abszolit folytonos hattérvaltozo. Tekintsiik a xi, ..., Xn
realizaciot. A hozza tartozé likelihood fiiggvény a kovetkezd:

L(@) = f9,X17~--,-Xn(X1'/ NN ,Xn) = fg(Xl) oLt fg(Xn).

Definicié

A 0 paraméter maximum likelihood (ML) becslése a 6 statisztika,
ha minden xy, ..., x, realizaciéra L(0) = max L(O,x1,...,Xn).
Megjegyzés

Az ((0) = In L(0) log-likelihood fliggvény ugyanott veszi fel
szélséértékeit mint L(6).
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Példak

Normilis eloszlds paramétereinek ML becslése

n
1 — n pp—
02):H € ZUZ(XI M) _( 7T0') e 2(1,2 2o M)za
i V2mo

ahol € R és o > 0.

n

1
U, 0%) = —nInvV2r — nlno — 552 Z(x,- —u)?,

i=1

ami kétszer derivalhato. frjuk fel a likelihood egyenleteket:
ot 1 <
o ;Z(Xi —pu) =0 (1)

ol
do? 2((72 Z 0 (2)

=1
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(1)-bdl kapjuk, hogy fi = # = X, ezt (2)-be helyettesitve pedig

n
262~ 2(52) 22

52 = f§j

90 90
2= "o B T o T 2(02)3 > — ),
2 2
838?72 = (02 2 Z/ 1( )r 3323& = 2(02)2 Z,':l(Xi — /L).

Vizsgéljuk a Hesse-matrixot ({1, 52) = (X, s2) helyen:

.l 0
H = On __n_
2(s2)?

H negativ definit = (fi, 52) valéban maximumhelye L(u, o%)-nek
tetszOleges realizicié mellett.
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L(a, b) = (b—a) ™", haa<xy,...,xn <b,
’ 0 kiilénben
a<xy,...,xn<b & a<x{ésx, <btartomdnyon L az a
monoton csokkend, b monoton novd fiiggvénye = maximumhelye
(x{, xp), ahol L nem derivalhatd!

Tétel
Tegytik fel, hogy X eloszldsa egy 0 paramétertdl fiigg. Bizonyos
regularitasi feltételek mellett a 6 paraméter 0, ML becslésére a
kovetkezbk teljestilnek:

> 9,, ib> 0, ha n — oo, azaz GA,, erésen konzisztens,

> E(én) — 0, han— oo, azaz 0, aszimptotikusan torzitatlan,

» ha D%(,) — o2, ha n — oo, akkor nincs olyan @ torzitatlan
becslése 0-nak, amelyre D?(0) < o2, azaz 0, aszimptotikusan
hatdsos becslése 0-nak.
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Momentumok mddszere

Tobb paraméter egyiittes becslésére haszndljdk. Tegyiik fel, hogy
X eloszldsa 0 = (01, . ..,0k) paramétertdl fiigg és létezik az elsé k
momentum: E(X') = m; = gi(0), i =1,..., k. Ha létezik a

g,-(@):l\/l,- iZl,...,k
egyenletrendszernek megoldasa, az & momentum becslése.
Példa A
X~ N(p,0%), m=p, m=o?+pu?= =M, c2=M— M
A tapasztalati momentumok er6s konzisztencidja miatt igaz a kov.

Tétel

Ha g;, ..., gk fiiggvények folytonosak, léteznek elsGrendii parcidlis
derivaltjaik és a J = det(0gj/06;) Jacobi-determindns nem eltiiné
fliggvény ©-n, akkor & momentum becslése erésen konzisztens.
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Bayes becslés

Tegylik fel, hogy 6 (egydimenziés) paraméter diszkrét véletlen
valtozé P(0 = t) = g+ (t € ©) a priori eloszldssal. Tekintsiik az

x = (x1,...,Xn) mintarealizciét. Ekkor L(t) = P(X =x|0 = t) az
X minta feltételes eloszldsa a 6 = t feltétel mellett.

P(X=x,0 =t) = L(t) - q+. A Bayes-tétel alapjin 6 a posteriori
feltételes eloszldsa X = x feltétel mellett

) g ___L(s) -
P(X=x) > col(t): qr

Vegyiik 0 feltételes varhatd értékét X = x feltétel mellett:

E@X=x)= t P =tX=x)= Tecot Lt) a0y

tc® ZtGe L(t) : qt

P(0 =s|X=x) =

ami csak a realizacié fliggvénye, becslésiink a T(X) statisztika.
(Abszolit folytonos esetben az eljards hasonld.)
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Definicié
T(X) statisztika a @ paraméter q a priori eloszlds alapjan
konstrualt Bayes-becslése.

Megjegyzés

E((0 — 0)?) > E(( — T(X))?) minden § statisztikara (ahol a
varhaté értéket az x, t egyiittes eloszldsa alapjan vessziik), azaz
T(X) minimalizélja a négyzetes rizikot.

Xi,...,Xp ~ Bi(p), ahol p ~ B(a, b). Ekkor L(t) = tk(1 — t)"k,
ahol k =371 x;.

q(t) = Wtal(1 bl 0<t<1)

q(t|X) _ r(k _{r_(g)_li:(‘;t i)+ b) tk+a71(1_t)nfk+bfl (0 <t< 1)

k+a . T(X):ZLlX;—l—a
n+a+b n+a+b
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Normalis eloszlasbdl szarmaztatott eloszlasok

Definicié
Legyenek Xo, ..., Xntm ~ N(0,1) fiiggetlenek.
=XE 4.+ X

n szabadsagfokii \* eloszlasti F\2., eloszlds- és f,2 ,
stiriiségfiiggvénnyel.
Xoﬁ

\XEA+ X2

n szabadsagfoku Student (t) eloszlasd ®,, eloszlds- és ¢,

t =

stiriiségfiiggvénnyel.
F_n X2 +... + X2
m X2 . +...+ X2,

(m, n) szabadsdgfokii F eloszlasi Fp, , eloszlds- és fp, p
stiriiségfiiggvénnyel.
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v=1
—v=2
—uv=5
—v=+00
2 4
d1=10, d2=1
s d1=100, d2=100 i
1 i
05 N B
\\‘
0 - =
0 1 2 3 ) 5
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Allitas
> Ha x2 ~ x?(n), x2, ~ x?(m) fiiggetlenek, akkor

Xo+ Xim = XE 4 A XE+ XE i+ XE o~ X (0 m).

» Hat,~ t(n),n=1,2,..., akkor t,,gX ~ N(0,1).
» Hat ~ t(n), akkor t* ~ F(1,n).
» Ha F ~ F(n,m), akkor 1/F ~ F(m,n). Ebbél, ha x > 0,

Fom(x) =P(F <x)=P(1/F >1/x) =1— Fp(1/x).

» Ha Fy~ F(n,m),n=1,2..., = anngxfn, n— oo.

Megjegyzés

Fi2.n(x), ®n(x) és Fin n(x) fiiggvényekre nincs zart formula.
Némely x?, Student és F eloszlas néhany kvantilisének kozelitd
értékét statisztikai tablazatok tartalmazzak.
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Tobbdimenzids normalis eloszlas

Definicié

A d-dim. Z véletlen vektor tébbdimenzics standard normalis
eloszlasu, ha komponensei fliggetlen standard normdlis eloszldsdak.
Jel: Z ~ Nd(o, Id)-

Eszrevétel

Ha Z ~ Ny(0,1,), akkor ZTZ ~ x?(d).

Definicié

X = (X1,...,Xq)" d-dimenzids véletlen vektor, E(X?) < oo Vi.
Viarhaté érték vektora E(X) = (E(X1),...,BE(Xy)) ",
kovarianciamatrixa Cov(X) = E((X — E(X))(X — E(X))"), amely
komponensei Cov(X;, Xj) = E((X; — E(Xi))(X; — E(X)))).

Allitas

Ha Z ~ Ny4(0,14), akkor E(Z) = 0 és Cov(Z) = 1.
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A vérhaté érték vektor és kovarianciamatrix tulajdonsagai
Legyen X egy d-dimenzids véletlen vektor, amely
kovarianciamatrixa létezik. Cov(X) = C

» szimmetrikus, azaz C = CT,

P pozitiv szemidefinit, azaz xCx > 0 minden x € R%re.

» Ha A c R™9 b c RY akkor E(AX 4+ b) = AE(X) + b és
Cov(AX +b) = ACAT

Definicié

Ha A egy d x d-s (nemszinguldris) matrix és m egy d dim. vektor,
X =AZ +m ~ Ny(m,C) (nem elfajult) tébbdimenziés normdlis
eloszldsti, ahol C = AAT.

Allitss

E(X) =m, Cov(X)=C.
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Allitas
Ha C invertdlhats, X ~ Ny(m, C) siirliségfiiggvénye

f(x) = (2r)~9/2|C|H2e 2 (-m) TCom) -y ¢ R,

Kovetkezmény

Az X ~ Ny(m, C) véletlen vektor komponensei normalis
eloszldsitak és pontosan akkor fliggetlenek, ha C diagonalis.
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Tétel (Tobbdimenziés CHT)

Legyenek X1, Xq ... azonos eloszlasi fiiggetlen d dimenzids
vektorvdltozok, E(X;) = m és Cov(X;) = C (nem feltétleniil
invertdlhatd) és S, = Y.7_; X;. Ekkor

1

%(sn — nm) 25 Ny4(0,C), ha n— .

Allitas
Legyen X = (X1,...,Xq)" ~ Ng(0,C). Ekkor

d d
XTX=3"X?=> XY?,
i=1 i=1

ahol Y ~ Ny(0,14), A1 > ... > Ay > 0 a C mdrtix sajatértékei.
Bizonyitas
C=UAUT, Y =AT2UTX = ||X|]2=]|UTX]|]? = ||AY2Y|]2.
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Statisztikak eloszldsa

Tétel (Lukdcs Jend)
Legyen X1, ..., X, egy N(u,0?) eloszldsbdl vett minta.

n
2) 28 (1)
(3) X és S? fiiggetlenek,

X—p
4
W s
Bizonyitas
X =(X1,..., X)) ~N,(p1,0%1,). Legyen U egy n x n-es

ortonormalt matrix, amely elsé sora 17 //n és legyen Y = UX.
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http://www.math.u-szeged.hu/~ngyj/abra/atlagkonz.gif

Y ¥VP=YTY=X"UTUX=XTX = sz
o n ~ 2 n n
amib8l nS? =371y XZ —nX" =371 Y2 - Y =311, V7,
mivel U definiciéja miatt Y7 = y/n- X. Tovdbba
Y = UX ~ N,(U(p1),U(c?1,)UT) = No(Vnper, o?l) =
() X=v/va~N (%) = XN (1)

a/vn
: nS2 4 Y?
(2) i>1: %~ N(0,1) = — Z;UNX (n—1) és
(3) ezek fliggetlensége (a korreldlatlansdgbdl) kozvetleniil adddik.

X—p

(4) QT/W%” - (5”)7 n-1l_,. t(n—1).
nS? (n—1)5*2
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Tétel
Legyen X1, ..., Xn, egy N(p1,02), Y1,..., Yn, egy N(u2,03)
eloszlasbdl vett fliggetlen minta. A kovetkezbk teljesiilnek:

(1)

X =Y — (1 — p2)

2 2
%, %
m n

~ N(0,1).

(2) ha o1 = o2, akkor

X—Y—(Ml—uz)-\/nlnz(n1+n2_2) ~ t(m + 2 —2)

\/MmS% + mS3 L+
3) s
X 92
5;20_% ~ .7:(n1 — ].7 ny — 1).
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Bizonyitds
EI626 tétel alapjan X ~ N (ul, n1> Y~ N (M, n2)

=Sz ~x*(m—1), *25%/ ~ x*(no — 1) fiiggetlenek.
0'1 0'2
(1) X=Y~N g, %

[ P sl

— 2 2

(2) % ~ N(0,1), "15x:72”25v ~X2(ny + ny — 2)
nrno
ning

X=Y_Gazm) | /oy =2

o2(ny+nyp)
nyn
= 1= Nt(n1+n2—2),
n15)2<+n25$/
\V P

g52 ni— 15*2
(3) n2—1.a§X:n2—1 o? N}"(n—ln—l)
m—1 1282 p—1 m1lgx2 1= 5 '

1 O'% Y 1 g% Y
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Konfidencia intervallumok

Legyen 6 ismeretlen paraméter. Az intervallumbecslés [ényege olyan
intervallum konstrudldsa statisztikdk segitségével, amelybe 6 nagy
valészinliséggel (altalaban 0,95 vagy 0,99) beleesik.

Definicié

Legyen S, < T, két statisztika, amelyre Py(S, < 0 < T,) =1—a.
Ekkor azt mondjuk, (Sn, Tn) egy 1 — o megbizhatosagi szintii
konfidencia intervallum 6-ra.

A konfidencia-intervallum szerkesztésének sémdja
> Keresiink egy Z,(0) valtozdt, aminek eloszldsa ismert.

» Z,(0)-ra szerkesztiink intervallumot:
Po(a < Z,(0) < b) =1 — «, ahol a, b konstansok.

> A Z,(0)-ra felirt egyenlétlenségeket atalakitjuk 6-ra felirt
egyenl6tlenségekké: Py(Sy(a, b) < 0 < Tp(a, b)) =1—q,
ahol Sp(a, b), Th(a, b) statisztikak.
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Konfidencia intervallum normalis eloszlas varhaté értékére

Legyen X1, ..., X, N(u,0?)-bdl vett minta, ahol o ismert. y-re
kerestiink 1 — oo megbizhatdésagi szintli konfidencia intervallumot.
_X—p
~o/v/n

P(—xa < Zp(p) < xa) = P(Zn(p) < xa) = P(Zn() < —Xa)
= (D(Xa) - q)(_Xa) = 2¢(Xa) —1=1-aq,

X~ N(,02/n) = Z,(n) ~ N(0,1).

amibél x, = ¢ 1(1 - %).

X —
l—a = P(—xa< M<xa)
o

/v/n
_ g — g
= P(X—x,— < X a7 | -
< Xﬁ</1< +Xﬁ>

Az intervallum hossza | T, — S,| = 2x,0/+/n — 0, ha n — .
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Ha o ismeretlen, vegyiik a becslését. Ekkor
_X-un
- S*/\V/n
A t(n — 1) eloszlds szimmetrigjat felhaszndlva a

P(—xa < Zn(pt) < Xo) = 2Pp_1(xa) — 1 = 1 — a Osszefiiggésbdl az
eléz6hdz hasonléan adédik x, = &, (1 — ). Ebbél

Zn(,Uz) ~ t(n — ].)

X —
l—a = P(—xa<'u<xa>

— S* - S*
= P|X- o = X a” = -
( X'\/E<M< + X, \ﬁ)

Az intervallum hossza | T, — Sp| = 2x,S*/+/n 50, ha n — oo.
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Konfidencia intervallum normalis eloszlas szérasara
Tudjuk, hogy Z,(c) = nS?/a? ~ x?(n —1).

Legyen an = F.' 1 (/2) és by =F.' ,(1-a/2),

« (0%
P(a0 < Zn(0) < ba) = Fyzp-1(ba) = Fa-1(aa) = (1= 5) = 5-

2
l1—-a = P(aa<nsz<ba>
o

nS2 nS2
< o<
b(l a(l

= P
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Konf. intervallum normalis eloszlasok vé. kiilonbségére

Legyenek X1, ..., Xp, ~ N (p1,02) és Y1,..., Yn, ~ N(p2,03)

fgn. mintak. u; — po-re keresiink konfidencia intervallumot.
X~V = (i po

Znym (b1 — p2) = (e H)NNWJ)

2 2
%9
m no

Mivel P(—x < Zp; n, (11 — p2) < x) = 2®(x) — 1, az
Xy = @711 — «/2) vélasztassal kapjuk:

A (O ),
2 2
Coy:

m

2 2 2 2
P XV x| B 2 ey < X =Y x| 22
m n2 m n2
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Ha 01 = 0o = o ismeretlen, legyen

XV (4 —
an,nz(lul - .“2) = D(IU:l ”2) ~ t(nl + np — 2)a

ahol
ny 4+ no

mny(ny +np —2)

DZ = (mSg + mSY)

P(_X < an,n2(ul - :UZ) < X) = 2¢n1+n2—1(X) —1,igy az

Xo = ®;11+n272(1 — «/2) vélasztéssal kapjuk:

X -V — (41 —
1—a:P<—xa< D(“l “2)<xa>

:P(Y—Y—XQD*<;11—;L2<Y—7+XQD*).
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Konf. intervallum normalis eloszldsok szérashanyadosara
Xty ooy Xny ~ N(p1,02) és Y1,..., Yo, ~ N(p2,03) fgn. mintak.
01/ 02-re keresiink konfidencia intervallumot. Legyen

Znym(01/02) = i*z ~ F(n —1,nm—1).
Haa, = F 1y 4(a/2) és by=F 1, (1—a/2) akkor
l—a = Fp-1m-1(ba) — Fni—1,m—-1(aa)
= P(aa<§§ U§<b>

5*2 o1 5*2
P X_ <2< X .
< S ;;2 b(), g2 S ;2 do
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Statisztikai prébak

Az ismeretlen P € P eloszldsra (paraméteres esetben 6 € ©-ra)
vonatkozé hipotéziseket vizsgalunk. A fogalmakat paraméteres
prébdkra vezetjiik be, nemparaméteresekre hasonldan definialhatdk.

Legyen © = ©g U ©; a paramétertér egy osztdlyozdsa. A kovetkezd
hipotézispart vizsgaljuk:

Hp : 6 € ©q, Hy:0 € 0.

Ho-t nullhipotézisnek, Hi-et ellenhipotézisnek vagy alternativ
hipotézisnek nevezziik. Ha |©g| = 1, Hy egyszerii, kiilonben
osszetett. A nullhipotézis altaldban Hy : 0; = c alakd. Ekkor ha

Hi : 0; # c, akkor kétoldali, ha Hy : 8; < c vagy H; : 6; > c, akkor
egyoldali ellenhipotézis, a hipotézisparrél dontd prébat is ennek
megfeleléen nevezziik majd egy- illetve kétoldalinak.

Cél: nagy valdsziniiséggel helyesen donteni a hipotézisekrol.
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Definicié

Legyen X = X, U Xy felbontds, amelyre Py(X € Xx) = o minden
0 € ©¢ esetén és tekintsiik az x realizaciét. A fenti hipotézispart
teszteld, Xy kritikus tartomannyal értelmezett o terjedelmii proba
elfogadja Hy-t, ha x € X, és elutasitja, ha x € X.

Xe-t elfogaddsi tartomanynak nevezziik. Ha 6 € ©q és x € X,
akkor elséfaju, ha 6 € ©1 és x € X, masodfaju hibardl beszéliink.

Megjegyzés
a-t nevezik szignifikancia-szintnek is és altalaban 0,05-nak vagy
0,01-nak, ritkdn 0,1-nek valasztjak.

A prébdk altaldnos menete

Vesziink egy T, probastatisztikdt, amely eloszldsa ismert Hy
mellett. Legyen ¢, kritikus érték ennek az eloszlasnak az 1 — «
kvantilise. x € X < T, > c,. Kétoldali préba esetén néha két
kritikus értéket adnak meg, az a, «/2 és a b, 1 — a/2 kvantilist,
XEXe s an < Tp < b,.
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Tekintsiink egy N (u, 02) eloszlasbdl vett mintat. Tegyiik fel, hogy
o ismert. Rogzitett pg esetén vizsgaljuk a kovetkezd hipotéziseket:

Ho:p=po, Hi:p# po.
» Tekintsiik a kovetkezé prébastatisztikat:

_Y—;Lo
~a/yn’

ami Hp teljeslilése esetén standard normalis eloszlasu.

u

» Ehhez és o > 0-hoz keressiik az u,, kritikus értéket tgy, hogy
Pry(—ua < u < ug) = P(ua) —P(—un) =2P(up)—1=1-0«

legyen, igy u, = ® (1 — o/2) adédik, X = {x: |u| > u,}.
» Dontés: ha |u| < ug, akkor Hp-t elfogadjuk, kiilonben elvetjiik.
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Megmérték 10 ember IQ-jat, a kovetkezé adatokat kaptdk:
133, 144, 103, 90, 83, 133, 140, 88, 81, 89. Tegyiik fel, hogy a
sz6ras 25. Teszteljik a Hp : = 100 vs Hy : 1 # 100 hipotézispart!

> A prébastatisztika

X —po 1084 —-100 s

a/v/n 25/1/10 T
> Mivel o = 0,05, a kritikus érték ugps = ®~1(0,975) = 1,96.
» Dontés: |u| < ugps, ezért elfogadjuk a nullhipotézist.

u

» A 0,95 megbizhatdsagi szintli konfidencia intervallum p-re

25 25
108,4 — 1,96 - —; 108,4 +1,96 - — | ~ (92,9; 123,89).
( V10 vV 10) ( )
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Most a kovetkezd hipotéziseket vizsgaljuk:
Ho : po = po, Hi:p> po.
P> A prébastatisztika most is

_Y—/Lo
" o/vn’

ami Hy teljesulése esetén standard normalis eloszlasu.

u

» Ehhez és o« > 0-hoz keressiik az u, kritikus értéket lgy, hogy
Pu(u<uy) =d(un)=1—a

legyen amibdl 1, = ® (1 — a) adédik, Xy = {x: v > u,}.

» Dontés: ha u < u,, akkor Hp-t elfogadjuk, kiilonben
elutasitjuk.

Nagy-Gyorgy Judit Statisztika



Tévedési lehetoségek

» Elsofaji hiba: Hy teljesiil, de elvetjik. Ennek Hp melletti
feltételes valdsziniisége « terjedelmii préba esetén
p1 = PHO(X € Xa) = P(X € Xk|9 € @0) = o.
> Masodfaji hiba: Hp nem teljesiil, de elfogadjuk. Ennek H;
melletti feltételes valészinlisége pp = Py, (X & X).
Definicié
en(c,0) =1 — po =Py (X € Xk) a préba eréfiiggvénye (ereje).
Definicié
Egy « terjedelmii préba torzitatlan, ha en(cr,0) > « és konzisztens,
ha minden 6 € ©; esetén limp_,o en(c,0) = 1.

Megjegyzés
A konzisztencia azt jelenti, hogy a mintaelemszdm novelésével a
masodfaji hiba tetszélegesen kicsivé tehetd.
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Allitas
Az egyoldali u préba torzitatlan és konzisztens.

Bizonyitas

X —
en(anu):]-_p2 = 1_PH1< 0§”a>

- P*“( oia < +i0/§£>
- 1“"(””@%)

> 1-d(uy)=1—-(1-a).
Tovabbd “‘}f—> —o00, ha n — oo, igy
e,,(oz,,u):1—p2:1—(b<ua—|—'t;0/\_/g>—>1, ha n — oc.
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Allitas
Az u proba torzitatlan és konzisztens.

Bizonyitas

en(c, i) = 1- Py (‘);/_\/’% <ua>
- =t (e B < S < )

:1‘¢<“ M/f)*‘"( *MO/}M);&

Kell: e5(1) =1 @ (o + 2924 ) + & (—uy + L271)

minimumhelye © = po-ban van.
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http://www.math.u-szeged.hu/~ngyj/abra/ukonz.gif

(&) (n) = <1 — 0 <ua + ’;‘}%‘) +o (—ua + ‘;0/%‘»

= o k) e (e ) S

¢ szimmetridja és monotonitdsi tulajdondgai miatt ez pontosan
akkor 0, ha = po.

n

2
) =2¢/(ua)—5 < 0.

g

(5 0) = ) (L) st

Vi
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Konzisztencia: ha u # uo,

o B o e it) o o

Tovabba ha > po, g/\f—> —00, ha n— o0, és ha pu < py,

Z(}f — 1, ha n — oo, amibdl kovetkezik a konzisztencia.

Megjegyzések

» Az u préba pontosan akkor fogadja el a nullhipotézist, ha g
beleesik a varhaté értékre vonatkozd 1 — o megbizhatdsagi
szintli konfidencia intervallumba ismert szdras esetén.

» A CHT miatt az u préba nagy mintdk esetén nem csak
normalis eloszlasbdl szarmazd mintdra alkalmazhatd.

Nagy-Gyorgy Judit Statisztika


http://www.math.u-szeged.hu/~ngyj/stat/ukonz.gif

Megjegyzések
> A prébak gyakorlati alkalmazasdban a kritikus érték
meghatdrozdsa helyett azt a p-értéket (mdas néven
szignifikancia értéket) hatdrozzak meg, amelyre u, = u. Az u
prébara egyoldali esetben

o l1-p) = u
p = p=1-5(),

kétoldali esetben

oY (1-p/2) = |y
p = p=21-o(u])).

Dontés: Ha p > «, Hp-t elfogadjuk.
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A hibak valészinliségével kapcsolatos problémdk

P> po-t dltaldban nem ismerjuk.

» Az els6faji hiba valdsziniiségének értelmezésével is vigyazni
kell:

P(X S Xk‘Ho) =p1 =«
P(X ¢ Xk‘Hl) = p2 = P(X S Xk‘Hl) =1—p
Legyen P(Hp) = q, ekkor

P(X S Xk|H0)P(H0)

P(Ho|X € X)) P(X € Xx|Ho)P(Ho) + P(X € Xy|H1)P(Hy)

a-q
a-q+(1-p)(1-q)

= ha py és g nagy, akkor P(Hp|X € X)) is nagy!

» Publikacios torzitas
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Likelihood-hanyados prébak

Altaldnosan hasznalhaté médszer prébdk konstrukcidjéra.
Tegyiik fel, hogy dim(©) = r véges és dim(©g) =k < r. A

Ho : 6 € ©y, Hy: 0 €0
hipotézispart eldontd likelihood-hanyados préba statisztikdja

)\n(X) _ SUPyeco, L(@) )
supgeo L(0)

Allitas

Bizonyos regularitasi feltételek mellett, Hy teljesiilése esetén
—21In Ap(X) 2, x2(r — k), ha n — oc.

Tehat a kritikus érték —21In A\, = szlrik(l — ), a kritikus
tartomdny X = {x: A\,(X) < A, }.
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Legyen Xi,...,Xn ~ N(u,0d), ahol ag ismert. Ho : it = puo,
Hi: o # po.

M(X) = SUP =10 L(0)
" sup,er L(0)

— L5 (Xi—po)?

. ( /727T00)7"e 2"8 2171( o)
— LS (X—X)?

(V2mog)~"e 203 = )

L (CXimmeP R (6= X)?)

_n_(X— 2
L e 203(X MO) .

* A szamldldban pu értéke rogzitett, a nevezbben a p paraméter ML
becslését irjuk: i = X. ** Steiner egyenl6séget alkalmazzuk.

—2In X\ (X) = @ = u? ~ x?(1), ahol u az u préba
0
statisztikdja.
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Paraméteres probak

t préba (Student préba)
Tekintsiink egy N(u, 02) eloszlasbdl vett mintat, ahol o

ismeretlen.
Ho : p=po, Hi:p# po.

X — po
5*//n
>t =@, 1 (1 /2) és Xy = {x: [t] > t}.

> A prébastatisztika t =

~ t(n—1) Hp mellett,

Egyoldali t préba

Ho : p=po, Hi:p>po

P> A prébastatisztika ugyanaz mint fent,
> t,=d 1 (1-a)és X ={x:t>t,}
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Megmérték 10 ember IQ-jat, a kovetkezd adatokat kaptdk:
133, 144, 103, 90, 83, 133, 140, 88, 81, 89.

Hp : =100, Hp:p+#100
X = 108,4 és S* ~ 25,89, tops = Py 1(0,975) = 2,262.

X —po 1084 —100 )
S*/v/n 2589410

[t| < tops, ezért elfogadjuk a nullhipotézist.

t

Az 1 — o megbizhatdsagi szintli konfidencia intervallum

2 2
(108,4 - 2,262@; 108,4 + 2,262 5’89) = (89,88; 126,92).
V10 V10
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Megjegyzések

> Belathatd, hogy a két- és egyoldali t-préba is konzisztens.

> Konnyen lathatd, hogy az « terjedelmi kétoldali t-préba
pontosan akkor fogadja el Hp-t, ha o benne van az
ismeretlen o esetén p-re konstrudlt 1 — v megbizhatdsagi
szintl konfidencia intervallumban.

P t aszimptotikus normalitdsa miatt nagy minta esetén ugyanazt
a kritikus értéket haszndlhatjuk, mint az u-prébdanal.

> Nagy mintaelemszdm esetén — a centralis hatdreloszldstétel
miatt — mind az u-, mind a t-préba tetszoleges eloszlasbdl vett
minta esetén alkalmazhaté.

> Az egyoldali u- és t-prébanak van Hy : u = po, Hi : o < po
alternativakat vizsgald véltozata is, ekkor a prébastatisztika
helyett annak —1-szeresét hasznaljuk. Altalsban az egyoldali
prébak statisztikdja ugyanaz, mint a kétoldali valtozat, csak
az elfogadasi és a kritikus tartomanyt mdédositjak.
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Péros t préba
Osszetartozé (nem fliggetlen) minta esetén a kiilonbségvaltozéra
vonatkozd, un. onkontrollos vizsgalat alkalmazhaté.

Legyen (X, Y) olyan vektorvdltozé, amely komponenseinek létezik
a varhatdé értéke: E(X) = p1 és E(Y) = uo, tovabbd Z=X - Y
normalis eloszldsu. Tekintsiik a (X1, Y1),...,(Xn, Yn) mintat. A

Ho : pi1 = po,  Hi:pg # po

hipotézispart vizsgaljuk. Az eljards a kovetkezé:
> Képezziik a Z; = X; — Y véltozdkat, amik fliggetlenek és
normélis eloszlastak p = @1 — pp varhatd értékkel.
> A Zi,...,Z, minta segitségével egymintds t-probdval
teszteljik a Hp : = 0 nullhipotézist. Ha Hy : u1 > po, akkor
az egyoldali t prébat alkalmazzuk.
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Kétmintds t-préba
Legyenek Xi,..., Xn, ~ N(p1,02) és Y1,..., Yn, ~ N(u2,02)
fgn. mintak.

Ho : p1 = p2, Hi:py # 2.

n1n2 n 4+ no — 2)

X-Y ¢
1/n15)2<+n252 n1+n2

~ t(n + np —2) Hy mellett,

>t =0k, o1 a/2) é X = {x: [t > ta).

> A prébastatisztika t =

Egyoldali valtozat

» My i1 > o, a prébastatisztika ua.
> t, = ¢n1+n2 SJ(1—a) és X ={x:t>t,}.
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Welch préba

Tekintsiik az X1, ..., Xn, ~ N(p1,02) és Y1,..., Y, ~ N(2,03)
fuggetlen mintdkat.

Ho : p1 = po,  Hi:py # po.

_— X-Y e
» A prébastatisztika t = Tz ™ t(df) kozelitéleg Hoy
T+ F
mellett,
-1 *2
~ (2 4 Ao bs ¢ — S /m
ahol df ~ (m_l + 0 o= il

>t =0 (1—a/2) és X = {x:[t| > t.}.

Egyoldali valtozat

> Hi : 1 > uo, a prébastatisztika ua.
> t, =0 (1 —a)és Xy = {x:t>t,}.

Nagy-Gyorgy Judit Statisztika



Megjegyzések

> Beldthatd, hogy a kétmintds t préba konzisztens, és nagy
minta esetén tetszbleges eloszldsra alkalmazhaté.

> Konnyen lathatd, hogy az « terjedelmi kétmintds t-préba
pontosan akkor fogadja el a nullhipotézist, ha 0 benne van az
ismeretlen széras esetén 1 — po-re konstrudlt 1 — «
megbizhatdsidgi szintii konfidencia intervallumban.
> A kétmintds t-préba feltétele a szérdsok egyezése, ezért a
varhaté értékek egyenléségének tesztelése a kovetkezé eljards
szerint megy:
> A szérasok egyenlOségét teszteljiik a késébb ismertetendd
F-prébaval.
» Ha elfogadjuk az F préba nullhipotézisét, akkor alkalmazzuk a
kétmintds t prébat.
» Ha elutasitjuk az F préba nullhipotézisét, akkor a Welch
probat alkalmazzuk.

(Mi a probléma ezzel az eljardssal?)
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A (variancidra vonatkozd) x? préba
Tekintsiink egy N (u, o) eloszlasbdl vett mintat.

Ho:o0 =00, Hi=0#o0yp.
2

. nS

> A prébastatisztika \? = s~ X2(n — 1) Ho mellett,
g
0

> 2, = Fah (0/2) \Ba=Fal (1-af2)és

Xe={x: x> <xitU{x: x> x5}

Egyoldali valtozat

» Hy: o0 > 09, a prébastatisztika ua.

> Xa:FX_n 1(1—(1)éSXk:{X2X22X§}.
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F préba
Tekintsiik az X1, ..., Xo, ~ N(p1,02) és Y1,..., Yo, ~ N (112, 03)
fuggetlen mintakat.

L2 2 .2 2

5*2
> A prébastatisztika F = 57X2 ~ F(ny —1,n — 1) Hp esetén.
Y
> fl,(! = Fr;];an—l(a/z) és f2~,a = Fr;:l;l,ng—l(l - ()//2)

Xe={x:F<fiotU{x:F>hf,}.
Megjegyzések
> A gyakorlatban F* = max{F,1/F} (ha 1/F > 1, akkor

tulajdonképpen a két minta szerepét felcseréljiik) és elegendd
F*-hoz a felsé kritikus értéket nézni.

» Az « terjedelmii F préba pontosan akkor fogadja el a
nullhipotézist, ha 1 benne van a o1 /0p-re konstrudlt 1 — «
megbizhatdsagi szintli konfidencia intervallumban.
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Nemparaméteres prébak

Valésziniiségek tesztelése 2 prébaval

Legyen Aj,..., A, teljes eseményrendszer, p; > 0 minden j-re és
p1+ ...+ pr = 1. Végezziink n figgetlen megfigyelést.

HO . P(A,) = pPi, =1
Hy pedig Hp tagadasa.

ey ky

P> Jelolje v; az A; bekovetkezéseinek szamat. A prébastatisztika

X* = i Lo o)

no;
i1 Pi

Tétel -
Hy esetén x?> — x?(r — 1), ha n — oc.

Nagy-Gyorgy Judit Statisztika



Bizonyitds
v=(v1,...,v)" ~ Polys(p1,...,pr) (pi>0Vi).
E(v) = np, Cov(v) =P — pp', ahol P = diag(p). CHT:

S, =PV = P L2y X ~ Ny(0,P1/2cp-1/2)

P-12Ccp~Y2 =1, -qq", ahol q = (\/P1,-- .,\/,tT,)T

aq' a q irdnyra valé 1 rangi vetités = p-12cp~12 r -1 rangl
vetités, sajatértékei \1 = ... = A,_1 =1, A, = 0. Az el6z6 allitds
alapjan ha X ~ Ny4(0, P~1/2CP~Y/2), akkor XX ~ y2(r — 1),

valamint ,
Lp12y,.,Tp12 2§ (vi = npi)*

n np;
i—1 pi

> 2 = F)(;Trfl(l —a)és X = {x:x>>x2}.
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Tiszta illeszkedésvizsgalat x? prébaval
Legyen Xi,..., X, minta ismeretlen F eloszlasfuggvénnyel.

Ho : F(x) = Fo(x) Vx €R,

ahol Fy egy adott eloszlasfliggvény.

P Legyenek —co=xp < x1 < ... < X—1 < Xy = 00
osztépontok, valamint A; = {X € [xj_1, %)}, i=1,...,r.

P(A,‘) = P(X,',l <X < X,') = F(X,') — F(X,',l).

» Legyen p; = Fo(x;) — Fo(x;—1) > 0 minden i-re.

> A fentiek alapjan Hy maga utdn vonja az aldbbi hipotézist:
H(/J:P(A,'):p,', izl,...,r,

tehat a feladatot visszavezettiik valdszinliségek tesztelésére.
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Megjegyzések
> Ha X értékkészlete véges: xi, ..., x,, akkor nincs sziikség
osztépontokra, hanem az A; = {X = x;} valasztdssal a
valdszinliségek tesztelését kozvetlenil alkalmazhatjuk.

» J6l hasznalhaté okolszabdly a mintaelemszamra:
n > maxi<i<,{10/p;}.

Becsléses illeszkedésvizsgalat 2 prébaval

Ho : F(x) = Fo,,..0,(x) Vx€R,

ahol Fy, . g, adott eloszlasfliiggvény 61, ..., 0 ismeretlen
paraméterekkel.
Vegyiik a paraméterek 01, ..., 0 becsléseit és legyen Fp = Fél,-..,@k'

Az eljdrds ugyanaz, mint a tiszta illeszkedésvizsgdlatnal, de itt Hp
, D
mellett n — oo esetén 2 — y°(r — k — 1).
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Homogenitasvizsgalat x? prébaval
Tekintstink két mintdt: Xi,..., Xy, és Y1,..., Yn,.
Ho: P(X < x)=P(Y <x) ¥xeR.
P> Legyenek most is —co =xg < x1 < ... < Xp—1 < Xy = 00

osztépontok és p; az [xj_1, x;) intervallumba esé elsé, v; a
mdsodik mintabeli elemek szdma, p; + v; > 0 minden i-re.

: 1 Wi i\ 2
2 i i
X —”1"25 — -
] [L,'+V,' <n1 n2>

Ve A D
Hg esetén ny — 00, ny — 0o esetén x? — X2(f —-1).

» Tehat most is \2 = F;;Fl(l —a)és X ={x:x2>x2}.

Megjegyzés
Diszkrét véges értékkészleti valtozdk esetén itt sincs sziikség az
osztopontokra: intervallumokba esés helyett x; értéket keresiink.
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Fliggetlenségvizsgalat y? prébaval
Legyen X értékkészlete xq,...,x, és Y-é y1,...,¥s.

Ho :P(X=x;,Y =y)) =P(X=x)P(Y =y),1<i<r,1<j<s,

azaz X és Y fiiggetlenek. Vegyiik az (X1, Y1), ..., (Xs, Yn) mintat.

> Legyen vj; az (x;,yj) gyakorisdga a mintaban (a vj; értékeket
az lin. kontingenciatdbldzat tartalmazza), v;. = >°_; vjj és

V= i_1Vi

Vj. l/J)2

V/
_nE:E: iy Ny n
ViV

i=1 j=1
Ho mellett n — oo esetén 2 2, X2((r — 1)(s — 1)).
» Tehdt \2 = F, 1(r s_p)(l—a) és X = {x: X2 > ¥

Megjegyzés

Ennek specialis esete a homogenitasra vonatkozé x? préba.
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Azt szeretnénk tesztelni, hogy a dohdnyzas nemtdl figgetlen-e.
Megkérdeztiik az utcan szembejovo elsé 50 embert. Koztuk 6
dohdnyos n6, 18 nemdohdnyos n6, 14 dohanyos férfi és 12
nemdohdnyos férfi volt.

Legyen X : nem, Y : dohdnyzas indikatorvaltozdja, Hyp : X, Y fgn.

megf. | X=1 X=2|> elvart | X=1 X=2|>
Y=0 12 18 | 30 Y=0| 156 144 | 30
Y=1 14 6 20 Y=1| 10,4 96 |20

S| 26 24 |50 S| 26 24 |50

»  (12-15,6)? (18—14,4) (14-10,4)> (6—9,6)>
X'= " 56 U 124 T 104 T 9 3%

XBos = F2,(095) = 3841 <\ = elvetjitk Ho-t.
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Kolmogorov-Szmirnov préba (tiszta illeszkedésvizsgélat)
Ho : P(X < x) = Fo(x) VxeR.
> A prébastatisztika

A, =sup|F;(x) — Fo(x)].
xER

Ho mellett \/nA,, aszimptotikusan Kolmogorov-eloszl3si.
> ko= K Y1 —a)/yv/nés Xi={x:0,>ky}.
Megjegyzések

> A, meghatdrozdsdhoz elég 2n kiilonbséget meghatarozni,
mivel Fo monoton novo, F pedig [épcsds flggvény.

» Egyoldali viltozatban a prébastatisztika abszolutérték nélkiili
és kozelitéleg Szmirnov-eloszlasu.
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Kétmintds Kolmogorov-Szmirnov préba (homogenitasteszt)

Ho : P(X < x)=P(Y <x) VxeR.

Tekintsuk az Xi,..., X, és Y1,..., Y, mintdkat és a hozzdjuk

tartozd F; és G, empirikus eloszlasfiiggvényeket.

P A prébastatisztika

By = 51D, () = G, ()]
X

niny . sy YA
Hy mellett - Ap, n, kozelitéleg Kolmogorov-eloszlasti.

» Tehat k, = ,/%KAH —a)és Xy ={x:Ap> ky}.

Az illeszkedésvizsgalat megjegyzései itt is érvényesek.
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Wilcoxon-préba
Legyen X folytonos, a medidnra szimmetrikus eloszlasd vv.

1
Ho:P(X<m0):*

» Rendezziik sorba | X1 — mol, ..., | X, — mo| mintdt és legyen R;
rangszam |X; — mg| sorszdma ebben a rendezett mintdban.
> Legyen 71 = Z R;. Hp mellett
i X;>mq
> kis n esetén T eloszldsdnak t,,, kvantiliseit tabldzat
tartalmazza.

> Nagy n-re ﬁ%(ﬁ) ~ N(0,1) kézelitdleg,
( )_22, L 7nn+1) esD2(T+):w.

» A kritikus tartomany
> Xk = {X . ta/2,n > T+} @] {XZ T+ > w — a/2,n}v

>nagyn—reXk:{x:‘%T(+))‘ ol (1704/2)}.
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Paros Wilcoxon-préba

X, Y folytonos eloszlastiak. Onkontrollos vizsgalatot alkalmazunk a
kovetkez6 hipotézis vizsgalatara:

—

Ho: P(X < Y) ==

N

Tekintstik a (X1, Y1), ..., (X, Yn) mintdt. Legyen Z; = X; —Y;, igy

Ho: P(Z <0) =,

amit egymintas Wilcoxon-prébaval tesztelhetiink, ha Z eloszlasa
folytonos és a medidnjara szimmetrikus.

Megjegyzés

A péros t-préba nemparaméteres alternativajaként alkalmazzdk. Hy
értelmezése okozhat problémat (a medidnnak nincs a varhaté
értékhez hasonlé additiv tulajdonséga).
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Kétmintas Wilcoxon (Mann-Whitney) préba
Yi=X,i=1,....,m ést:Xj—i—H,j:nl—i—l,...,nl—i—ng
mintdk, ahol Xi,..., Xy, +n, flggetlen, azonos folytonos eloszl3asti
véltozdk. Ho: 0 = 0.

P> Rendezziik sorba az egyesitett mintat és legyen R; a Y; rangja

az egyesitett mintdban.
n
> Ry = Ziil R;. Hy mellett
> kis elemszam esetén Ry eloszldsdnak r, n, 5, kvantiliseit
tablazat tartalmazza.

» Nagy elemszamnal Ry(iR) ~ N(0,1) kozelit8leg, ahol

E(Ry) = mlmtmtl) ¢ D2(Ry) = mmlnintl)

> A kritikus tartomany
> Xk =X - {X ‘T /2,00 ,n, < RY < nl(nl + ny + ]-) - (}/2,n1<n2}v

> nagy elemszdmra X = {x : ‘RYmiR(y))
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Kruskal-Wallis teszt

Adott r fliiggetlen minta, az i. minta elemszama n;,
eloszlasfiiggvénye F; folytonos, az eloszldsok legfeljebb eltoldsi
paraméterben térnek el.

Ho: Fi(x)=...=F(x), ¥xeR

Vegylik az egyesitett mintabeli rangokat legyen R; az i. mintabeli
elemek rangosszege és N = >"7_; n;.

r 2
Lo 12 1 (g mN+D)
N(N+1) = n; 2
Ho mellett H 2, x2(r—1), hanl,...,n, — oo, igy

Xk: {XZ HZ FX721,’,1(1_(Y)}
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Tobbvaltozds mdodszerek

Hotelling-féle T2 préba
Legyen X ~ Ny(m, C) és tekintsiik az Xy, ..., X, mintt (n > d).

Hoim:mo, H1:m7£m0

> T2 =n(X— mo)TCA*_l(X — myp), ahol

2, 1 1 n _ -
C _n_ls_n_lg(x,—X)(x,—X)

a korrigdlt empirikus kovarianciamatrix. Hy mellett

n—d T?
d n—1

F = ~ F(d,n—d).
> Fo=F,1 J(1—a)és X={x:F>F,}
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Kétmintds Hotelling teszt
Legyen X ~ Ny(m1,C) és Y ~ Ny(my, C). Tekintsiik az
X1,y Xy, és Yq1,...,Y,, figgetlen mintdkat (n1, n2 > d).

Ho:mi=my, H;:mj#my

b T2 mm (X_?)Té*fl

ni+ng

(X —Y), ahol Cx = —L 5§

nm+n,—2%"

n

S = 300 - )%~ KT+ Y (Vi - V)Y, - V)T

i=1 i=1
Hy mellett
m4+nm—d—1 T?
F= : ~ F(d —d-1).
d ni+ny—2 (d,m + )
> Fa - Fd_.,il—&-n2—d—1(1 - (J() és X = {X :F > Fa}
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Egyszempontos varianciaanalizis (ANOVA)

Tekintsiik az X; j ~ N(ui,02), i=1,...,r, j=1,...,n

fuggetlen mintdkat. A varhaté értékek felirhatdok a kovetkezd

formaban: u; = p+ aj, ahol p a varhaté értékek n; értékekkel
stlyozott atlaga, a; pedig az i-edik csoporthatas.

Ho:p1=...=pr,

azaz minden csoporthatas O.
Legyen n=n1 + ...+ n,. Képezziik a kovetkezo statisztikdkat:

Y Z 1X’d v Zf:l ,'11 Xi,j B e
Xi= n , X—+, Qt_;;(x' _
Q=Y m(X X2 Q=33 (X - X
i=1 i=1 j=1

Q5 a csoportok kozotti, Qe a csoporton beliili eltérések
négyzetosszege.
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Tétel (Fisher-Cochran)

Legyen X = (X1,...,Xn) | ~ Ny(0,1,) és Q = XTX és
Q= XTAJ-X,j =1,..., k kvadratikus alakok, ahol A;-k
szimmetrikus mdtrixok és tth. @ = Q1 + ... + Qy teljesiil.
Q1 ~ x?(rang(A1)), ..., Qx ~ x?(rang(Ay)) és fiiggetlenek
pontosan akkor, ha Zjlle rang(A;j) = n.

Tétel

Q: = Q; + Qe, tovdbbd Hy mellett Qe/a? ~ x*(n —r) és
Q./0? ~ x%(r — 1) fiiggetlenek.

Bizonyitas

A nevezetes statisztikakra vonatkozéiétel miatt Hy mellett
Qi/0? ~ x*(n—1) és 3" 1n (X — Xi)?/0? ~ x*(ni — 1), amib8|
kovetkezik, hogy Qe/02 ~ Xz(n —r),aholn=n1+...+n,.

Tovabba Steiner tétele miatt
n; n;

D (X = Xi)? =D (Xj — X)* = mi(X; — X)?,
j=1 j=1
ebbdl Q; = Q5 + Qe, majd alkalmazzuk a Fisher-Cochran tételt.
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Hy vizsgdlata

» a prébastatisztika F = Q 1 _{ ~F(r—1,n—r) Hy
r J—
mellett. )
> Tehdt Fo, = F4 (1 —a)és X ={x:F>F,}
Megjegyzések

» ANOVA a kétmintds t-préba altaldnositasa.

> A szérasok egyenlsége Levene, Hartly vagy Bartlett probaval
tesztelhetd. Ha a szérdsok nem egyenléek, akkor ANOVA
helyett a tobbmintds Welch-prébat alkalmazzak (hasonlé
problémdk adédnak mint a kétmintds t préba esetén).

» PostHoc tesztek

> Ha a csoportokat tobb csoportosité valtozé segitségével
képezziik, tobbszempontos varianciaanalizist alkalmazunk.

P> Fliggetlenség tesztelésére is alkalmazzak.
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Linearis regresszid

Emlékeztetd

Tekintsiik a (X, Y) véletlen vektort. Keressiik Y-t legjobban
kozelitd linearis fuggvényt, azaz a-t és b-t, amelyre

E((Y — (aX + b))?) négyzetes eltérés minimalis:

_ Cov(X,Y) _ D(Y)

D2(x) bk

Cov(X,Y)

b=B(Y)+ T

E(X).
Definicié
A fenti paraméterekkel felirt y = ax + b egyenes a regresszios

egyenes, a, b paraméterek a linearis regresszios egylitthatok.

Megjegyzés
a = 0 pontosan akkor, ha X és Y korreldlatlanok.
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Determinisztikus valtozok esete

Tekintsiik a (x1, Y1),..., (Xn, Yn) mintat, ahol x; értékek
determinisztikusak és az (x1, y1), - .., (Xn, yn) realizaciét. Legyen

Y; = ax; + b+ ¢, ahol €1, ...,e, ~ N(0, 0?) fiiggetlenek,
eloszldsuk nem fiigg sem a-tdl, sem b-tél, sem x; értékektdl. Tehat
Yi,..., Y, fiiggetlenek, Y; ~ N(ax; + b, c?).

Regresszids egyenes paramétereinek ML becslése

Jeldlje Y; stirliségfliggvényét f;

1 n 2
fily))= ———e ~ 507 iz (Yi—axi=b)*
H ) ﬁa)

L(a, b) akkor maximalis, ha Q(a, b) = .7, (y; — ax; — b)?
minimalis (legkisebb négyzetes becslés).
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Q(a,b) =37 (vi — ax; — b)? mindkét valtozé szerint derivélhatd,
a derivéltak zérushelyei Q(a, b) lehetséges szélsdértékhelyei.

0Q  _ - (v . _
5, = -2 I.El xi(yi—ax;—b) = 0
Q u _ ' B
5 = -2 i§:1(y, axi—b) = 0

A lehetséges széls6értékhelyek teljesitik a kovetkezd egyenléséget

n@— ; x-@—O
Oa — "ob
n 2
Zx,y, Zx,Zy,—a an?—(ix,-) =0.
i=1 i=1 i=1 i=1
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Ebbdl
Ny XiYi = 21 Xi D i1 i
2
ny i x? = (2 xi)

n2C Sy
= a5 T ra(x, Y)S—X

a-t beirva 8@?3) = iz_;y; — a;x,- — nb = 0 egyenletbe

h— >i1Yi -~ §27:1Xi.

n n

Bel4thatd, hogy (4, b) valéban @ minimumhelye.
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Megjegyzések
> A legkisebb négyzetek mddszere mas modelleken is
alkalmazhaté.

> A regresszidt gyakran Y1 érték becslésére hasznaljdk, ha
csak a fuggetlen valtozdék adottak. (Vigyazat: extrapolacid!)

» Tipikus hiba: kapcsolat mogott oksagot feltételezni nem
determinisztikus valtozdk esetén.

P> A regresszids egyenes becslése érzékeny a kiugrd adatokra.
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Varianciaanalizis linearis modellben
Tekintsiik a Y = ax + b+, ¢~ N(0,0°) regressziés modellt és
az (x1, Y1), .., (xn, Yn) mintat.

Hoia:O H1:a7é0.

Vegyiik a regresszids egyenes paramétereinek 3, b ML becsléseit és
legyen Y; = ax; + b. Képezziik a kovetkez6 négyzetosszegeket:

n n n

Q=D(Vi-YP Q=D (Vi-Y? Q=) (-2

i=1 i=1 i=1

Tétel

Q: = Q; + Qe, tovdbbsd Hy mellett Qe/a? ~ x?(n —2) és
Q,/0? ~ x?(1) fiiggetlenek.

Bizonyitas vazlat

A nevezetes statisztikdk eloszldsa, a Steiner és a Fisher-Cochran
tételek alkalmazasaval.
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Hy vizsgdlata

> a prébastatisztika F = 8'(n —2), ami Hp mellett F(1,n — 2)
eloszlasu. )

> Fo=F, ,(1—a)és X={x:F>F,}

Allitas
Q= Q- r2(x,Y).

Bizonyjtas S
Z(ax, —b-V)2 =2 Z(x, —X)? = r3(x, Y)§n52
i=1

Kovetkezmény

2
Qo= Q1 —2(x,Y)) & & _mxY)

Qe 1-r2(x,Y)
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Korrelacidtesztek

Pearson

A hittérvaltozé (X, Y)T ~ Na(m,C). Hy : X, Y fgn.

t=+/n— 2% 25 t(n—2) Ho mellett, ha n — oo tehdt
—TIp )

Xe={x:]t| > &, (1 -a/2)}.

Spearman
(X, Y)T abszolit folytonos hattérvaltozé. Hy : X, Y fgn.
Tekintsiik az (X1, Y1), ..., (Xn, Yn) mintdt, legyen R; az X; és S;
az Y; rangszdma. A Spearman-féle rangkorrelacids egyitthatd
oy — >i1(Ri — R)(Si — S)
n = — —.
V(R = R)2\ S (S: — 5)2

Vn—1p, 2 N(0,1) Hp mellett, ha n — oo, igy
X ={x:|vV/n—1p,| > >71(1 - a/2)}.
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Tobbvaltozdés regresszid

X egy d dimenziés magyarazé valtozd, a regresszids fuggvény
E((Y — g(X))?)-t minimalizdlja. Ha Y és X egyiitt tobbdimenziés
normalis eloszldsl, a legjobb regresszids fiiggvény a linearis.
Definicié
ryxy = r(¢(X), Y) a tobbszoros korreldcios egyiitthatd, ahol
¢(x) = a'x + b a linedris regresszids fiiggvény.
Linedris regresszié (determinisztikus valtozdk esete)
A modell Y; =a'x;+b+e, &~ N(0,052).
Ho a=0.
> Vessziik a, b legkisebb négyzetes becsléseit, Y: =a'x; + b; és
képezziik Q:, Q, és Qe négyzetosszegeket.
. n—d-1 .
P A prébastatisztika most F = gr g ami Hy mellett
e
F(d,n—d —1) eloszlasu.
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Megjegyzések
> A tobbszoros korrelacids egyiitthatd nem altaldnositasa a
korrelacids egylitthaténak (de négyzetiikre igaz).
> X komponenseit fliggetlen, Y-t fliggd valtozénak nevezik.

P A tobbszoros korreldcids egylitthatd értelmezése: X
. . e 2 7 7 7 s
komponensei Y variancidjanak ry(x) részét magyarazzak.
ryoot meghatarozottsagi egyutthatonak is nevezik.
» Tobbdimenzidés normalis eloszldsu valtozdk esetén is
alkalmazhaté a varianciaanalizis linearis modellben.

2 - . e ; s
> % = lf—g, ahol R a becsiilt tobbszoros korreldcids

egyutthatd. Ho ry(x) = 0-val ekvivalens.

> A nemlinedris regressziét gyakran a linedrisra vezetik vissza.
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