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Algebra és számelmélet, második házi feladat

1. Trigonometrikus alakban számolva számítsa ki az alábbi komplex

szám értékét. A végeredményt adja meg kanonikus alakban is. (14.)
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A számlálóban negyedik egységgyök szerepel. Világos, hogy az egyszer¶sítéséhez az

x ≡ 3633 (mod 4)

kongruenciát vizsgáljuk. Világos, hogy 4|3600 és az is, hogy 4|32, tehát 4|3632 és 3633 −
3632 = 1, így

x ≡ 3633 ≡ 1 (mod 4) ,
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A nevez®ben a hatodik egységgyök jelent meg. Szintén világos, hogy ezúttal az

x ≡ 604 (mod 6)

kongruencia az érdekes számunkra, amely az

x ≡ 604 ≡ 4 (mod 6)

módon egyszer¶síthet®, tehát
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adódik. Innen a feladat már könnyen befejezhet®:
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2. Oldja meg az alábbi kongruenciarendszert.

4x ≡ 7 (mod 9) , 10x ≡ 4 (mod 12) .

A kongruenciák külön-külön megoldhatók, hiszen ln.k.o(4, 9) = 1 és ln.k.o(12, 10) = 2,
valamint 1|7 és 2|4. Megoldható a kongruenciarendszer is, hiszen ln.k.o(12, 9) = 3 és
3|7− 4 = 3. Hozzuk ®ket egyszer¶sített alakra:

4x ≡ 7 ≡ 16 (mod 9)⇔ x ≡ 4 (mod 9) , 10x ≡ 4 ≡ 40 (mod 12)⇔ x ≡ 4 (mod 6) .

Az els® kongruenciából x = 9k + 4 írható fel, k ∈ Z. Ezt beírva a második kongruenciába

9k + 4 ≡ 4 (mod 6)⇔ 9k ≡ 0 (mod 6)

adódik, amelyb®l k ≡ 0
(
mod 6

ln.k.o(9,6) = 2
)
. Innen k = 2l adódik, l ∈ Z. Visszahe-

lyettesítve:
x = 9k + 4 = 18l + 4⇔ x ≡ 4 (mod 18) .

3. Oldja meg az alábbi diofantoszi egyenletet.

78x+ 30y = 12.

El®ször is ln.k.o(78, 30) = 6 az euklideszi algoritmus szerint:

78 = 2 · 30 + 18,

30 = 1 · 18 + 12,

18 = 1 · 12 + 6,

12 = 2 · 6 + 0.

Mivel ln.k.o(78, 30) = 6|12, így az egyenletnek van megoldása az egész számok körében.
Járjunk el a következ®képpen:

18 = 1 · 12 + 6⇔ 6 = 18− 12.

30 = 1 · 18 + 12⇔ 12 = 30− 18, ezért 6 = 18− (30− 18) = −30 + 2 · 18.
78 = 2 · 30 + 18⇔ 18 = 78− 2 · 30, ezért 6 = −30 + 2 · (78− 2 · 30) amelyb®l

6 = 78 · 2 + 30 · (−5) adódik.

Ebb®l x0 = 2 és y0 = −5 olvasható le, melyekb®l a diofantoszi egyenlet összes megoldása:

x = 2 +
30

6
t = 2 + 5t, y = −5− 78

6
t = −5− 13t, t ∈ Z.

4. Adja meg a következ® Legendre-szimbólum értékét.(
103

151

)
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Mivel 151 ≡ 151− 103 = 48 (mod 103), ezért:(
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Ismét van két páratlan prímszámunk, használható a négyzetes reciprocitás tétele:
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5. Adja meg a következ® Legendre-szimbólum értékét.(
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)
.

A négyzetes reciprocitás tételének értelmében(
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Tovább vizsgálva:(
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6. Határozzuk meg f és g polimomok legnagyobb közös osztóját Q
felett.

f = x5 + x4 − 15x3 + 25x2 + 2x− 3, g = x2 + 4x− 5.
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Végezzünk maradékos osztást:
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Látjuk tehát, hogy f és g közös osztója az utolsó nemzéró maradék, azaz −143
16 .

7. Határozzuk meg f és g polimomok legnagyobb közös osztóját.

(11/(b))
f = x4 + x3 + x, g = x4 + x2 + x, f, g ∈ Z2 [x] .

Maradékos osztásokat végzünk Z2 felett a 6. feladatban ismertetett módon:
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Folytatva az euklideszi algoritmust:(
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A legnagyobb közös osztó az utolsó nemzéró maradék, azaz ln.k.o(f, g) = x.
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