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Algebra és számelmélet, els® házi feladat

1. Számítsa ki trigonometrikus és kanonikus alakban is.

a.)
1 +
√
3i

1 + i
=

√
4
(
cos arctan

√
3 + i sin arctan

√
3
)

√
2 (cos arctan 1 + i sin arctan 1)

=
√
2
(
cos
(π
3
− π

4

)
+

+ i sin
(π
3
− π

4

))
=
√
2
(
cos

π

12
+ i sin

π

12

)
=
√
2

(√
6 +
√
2

4
+ i

√
6−
√
2

4

)
=

=
1 +
√
3

2
+ i
−1 +

√
3

2
.

b.)
(−1− i)

(√
3 + i

)
(−1 + i)

(
−
√
3 + i

) =

√
2
(
cos 5π

4 + i sin 5π
4

)
2
(
cos π6 + i sin π

6

)
√
2
(
cos 3π

4 + i sin 3π
4

)
2
(
cos 5π

6 + i sin 5π
6

) =

=

(
cos

2π

4
+ i sin

2π

4

)(
cos
−4π
6

+ i sin
−4π
6

)
= cos

−π
6

+ i sin
−π
6

=

√
3

2
− 1

2
i.

c.) (−1− i)
(√

3 + i
)
=
√
2

(
cos

5π

4
+ i sin

5π

4

)
2
(
cos

π

6
+ i sin

π

6

)
=

= 2
√
2

(
cos

17π

12
+ i sin

17π

12

)
= 2
√
2

(
−
√
6 +
√
2

4
+
−
√
6−
√
2

4

)
=

=
(
1−
√
3
)
+
(
−1−

√
3i
)
.

d.)
(√

3− i
)(

2 + 2
√
3i
)
= 2
√
3 + 6i− 2i+ 2

√
3 = 4

√
3 + 4i = 8

(
cos

π

6
+ i sin

π

6

)
.

e.)
1− i
1 + i

=

√
2
(
cos −π4 + i sin −π4

)
√
2
(
cos π4 + i sin π

4

) = cos
−π
2

+ i sin
−π
2

= cos
3π

2
+ i sin

3π

2
=

= cos
3 · 2π
4

+ i sin
3 · 2π
4

= −i negyedik primitív egységgyök.

2. Döntse el, hogy igazak-e az alábbi állítások. A választ minden

esetben indokolni kell!

a.) Van olyan z komplex szám, amelyre <(z) = 1 és |z − i| = 3.

Mutassuk meg, hogy az állítás igaz. Világos, hogy z = 1 + bi, ahol b ∈ R. Ekkor

|z − i| = |1 + (b− 1) i| =
√
1 + (b− 1)2 = 3,
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ami b-re egy másodfokú egyenletet ad:
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komplex számok eleget tesznek a feltételeknek.

b.) Bmely z ∈ C és n ∈ N esetén ha n
√
z értékei között van valós szám, akkor z is valós.

Mutassuk meg, hogy az állítás igaz. Legyen z = a+ bi =
√
a2 + b2 (cosϕ+ i sinϕ). Ekkor
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ahol k = 0, 1, 2, ..., n− 1. Világos, hogy a fenti kifejezés akkor és csak akkor lesz valós, ha
ϕ+2kπ
n = lπ. Ha ϕ = 0, akkor z valós. Ha ϕ 6= 0, akkor a bal oldali hányados csak akkor

lehetne π egész számú többszöröse, ha ϕ is π egész számú többszöröse lenne, márpedig z
ebben az esetben is valós szám. Ebb®l következik, hogy z csak valós lehet.

c.) Tetsz®leges z ∈ C esetén ha z2 harmadik egységgyök, akkor z is harmadik egységgyök.

Világos, hogy az állítás hamis. Amennyiben z2 harmadik egységggyök, úgy z2 = cos 2kπ
3 +

i sin 2kπ
3 , k = 0, 1, 2. Ekkor z = cos 2kπ+2lπ

6 + i sin 2kπ+2lπ
6 , ami k = 1 és l = 0 esetén egy

hatodik primitív egységgyököt jelent: cos 2π
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6 = 1
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√
3
2 i.

d.) Tetsz®leges z, w ∈ C esetén |z + w| = |z|+ |w| .

Az állítás hamis, általánosan csak a háromszög-egyenl®tlenséget lehet alkalmazni. Most
viszont adjunk ellenpéldát! Legyen z = 3 + 4i és w = −3 + 4i. Ekkor |z| = |w| = 5, de
|z + w| = |8i| = 8 < 5 + 5.

e.) Van olyan z komplex szám, amelyre <(z) = 2 és |z| = 1.

Világos, hogy nincs ilyen komplex szám, az állítás hamis. Legyen z = 2 + bi, ekkor
|z| =

√
4 + b2, ahol b ∈ R. Az állítás szerint 4 + b2 = 1, így b2 = −3, amely egyenletnek

nincsen megoldása a valós számok körében. Ez ellentmondás.

3. Számítsa ki a gyök összes értékét trigonometrikus alakban, majd

adja meg a végeredményt kanonikus alakban is.
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4. Döntse el, hogy gy¶r¶t, integritástartományt, illetve testet

alkotnak-e az alábbi számhalmazok a szokásos összeadás és szorzás

m¶veletekkel.

a.)Q (i) = {a+ bi : a, b ∈ Q} . El®ször vizsgáljuk meg, hogy (Q; +) Abel-csoportot alkot-e.

1. (Q; +) kommutatív, mert (a+ bi) + (c+ di) = (c+ di) + (a+ bi) = (a+ c) +
(b+ d) i ∀a, b, c, d ∈ Q.

2. (Q; +) asszociatív, mert ((a+ bi) + (c+ di)) + (e+ fi) = (a+ bi) +
+ ((c+ di) + (e+ fi)) = (a, c, e) + (b+ d+ f) i ∀a, b, c, d, e, f ∈ Q.

3. (Q; +) egységelemes, mert (∃e ∈ Q (i)) (∀l ∈ Q (i)) (e+ l = l + e = l).Világos, hogy
ez az elem az e = 0 + 0i.

4. (Q; +)-ben (∀l ∈ Q (i)) (∃l′ ∈ Q (i)) (l′ + l = l + l′ = e). Minden elemnek van tehát
inverze, ez pedig l = a+ bi esetén l′ = −a− bi.

A fentiek alapján (Q; +) Abel-csoport. Most vizsgáljuk meg, hogy (Q; ·) félcsoport-e.
Ehhez a szorzásra nézve teljesülnie kell az asszociativitásnak, azaz

((a+ bi) (c+ di)) (e+ fi) = (a+ bi) ((c+ di) (e+ fi)) , ∀a, b, c, d, e, f ∈ Q.

Ennek belátása egy hosszadalmas, de kihívást nem jelent® ujjgyakorlat lenne, így részletezés
nélkül − hivatkozva a komplex számtestre − állítom, hogy teljesül az asszociativitás, azaz
(Q; ·) félcsoport. Szintén hasonló indoklással élhetünk akkor, amikor azt állítjuk, hogy a ·
m¶velet disztributív az + m¶veletre. A megadott Q (i) tehát gy¶r¶.

Világos, hogy a vizsgált gy¶r¶ egységelemes (1 + 0i), kommutatív és zérusosztómentes,
ezért integritástartomány is. Kérdés, hogy testet alkot-e. Ehhez az kell, hogy (Q \ {0} ; ·)
Abel-csoport legyen. Ehhez minden elemnek kell, hogy legyen inverze, azaz

(∀l ∈ Q (i))
(
∃l′ ∈ Q (i)

) (
l′ · l = l · l′ = 1 + 0i

)
.

Felírva a kifejezést

(a+ bi) (e1 + e2i) = 1 + 0i⇔ (ae1 − be2) + (ae2 + be1) i = 1 + 0i

adódik. Külön vizsgálva a valós és képzetes részeket az{
ae1 − be2 = 1,

ae2 + be1 = 0
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egyenletrendszer adódik. Átrendezve, behelyettesítve és a 6= 0 esetén e1 =
1+be2
a , valamint

e2 =
−b

a2+b2
írható fel, és a kifejezések alapján e1 és e2 racionális. Vizsgáljuk meg, hogy mi

a helyzet, ha a = 0, err®l ugyanis még nem állítottunk semmit. Ebben az esetben a{
−be2 = 1,

be1 = 0

egyenletrendszer írható fel, ahol b 6= 0. Világos, hogy e1 = 0 és e2 = 1
−b adódik, mind-

kett® racionális. Minden elemnek van tehát inverze a multiplikatív zéruselemen kívül,
(Q \ {0} ; ·) tehát Abel-csoport, így Q (i) test.

b.) Z
[√

2
]
=
{
a+ b

√
2 : a, b ∈ Z

}
. Az eddigiek alapján világos, hogy Z

[√
2
]
nemcsak

gy¶r¶, de integritástartomány is, hiszen zárt az összeadásra és a szorzásra, ahogy azt
az el®bb részletesen beláttuk. Vegyük észre viszont, hogy az inverzkeresésnél problémába
ütköznénk, az ugyanis kivezetne az egész számok köréb®l. Így Z

[√
2
]
sajnos nem lehet test.

5. Oldja meg az alábbi negyedfokú egyenletet.

x4 − 4x3 + 3x2 + 2x− 1 = 0

Legyen f = x4 − 4x3 + 3x2 + 2x− 1 és g = x2 + a
2x+ α, α ∈ C, ahol a = −4. Ebben az

esetben tehát g = x2 − 2x+ α valamely α ∈ C. Írjuk fel a következ®t:

f − g2 = x4 − 4x3 + 3x2 + 2x− 1−
(
x2 − 2x+ α

) (
x2 − 2x+ α

)
=

= x4 − 4x3 + 3x2 + 2x− 1− (x4 − 2x3 + αx2 − 2x3 + 4x2 − 2αx+

+ αx2 − 2αx+ α2) = (−1− 2α)x2 + (2 + 4α)x+
(
−α2 − 1

)
.

Legyen most

f = g2 −
(
g2 − f

)
=
(
x2 − 2x+ α

)2 − ((2α+ 1)x2 + (−4α− 2)x+
(
1 + α2

))
.

Kell:

D = b2 − 4ac = (−4α− 2)2 − 4 (2α+ 1)
(
1 + α2

)
= −8α3 + 12α2 + 8α = 0.

Egyb®l látjuk, hogy α = 0 megoldás, ezért

f =
(
x2 − 2x

)2 − (x2 − 2x+ 1
)
=
(
x2 − 2x

)2 − (x− 1)2 =
(
x2 − 3x+ 1

) (
x2 − x− 1

)
.

A szorzat nyilvánvalóan akkor zéró, ha valamelyik tényez® zéró. A két tényez® zéróhe-
lyeinek megállapításához a másodfokú megoldóképletet alkalmazzuk:

x1,2 =
3±
√
5

2
és x3,4 =

1±
√
5

2
.
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