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ALGEBRA ES SZAMELMELET, ELSO HAZI FELADAT

1. SZAMITSA KI TRIGONOMETRIKUS ES KANONIKUS ALAKBAN IS.
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= cos + 2sin = —1 negyedik primitiv egységgyok.

2. DONTSE EL, HOGY IGAZAK-E AZ ALABBI ALLITASOK. A VALASZT MINDEN
ESETBEN INDOKOLNI KELL!

a.) Van olyan z komplex szam, amelyre R(z) =1 és |z —i| = 3.

Mutassuk meg, hogy az allitds igaz. Vilagos, hogy z = 1 + b, ahol b € R. Ekkor

lz—il=[1+(b—-1)i=/1+(b—-1)*=3,

1. oldal


http://maxwell.sze.hu/~ungert

Unger Tamés Istvan FTD1YJ

ami b-re egy masodfokd egyenletet ad:

2£v4+4-7
b> —2b—7=0, b1,2:+:1i2\/§,
igy a

a=1+ (14+2v2)i6s 2 =1+ (1-2v2)i
komplex szadmok eleget tesznek a feltételeknek.

b.) Bmely z € C és n € N esetén ha {/z értékei kozott van valés szam, akkor z is valos.

Mutassuk meg, hogy az éllités igaz. Legyen 2z = a+ bi = va? + b2 (cos ¢ + isin ¢). Ekkor
n 2 2
Yz = %/a2+b?(c0s<’0jL kw+isin7¢+ k:7r>’
n n

ahol £ =0,1,2,...,n — 1. Vilagos, hogy a fenti kifejezés akkor és csak akkor lesz valos, ha
%%” = Iw. Ha ¢ = 0, akkor z valés. Ha ¢ # 0, akkor a bal oldali hanyados csak akkor
lehetne 7 egész szamu tObbszorose, ha ¢ is 7 egész szamu tobbszordse lenne, marpedig 2

ebben az esetben is valés szam. Ebb6l kévetkezik, hogy z csak valés lehet.

c.) Tetszoleges z € C esetén ha z? harmadik egységgydk, akkor z is harmadik egységgyok.

Vilagos, hogy az allitds hamis. Amennyiben 22 harmadik egységggydk, ugy z? = cos %Tﬂ +
isin%T“, k=0,1,2. Ekkor z = COSW —i—isinw, ami k =1 és [ = 0 esetén egy

. s el . . 2 .2 1 V3
hatodik primitiv egységgyokot jelent: cos 4 +isin 4 = 5 + 574

d.) Tetszoleges z,w € C esetén |z + w| = |z| + |w].

Az allitds hamis, altalanosan csak a hidromszog-egyenlGtlenséget lehet alkalmazni. Most
viszont adjunk ellenpéldat! Legyen z = 3 + 4i és w = —3 + 4i. Ekkor |z| = |w| = 5, de
|z +w| =|8i| =8 <5+ 5.

e.) Van olyan z komplex szam, amelyre R(z) = 2 és |z| = 1.

Vil4dgos, hogy nincs ilyen komplex szam, az allitds hamis. Legyen z = 2 + bi, ekkor
|z| = V4 + b2, ahol b € R. Az allitas szerint 4 + b? = 1, igy b*> = —3, amely egyenletnek
nincsen megoldésa a valés szamok korében. Ez ellentmondés.

3. SZAMITSA KI A GYOK OSSZES ERTEKET TRIGONOMETRIKUS ALAKBAN, MAJD
ADJA MEG A VEGEREDMENYT KANONIKUS ALAKBAN IS.

/ 42k T+ 2k
a.) Vi= ¢ Cos72r+isin72r:%(cosz?)ﬂ—i—isinw), k=0,1,2.
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k=0,1,2,3.
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, 2k 2k
e.) &Vj:\3/8(cos7r+isin7r):%(cosW—i—isinW), k=0,1,2.

k=0: 2(cosg+ising) = 1+/3i,

k=1: Q(COS?):;T—FiSin?);r):—Q,

5 5
k=2: 2<cos§+isin;>:1—\/§z’.

4. DONTSE EL, HOGY GYURUT, INTEGRITASTARTOMANYT, ILLETVE TESTET
ALKOTNAK-E AZ ALABBI SZAMHALMAZOK A SZOKASOS OSSZEADAS ES SZORZAS
MUVELETEKKEL.

a.) Qi) ={a+bi: a,be Q}.Elsszor vizsgaljuk meg, hogy (Q; +) Abel-csoportot alkot-e.

1. (Q;+) kommutativ, mert (a+bi) + (c+di) = (c+di) + (a+bi) = (a+¢) +
(b+d)i Va,b,c,d € Q.

2. (Q;+) asszociativ, mert ((a+0bi)+ (c+di)) + (e+fi) = (a+bi) +
+ ((c+di) + (e+ fi)) = (a,c,e) + (b+d+ f)i Va,b,c,dye, f € Q.

3. (Q;+) egységelemes, mert (Je € Q (7)) (VI € Q (7)) (e +1 =1+ e =1).Vilagos, hogy
ez az elem az e = 0+ 0i.

4. (Q;+)-ben M €eQ(i)) (AN €Qi)) (' +1=1+1 =e). Minden elemnek van tehat
inverze, ez pedig | = a + bi esetén I’ = —a — bi.

A fentiek alapjan (Q;+) Abel-csoport. Most vizsgaljuk meg, hogy (Q;-) félcsoport-e.
Ehhez a szorzasra nézve teljesiilnie kell az asszociativitasnak, azaz

((a + bi) (c + di)) (e + fi) = (a+ bi) (c + di) (e + fi)), Ya,b,c,d,e, f € Q.

Ennek belatésa egy hosszadalmas, de kihivast nem jelent ujjgyakorlat lenne, igy részletezés
nélkiil — hivatkozva a komplex szamtestre — allitom, hogy teljesiil az asszociativitas, azaz
(Q;-) félesoport. Szintén hasonlo indoklassal élhetiink akkor, amikor azt allitjuk, hogy a -
miivelet disztributiv az + miveletre. A megadott Q (7) tehat gytrd.

Vildgos, hogy a vizsgilt gytrid egységelemes (1 + 07), kommutativ és zérusosztomentes,
ezért integritastartomany is. Kérdés, hogy testet alkot-e. Ehhez az kell, hogy (Q\ {0};")
Abel-csoport legyen. Ehhez minden elemnek kell, hogy legyen inverze, azaz

MeQ@)(FHeQ@) (' -1=1-"=1+0i).
Felirva a kifejezést
(a+bi)(e1 +exi) =1+ 0i < (aeg — bea) + (aea +bep)i =1+ 0i

adodik. Kiilon vizsgdlva a valds és képzetes részeket az

aep — b€2 = 1,
aes +ber =0
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egyenletrendszer adodik. Atrendezve, behelyettesitve és a # 0 esetén ey = %, valamint

ey = ﬁ irhato fel, és a kifejezések alapjan e és es raciondlis. Vizsgaljuk meg, hogy mi
a helyzet, ha a = 0, err6l ugyanis még nem &llitottunk semmit. Ebben az esetben a

—b€2 = 1,
b€1 =0
egyenletrendszer irhato fel, ahol b # 0. Vilagos, hogy e; = 0 és eq = %b adodik, mind-

kett6 raciondlis. Minden elemnek van tehat inverze a multiplikativ zéruselemen kiviil,

(Q\ {0} ;) tehat Abel-csoport, igy Q (i) test.

b.) Z [\/ﬂ = {a+ bW2: a,be Z}. Az eddigiek alapjan vilagos, hogy Z [\/ﬂ nemcsak
gylird, de integritastartomany is, hiszen zart az Osszeadasra és a szorzasra, ahogy azt
az el6bb részletesen belattuk. Vegyiik észre viszont, hogy az inverzkeresésnél problémaba
{itkoznénk, az ugyanis kivezetne az egész szamok korebél. Igy 7Z [\/ﬂ sajnos nem lehet test.

5. OLDJA MEG AZ ALABBI NEGYEDFOKU EGYENLETET.

2t =43 + 322+ 20 —1=0

Legyen f = 2% — 423 + 322 + 22 — 1 ésg:mQ—i-%x—i—a, a € C, ahol a = —4. Ebben az
esetben tehat g = 22 — 2z + a valamely « € C. Irjuk fel a kovetkez6t:

f—g2:m4—4m3+3x2+2x—1—(w2—2x+a) (m2—2x+a):
=t — 423 + 322 + 22 — 1 — (2 — 22° + ax? — 227 + 42% — 202+
+ax2—2ax+a2):(—1—2a)m2+(2+4a)x+(—az—l).

Legyen most

F=—(—f) = (®—20+a)’ = (Qa+1)a® + (—4a—2)z+ (1+a?)).

Kell:

D = —dac = (—4a —2)* =4 (2a + 1) (1 +a?) = —8a® + 12a% + 8a = 0.

Egybél latjuk, hogy o = 0 megoldas, ezért

f=@—2) = (P —2+41) = (" —20)° — (e -1)? = (@® =3z +1) (s> -z —1).

A szorzat nyilvanvaléan akkor zérd, ha valamelyik tényezd zér6. A két tényezs zérdhe-
lyeinek megallapitasdhoz a masodfokn megoldoképletet alkalmazzuk:
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