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KIVONAT. A Matematikai modellek c. kurzus els® projektfeladatának keretei

között bemutatom, hogy minden periodikus, a periódusának zárt intervallumán

Riemann-integrálható függvény Fourier-sorba fejthet®, azaz felírható elemi szi-

nuszos és koszinuszos függvények összegeként. Ismeretem egy általános négyszög-

jel felírását és Fourier-sorának meghatározását. Bemutatom a közelítés során a

jel szakadási helyein fellép® úgynevezett túllövési jelenséget, a Gibbs-e�ektust.

Ismertetem a σ-approximációt, amely egy közismert módszer a Gibbs-jelenség

hatásainak csökkentésére, kiküszöbölésére. Röviden vázolom azt is, hogy mindezt

hogyan tervezem megvalósítani a Wolfram Mathematica szoftver keretei között.

1. Bevezetés

A Fourier-sorok jel- és rendszeranalízisben betöltött szerepe kiemelt jelent®ség¶.
Mérnöki tanulmányaink során elsajátítottuk a lineáris, id®invariáns rendszerek
leírását tisztán szinuszos (koszinuszos) gerjesztések esetén. Megtanultuk, hogy
a komplex számok algebrájával az ilyen rendszerek viszonylag könnyen kezel-
het®ek, a válaszjel a komplex számokon végzett elemi matematikai m¶veletek
segítségével meghatározható, a két mennyiség hányadosa pedig már megadja a
rendszer jellemzésére alkalmas átviteli függvényt [1] is.

A Fourier-sorok segítségével az ilyen típusú lineáris rendszerek esetén ez
a vizsgálódás kiterjeszthet® összetettebb gerjesztések esetére is, amennyiben a
gerjesztés periodikus és Riemann-integrálható id®függvény formájában adódik.
Ebben az esetben a gerjesztést annak Fourier-sorával közelítjük, így visszavezet-
jük a problémát elemi szinuszos és koszinuszos jelekre, majd azokra külön-külön
elvégezve a számításokat a válaszjel az egyes komponensek szuperpozíciójaként
el®állítható.

Ebben a projektmunkában bemutatom, hogy milyen módon fejthet® Fourier-
sorba egy egyszer¶ négyszögjel. Bemutatom a közelítés hibájaként adódó Gibbs-
jelenséget a függvény szakadási helyeinél és ismertetek egy módszert − a σ-
approximációt − a jelenség hatásának csökkentésére is. A dokumentum utolsó
részében pedig vázlatos leírást adok arról, hogy miként tervezem az itt bemu-
tatott elméletet demonstrálni a Wolfram Mathematica szoftver segítségével.
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2. A Fourier-sor

Vizsgáljunk egy általános s(t) függvényt, amely T periódusid®vel periodikus és
a periódusának zárt intervallumán Riemann-integrálható is. Közelítsük ezt a
függvényt

s(t) ≈ sn (t) = S0 +

n∑
k=1

[
SAk cos

k2π

T
t+ SBk sin

k2π

T
t

]
(1)

függvénysor segítségével. Ha bizonyos t értékekre n→∞ esetén az sn (t) függ-
vény egy meghatározott s (t) határértékhez tart, akkor azt mondjuk, hogy az
adott függvénynek ezekre a t értékekre konvergens függvénysor-közelítése van [3].
Az S0, S

A
k és SBk konstansok de�níció szerint a következ®képpen határozhatók

meg [2]:

S0 =
1

T

T∫
0

s (t) dt, (2)

SAk =
2

T

T∫
0

s (t) · cos k2π
T

t dt és (3)

SBk =
2

T

T∫
0

s (t) · sin k2π
T

t dt. (4)

Ezt a függvénysort nevezzük az s (t) függvény Fourier-sorának.

3. Egyszer¶ négyszögjel vizsgálata

Tekintsük az 1. ábrán látható A magasságú, T periódusidej¶ egyszer¶ négyszög-
jelet. A függvénynek jól láthatóan t = 0-ban és t = T

2 -ben els®fajú szakadása
van. A függvény egyetlen periódusa felírható a Heaviside-féle ε (t) egységugrás-

t

s(t)

TT/2

A

0

1. ábra. Az egyszer¶ négyszögjel egyetlen periódusa

függvények lineáris kombinációjaként az

s(t) = A

[
ε (t)− ε

(
t− T

2

)]
, t ∈ (0, T ] (5)
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alakban. A munkám során egy ilyen típusú négyszögjelet szeretnék majd vizs-
gálni, ezért valamilyen módon el® kellene állítani a Fourier-sorát. Ehhez meg
kell határozni az S0, S

A
k és SBk konstansokat. Az egyszer¶ség kedvéért A értékét

1-nek választom. Vágjunk bele!

3.1. S0 meghatározása

S0 =
1

T

T∫
0

s (t) dt =
1

T

 lim
∆→0+

T
2 −∆∫

0+∆

1 dt+ lim
∆→0+

T∫
T
2 +∆

0 dt

 =

=
1

T

 lim
∆→0+

T
2 −∆∫

0+∆

1 dt

 =
1

T

(
lim

∆→0+
[t]

T
2 −∆

0+∆

)
=

1

T

(
T

2
− 0

)
=

1

2
.

3.2. SA
k meghatározása

SAk =
2

T

T∫
0

s (t) · cos k2π
T

t dt =

=
2

T

 lim
∆→0+

T
2 −∆∫

0+∆

cos k
2π

T
t dt+ lim

∆→0+

T∫
T
2 +∆

0 · cos k 2π
T
t dt

 =

=
2

T
lim

∆→0+

T
2 −∆∫

0+∆

cos k
2π

T
t dt =

2

T

[
sin k 2π

T t

k 2π
T

]T
2 −∆

0+∆

=

=
2

T

(
T
(
sin k 2π

T
T
2 − sin 0

)
k2π

)
=

sin kπ − sin 0

kπ
= 0 ∀k ∈ N+, hiszen

sin kπ = 0 ∀k ∈ N+.

3.3. SB
k meghatározása

SBk =
2

T

T∫
0

s (t) · sin k2π
T

t dt =

=
2

T

 lim
∆→0+

T
2 −∆∫

0+∆

sin k
2π

T
t dt+ lim

∆→0+

T∫
T
2 +∆

0 · sin k 2π
T
t dt

 =
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=
2

T
lim

∆→0+

T
2 −∆∫

0+∆

sin k
2π

T
t dt =

2

T

[− cos k 2π
T t

k 2π
T

]T
2 −∆

0+∆

=

=

(
− cos k 2π

T
T
2 + cos 0

kπ

)
=

1− cos kπ

kπ
.

Ismert, hogy

cos kπ =

{
1, ha k páros,

−1, ha k páratlan,

melyb®l

SBk =

{
0, ha k páros,
2
kπ , ha k páratlan.

3.4. Mit kaptunk?

Az talán válasz a kérdésre, ha összedobjuk az eredményeket és felírjuk a jel
Fourier-sorát is, legalább kétféleképpen. Az van tehát, hogy

S0 =
1

2
, (6)

SAk = 0, (7)

SBk =

{
0, ha k páros,
2
kπ , ha k páratlan.

(8)

Ebb®l a Fourier-sor egyik alakja az

sn (t) =
1

2
+ 2

(
sin 2π

T t

π
+

sin 3 2π
T t

3π
+

sin 5 2π
T t

5π
+ ...+

sin(2l + 1) 2π
T t

(2l + 1)π

)
(9)

alakban adódik, de felírható az

sn (t) =
1

2
+
∑
k

2

kπ
sin k

2π

T
t, k = 1, 3, 5, 7, ..., (2l + 1). (10)

összefüggés is, ahol l ∈ N. Megjegyzés, hogy a 2π
T kifejezést körfrekvenciá-

nak hívjuk és rendszerint ω jelöléssel látjuk el. Látjuk tehát, hogy a tárgyalt
négyszögjelet kizárólag szinuszos komponensek alkotják, és azokból is csak a
páratlanok szerepelnek a végtelen sorban. A k = 1-hez tartozó komponenst
a jel alapharmonikusának, a k = 2, 3, ..., (2l + 1) komponenseket pedig a jel
felharmonikusainak szokás nevezni a gyakorlatban.

4. A Gibbs-jelenség

Kezdjük el közelíteni az eredeti négyszögjelünket véges számú komponens se-
gítségével és nézzük meg, hogy mi történik. Azt fogjuk látni, hogy a közelítés
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egyre pontosabb és pontosabb eredményt ad, de az eredeti függvény szakadási
helyein úgynevezett "túllövési"' hibát fogunk tapasztalni.

Hiába közelítjük egyre több és több komponenssel az eredeti jelet, a közelí-
tés a szakadási helyeken mindig túln® az eredeti függvényen. Ezt a jelenséget
nevezzük Gibbs-e�ektusnak, erre mutat példát a 2. ábra is, melyen az eredeti
négyszögjel kilenckomponens¶ közelítése látható. A cél ennek a hibának a kikü-

2. ábra. Gibbs-jelenség t = 0 és t = 3 környezetében

szöbölése, melyre léteznek hatékony technikák. Az egyik ilyen a σ-approximáció,
amelyet a projekt keretei között bemutatok.

5. A σ-approximáció

A σ-approximáció pontosan az ilyen, szakadási pontoknál fellép® Gibbs-jelenség
kiküszöbölésére alkalmazható hatékonyan [4]. A technika Lánczos Kornél, egy
kiváló huszadik századi zsidó származású magyar matematikus nevéhez f¶z®-
dik. Lényege egy úgynevezett σ-faktor, másik nevén Lánczos-faktor alkalmazá-
sa, amely a

σn =
sin kπ

n
kπ
n

(11)

alakban írható fel [5]. A módosított Fourier-sor képlete az

s(t) ≈ sn (t) = S0 +

n∑
k=1

σn

[
SAk cos

k2π

T
t+ SBk sin

k2π

T
t

]
(12)

alakban adódik [5], melynek alkalmazásával a Gibbs-e�ektus hatása jelent®sen
csökkenthet®.

6. És akkor mindezt hogyan?

Az elmélet szép és fontos, de mindezt valahogy meg is kellene valósítani a Wolf-
ram Mathematica keretei között. Els® közelítésben meg fogom mutatni, hogy mi
az a Heaviside-féle egységugrás és egy manipulálható Plot segítségével bemu-
tatom, hogyan pakolható össze egy ilyen egyszer¶ négyszögjel két egységugrás
lineáris kombinációjaként. Ezek után bemutatom az itt levezetett összefüggé-
seket a konkrét négyszögjel Fourier-sorára, majd el®állítom azt a függvénysor
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általános képletének és a Wolfram Mathematica program Sum parancsának segít-
ségével. Az eredményt ábrázolom külön, valamint az eredeti jellel együtt is. A
programban a felhasználó számára észszer¶ keretek között a Manipulate segít-
ségével lehet®vé teszem, hogy maga válassza meg, hány komponenssel szeretné
látni a közelítést.

Ezek után ugyanezt meg fogom tenni a Lánczos-faktorral korrigált összefüg-
géssel is. Az eredményt feltüntetem külön koordináta-rendszerben, de láthatóvá
fogom tenni ®ket együtt is, hogy szemléletes legyen, hogyan korrigálja a Lánczos-
faktor a szakadási helyeknél fellép® túllövést.
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