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KIVONAT. A Matematikai modellek c. kurzus elsd projektfeladatinak keretei
kézott bemutatom, hogy minden periodikus, a periodusanak zdrt intervallumdn
Riemann-integrdlhatd fiigguény Fourier-sorba fejtheld, azaz felirhato elemi szi-
nuszos és koszinuszos fiigguények dsszegeként. Ismeretem eqy dltaldnos négyszig-
jel felirasdat és Fourier-sordnak meghatdrozdasat. Bemutatom a kézelités sordn a
jel szakaddsi helyein fellépd ugynevezett tullovési jelenséget, a Gibbs-effektust.
Ismertetem a o-approximdciot, amely eqy kdzismert mddszer a Gibbs-jelenség
hatdsainak csokkentésére, kikiiszobolésére. Roviden vdzolom azt is, hogy mindezt
hogyan tervezem megvaldsitani a Wolfram Mathematica szoftver keretei kiozott.

1. Bevezetés

A Fourier-sorok jel- és rendszeranalizisben betoltott szerepe kiemelt jelentGség.
Mérnoki tanulmanyaink soran elsajatitottuk a linearis, idSinvarians rendszerek
leirasét tisztéan szinuszos (koszinuszos) gerjesztések esetén. Megtanultuk, hogy
a komplex szamok algebrdjaval az ilyen rendszerek viszonylag konnyen kezel-
hetGek, a valaszjel a komplex szdmokon végzett elemi matematikai mtiveletek
segitségével meghatarozhato, a két mennyiség hanyadosa pedig mar megadja a
rendszer jellemzésére alkalmas atviteli fliggvényt [1] is.

A Fourier-sorok segitségével az ilyen tipusu lineéris rendszerek esetén ez
a vizsgalodas kiterjeszthets Osszetettebb gerjesztések esetére is, amennyiben a
gerjesztés periodikus és Riemann-integralhato idsfiiggvény forméjéban adédik.
Ebben az esetben a gerjesztést annak Fourier-soraval kozelitjiik, igy visszavezet-
jiikk a problémét elemi szinuszos és koszinuszos jelekre, majd azokra kiilon-kiilon
elvégezve a szamitasokat a valaszjel az egyes komponensek szuperpozicidjaként
elgallithato.

Ebben a projektmunkaban bemutatom, hogy milyen médon fejthets Fourier-
sorba egy egyszeri négyszogjel. Bemutatom a kozelités hibajaként ad6do Gibbs-
jelenséget a fliggvény szakadasi helyeinél és ismertetek egy modszert — a o-
approximaciot — a jelenség hatasanak csokkentésére is. A dokumentum utolsd
részében pedig vézlatos leirast adok arrél, hogy miként tervezem az itt bemu-
tatott elméletet demonstralni a Wolfram Mathematica szoftver segitségével.
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2. A Fourier-sor

Vizsgaljunk egy altalanos s(t) fiiggvényt, amely T periodusidével periodikus és
a periddusénak zart intervalluman Riemann-integralhaté is. Kozelitsiik ezt a
fliggvényt
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fiiggvénysor segitségével. Ha bizonyos t értékekre n — oo esetén az s, (t) fligg-
vény egy meghatéarozott s (¢) hatarértékhez tart, akkor azt mondjuk, hogy az
adott fliggvénynek ezekre a t értékekre konvergens fiiggvénysor-kozelitése van [3].
Az Sy, S,‘;‘ és SP konstansok definici6 szerint a kovetkezoképpen hatérozhatok

meg [2]:
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Ezt a fliggvénysort nevezziik az s (t) fiiggvény Fourier-soranak.

3. Egyszeri négyszogjel vizsgalata

Tekintsiik az 1. abran lathaté A magassagu, T peridédusidejd egyszert négyszog-
jelet. A fiiggvénynek jol lathatéan ¢ = 0-ban és t = %—ben els6faju szakadasa
van. A fliggvény egyetlen periddusa felirhaté a Heaviside-féle ¢ (¢) egységugras-
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1. dbra. Az egyszerii négyszogjel egyetlen peridodusa

fliggvények linearis kombinacidjaként az

s(t)A{s(t)s(tZ)}, te (0,7 (5)



alakban. A munkam sorin egy ilyen tipusu négyszogjelet szeretnék majd vizs-
galni, ezért valamilyen moédon el kellene allitani a Fourier-sorat. Ehhez meg
kell hatarozni az Sy, Si' és SE konstansokat. Az egyszertiség kedvéért A értékét
1-nek valasztom. Véagjunk bele!
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3.3. SP meghatarozasa
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Ismert, hogy

1, ha k péros,
coskm =
—1, ha k pératlan,
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3.4. Mit kaptunk?

Az taldn valasz a kérdésre, ha Osszedobjuk az eredményeket és felirjuk a jel
Fourier-sorat is, legalabb kétféleképpen. Az van tehat, hogy

1
SO = 57 (6)
SkA =0, (7)
SE _ 02, ha k pé’xros, (8)
7=, ha k pératlan.
Ebbdl a Fourier-sor egyik alakja az
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alakban adodik, de felirthat6 az

:*+Z—S1nk t, k=1,3,5,7,..., (20 +1). (10)

Osszefiiggés is, ahol I € N. Megjegyzés, hogy a 2% kifejezést korfrekvencié-
nak hivjuk és rendszerint w jeloléssel latjuk el. Latjuk tehat, hogy a targyalt
négyszogjelet kizardlag szinuszos komponensek alkotjak, és azokbol is csak a
paratlanok szerepelnek a végtelen sorban. A k& = 1-hez tartozo komponenst
a jel alapharmonikusanak, a k = 2,3,..., (2] + 1) komponenseket pedig a jel
felharmonikusainak szokas nevezni a gyakorlatban.

4. A Gibbs-jelenség

Kezdjiik el kozeliteni az eredeti négyszogjeliinket véges szadmi komponens se-
gitségével és nézziikk meg, hogy mi torténik. Azt fogjuk latni, hogy a kozelités



egyre pontosabb és pontosabb eredményt ad, de az eredeti fiiggvény szakadési
helyein ugynevezett "tallovési" hibat fogunk tapasztalni.

Hiaba kozelitjik egyre tobb és tobb komponenssel az eredeti jelet, a kozeli-
tés a szakadasi helyeken mindig talné az eredeti fiiggvényen. Ezt a jelenséget
nevezziik Gibbs-effektusnak, erre mutat példat a 2. abra is, melyen az eredeti
négyszogjel kilenckomponensi kozelitése lathatd. A cél ennek a hibanak a kikii-
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2. abra. Gibbs-jelenség t = 0 és t = 3 kornyezetében

szObolése, melyre léteznek hatékony technikak. Az egyik ilyen a o-approximécio,
amelyet a projekt keretei k6z6tt bemutatok.

5. A o-approximéaci6

A o-approximéci6 pontosan az ilyen, szakadasi pontoknél felléps Gibbs-jelenség
kikiiszobolésére alkalmazhato hatékonyan [4]. A technika Léanczos Kornél, egy
kivaloé huszadik szazadi zsido szarmazésti magyar matematikus nevéhez fiiz6-
dik. Lényege egy tgynevezett o-faktor, mésik nevén Lanczos-faktor alkalmaza-
sa, amely a .
41 ™
Oy = (11)
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alakban irhato fel [5]. A modositott Fourier-sor képlete az

- k2w . k2w
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alakban adodik [5], melynek alkalmazasaval a Gibbs-effektus hatésa jelentGsen
csokkenthetd.

6. Es akkor mindezt hogyan?

Az elmélet szép és fontos, de mindezt valahogy meg is kellene valositani a Wolf-
ram Mathematica keretei k6zott. Elsg kozelitésben meg fogom mutatni, hogy mi
az a Heaviside-féle egységugras és egy manipuldlhatoé Plot segitségével bemu-
tatom, hogyan pakolhat6 Ossze egy ilyen egyszerii négyszogjel két egységugrés
linearis kombinéciojaként. Ezek utan bemutatom az itt levezetett Gsszefiiggeé-
seket a konkrét négyszogjel Fourier-sorara, majd elGallitom azt a fiiggvénysor



altalanos képletének és a Wolfram Mathematica program Sum parancsinak segit-
ségével. Az eredményt abrazolom kiilon, valamint az eredeti jellel egyiitt is. A
programban a felhasznald szaméra észszeri keretek kézott a Manipulate segit-
ségével lehet6vé teszem, hogy maga valassza meg, hany komponenssel szeretné
latni a kozelitést.

Ezek utan ugyanezt meg fogom tenni a Lanczos-faktorral korrigalt Gsszefiig-
géssel is. Az eredményt feltiintetem kiilén koordinata-rendszerben, de lathatova
fogom tenni Gket egyiitt is, hogy szemléletes legyen, hogyan korrigélja a Lanczos-
faktor a szakadési helyeknél fellépd tullovést.
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