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Kombinatorika, harmadik házi feladat

1. Rajzoljunk le egy olyan (8 pontú) gráfot, amelynek fokszám-

sorozata: 0, 1, 2, 3, 4, 5, 6, 7. Van-e ilyen egyszer¶ gráf?

Megoldás:

Látjuk, hogy
7∑

i=0
i = 28, és tudjuk, hogy tetsz®leges G gráf esetén

∑
v∈V (G)

d (v) = 2 · |E (G)|,

azaz a fokszámösszeg az élek számának kétszeresével egyenl®, ezért célunk egy olyan ál-
talános gráf felrajzolása, melyben összesen 14 él fut, valamint eleget tesz a feladatban el®írt
fokszámsorozat-feltételnek. Az ábra egy lehetséges megoldást mutat.
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A kérdés, amely szerint létezik-e olyan egyszer¶ gráf, amely eleget tesz ennek a feltétel-
nek, a válaszunk nemleges. Itt elegend® hivatkozni a konzultáción tárgyalt és bizonyított
tételre, amely szerint minden legalább 2-pontú egyszer¶ gráfban van két azonos fokszámú
csúcs. Mivel a kért fokszámsorozat-feltétel nem tartalmaz két azonos fokszámot, nem raj-
zolható ilyen egyszer¶ gráf.

2. Az alábbi három alakzat közül melyek rajzolhatók le a ceruza

felemelése nélkül úgy, hogy minden vonalat egyszer és csak egyszer

húzunk meg?
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Megoldás:

El®ször is formalizáljuk a feladatot, majd a gráfelmélet nyelvén fogalmazzuk meg, hogy
mi is a kérdés. Az alakzatok helyett vegyünk fel gráfokat úgy, hogy a gráfok élei mege-
gyezzenek az alakzatban szerepl® vonalakkal. Pongyolán fogalmazva olyan gráfokat kell
felvennünk, melyekre rávetítve az eredeti alakzatunkat az teljesen fedni fogja a felvett
gráfot.

Megtanultuk, hogy egyG gráfban ν vonal egy Euler-vonal, ha ν minden élen (pontosan)
egyszer halad át, továbbá minden csúcsot meglátogat. Tudjuk, hogy ez az Euler-vonal egy
ceruzafelemelés nélküli lerajzolását jelenti ennek a G gráfnak.

A feladat tehát az, hogy ezeket a gráfokat vizsgáljuk meg abból a szempontból, hogy
van-e bennünk (nyílt vagy zárt) Euler-vonal. Ha van bennük Euler-vonal, akkor értelem-
szer¶en az eredeti alakzatok lerajzolhatók ceruzafelemelés nélkül. Amennyiben nem tar-
talmaznak Euler-vonalat, a válaszunk nemleges.

Vizsgáljuk az els® alakzatot, vegyünk fel egy megfelel® G1 gráfot:
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f

Látjuk, hogy G1 összefügg®, mert bármely két pontja között létezik séta. A gráf pon-
tjainak fokszáma: {a, b, c, d, e, f} → {4, 4, 3, 3, 2, 4}. Mivel G1 összefügg®, valamint pon-
tosan két páratlan fokú pontja van (c és d), ezért G1-ben van nyílt Euler-vonal, tehát az
eredeti alakzat lerajzolható ceruzafelemelés nélkül. Adjunk is meg egy nyílt Euler-vonalat.
Tudjuk, hogy ebben az esetben a vonal az egyik páratlan fokszámú pontból indul, valamint
a másikban végz®dik:
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Az Euler-vonal tehát az érintett pontok sorrendjében: dbeabfcafdc, ez kész, ezzel
rendben vagyunk.

Vizsgáljuk meg a második alakzatot, adjunk meg egy megfelel® G2 gráfot:

G2
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A gráf pontjainak fokszáma:

{a, b, c, d, e, f, g, h, i, j, k} → {4, 4, 4, 4, 3, 4, 4, 4, 3, 4} ,

ismét két páratlan fokszámú pontunk van tehát, továbbá ismét összefügg® a gráfunk, ezért
létezik a gráfban nyílt Euler-vonal, az eredeti alakzatunk tehát lerajzolható ceruzafelemelés
nélkül. Az Euler-vonal kezd® és végpontjai ezúttal az e és j pontok lesznek.

Végül vizsgáljuk meg az utolsó, harmadik alakzatunkat. Adjunk meg egy megfelel® G3

gráfot:
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Látjuk, hogy a gráf pontjainak fokszáma

{a, b, c, d, e, f, g, h, i} → {3, 3, 4, 4, 4, 4, 4, 3, 3} ,

tehát a páratlan fokszámú pontok száma kett®nél több (négy), így a gráfelmélet Euler-
tételének értelmében a gráfban nem létezik Euler-vonal. Következtetés: az eredeti ábra
nem rajzolható le ceruzafelemelés nélkül.

3. Ha lehetséges, adjunk meg gráfizomorfizmust G8 és G10 között!
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Megoldás:
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Látjuk, hogy a csúcsok száma mindkét gráf esetén n = 10, valamint azt is látjuk, hogy
minden csúcs fokszáma mindkét gráf esetén 3. Jelen esetben mindkett® szükséges feltétele
annak, hogy létezzen grá�zomor�zmus G8 és G10 között, amely egy bijektív és struk-
túratartó leképzés úgy, hogy mind a leképezés, mind pedig az inverze egyaránt szomszédos
csúcsokra képezze le a szomszédos csúcsokat.

Azt sejtjük tehát, hogy G8 és G10 izomorfak, ezért próbáljunk meg megadni egy ilyen
ϕ : U → V bijekciót, ahol U = {u1, u2, ..., u10} és V = {v1, v2, ..., v10} halmazok G8 és
G10 gráfok ponthalmazai. Ugyan ϕ meghatározására nem tanultunk konkrét algoritmust,
a feladat mégsem nehéz, csupán arra kell �gyelni, hogy a fokszámok megtartása mellett az
egyes pontos közötti szomszédsági viszony ne sérüljön. Induljunk el a következ®képpen:

ϕ =

(
u1 u2 u3 u4
v1 v2 v10 v9

)
,

hiszen ha lerögzítjük, hogy u1-hez v1-et szeretnénk rendelni, látjuk, hogy u1-t®l 1 távolságra
az u2, u3 és u4 pontok vannak G8-ban, így ϕ-nek olyan pontokat kell hozzájuk rendelnie,
amelyek G10-ben v1-t®l szintén 1-1 távolságra vannak. Világos, hogy három ilyen pont
van, ezeket tetsz®legesen szétoszthatjuk u2, u3 és u4 között. Haladjunk tovább:

ϕ =

(
u1 u2 u3 u4 u5
v1 v2 v10 v9 v3

)
,

hiszen látjuk, hogy u5 1 távolságra van u2-t®l, u6-tól és u8-tól, és mivel u2-höz v2-®t
rendeltük, így u5-höz már csak olyan pontot rendelhetünk, amelynek szomszédja v2. A v3
éppen ilyen pont. Lépjünk még egyet:

ϕ =

(
u1 u2 u3 u4 u5 u6
v1 v2 v10 v9 v3 v8

)
,

mert u6 szomszédai: u7, u4 és u5, ebb®l az utóbbi kett®höz rendre a v9 és v3 pontokat
rendeltük, így olyan pontot kell keresnünk, amely mindkett® szomszédja, ez pedig a v8. A
következ® lépés:

ϕ =

(
u1 u2 u3 u4 u5 u6 u7
v1 v2 v10 v9 v3 v8 v7

)
,

mert u7 szomszédai: u9, u6 és u3, ebb®l az utóbbi kett®höz rendre a v8 és v10 pontokat
rendeltük, így olyan pontra van szükségünk, amely mindkett®nek szomszédja. Ez a v7.
Újabb lépés következik:

ϕ =

(
u1 u2 u3 u4 u5 u6 u7 u8
v1 v2 v10 v9 v3 v8 v7 v4

)
,

hiszen u8 szomszédai: u10, u3 és u5, ebb®l az utóbbi kett®höz pedig rendre a v10 és v3
pontokat rendeltük. Kell tehát egy olyan pont, amely mindkett®nek szomszédja. Ez a v4.
Az utolsó el®tti lépés:

ϕ =

(
u1 u2 u3 u4 u5 u6 u7 u8 u9
v1 v2 v10 v9 v3 v8 v7 v4 v6

)
,

hiszen u9 szomszédai: u10, u2 és u7, utóbbi kett®höz pedig rendre v2 és v7 pontokat ren-
deltük. Éppen ezért olyan pont kell, amely mindkett®nek szomszédja, ez lesz a v6. Az
utolsó lépés:

ϕ =

(
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
v1 v2 v10 v9 v3 v8 v7 v4 v6 v5

)
,
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hiszen u10 szomszédai: u4, u8 és u9, ezekhez pedig rendre v9, v4 és v6 pontokat rendeltük.
Éppen ezért olyan pont kell, amely mindháromnak szomszédja, ez lesz a v5. Végeztünk,
látjuk, hogy ϕ bijekció a két ponthalmaz között, így a két gráf izomorf, G8

∼= G10.

4. A KG (16, 3) Kneser-gráf csúcshalmaza
(
[16]
3

)
, és két csúcs (részhal-

maz) pontosan összekötött, ha diszjunktak. Mutassuk meg, hogy

KG (16, 3)-ban van Hamilton-kör.

Megoldás:

A Dirac-tétel szerint ha egy n-pontú G egyszer¶ gráfban minden csúcs foka legalább a
csúcsszám fele

(
n
2

)
, valamint n ≥ 3, akkor G-ben van Hamilton-kör. Ezt kell vizsgálnunk

speciálisan KG (16, 3) esetére.
Tudjuk, hogy KG (16, 3) egyszer¶ gráf, hiszen nincsen benne párhuzamos él, mivel a

részhalmazok közötti diszjunk-tulajdonságot csak egyszeresen értelmezzük. Azt mondjuk,
hogy ha A és B diszjunkt, akkor van közöttük él (egyetlen), ha nem diszjunktak, akkor
nincs közöttük él. Ez a de�níció kizárja a párhuzamos éleket. Tudjuk továbbá, hogy
KG (16, 3)-ban nincsen hurokél sem, hiszen egy halmaz nem lehet diszjunkt önmagával.

Azt is tudjuk, hogy a gráf csúcsai a standard 16-elem¶ halmaz 3-elem¶ részhalmazai,
amib®l következik, hogy a gráf ponthalmaza

(
16
3

)
elem¶. Egyszer¶bben fogalmazva a gráfot

n =
(
16
3

)
= 560 pont alkotja.

Két halmaz diszjunkt, ha metszetük az üres halmaz. Világos, hogy a standard 16-
elem¶ halmaz minden 3-elem¶ részhalmaza azon részhalmazoktól diszjunkt, amelyek pont
azt a három elemet nem tartalmazzák, amelyet ®k maguk tartalmaznak. Ebb®l pedig(
16−3
3

)
=
(
13
3

)
darab van, hiszen ki kell venni az alaphalmazból azt a három elemet, amelyet

a vizsgált részhalmaz tartalmaz. Ezzel beláttuk, hogy a gráf minden pontjának fokszáma(
13
3

)
= 286. Nem kérdés, hogy n ≥ 3, valamint a csúcsszám fele 1

2 · 560 = 280, aminél
minden csúcs fokszáma pontosan hattal több, ebb®l következik, hogy KG (16, 3)-ban van
Hamilton-kör. �

5. Mutassuk meg, hogy ha egy gráfban pontosan két páratlan fokú

csúcs van, akkor vezet közöttük út.

Megoldás:

El®ször is tegyük fel, hogy a gráfunk összefügg®. Ebben az esetben az állítás triviális
módon teljesül, hiszen a gráf egyetlen komponensb®l áll, a két páratlan fokszámú csúcs
között biztosan vezet út, készen vagyunk.

Az izgalmasabb kérdés az állítást belátni akkor, ha a gráfunk nem összefügg®. Tegyük
fel tehát, hogy a gráfunk nem összefügg®. Ebben az esetben a gráf legalább két kompo-
nensre bomlik fel, amelyek csúcsdiszjunktak egymással. Az világos, hogy ha egy gráfban
pontosan kett® darab páratlan fokszámú csúcs van, akkor a gráf fokszámösszege páros.
Bizonyítsunk indirekt módon, tehát tegyük fel, hogy a két páratlan fokszámú csúcs között
nem vezet út. Ha nem vezet közöttük út, akkor ez azt jelenti, hogy az eredeti gráfunk
felbontható két komponensre úgy, hogy a páratlan fokszámú csúcsok külön komponensbe
kerülnek. Ebben az esetben a két komponens fokszámösszege külön-külön vizsgálva biz-
tosan páratlan lesz.

Létrejött tehát két olyan komponens, amelyek külön-külön páratlan fokszámösszeggel
rendelkeznek, mint (rész)gráf. Tudjuk, hogy a gráfok fokszámösszeg-képletének értelmében
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egy gráf fokszámösszege az élek számának kétszerese:∑
v∈V (G)

d (v) = 2 · |E (G)| .

Feltételezésünk szerint olyan részgráfjaink jöttek létre, melyek esetén a fenti egyenlet bal
oldalán elhelyezked® fokszámösszeg páratlan. Világos, hogy egy gráfban az élek száma
csak páros és páratlan lehet. A fenti képlet alapján mindegy, hogy páros vagy páratlan az
élek száma, a fokszámösszeg szükségszer¶en páros lesz. (Gondoljuk meg, hogy tetsz®leges
páratlan szám kétszeres páros, valamint tetsz®leges páros szám kétszerese is páros lesz.)

Ebb®l következik, hogy minden véges irányítatlan gráf páros darab páratlan fokszámú
csúccsal kell, hogy rendelkezzen. Ez azt jelenti, hogy az eredeti gráfunk, amelyben pontosan
kett® páratlan fokszámú csúcs van, nem bonható fel olyan komponensekre, hogy a páratlan
fokszámú csúcsok külön komponensbe kerülnek, hiszen a fenti okok miatt ezeket a rész-
gráfokat nem tudnánk realizálni, ezek a gráfok a fokszámösszeg-képlet következményeként
nem létezhetnek.

A két páratlan fokszámú csúcs tehát közös komponensbe kell, hogy tartozzon. Ebben
az esetben vezet közöttük út, ami ellentmondás. A két páratlan fokszámú csúcs között
tehát biztosan vezet út. �

(Megj.: A bizonyításhoz használt fenti gondolatmenet az úgynevezett kézfogás-lemma,
amely a gráfelmélet híres lemmája, a fokszámösszeg-képletb®l következik.)

6. Döntsük el, hogy G3 gráfban van-e Hamilton-út, Hamilton-kör.

a b

G
3 G'

3

Megoldás:

Azt ránézésre is meg tudjuk mondani, hogy a gráfot n = 20 pont alkotja, és mivel a
Dirac-tétel nem akkor és csak akkor típusú állítást fogalmaz meg, ezért ebben az esetben
nem alkalmazható. Konzultáción tárgyalt állítás: ha egy tetsz®leges G gráfból el lehet hag-
yni k darab pontot úgy, hogy az elhagyás után kapott gráfnak legalább (k + 1) komponense
lesz, akkor ebben a G gráfban nincsen Hamilton-kör.

Legyen k = 2 és hagyjuk el a és b pontokat. Ekkor a gráf pontosan (k + 1) = 3
komponensre esik szét a fenti ábrán látható módon (G′3). A gráfban tehát nincs Hamilton-
kör.

A Hamilton-út létezésére ehhez hasonló receptet nem tudunk adni, de ha találunk
egyet, azzal értelemszer¶en igazoljuk a létezését is.

Belátható, hogy a vizsgált gráfban megadható olyan út, amely a gráf minden pontját
pontosan egyszer érinti. Egy ilyen utat mutat a következ® ábra. Kijelenthetjük tehát, hogy
a gráf tartalmaz Hamilton-utat.
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7. Egy 210 pontú fában minden csúcs foka 1 vagy 3. Hány levele

van a fának?

Megoldás:

Világos, hogy egy n = 210 pontú fa összesen n−1 = 209 élet tartalmaz. Tudjuk, hogy egy
gráf fokszámösszege az élszám kétszeresével lesz egyenl®, tehát ennek a 210 pontú fának a
fokszámösszege 2 · 209 = 418. Jelölje k azon pontok számát a gráfban, amelyek fokszáma
1, és jelölje l azon pontok számát a gráfunkban, amelyek fokszáma 3. Egyrészt tudjuk,
hogy

k + l = 210,

hiszen a gráfban lév® pontok fokszáma vagy 1, vagy 3, és tudjuk, hogy 210 pont van a
gráfban. Felírható még:

418 = 1 · k + 3 · l,

hiszen a fokszámösszeg úgy áll össze, hogy megszorozzuk az 1-fokú csúcsok számát 1-gyel,
és hozzáadjuk a 3-fokú csúcsok számának háromszorosát. Van két egyenletünk és két
ismeretlenünk, oldjuk meg az egyenletrendszert:

k + l = 210⇔ k = 210− l, 418 = 210− l + 3l⇔ 208 = 2l⇔ l = 104 és k = 106.

Mivel de�níció szerint levélnek nevezzük a fa 1-fokú pontjait, így k pontosan a levelek
számát adja meg. A fa tehát 106 levelet tartalmaz, készen is vagyunk.
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