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Kalkulus II., negyedik házi feladat

1. (1 pont) Határozzuk meg az f (x, y) = (x+ y)2 függvény lokális szél-

s®értékeit az x2 + y2 = 1 feltétel mellett!

Megoldás:

A feladat nem igényel különösebb gondolkodást, inkább fussunk neki izomból és próbáljuk
meg hibátlanul alkalmazni a tanult Lagrange-féle multiplikátor módszert. Ehhez felírjük
az

F (x, y, λ) = (x+ y)2 − λ
(
x2 + y2 − 1

)
= x2 + 2xy + y2 − λx2 − λy2 + λ

segédfüggvényünket, mert azt írja a receptkönyv. Kellenek még F (x, y, λ) x- és y-szerinti
parciális deriváltjai:

F ′x (x, y, λ) = 2x+ 2y − 2λx = x+ y − λx és

F ′y (x, y, λ) = 2x+ 2y − 2λy = x+ y − λy.

Most pedig rakjuk össze a háromismeretlenes egyenletrendszerünket, melyben a par-
ciális deriváltakat kell nullával egyenl®vé tenni, valamint hozzá kell csapni a feltételb®l
adódó x2 + y2 = 1 egyenletet is, így:

x+ y − λx = 0,

x+ y − λy = 0,

x2 + y2 = 1.

A második egyenletb®l x = λy − y adódik, ezt helyettesítsük vissza az els® egyenletbe:

λy − y + y − λ (λy − y) = 0⇔ 2λy − λ2y = 0⇔ y
(
2λ− λ2

)
= 0.

Az y = 0 megoldással nem foglalkozunk, viszont a szorzat másik tagját alkotó
(
2λ− λ2

)
=

0 összefüggés megoldásai: λ1 = 0 és λ2 = 2.
Amennyiben λ = λ1 = 0, úgy a második egyenletb®l x = −y adódik, ezt beírva a

harmadik összefüggésünkbe:

x2 + y2 = (−y)2 + y2 = 2y2 = 1⇔ y = ± 1√
2
, tehát x = ∓ 1√

2
,

azaz M1 =
(

1√
2
,− 1√

2
, 0
)
és M2 =

(
− 1√

2
, 1√

2
, 0
)
megoldáskoordináták.

Hasonlóan vizsgálandó a λ = λ2 = 2 eset. A második egyenletb®l x = y adódik, ezt
beírva a harmadik összefüggésünkbe:

x2 + y2 = y2 + y2 = 2y2 = 1⇔ y = ± 1√
2
, tehát x = ± 1√

2
,
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azaz M3 =
(

1√
2
, 1√

2
, 2
)
és M2 =

(
− 1√

2
,− 1√

2
, 2
)
is megoldáskoordináták.

Legyen most λ = λ1 = 0 rögzített. Ekkor F (x, y, λ) második parciális deriváltjai:

F ′′xx (x, y, 0) = (x+ y)′x = 1,

F ′′xy (x, y, 0) = F ′′yx (x, y, 0) = (x+ y)′y = (x+ y)′x = 1,

F ′′yy (x, y, 0) = (x+ y)′y = 1,

így tehát a Hesse-mátrix determinánsa a

D =

∣∣∣∣F ′′xx F ′′xy
F ′′yx F ′′yy

∣∣∣∣ = ∣∣∣∣1 1
1 1

∣∣∣∣ = 0,

alakú, aminek természetesen nem örülünk, de vizsga- és házi feladat-keretek között már
nem is számítunk másra. Itt kell viszont észrevenni, hogy az eredeti f (x, y) = (x+ y)2

függvény értékkészlete a valós számok halmazán értelmezve R+
0 , valamint f

(
1√
2
,− 1√

2

)
=

f
(
− 1√

2
, 1√

2

)
= 0. Ez az érték globálisan is a minimum, amit a kétváltozós függvényünk

felvehet. ami azt jelenti, hogy a függvényünknek a kérdéses két pontban − amely rajta van
a feltételként szabott origó középontú, egységsugarú körvonalon − a függvénynek feltételes
minimuma van f (x, y)-nak. Ez tiszta sor, mondjuk ki tehát egyértelm¶en: f (x, y)-nak az

(x1, y1) =
(

1√
2
,− 1√

2

)
és (x2, y2) =

(
− 1√

2
, 1√

2

)
pontokban feltételes minimuma van.

Legyen most λ = λ2 = 2 rögzített. Tekintsük ismét F (x, y, λ) második parciális
deriváltjait:

F ′′xx (x, y, 2) = (x+ y − 2x)′x = 1− 2 = −1,
F ′′xy (x, y, 2) = F ′′yx (x, y, 2) = (x+ y − 2x)′y = (x+ y − 2y)′x = 1 és

F ′′yy (x, y, 2) = (x+ y − 2y)′y = 1− 2 = −1.

Sajnos már most is látjuk, de a korrektség kedvéért írjuk ki a Hesse-mátrix determinánsát:

D =

∣∣∣∣F ′′xx F ′′xy
F ′′yx F ′′yy

∣∣∣∣ = ∣∣∣∣−1 1
1 −1

∣∣∣∣ = 0,

amire most sem tudunk ®szinte mosollyal reagálni. Ismét célszer¶ viszont gondolkodni.
Ne felejtsük el, hogy a feltétel, amely mellett az f (x, y) függvény széls®értékeit keressük,
egy egységnyi sugarú, origó középpontú körvonal. A kérdést éppen ezért úgy is meg-
fogalmazhatnánk, hogy melyek azok a pontok ezen a körvonalon, amely pontok x- és
y-koordinátáinak összegének négyzete a legnagyobb.

Bár azt látjuk, hogy a feltételes maximumok keresésekor a második deriváltakkal nem
járunk sikerrel, ebben a példában sokat segít, ha az eredeti f (x, y) függvényünket felírjuk
a polárkoordináták segítségével. A következ®képpen járjunk el:

f (x, y) = f (r, ϕ) = (r cosϕ+ r sinϕ)2 = r2 cos2 ϕ+ 2r2 cosϕ sinϕ+ r2 sin2 ϕ =

= r2
(
cos2 ϕ+ sin2 ϕ+ 2 cosϕ sinϕ

)
= r2 (1 + sin 2ϕ) ,

utóbbi egyenl®ség az ismert trigonometriai azonosságok miatt írható fel. Világos, hogy
ez a kifejezés akkor lesz maximális, ha sin 2ϕ = 1. Ennek a trigonometrikus függvény
periodicitásából kifolyólag végtelen sok megoldása van, de ebben az esetben tudjuk, hogy
minket csak a 0 és a 2π közé es® megoldások érdekelnek. Az egyik ilyen a 2ϕ = π

2 ⇔ ϕ = π
4 ,

melyhez az egységkörvonalon (r = 1) az (x3, y3) =
(
1 · cos π4 , 1 · sin

π
4

)
=
(

1√
2
, 1√

2

)
pont

tartozik.
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Mivel a függvény π-vel periodikus, ezért a másik megoldásunk a ϕ = 5
4π, melyhez az

egységkörvonalon az (x4, y4) =
(
1 · cos 5

4π, 1 · sin
5
4π
)
=
(
− 1√

2
,− 1√

2

)
pont tartozik.

Korábban már beláttuk, hogy mindkét pont rajta van a feltételül szabott körvonalon,

ezért kijelenthetjük, hogy f (x, y)-nak az (x3, y3) =
(

1√
2
, 1√

2

)
és (x4, y4) =

(
− 1√

2
,− 1√

2

)
pontokban feltételes maximuma van.

Hasonló eredményre jutunk, ha az F (x, y, 2) függvény széls®értékeinek keresésével
próbálkozunk. Írjuk fel:

F (x, y, 2) = x2 + 2xy + y2 − 2x2 − 2y2 + 2 = −x2 − y2 + 2xy + 2 = − (x− y)2 + 2.

A teljes négyzetté alakítás után látjuk, hogy F (x, y, 2)-nek at y = x egyenes mentén van
maximuma. Ez az egyenes két helyen metszi a feltételként megadott egységsugarú körün-

ket: az (x3, y3) =
(

1√
2
, 1√

2

)
és (x4, y4) =

(
− 1√

2
,− 1√

2

)
pontokban. Látható tehát, hogy

így is jó eredményre jutunk.

2. (1 pont) Határozzuk meg az alábbi integrált, ahol D az x = 0,
y = 0, x = 4− y2 görbék által határolt korlátos síkrész!∫∫

D

ye2x

4− x
dxdy

Megoldás:

A feladat megértéséhez és megoldásához elengedhetetlen, hogy felrajzoljuk a kérdéses D
korlátos síkrészt. Ezt mutatja a következ® ábra.

1 2 3 4

0.5

1

1.5

2

x

y
x = 4− y2

Világos, hogy a kérdéses korlátos síkrészt az x- és az y-tengelyek, valamint a kék színnel
felvett x = 4− y2 parabola határolja. Formalizálva:

D =
{
(x, y) ∈ R2 : 0 ≤ y ≤ 2, 0 ≤ x ≤ 4− y2

}
.

Ebben az esetben a meghatározandó integrál az

2∫
0

 x=4−y2∫
x=0

ye2x

4− x
dx

 dy
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formában adódik, melynek kiszámításával komoly gondjaink lennének. Meg sem próbáljuk,
hasznosabb, ha inkább kapásból megcseréljük az integrálás sorrendjét.

Látjuk, hogy x = 4 − y2 ⇔ y2 = 4 − x ⇔ y = ±
√
4− x, amelyb®l a feladathoz most

számukra a pozitív félre van szükség. Így a tartományunk a

D =
{
(x, y) ∈ R2 : 0 ≤ x ≤ 4, 0 ≤ y ≤

√
4− x

}
alakot ölti, így a kiszámolandó integrál a megcserélt sorrendben az

4∫
0

 y=
√
4−x∫

y=0

ye2x

4− x
dy

 dx

összefüggés szerint alakul. Ezzel már érdemes próbálkoznunk:

4∫
0

 y=
√
4−x∫

y=0

ye2x

4− x
dy

 dx =

4∫
0

e2x

4− x

 y=
√
4−x∫

y=0

y dy

 dx =

=

4∫
0

(
e2x

4− x

[
y2

2

]y=√4−x
y=0

)
dx =

4∫
0

(
e2x

4− x
·
(
4− x
2

))
dx =

=
1

2

4∫
0

e2x dx =
1

2

[
e2x

2

]4
0

=
1

4

(
e8 − 1

)
≈ 745.

3. (1 pont) Polártranszformáció segítségével határozzuk meg a

következ® integrált, ahol D az origó középpontú, egységsugarú

körlap második síknegyedbe es® része!∫∫
D

(x− y)2 dxdy

Megoldás:

Az egyszer¶bb kezelhet®ség és az átláthatóság kedvéért ismét vizsgáljuk meg gra�kusan is
a D síkrészünket. A síkrész a következ® ábrán a piros vonal alatt található.

−1 −0.8 −0.6 −0.4 −0.2
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y =
√
1− x2
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Világos, hogy az egységsugarú, origó középpontú kör az x2 + y2 = 1 összefüggés segít-
ségével írható fel, melyb®l y = ±

√
1− x2, melyb®l jelen esetben a pozitív rész az érdekes

a számunkra, hiszen az x-tengely felett vagyunk.
Formalizáljuk D-t el®ször még Descartes-féle koordinátarendszerben:

D =
{
(x, y) ∈ R2 : −1 ≤ x ≤ 0, 0 ≤ y ≤

√
1− x2

}
,

mely alapján a meghatározandó integrál az

0∫
−1

 y=
√
1−x2∫

y=0

(x− y)2 dy

 dx

alakban adódik. Mi most mégsem ezt fogjuk kiszámolni, hanem eleget fogunk tenni a
feladat kérésének és áttérünk polárkoordinátákra. Ebben az esetben a vizsgált síkrész a
következ®képpen formalizálható:

D∗ =
{
(r, ϕ) : 0 ≤ r ≤ 1,

π

2
≤ ϕ ≤ π

}
,

a meghatározandó integrál pedig az∫∫
D∗

(r cosϕ− r sinϕ)2 · r drdϕ

formában írható fel, alaposan megfontolva, hogy a Jacobi-mátrix determinánsa (r) esetén
az abszolútérték elhagyható, hiszen a példában 0 ≤ r ≤ 1. Jól van, minden készenáll
ahhoz, hogy izomból nekiugorjunk a cuccnak. Persze közben azért próbálunk vigyázni
arra is, hogy ne kövessük el számítási és elméleti hibákat, de valahogy így néz ki a helyzet
szituációja:∫∫
D∗

(r cosϕ− r sinϕ)2 · r drdϕ =

∫∫
D∗

(
r2 cos2 ϕ− 2r2 cosϕ sinϕ+ r2 sin2 ϕ

)
· r drdϕ =

=

∫∫
D∗

(
r3 cos2 ϕ− 2r3 cosϕ sinϕ+ r3 sin2 ϕ

)
drdϕ =

=

π∫
π
2

(∫ 1

0
r3 ·

(
cos2 ϕ+ sin2 ϕ− 2 sinϕ cosϕ

)
dr

)
dϕ =

=

π∫
π
2

(1− sin 2ϕ)

(∫ 1

0
r3 dr

)
dϕ =

π∫
π
2

(1− sin 2ϕ)

[
r4

4

]1
0

dϕ =
1

4

π∫
π
2

(1− sin 2ϕ) dϕ =

=
1

4

 π∫
π
2

1 dϕ−
π∫

π
2

sin 2ϕ dϕ

 =
1

4

(
[ϕ]ππ

2
+

[
cos 2ϕ

2

]π
π
2

)
=

=
1

4

(
π

2
+

1

2
(cos 2π − cosπ)

)
=

1

4

(π
2
+ 1
)
=
π + 2

8
. �
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