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Kalkulus II., harmadik házi feladat

1. (1,5 pont) Határozzuk meg a következ® határértékeket:

lim
(x,y)→A

x2 + xy√
x2 + y2

ahol

(a) A = (0, 0) ,

(b) A = (−2,−∞) ,

(c) A = (−∞,∞) .

Megoldás:

Az egyszer¶bb kezelhet®ség kedvéért legyen f (x, y) = x2+xy√
x2+y2

, a feladatban tehát ennek

az f (x, y) kétváltozós függvénynek a határértékeit vizsgáljuk. Ehhez el®ször határozzuk
meg a kétváltozós függvény értelmezési tartományát. Világos, hogy a tört nevez®je nem
lehet nulla. Ezen kívül a nevez®ben egy gyökös kifejezés van, alatta két valós szám négy-
zetösszege található. Mivel a négyzetösszeg csak pozitív vagy nulla lehet, ezért az egyetlen
kikötésünk, hogy x2 + y2 6= 0, így az értelmezési tartományból ki kell dobnunk a (0, 0)
pontot. Így tehát Df = R2 \ {(0, 0)}.

Segítségképpen, a láthatóság kedvéért álljon itt a vizsgált kétváltozós függvény gra�-
konja egy korlátos intervallumon, miel®tt még nekiállunk a határértékek kiszámításához.
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Kezdjük az (a) ponttal. Látjuk, hogy bár az A = (0, 0) nem része a függvény értelmezési
tartományának, mégis torlódási pont, mert A minden környezete tartalmaz A-tól külön-
böz® Df -beli elemet. A határérték tehát ebben a pontban vizsgálható. Mivel a kifejezés
klasszikusan "0

0"-típusú, átalakításért kiált. Próbálkozzunk meg a polárkoordinátákkal:

x = r cosϕ, y = r sinϕ ⇔ r =
√
x2 + y2, ϕ = arctan

y

x
.
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Írjuk át a kifejezésünket a következ®képpen:

lim
(x,y)→(0,0)

x2 + xy√
x2 + y2

= lim
r→0+
ϕ∈[0,2π)

r2 cos2 ϕ+ r2 cosϕ sinϕ

r
= lim

r→0+
ϕ∈[0,2π)

r
(
cos2 ϕ+ cosϕ sinϕ

)
.

Itt egy pillanatra megállunk. Egy szorzatkifejezést kaptunk. Látjuk, hogy r tart a nullához,
ez tiszta sor. Azt kellene belátnunk, hogy a zárójelben található trigonometrikus kifejezés
korlátos. Tudjuk, hogy

0 ≤ cos2 ϕ ≤ 1, valamint azt, hogy − 1 ≤ cosϕ sinϕ ≤ 1 ∀ϕ ∈ R,

tehát −1 ≤ cos2 ϕ + cosϕ sinϕ ≤ 2, azaz a zárójelben lév® trigonometrikus kifejezés
korlátos. Ebb®l már következik, hogy

lim
(x,y)→(0,0)

x2 + xy√
x2 + y2

= lim
r→0+
ϕ∈[0,2π)

r
(
cos2 ϕ+ cosϕ sinϕ

)
= 0.

A feladat (b) részében A = (−2,−∞), tehát a

lim
(x,y)→(−2,−∞)

x2 + xy√
x2 + y2

határértéket vizsgáljuk. Világos, hogy (−2,−∞) torlódási pont, és egyértelm¶, hogy ebben
az esetben egy "∞∞"-típusú határértékkel van dolgunk, ezért próbáljunk vele megbírkózni
a domináns tagok, tehát y legmagasabb hatványainak kiemelésével:

lim
(x,y)→(−2,−∞)

x2 + xy√
x2 + y2

= lim
(x,y)→(−2,−∞)

y√
y2

x2

y + x√
1 + x2

y2

.

Itt állunk meg néhány szóra. El®ször is kikerüljük azt a hibát, amely miatt az esetek
kilencven százalékában elrontjuk az ilyen példákat, tehát észrevesszük, hogy y → −∞
esetén

√
y2 = −y, amely miatt a példában y√

y2
→ −1. Tudjuk továbbá, hogy x2

y és

x2

y2
→ 0, tehát

lim
(x,y)→(−2,−∞)

y√
y2

x2

y + x√
1 + x2

y2

= lim
(x,y)→(−2,−∞)

(−1) ·
x2

y + x√
1 + x2

y2

= (−1) · (−2) = 2.

A feladat utolsó, (c) részében A = (−∞,∞), ez is torlódási pontja Df -nek. A kérdés
tehát a

lim
(x,y)→(−∞,∞)

x2 + xy√
x2 + y2

határérték. Ismét "∞∞"-típusú kifejezéssel van dolgunk, próbálkozzunk meg hát a domináns
tagok, azaz x és y legnagyobb hatványainak kiemelésével. Tapasztalt hallgatóként már fel
sem merül bennünk, hogy ez a recept itt m¶ködni fog, hiszen akkor nem ez lenne a (c)
feladat, de azért fussuk meg a tiszteletköröket:

lim
(x,y)→(−∞,∞)

x2 + xy√
x2 + y2

= lim
(x,y)→(−∞,∞)

x2y√
x2y2

1
y +

1
x√

1
y2

+ 1
x2

= lim
(x,y)→(−∞,∞)

−x ·
1
y +

1
x√

1
y2

+ 1
x2

.
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Pontosan úgy van, ahogy vártuk. Látjuk, hogy a szorzat els® tagja (−x) tart a ∞-be,
amíg a szorzat második tagjaként tetszelg® hányados határértéke nulla. Azt sejtjük, hogy
a határérték nem létezik. Próbáljuk meg igazolni!

Els® nekifutás: legyen el®ször x = −t, y = t (t > 0) és t→∞. Ekkor

lim
(x,y)→(−∞,∞)

x2 + xy√
x2 + y2

= lim
t→∞

(−t)2 + (−t) · t√
(−t)2 + t2

= lim
t→∞

t2 − t2√
2t2

= lim
t→∞

0√
2t2

= 0.

Második nekifutás: most legyen x = −t, y = t2 (t > 0) és t→∞. Ekkor

lim
(x,y)→(−∞,∞)

x2 + xy√
x2 + y2

= lim
t→∞

t2 − t3√
t2 + t4

= lim
t→∞

t3√
t4

1
t − 1√
1
t2
+ 1

= lim
t→∞

t ·
1
t − 1√
1
t2
+ 1

= −∞,

látjuk tehát, hogyha kétféleképpen tartunk A-ba, akkor kétféle határértéket kapunk, a ha-
tárérték tehát nem létezik. Kész, ennyi.

2. (0,5 pont) Írjuk fel az f(x, y) = 1/
(
1− x2 + y

)
függvény grafikon-

jához az (1, 2) pontba húzott érint®sík egyenletét!

Megoldás:

Látjuk, hogy az

f (x, y) =
1

1− x2 + y

kétváltozós függvénnyel állunk szemben, releváns kérdés tehát, hogy a feladatban felkínált
(1, 2) pont vajon benne van-e egyáltalán ennek a kétváltozós függvénynek az értelmezési
tartományában. Ezúttal nem szükséges Df alapos kivesézése, fussunk neki a favágó-
módszerrel és helyettesítsünk be x helyére egyet, y helyére kett®t. Ekkor f (1, 2) = 1

2 ,
ami rendben van, tudunk tehát érint®síkot de�niálni az adott ponthoz. Az (a, b) pont
z (x, y) érint®síkjának egyenlete:

z (x, y) = f (a, b) +
∂f (x, y)

∂x

∣∣∣∣
(x,y)=(a,b)

(x− a) +
∂f (x, y)

∂y

∣∣∣∣
(x,y)=(a,b)

(y − b) .

Ez egy elég mechanikus feladat, verg®djük át hát magunkat az egyes komponensein az
egyenletnek, aztán pedig tegyük össze ®ket.

A függvény helyettesítési értéke:

f (a, b) = f (1, 2) =
1

1− 1 + 2
=

1

2
;

Az x-szerinti parciális deriváltfüggvény:

∂f (x, y)

∂x
=

∂

∂x

(
1− x2 + y

)−1
= (−1) · 1

(1− x2 + y)2
· (−2x) = 2x

(1− x2 + y)2
;

Ennek az értéke az (1, 2) pontban:

∂f (x, y)

∂x

∣∣∣∣
(x,y)=(1,2)

=
2

(1− 12 + 2)2
=

2

4
=

1

2
;

Az y-szerinti parciális deriváltfüggvény:

∂f (x, y)

∂y
=

∂

∂y

(
1− x2 + y

)−1
= (−1) · 1

(1− x2 + y)2
· 1 = − 1

(1− x2 + y)2
;
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Ennek az értéke az (1, 2) pontban:

∂f (x, y)

∂y

∣∣∣∣
(x,y)=(1,2)

= − 1

(1− 12 + 2)2
= −1

4
.

Szuper, minden komponensünk megvan, most rakjuk össze az egészet z (x, y) egyenlete
szerint, és ennyi-kész-vége:

z (x, y) =
1

2
+

1

2
(x− 1)− 1

4
(y − 2) =

x

2
− y

4
+

1

2
.

3. (1 pont) Határozzuk meg f (x, y) = x4+y4−2x2+4xy−2y2 széls®értékeit!

Megoldás:

Az biztosan nem árt senkinek, ha vetünk egy szó szerint felületes pillantást a kétváltozós
függvényre R2 valamilyen kompakt intervallumán az origó környezetében. Az eredmény
alább látható.
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A feladat megoldása szükségszer¶en úgy kezd®dik, hogy felírjuk a gradiensvektort,
majd megnézzük, hogy mely pontokban t¶nik el, azaz mely pontokban lesz egyenl® a
kétdimenziós nullvektorral. Ugorjunk neki:

∇f (x, y) =

(
∂f (x, y)

∂x
,
∂f (x, y)

∂y

)
=
(
4x3 − 4x+ 4y, 4y3 + 4x− 4y

)
.

Ennek a vektornak kell elt¶nnie, tehát a megoldandó egyenletrendszer (egyb®l leosztva
mindkét oldalukat néggyel): {

x3 − x+ y = 0,

y3 + x− y = 0.

Már látjuk, hogy az a1 = (0, 0) triviális megoldása az egyenletrendszernek, de ne rohanjunk
el®re, ez még kés®bb is ki fog pottyanni az algebrai masszírozásból. Amúgy nem kifejezetten
t¶nik a dolog rutinfeladatnak, de azért abszolválható. Tekintsük a második egyenletet:

y
(
y2 − 1

)
+ x = 0 ⇔ x = −y

(
y2 − 1

)
.

Kifejeztük x-et, csodálatos. Dobjuk vissza az összefüggésünket az els® egyenletbe:

−y3
(
y2 − 1

)3
+ y

(
y2 − 1

)
+ y = 0⇔ y3

[
−
(
y2 − 1

)3
+ 1
]
= 0.
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Itt már látszik, hogy mi a helyzet szituációja. El®ször is az egyenlet igaz, ha y3 = 0 ⇔
y = 0, így az els® megoldás a1 = (0, 0), hurrá. Másodsorban igaz az egyenlet, ha(

y2 − 1
)3

= 1 ⇔ y2 − 1 = 1 ⇔ y = ±
√
2,

ezeket a gyököket visszahelyettesítve x egyenletébe kapjuk meg a számunkra fontos, további
kett® koordinátapárt: a2 =

(√
2,−
√
2
)
, a3 =

(
−
√
2,
√
2
)
. Azt tehát már állíthatjuk, hogy

f (x, y)-nak a1, a2 és a3 pontokban széls®értéke lehet.
Tekintsük most a második deriváltakat:

∂2f (x, y)

∂x2
= 12x2 − 4,

∂2f (x, y)

∂y2
= 12y2 − 4,

∂2f (x, y)

∂x∂y
= 4,

∂2f (x, y)

∂y∂x
= 4,

így a Hesse-determinánsunk:

D =

∣∣∣∣12x2 − 4 4
4 12y2 − 4

∣∣∣∣ .
Most nézzük, hogy mi a helyzet a1 = (0, 0) esetén:

D =

∣∣∣∣−4 4
4 −4

∣∣∣∣ = 16− 16 = 0,

azaz a1 lehet széls®értékhely is, illetve nyeregpont is. Természetesen most sincsen akkora
szerencsénk, hogy közvetlenül a tétel segítségével tudjunk nyilatkozni. A sejtésünk, hogy
nincsen széls®érték, azaz a függvény (0, 0) tetsz®legesen kicsi környezetében felvesz pozitív
és negatív értékeket is.

Legyen el®ször y = −x, x 6= 0. Ekkor

f (x,−x) = x4 + x4 − 2x2 − 4x2 − 2x2 = 2x4 − 8x2 = x2
(
2x2 − 8

)
,

és tudjuk, hogy x2 biztosan pozitív, de a szorzat második tagja nulla közelében már negatív,
így a szorzat, tehát a függvényérték is negatív.

Másodszor pedig legyen x = y, x 6= 0. Ekkor:

f (x, x) = x4 + x4 − 2x2 + 4x2 − 2x2 = 2x4 > 0,

tehát a függvénynek a1-ben nyeregpontja van.
Következik az a2 =

(√
2,−
√
2
)
esete:

D =

∣∣∣∣20 4
4 20

∣∣∣∣ = 202 − 42 > 0,

tehát f (x, y)-nek a2-ben széls®értéke van. Mivel ebben az esetben ∂2f(x,y)
∂x2

> 0, ezért
a2 =

(√
2,−
√
2
)
-ben szigorú helyi minimum van.

Vegyük észre, hogy a koordináták el®jelváltása sem a második derivált, sem a Hesse-
determináns el®jelét nem befolyásolja, ezért ugyanez igaz a3 =

(
−
√
2,
√
2
)
esetében is,

tehát ott is szigorú helyi minimum van. �
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