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Kalkulus II., második házi feladat

1. (1 pont) Konvergens? Abszolút konvergens?

∞∑
n=2

(−1)n 1

n
√
lnn

.

Megoldás:

A feladat teljesen nyilvánvalóan arra kíváncsi, hogy elsajátítottuk-e az alternáló sorok
konvergenciájának vizsgálatát. Ehhez a Leibniz-kritérium használata a legkézenfekv®bb, de
miel®tt még ököllel belecsapnánk a lecsóba, nézzük meg, hogy használhatjuk-e egyáltalán.
Ehhez azt kell megvizsgálnunk, hogy az

an =
1

n
√
lnn

általános tagú sorozat pozitív-e (i), monoton csökken®-e (ii), illetve nulla-e a határértéke
abban az esetben, ha n→∞ (iii).

(i) Az n, az lnn és a
√
n elemi függvények pozitívak ∀n ≥ 2 esetén, így az

√
lnn és az

n
√
lnn függvények is pozitívak, ezért nyilvánvalóan pozitív az utóbbi reciproka, az
1

n
√
lnn

is ∀n ≥ 2. A sorozat tehát pozitív.

(ii) Az n, az lnn és a
√
n elemi függvények monoton n®nek ∀n ≥ 2 esetén, így az

√
lnn

és az n
√
lnn függvények is monoton n®nek, így az utóbbi reciproka értelemszer¶en

monoton csökken® lesz. A sorozat tehát monoton csökken®.

(iii) Tudjuk, hogy limn→∞ n = limn→∞ lnn = limn→∞
√
n = ∞, ezért hasonlóan igaz,

hogy limn→∞
√
lnn = limn→∞ n

√
lnn = ∞. Ha az utóbbi tart a végtelenbe, akkor

a reciproka tart a nullához, tehát limn→∞
1

n
√
lnn

= 0. A sorozat határértéke tehát
nulla.

Hátrad®lhetünk, használhatjuk a Leibniz-kritériumot. A tanult tétel és a fenti feltételek
teljesülése miatt kimondhatjuk tehát, hogy mivel a sorozat határtéke nulla, a

∞∑
n=2

(−1)n 1

n
√
lnn

alternáló sor konvergens. Ezzel még az abszolút konvergenciáról természetesen egy szót
sem szóltunk, bár a feladat − sajnos − ezt is kérdezi.

Az abszolút konvergencia eldöntéséhez meg kell vizsgálnunk, hogy konvergens-e a következ®
sor:

∞∑
n=2

1

n
√
lnn

.
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Ha konvergens, az alternáló sorunk abszolút konvergens. Amennyiben a fenti sor divergens,
úgy az abszolút konvergencia nem teljesül, az alternáló sorunk csak feltételesen konver-
gens. Ízlés kérdése, hogy kinek mi jut eszébe an-r®l, de nekem például az jutott eszembe,
hogy ha f (n) = 1

n
√
lnn

, akkor f (x) = 1
x
√
lnx

, ami szinte felkínálja magát az integrálásra.
Próbálkozzunk tehát az integrálkritériummal!

A tétel szerint itt is vannak feltételeink: a vizsgált f (x)-nek folytonosnak, mono-
ton csökken®nek és pozitívnak kell lennie. Az els® két feltétel teljesülését már x =
n helyettesítés mellett beláttuk, ismételni felesleges. A folytonosság pedig triviális a
[2,∞) intervallumon, hiszen az elemi függvények, melyekb®l f (x) felépülni hivatott, mind
folytonosak az el®bb említett értelemzési tartományon, valamint teljesül, hogy a nevez® az
említett értelmezési tartományon sehol sem nulla. Az integrálkritérium tehát használható.
Ebben az esetben az

∞∫
2

1

x
√
lnx

dx

improprius integrál konvergenciáját vizsgáljuk. Mivel én béna vagyok és mindig eltévedek
a notációtengerben, amikor az improprius integrált helyettesítéssel kell megoldani, ezért
inkább el®ször szeretném külön meghatározni a primitív függvényt, majd utána szeretném
használni a Newton-Leibniz-formulát. Elnézést érte, ha ez nem túl szép.∫

1

x
√
lnx

dx =

∫
1√
ξ
dξ =

∫
ξ−

1
2 dξ =

ξ
1
2

1
2

+ C = 2
√
ξ + C = 2

√
lnx+ C.

ξ = lnx

dξ

dx
=

1

x
→ dξ =

1

x
dx

Jöhet a Newton-Leibniz-formula:

∞∫
2

1

x
√
lnx

dx = lim
ϑ→∞

(
2
√
lnϑ

)
−
(
2
√
ln 2
)
.

Álljunk meg itt egy szóra. A különbség második tagja egy pozitív szám, annyi amennyi,
nem kell kiszámolni. A különbség els® tagja egy határérték. Mivel a gyökfüggvény és a
logaritmusfüggvény is monoton n®, határértékük a végtelenben végtelen, így az összetett
függvény határértéke is végtelen. Ebb®l következik, hogy az improprius integrál divergens
/ nem létezik, tehát:

∞∫
2

1

x
√
lnx

dx =∞.

A tanult tétel alapján tehát azt mondhatjuk, hogy

∞∑
n=2

1

n
√
lnn

divergens, így az eredeti
∞∑
n=2

(−1)n 1

n
√
lnn

alternáló sorunk nem abszolút konvergens, kizárólag feltétles konvergenciáról beszélhetünk.
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2. (1 pont) Hol konvergens?

∞∑
n=1

4n
√
n

2n+ 1
(3x+ 2)2n−3 .

Megoldás:

A sor általános tagja rendkívül csúnya, de nem ijedünk meg, hanem megpróbálunk
következetesen végigmenni azokon a lépéseken, amelyeket a legutóbbi konzultáción már lát-
tunk. Vagy jutunk valamire, vagy nem, de az legalább biztos. Az els® lépés az értelmezési
tartomány meghatározása.

n = 1 esetén: f1 (x) =
4 · 1
3

(3x+ 2)−1 =
4

3
· 1

3x+ 2
, ezért x 6= −2

3
,

n = 2 esetén: f2 (x) =
16 ·
√
2

5
(3x+ 2)1 =

16
√
2

5
(3x+ 2) X,

n > 2 esetén további kikötéssel nem kell élnünk.

Az értelmezési tartományunk tehát

Df = R\
{
−2

3

}
.

Vizsgáljuk a konvergenciát mondjuk hányadoskritériummal úgy, ahogy azt a konzultá-
ción is csináltuk. Intenzív, könnyen elszámolható és elírható algebrai masszírozás veszi
kezdetét:∣∣∣∣fn+1 (x)

fn (x)

∣∣∣∣ =
∣∣∣∣∣∣
4n+1

√
n+1

2(n+1)+1 · (3x+ 2)2(n+1)−3

4n
√
n

2n+1 · (3x+ 2)2n−3

∣∣∣∣∣∣ =
∣∣∣∣ 4n+1

√
n+ 1

2 (n+ 1) + 1
· 2n+ 1

4n
√
n

∣∣∣∣ ·
∣∣∣∣∣(3x+ 2)2n−1

(3x+ 2)2n−3

∣∣∣∣∣ =
=

∣∣∣∣4n+1
√
n+ 1

4n
√
n

· 2n+ 1

2 (n+ 1) + 1

∣∣∣∣ · |3x+ 2|2 .

Nem t¶nik szebbnek, pedig jobban állunk, mint valaha. A szorzat els® tagját az úgy-
nevezett "Szabó Tamás"-recept alapján úgy pakoltam át, hogy a hasonlónak mutatkozó
tagok egy törtet alkossanak. Most pedig azt kellene belátnunk, hogy az a kifejezés, ami
az els® abszolútértéken belül van, hova konvergál, ha n → ∞. Nyilvánvaló, hogy az ab-
szolútérték elhagyható, hiszen a kifejezés az azt alkotó elemi függvények tulajdonságai
miatt pozitív lesz ∀n ≥ 1. Haladjunk lépésenként, nézzük az els® tört határértékét, amely
a szokásos "domináns-kiemeléssel" könnyedén meghatározható:

lim
n→∞

4n+1
√
n+ 1

4n
√
n

= lim
n→∞

4n+1

4n
·
√
n√
n
·

√
1 + 1

n

1
= 4.

Négy a határérték, hiszen az els® tag értéke 4, a második tag értéke 1, a harmadik tört
pedig 1-hez tart. Hasonlóképpen ("domináns-kiemeléssel") határozzuk meg a második tört
határértékét is:

lim
n→∞

2n+ 1

2 (n+ 1) + 1
= lim

n→∞

2n+ 1

2n+ 3
= lim

n→∞

n

n
·
2 + 1

n

2 + 3
n

= 1.
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Ezt szerintem nem kell indokolni, a kurzus eddigi anyagai alapján világos, miért egy a
határérték. De ha mégis, hát azért, mert az n

n értéke 1, az 1
n és a 3

n pedig tart a nullához.
Mivel tudjuk, hogy a szorzat határértéke megegyezik a tagok határértékeinek szorzatával,
ezért azt kaptuk, hogy∣∣∣∣4n+1

√
n+ 1

4n
√
n

· 2n+ 1

2 (n+ 1) + 1

∣∣∣∣ · |3x+ 2|2 → 4 · |3x+ 2|2 , ha n→∞.

Ismét használjuk a hányadoskritériummal kapcsolatos ismereteinket. Tudjuk, hogy a
sor abszolút konvergens x-ben, ha 4 · |3x+ 2|2 < 1. Engedjük rá az algebra-úthengert:

4 · |3x+ 2|2 < 1⇔ |3x+ 2|2 < 1

4
⇔ |3x+ 2| < 1

2
⇔ −1

2
< 3x+ 2 <

1

2
⇔

⇔ −5

2
< 3x < −3

2
⇔ −5

6
< x < −1

2
.

Fantasztikus, állítsunk is pár dolgot. A sor tehát abszolút konvergens x-ben, ha

x ∈
(
−5

6
,−1

2

)
\
{
−2

3

}
,

valamint divergens x-ben, ha

x > −1

2
vagy x < −5

6
.

Elég nagy szívásnak t¶nik, de a két széls® esetet külön-külön kell vizsgálnunk. Nézzük
mi a helyzet, ha x = −5

6 :

∞∑
n=1

4n
√
n

2n+ 1

(
−1

2

)2n−3
=
∞∑
n=1

4n
√
n

2n+ 1
·
(
1

4

)n

·
(
−1

2

)−3
=

(
−1

2

)−3 ∞∑
n=1

(
4 · 14

)n√
n

2n+ 1
.

A kiemelt konstanssal ne foglalkozzunk, a kérdés egyszer¶en csak∑ 1n
√
n

2n+ 1
=
∑ √

n

2n+ 1

konvergenciája. Látjuk, hogy elég nagy n-re

√
n

2n+ 1
≈ n

1
2

2n
=

1

2

1√
n
→ 0.

Jó lenne valamifajta összehasonlító teszt. Használom a kedvenc "Szabó Tamás"-receptemet
("elemjük ki a domináns tagot"). Legyen an =

√
n

2n+1 . Kell nekünk egy bn:

√
n

2n+ 1
=

√
n

n
· 1

2 + 1
n

A szorzat második tagja jól láthatóan 1
2 -hez tart, legyen tehát L = 1

2 > 0 szám, valamint

bn =
√
n
n = 1√

n
= 1

n
1
2
. Ekkor

lim
n→∞

an
bn

=
1

2
= L > 0,
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ezért tudjuk, hogy ∑ √
n

2n+ 1
∼
∑ 1

n
1
2

.

Mivel p = 1
2 < 1, ezért a jobb oldali sor a tanult tétel alapján divergens. Ebb®l következik,

hogy az eredetileg vizsgált sorunk is divergens, tehát a sor divergens x = −5
6 -ban.

Nézzük mi a helyzet, ha x = −1
2 :

∞∑
n=1

4n
√
n

2n+ 1

(
1

2

)2n−3
=
∞∑
n=1

4n
√
n

2n+ 1
·
(
1

4

)n

·
(
1

2

)−3
=

(
1

2

)−3 ∞∑
n=1

(
4 · 14

)n√
n

2n+ 1
.

A kiemelt konstanssal ne foglalkozzunk, a kérdés egyszer¶en csak∑ 1n
√
n

2n+ 1
=
∑ √

n

2n+ 1

konvergenciája. Visszakaptuk az el®z® esetben vizsgált sort, arról pedig már feljebb belát-
tuk, hogy divergens. Így van ez most is, ebb®l következik, hogy az eredeti sorunk is
divergens x = −1

2 -ben. Készen vagyunk.

3. (1 pont) A binomiális sorból kiindulva határozzuk meg arcsinx
hatványsorát |x| < 1-ben.

Megoldás:

Egy ideje már birtokában vagyunk annak a rendkíül hasznos tudásnak, hogy∫
1√

1− x2
dx = arcsinx+ C.

Induljunk ki az integrandusból, vagy legalább próbáljuk meg felírni a hatványsorát a bi-
nomiális sor segítségével:

1√
1− x2

=
(
1− x2

)− 1
2 =

(
1 +

(
−x2

))− 1
2 =

∞∑
n=0

(
−1

2

n

)(
−x2

)n
, ha

∣∣−x2∣∣ < 1⇔ |x| < 1.

Megtanultuk, hogy a hatványsorok integrálhatók is, ezért integráljuk az egyenlet mindkét
oldalát:∫

1√
1− x2

dx = arcsinx =

∫ ∞∑
n=0

(
−1

2

n

)
(−1)n x2n dx =

∞∑
n=0

(
−1

2

n

)
(−1)n x2n+1

2n+ 1
+ C,

ha |x| < 1. Kérdés még, hogy mennyi a C. Tudjuk, hogy arcsin 0 = 0, így az x = 0
helyettesítéssel élve

0 =

∞∑
n=0

0 + C

adódik, tehát C = 0. A keresett hatványsorunk ezek alapján:

arcsinx =

∞∑
n=0

(
−1

2

n

)
(−1)n x2n+1

2n+ 1
, ha |x| < 1. �
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