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Kalkulus II., els® házi feladat

1. (1 pont) Határozzuk meg:

lim
n→∞

n

√
n3 − 3

n2 − 5n
=?

Megoldás:

Vegyünk észre néhány dolgot. El®ször is

n3 − 3

n2 − 5n
≈ n3

n2 − 5n
≈ n3

n2
= n,

amennyiben n elég nagy. Megtanultuk, hogy

lim
n→∞

n
√
n = 1,

így hát jogosan vannak olyasféle sejtéseink, melyek szerint

lim
n→∞

n

√
n3 − 3

n2 − 5n
= 1.

A sejtéssel persze még nem megyünk sokra, amíg nem igazoljuk azt. Igazoljuk hát rend®r-
elvvel! Ehhez a gyök alatt szerepl® törtkifejezést kell becsülgetni. Alulról is, felülr®l is. A
sorrend mindegy, én most el®ször adok egy fels® becslést. Törtet úgy becsülünk felülr®l,
hogy

• a számlálót növeljük és/vagy a

• a nevez®t csökkentjük.

Fussunk neki a számlálónak, azzal egyszer¶ dolgunk van:

n3 − 3 < n3, ez triviális becslés, nincs mit indokolni raja, de mégis sokat nyerünk vele.

A nevez® már gázosabb, de ott is viszonylag egyszer¶en eredményre lehet jutni:

n2 − 5n > n2 − 1

5
n2 =

4

5
n2.

Mit csináltunk? Eredetileg n2-b®l 5n-et vonunk ki. A kifejezést csökkenteni szeretnénk,
tehát többet szeretnénk n2-b®l kivonni, mint 5n. Tudjuk, hogy 5n < 1

5n
2 ⇔ 25n < n2 ⇔

25 < n. És hát n > 25 triviális, hiszen n-nel a végtelenbe kocogunk. Ez pipa, rakjuk hát
össze a fels® becslésünket és nézzük meg, hogy miért jártunk vele jól:

n3 − 3

n2 − 5n
<

n3

4
5n

2
=

5

4
n,
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ami azért fantasztikus, mert

lim
n→∞

n

√
5

4
n = lim

n→∞
n

√
5

4
· lim
n→∞

n
√
n = 1 · 1 = 1

a tanultak szerint. Ez rendben, adtunk fels® becslést, tudjuk a határértékét is. Most
adjunk egy alsó becslést. Alsó becslést egy törtnek úgy adhatunk, hogy

• a számlálót csökkentjük és/vagy a

• a nevez®t növeljük.

Kezdjünk el babrálni el®ször a számlálóval, valahogy így:

n3 − 3 > n3 − 1

3
n3 =

2

3
n3.

Mi történt? Gondolkodjunk! A köbös tagból konstans hármat vonunk ki. Vonjunk ki
bel®le valami nagyobbat, például 1

3n
3-t! Ezt megtehetjük, de most is �gyeljünk oda, hogy

3 < 1
3n

3 ⇔ 9 < n3 ⇔ 3
√
9 < n, ami szintén igaz, ha n fut a végtelenbe. Nézzünk valamiféle

becslést a nevez®re is, eképpen:
n2 − 5n < n2.

Triviális becslésr®l van szó, nincs mit indokolni ezen sem. Megvagyunk az alsó becsléssel
is, rakjuk hát össze és nézzük meg, hogy miért jártunk vele jól:

n3 − 3

n2 − 5n
>

2
3n

3

n2
=

2

3
n,

ami azért elképeszt®en pazar, mert

lim
n→∞

n

√
2

3
n = lim

n→∞
n

√
2

3
· lim
n→∞

n
√
n = 1 · 1 = 1.

Dobjunk össze mindent, amit tudunk.

2

3
n ≤ n3 − 3

n2 − 5n
≤ 5

4
n,

amelyb®l egyértelm¶en következik, hogy

n

√
2

3
n ≤ n

√
n3 − 3

n2 − 5n
≤ n

√
5

4
n.

Vegyük ennek a határértékét n→∞ esetén:

lim
n→∞

n

√
2

3
n ≤ lim

n→∞
n

√
n3 − 3

n2 − 5n
≤ lim

n→∞
n

√
5

4
n.

A két széls® határértékr®l már beláttuk, hogy 1. De a rend®r-elv miatt tudjuk, hogy
a középs® határérték is 1, hiszen annak a sorozatnak úgymond kutya kötelessége 1-hez
tartani. Ennyi, készen vagyunk:

lim
n→∞

n

√
n3 − 3

n2 − 5n
= 1.

2. (1 pont) Határozzuk meg:

lim
n→∞

(
1 +

2

n− 1
+

3

n2

)2n

=?
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Megoldás:

Nem kellenek különösebben tapasztalt diákszemek hozzá, hogy meglássuk, itt bizony a
"matektanszék kedvenc ZH-példája" áll el®ttünk, hogy valahogy átverg®djünk rajta. Szó-
val az van, hogy valahogyan ki kellene alakítani a közkedvelt(

1 +
1

♠

)♠
alakot, amelyr®l tudjuk, hogy e-felé tart, ha ♠ változójával (lehet történetesen n is, de
mindegy) tartunk a végtelenbe. Az azért brute force-módon is belátható, hogy a sorozat
konvergens, helyettesítsünk be n helyére két nagy értéket, mondjuk n = 2000-et és n =
6000-et:(

1 +
2

2000− 1
+

3

20002

)2·2000
≈ 57, 762,

(
1 +

2

6000− 1
+

3

60002

)2·6000
≈ 54, 652.

Szóval látjuk, hogy ez a határérték 55 körül alakul. Akkor fussunk neki a megoldásnak,
ami nem több, mint egy hosszabb algebrai masszírozása az eredeti példának, eképpen:

lim
n→∞

(
1 +

2

n− 1
+

3

n2

)2n

= lim
n→∞

(
1 +

2n2 + 3n− 3

n2 (n− 1)

)2n

= lim
n→∞

(
1 +

1
n2(n−1)

2n2+3n−3

)2n

=

= lim
n→∞

(1 + 1
n2(n−1)

2n2+3n−3

) n2(n−1)

2n2+3n−3


2n2+3n−3

n2(n−1)
·2n

.

Itt most megállhatunk egy szóra. A kapcsos zárójel belsejében kialakult az
(
1 + 1

♠

)♠
kife-

jezés, a határértéke e. Azt viszont még nem tudjuk, hogy hanyadik hatványon van. Ehhez
ki kell számolni a kitev®jének a határértékét (amennyiben létezik). Ezt az egyszer¶ség
kedvéért tegyük meg külön:

lim
n→∞

2n
(
2n2 + 3n− 3

)
n2 (n− 1)

= lim
n→∞

4n3 + 6n2 − 6n

n3 − n2
= lim

n→∞

n3

n3
·
4 + 6

n −
6
n2

1− 1
n

=

= lim
n→∞

4 + 6
n −

6
n2

1− 1
n

= 4.

Készen is vagyunk, a határérték tehát

lim
n→∞

(
1 +

2

n− 1
+

3

n2

)2n

= e4.

(Megj.: Csak önigazoló megnyugtatásképpen nézzük meg, hogy e4 ≈ 54, 59, szóval elvileg
rendben vagyunk.)

3. (1 pont) Definíció szerint igazoljuk, hogy:

lim
n→∞

1

n
(√

n2 − 1− n
) = −2
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Megoldás:

Miel®tt még komolyabb faragásba fognánk, használjuk fel a tippet és tényleg b®vítsük ki
a törtet

√
n2 − 1− n kongujáltjával:

1

n
(√

n2 − 1− n
) · √n2 − 1 + n√

n2 − 1 + n
=

√
n2 − 1 + n

n (n2 − 1− n2)
=

√
n2 − 1 + n

−n
.

Ez azért jelent®sen szebb, mint ami az eredeti feladatkiírásban szerepelt. Most írjuk fel a
határérték de�nícióját, abból még baj sosem volt. Legyen ε > 0 tetsz®leges. Szeretnénk
egy ν = ν (ε)-t, hogy n > ν (ε) esetén∣∣∣∣∣

√
n2 − 1 + n

−n
+ 2

∣∣∣∣∣ < ε.

Kezdjünk bele az intenzív algebrai masszírozásba:∣∣∣∣∣
√
n2 − 1 + n

−n
+ 2

∣∣∣∣∣ =
∣∣∣∣∣
√
n2 − 1 + n− 2n

−n

∣∣∣∣∣ =
∣∣∣∣∣
√
n2 − 1− n
−n

∣∣∣∣∣ .

A nevez® abszolútértéke n, a számláló abszolútértéke pedig pont a mínusz egyszerese lesz:

n−
√
n2 − 1

n
= 1−

√
n2 − 1

n
< ε.

Ezt még gondoljuk tovább egy kicsit:

1−
√
n2 − 1

n
·

1
n
1
n

= 1−

√
n2−1
n2

1
= 1−

√
1− 1

n2
< ε.

Gondolkodjunk egy kicsit. Az egyenl®tlenség jobb oldalán egy tetsz®leges pozitív szám
áll. A bal oldalon egy ennél kisebb számot keresünk, de úgy, hogy n értéke 1-nél nagyobb
egész. Ha n = 1, akkor a bal oldala az egyenl®tlenségnek éppen 1. Ahogy n-nel a végtelen
felé tartunk, úgy közelít a bal oldal nulla felé. Ezt azt jelenti, hogyha ε-t 1-nél nagyobbnak
választjuk, akkor n ≥ 1 esetén mindig teljesülni fog az egyenl®tlenség ⇔ ν = 1 választás
jó. Nézzük meg, hogy mi a szitu, ha ε nulla és egy közé esik. Ehhez sajnos meg kell oldani
az egyenl®tlenséget...

1− ε <
√
1− 1

n2
⇔ 1

n2
< 1− (1− ε)2 ⇔ 1

n2
< 2ε− ε2.

Az egyenl®tlenség jobb oldala felfogható egy "fordított parabola"-ként, hiszen a négyzetes
tag együtthatója negatív. Így a számunkra érdekes megoldás:

n >

√
− 1

ε (ε− 2)
.

Ez jó is lesz ν (ε)-nak, tehát ha ε ∈ (0, 1]→ ν (ε) =
√
− 1

ε(ε−2) . Készennyi, elvileg.
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