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A PROJEKTFELADATOM DOKUMENTACIOJA
(PROGRAMOZASI ALAPISMERETEK)

Ebben a dokumentumban réviden és érthetGen igyekszem Osszefoglalni a Programozasi
alapismeretek c. kurzus projektfeladatanak megvalositasat. A program forraskodjat az
UngerTamasIstvan.c fajl tartalmazza. Mivel a projektfeladat keretei kozott megvalosi-
tottam a fajlkezelést is, ezért a program futtatasihoz elengedhetetlen a foglalasok.txt
nevi fajl, amelynek a forraskod jelenlegi allapotaban a programmal megegyezé mappaban,
helyen kell elhelyezkednie.

Az 546 soros program a main () fiiggvényen kiviil Gsszesen nyolc fliggvényt/eljarast
tartalmaz, ezek nevei forraskod szerinti sorrendben:

AdatBeolvasas;

e AdatMentes;

e DatumHasonlit;

e BemenetHiba;

o UjFoglalas;

e EddigiFoglalasok;
e FoglaloCegekNeve és
e FoglalasTorles.

A forraskodot és a program mikddését célszertien az egyes fiiggvények szerint tagolva fo-
gom bemutatni a tovabbiakban. Az egyes részekben arra térekedtem, hogy bemutassam,
mit és hogyan valdsitottam meg. Ahol sziikségesnek gondoltam, ott részletesen igyekszem
megindokolni, hogy miért pont az adott tipustt megvalésitas mellett déntéttem a munkam
soran.

Az alkalmazott adatstruktiira bemutatasa

A forraskod 35. soratol kezdsdé els fiiggvény bemutatisa el6tt célszert par szot szol-
ni az alkalmazott adatstruktirarol. A 12. sorban definidltam az eléfordité szdmara egy
ADATFAJL nevd valtozét, melynek értéke az alkalmazott foglalasok.txt fajl neve. Lz
célszerd a fajlnév esetleges megvaltozasanak konnyt, egy atirassal torténd kezelésének cél-
jabol. A foglalasok adatainak taroldsahoz egyszeresen lancolt listat alkalmaztam, melynek
lényege, hogy az egyes foglalasok adatait tartalmazé listaelemek tartalmazzak annak a
listaelemnek a cimét, amelyek kozvetleniil mellettiik dllnak a listdban "jobbra", tehat a
kovetkezs elem cimét. A lista utolsé elemének azon rekeszét, amely a kiovetkezs elemre
mutatna, konvencionalisan NULL értékre allitom minden esetben. Innen fogjuk tudni, hogy
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a lista végére értiink, amikor bejarjuk a listat. A lista sematikus abraja az 1. abran lathato.
A lista legfontosabb része az abran *Lista jel6lést kapott mutaté, amely a lista elsé elemé-
re mutat. Ez az tgynevezett kincstari mutato, ezzel fogjuk tudni megtalalni az adatainkat
a memoridban. Ha elveszitjlik vagy feliilirjuk, az adataink elvesznek a memoridban. Nem
torlgdnek, csak soha nem fogjuk ket megtalalni.
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1. dbra. Egyszeresen lancolt lista

A lista elemei specidlis adatstruktarak, amelyeket a feladatnak megfelelGen alakitot-
tam ki. A struktira definidlasa a 21. és 31. sorok kozott taldlhatd, a neve pedig Adatok.
Tekintsiik ezt a strukturat egy doboznak, amely a definicié szerint tartalinaz egy 20 hosszu-
sagn karaktersztring tarolaséra alkalmas tombot (ide keriil a cégek neve), 5 darab elGjel
nélkiili egész szam tarolasara alkalmas valtozot (a foglalas éve, honapja és napja, vala-
mint a foglalas kezdeti 6réja és végss ordja) és egy ugyanilyen Adatok strukturara mutatod
pointert, amelybe mindig a kovetkezs listaelem cimét fogjuk eltarolni. Az emlitett CegNev
tombnek ebben az esetben 21 rekeszt sziikséges kialakitani, hiszen szdmolni kell a karak-
terlancot lezaré null terminator jelenlétével is. Ezt a hosszt definidlja az el6forditonak a
MAXCEGNEV valtozo, melynek értéke 21. Igy ha késébb rajoviink, hogy hosszabb cégneveket
szeretnénk alkalmazni, elég csak a kéd 15. sordban atirni az értéket.

Az AdatBeolvasas fiiggvény célja és miikddése

Az AdatBeolvasas fiiggvény beolvassa a foglalasok.txt nevd fajlban elhelyezkeds fog-
lalasokat, létrehozza a lancolt listat, feltolti azt a fajlbol beolvasott foglalasok adaival
és visszaadja a lista elejére mutatd kincstari mutatot. A 35. sorban talalhaté Adatokx
AdatBeolvasas() definialasbol latszik, hogy nem kér bemenetet, kimenetként pedig egy
Adatok tipust struktdrara mutaté pointert fog visszaadni. Péar fontos kikdtés:

e A foglalasok.txt fajl szerkezete kotott. Sorokbol all, minden egyes sor egy-egy
foglalas adatait tartalmazza.

e Az egyes sorokban 1évé foglalasok adatai pontosvesszével vannak elvalasztva egy-
mastol. Az adatok sorrendje is kdtott: cégnév, foglalds éve, honapja, napja, kezdd
ordja és végss oraja.

e Az egyes sorok végén szintén pontosvesszé van.

e A program feltételezi, hogy a fajlban 1évé adatok minden szempontbél helyesek és a
benne lév§ adatok mar sorban vannak. Erre kiilon ellenérzést a program nem végez.
Azért igy valdsitottam meg, mert a program maga irja is a fajlt, nem csak olvassa.
Amikor viszont irja, akkor a mar sorbarendezett lancolt lista tartalmat irja bele,
kovetkezésképpen az adatok sorban lesznek.

A fiiggvényben létrehoztam egy *FajlMutato pointert, amely a fajlban torténd ba-
rangolashoz sziikséges. Ezek utadn fopen segitségével olvasasra megnyitom a fajlt, majd
egy FoglalasokSzama valtoz6 segitségével megszamolom, hogy hany sora van. Ehhez egy
specialis format stringet alkalmaztam, amely illeszkedik a féjl egyes soraira.
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Ezt a format stringet nagyjabol ugy érdemes elképzelni, mint egy reguléris kifejezést
UNIX-kérnyezetben, csak nyilvanvaléan mas a szintaktikaja. A kifejezés megiraséhoz egy
internetes forrast hasznaltam, amelyet a forraskod 42. soraban elhelyezett kommentben fel
is tiintettem. Mivel a szdmolasnal nem szeretnénk elmenteni a beolvasott tartalmat, ezért
minden egyes érték elé *-ot kell helyezni a specifikicié szerint. Igy az fscanf fiiggvény
beolvassa ugyan a fajl tartalmat, de azt nem rendeli hozzd témbhoz, viltozohoz, stb.
Ebben az esetben ugyanis csak a sorokat szdmoljuk meg.

Amennyiben a fajl tires (FoglalasokSzama=0), Ggy nincs mit beolvasni, a fiiggvény
visszaadja a NULL értéket a lista elejére mutatod pointer értékének és be is fejezédik az
eljaras. Ha a fajlban mar van adat, ugy a rewind segitségével visszapakolom a fajlmutatot
a fajl elejére és elkezdem a tényleges beolvasést.

A lancolt lista elkészitéséhez létrehozunk harom mutatot. Az *ElsoElem lesz a kincstéri
mutato, ezt adja majd vissza az eljaras. Az elemek Osszelancolasdhoz két mutaté kell: az
aktualis elemre mutaté *AktualisElem és az el6zére mutaté *ElozoreMutato. Kezdetben
mindharom mutaté értékét NULL-ra inicializaljuk. Mivel méar tudjuk, hany sora van a
fajlnak, igy batran alkalmazhatunk for iterdciét annyi lépéssel, ahany sorunk van. A
lancolt lista elkészitésének lépései:

1. Az aktuélisan beolvasand6 adatok szamara létrehozunk egy *AktualisElem dobozt;

2. Ebbe a dobozba fscanf segitségével bepakoljuk az aktualisan beolvasandé foglalasi
adatokat;

3. Amennyiben ez a doboz a lista els§ lancszeme, ugy beallitjuk a kincstari *ElsoElem
mutatét ennek a doboznak az értékére;

4. Ha nem ez az elsd lancszem, akkor ennek a doboznak a cimét beirjuk az el6z6 doboz
kovetkezo rekeszébe, igy hozzicsapjuk dobozunkat a listdhoz;

5. Megvizsgaljuk, hogy ez-e az utolsé doboz, és ha igen, akkor a kovetkezo rekeszbe
beirjuk a NULL-t, ezzel zarjuk le a listat;

6. Az iteracio kivetkezs 1épéséhez elmentjiik az aktuélis doboz cimét a *ElozoreMutato-
ba;

7. Kezdjik elolrsl a folyamatot addig, amig le végig nem léptiink a fajl Ssszes soran.
Ha végigmentiink, bezarjuk a fajlt és visszaadjuk a kincstari mutato értékét.

Igy az adatokat beolvastuk, listaba fiiztiik és visszaadtuk a lista kezdGcimét, tudunk
vele tehat dolgozni a tovabbiakban.

Az AdatMentes fliggvény célja és miikédése

Az AdatMentes fliggvény célja, hogy a rendezett lancolt listaban taldlhat6é adatokat beleir-
ja a kezelt fajlba az el6re megkotott fajlstruktira szerint. Ehhez ismét megnyitjuk a fajlt,
de ezuttal irasra. Nagyon fontos, hogy ebben az esetben az fopen fliggvény argumentuma
"w", tehat nem hozzairunk a fajlhoz, hanem kitordljik annak tartalmat és ujrairjuk az
egészet. Igy a legegyszeriibb megoldani a feladatot, hiszen amikor irjuk a fajlt, akkor agy-
is mindig csak az aktudlis, a lancolt listdban talalhato foglalasokat szeretnénk elmenteni
bele. Az pedig kénnyen el&fordulhat, hogy idékézben nemcsak hozzétoldottunk, hanem
toroltiink is a foglalasok listajabol.

A fajlba irdshoz a *SegedMutato nevii munkamutaténknak értékiil adjuk a kincstari
mutatot, tehat a lista kezdGcimét, majd egy fprintf és a mér ismertetett format string
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segitségével addig (while) pakolgatjuk bele a fajlba az egyes foglalasok adatait, amig a
munkamutatonk értéke NULL nem lesz, tehat amig a lista végére nem ériink. Ehhez ter-
mészetesen minden egyes lépésnél bedllitjuk a munkamutatot a kovetkezs elem cimére
(SegedMutato = SegedMutato->kovetkezo). A ciklusbol valo kilépés esetén minden fog-
lalas adatat beleirtuk a fajlba, becsukjuk tehat a fajlt, kozoljiik a felhasznaloval, hogy a
mentés sikeres és mar végeztiink is.

A DatumHasonlit fiiggvény célja és miikédése

A DatumHasonlit fiiggvény célja eldonteni, hogy két foglalasi datum (idépont) koziil me-
lyik a nagyobb (melyik van idében késébb). A fliggvény bemenetként két Adatok tipusa
strukturara mutat6 pointert kap, kimenetként pedig

e 1-et ad vissza, ha az elsé argumentumnak megadott idépont a késébbi;
e -1l-et ad vissza ha a méasodik argumentumnak megadott idépont a késéhbi, és
e 0-at ad vissza, ha a két id6pont azonos.

A figgvényt négy darab if-péaros segitségével valdsitottam meg. Az els§ paros az évet
vizsgalja meg. Ha barmelyik feltétel teljesiil, a fiiggvény visszaadja a megfelels visszatérési
értéket majd befejezédik. Ha nem ez torténik, akkor az évek azonosak, ellenérizhetjiik
a honapokat ugyanezen modszer szerint, majd a napokat és a foglalasok kezdeti orait.
Amennyiben egyik sem teljesiil, akkor a két datum azonos, tehat a fiiggvény nullat ad
vissza.

A BemenetHiba eljaras célja és miikddése

Adatok bekérése soran elsfordulhat, hogy a felhasznalé nem olyan tipusi adatot ad meg
inputként, mint amilyet a program varna. Ilyen eset az, amikor szamot varunk (tehat pél-
daul egy int tipusa véltozoba olvasunk be adatot) de a felhasznald karakter(sztringe)t ad
be. Ezt az esetet célszerd lekezelni, erre valé a BemenetHiba eljards. Meghivisa soran téa-
jékoztatjuk a felhasznal6t, hogy nem értelmezhets adattal drvendeztette meg a programot,
majd a hibas inputot a 155. sorban taldlhatd scanf segitségével "lenyeljiik"’.

Erdemes megfigyelni, hogy mindezt sztringként tessziik, ami univerzalis megoldas. Mi-
ként azt megtanultuk, szdmok is értelmezhetSek sztringként, ellenben mashogy kddolod-
nak, mintha ténylegesen szamként kezelnénk &ket. Ha az inputot sztringként kezeljiik,
biztos, hogy sikeres lesz a sztenderd inputon maradt szemét elnyelése. Ezért valasztottam
ezt a megoldast.

Az UjFoglalas fliggvény célja és miikédése

Az UjFoglalas fiiggvény bekéri a felhaszndlotol a foglalasanak az adatait, majd megvizs-
galja, hogy szintaktikailag helyesen adta-e meg. Ezek utdn megvizsgalja, hogy a datum
helyes-e, beleértve a szoksévek esetét is. Ezek utan megvizsgéilja, hogy szabad-e a kért
id6pontban a terem, és ha szabad, a foglalast elmenti, behelyezi a lancolt lista megfeleld
helyére. Ez lényegében a program els§ meniipontjanak feladatat fogja ellatni. Nézzik
végig, hogyan.

Fontos, hogy ez a fliggvény nem a lista elejének a cimét, hanem a cimnek a cimét kapja
bemenetként (Adatok **Lista). Ez egy mutatéra mutaté mutatd (pointer to pointer),
amelynek elénye, hogy igy nemcsak hasznélni tudjuk az értékét a bemenetként kapott
mutaténak, hanem azt is tudjuk moddositani, hogy hova mutat. Gondoljuk meg, hogy
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miért van erre sziikség! ElSfordulhat, hogy olyan foglalast kell régziteni, amely a lancolt
lista elejére kell, hogy keriiljon. Ebben az esetben a besziras soran mddositani kell a lista
els6 elemének cimét, hiszen az els6 elem cime az aktualisan besztirandé elem cime lesz. Az
els§ elem cime pedig nem més, mint az an. kincstari mutatd. A kincstari mutatot kell
tehat modositani az 4j elem cimére, ez pedig csak Ggy lehetséges, ha nem kézvetleniil a
pointer értékét, hanem a pointer értékének a cimét adjuk &t a fiiggvényiinknek.

A fiiggvény elején létre kell hozni ideiglenes véltozdkat, ahovi az adatok bekérését
elvegezzik. Ezen kiviil létrehozunk egy mutatot (Adatok *UjFoglalas;, 168. sor), amely
sikeres foglalas esetén az 0j dobozunkra fog majd mutatni, amelybe a foglalas adatait
pakoljuk el. Létrehozunk még egy Foglaltsag nevi 24 elemd tombét és inicializaljuk ugy,
hogy minden elemét nullara allitjuk be. FEz a témb kulcsszerepet fog jatszani a foglaltsag
ellenérzésében, amelyet kés6bb mutatok majd be.

A bekérési interface a 182-198. sorok kozott talalhatd. Itt egyrészt bekérjik a fel-
hasznalotol a foglalas adatait, majd bekérés utan kézvetleniil megvizsgéljuk azt is, hogy
formailag helyes-e a beadott érték. Erre szolgal a JolAdtaMeg indikatorvaltozo és a ko-
rdbban bemutatott BemenetHiba fiiggvény. Kezdetben a JolAdtaMeg értéke 1. ElGszor
bekérjiik a felhasznalotol az évet (2000 és 2099 kozott). Ezt scanf segitségével tessziik
meg, amely most egyszerre két szerepet is igyekszik betdlteni. FEgyrészt ténylegesen be-
kéri a felhasznalétol az adatot a megfelels ideiglenes valtozoba. Méasrészt pedig a scanf
fliggvény kimenetét eredményiil adjuk a JolAdtaMeg valtozénak is.

Ez miért j67 A scanf fiiggvény visszaadja a sikeresen beolvasott karakterek szamét.
Ez — amennyiben a beolvasas sikeres volt — egy nullatol nagyobb érték kell, hogy legyen.
Amennyiben a beolvasas sikertelen volt (értsd: nulla karaktert olvasott be sikeresen), ugy a
fiiggvény nullat ad visszatérési értékként. Ezt ellendrzi a kovetkezs if-4g. Amennyiben ide
bekeriiliink, tgy a felhaszndlé biztos, hogy nem adta meg helyesen az adatot, meghivjuk
a BemenetHiba fiiggvényt, szélunk a felhasznalénak, kitakaritjuk a standard inputot majd
kidobjuk a felhasznalot a meniipontbdl (return 1).

Ha idaig eljutottunk, kévetkezhet az adatok helyességének ellen6rzése. Megvizsgaljuk,
hogy a felhasznal6 a lehetséges évintervallumbél valasztott-e, valamint hogy a megadott
hénap és nap létez6 datum-e abban az évben, és természetesen megnézziik azt is, hogy
az idépontként megadott szam tényleg létezs déra-e, valamint hogy a foglalas vége késébb
van-e, mint a foglalas eleje. Ellenérizziik a szokéévek esetét is. Amennyiben a felhasz-
naléd februdr 28-nal késébb februéri idépontra szeretne foglalni és az évszam néggyel vald
osztdsanak maradéka nem nulla (négyévente van szokGév), szolunk a felhasznélonak, hogy
hibisan adta meg a datumot és kirigjuk a fémeniibe.

Amennyiben ez rendben van, eljutottunk arra a pontra, hogy tudjuk, hogy a felhasznal6
létezd idépontra kivan foglalni. Kévetkezd lépés annak megvizsgaldsa, hogy a terem abban
az idGszakban foglalt-e. Ehhez készitiink egy munkamutatot, amelynek értékiil adjuk a
kincstari mutatot, tehat a lancolt lista elejére pakoljuk azt. Ezek utan egy while segitsé-
gével végigfutunk a lancolt lista minden elemén, egyenként megvizsgaljuk Gket, és ha tgy
talaljuk, hogy az a foglalads éppen ugyanarra a napra szél, mint az aktuélis foglalasi igény,
elgvesszitk a Foglaltsag nevii indikdtortombiiket, és a listaban szerepld foglalas kezdeti
id6pontja és végidSpontja kozott egy for iteracié segitségével bebillentjiik az 6sszes olyan
indikatort 0-rol 1-re, amelyhez tartoz6 6rakban a terem mar foglalt.

Ha ezzel az iteracidval végeztiink, az indikatortomb tisztan és vildgosan fogja jelezni
az aznapi foglaltsagi helyzetet. Meg tudjuk tehat nézni, hogy a széban forgo foglalasi
igény teljesithets-e. Készitiink egy for-iteraciot a foglalasi igény kezdeti és a végidGpontja
kozott, és amennyiben ezen a szakaszon barhol taldlunk egyest az indikatortémbben, az azt
jelenti, hogy a foglalasi igény nem teljesithetd, a terem mar foglalt. Ezt a nulldra inicializélt
MarFoglalt valtozo egyre torténd billentésével jelezziik. Amennyiben ezen indikator értéke
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1, kozoljiik a felhasznaloval, hogy foglalt a teremn és kidobjuk a f&meniibe.

Ha ez nem torténik meg, a foglalas teljesithetd, el kell tehat helyezniink a lancolt listaba.
Lefoglaljuk neki helyet, elkészitjiik a "dobozt" (UjFoglalas = malloc(sizeof (Adatok));),
majd a doboz megfelels rekeszeit megpakoljuk az aktualis foglalési igény adataival (284-289.
sorok). A munkamutatonkat a lista elejére allitjuk, majd létrehozunk még egy segédmu-
tatot, hogy a lista végigjarasa sordn el tudjuk menteni az el6z6 doboz cimét. Ezt nullara
inicializaljuk.

Ha ez megvan, lekezeljiik azt az esetet, amikor nincsen a listdban semmi. Ekkor az
aktudlis foglalas doboza lesz az els6 a listdban. A doboz kévetkez§ dobozra mutatd cimét
NULL-ra allitjuk, a kincstari mutaténkat pedig beallitjuk ennek a doboznak a cimére, hiszen
mostantdl ez lesz az els§ lancszem, innen fog kezd@ddni az adatsorunk. Pontosan ez a
modositas az, amiért kettds pointeraritmetikat kell alkalmmazni. Ebben az esetben ugyanis
nemcsak hasznéljuk a kincstari mutatonkat, de még az értékét is modositanunk kell.

Amennyiben nem az aktuélis foglalds doboza a lista els§ eleme, ugy elindulunk végig a
listan. Minden doboz esetén megnézziik, hogy az aktuélisan beszurandé foglalas idépont-
ja kés6bb van-e, mint az a foglalas, amelyet éppen vizsgalunk. Amennyiben ez teljesiil,
vandorolhatunk tovabb a listdn. Elmentjik az aktuélis doboz cimét és tovabbpakoljuk a
segédmutatot a kovetkezd dobozra. Amennyiben a kvetkezd doboz cime NULL, Ggy a lista
végére értlink, a végére kell beszurni a dobozt. Ez specidlis eset, hiszen a beszirandé doboz
kovetkezére mutatd pointerét NULL-ra kell allitani, valamint az elétte 1é6vS doboz kévetkezé-
re mutaté pointerét az aktualisan besztrando doboz cimére kell allitani. Es ennyi, készen
vagyunk, break utasitdssal kiléphetiink a teljes listavégigjarasi folyamatbol. Amennyiben
ez nem teljesiil, continue utasitassal robogunk tovabb a listén, elére.

Ha a forraskod 320. sordig eljutunk, az azt jelenti, hogy az els§ if-4gba nem léptiink
be, tehat az 1j foglalds kordbban van, mint az, amelyen éppen a munkamutaténk all.
Ekkor az aktuéalis foglalds dobozanak kdvetkezére mutatd cimét a munkamutatd aktudlis
cimére allitjuk. Kérdés, hogy az a doboz, amely elé be kell sztrni az aktualis dobozt, a
lista els6 eleme-e. Ezt ellenérzi a 323. sorban 1évs feltétel. Amennyiben nem, gy nemes
egyszertiséggel be kell allitani az elStte 1évé doboz kdvetkezd dobozra mutaté cimét az
aktuélisan beszirandé doboz cimére és készen is vagyunk. Mas a helyzet, ha az els6 elem
elé kell beszarnunk a dobozunkat. Ekkor a régi kincstari mutaté értékét kell értékiil adni a
frissen beszirandé doboz kovetkez& dobozra mutatd cimének, valamint médositanunk kell
a kincstari mutatonkat a frissen beszurand6 doboz cimére. Ezzel becsatoltuk a lanc elejére
az 1j dobozunkat, végeztiink.

Ha mindezekkel megvagyunk, a lista rendezett és kész, a foglalds el van mentve. Szo-
lunk a felhasznalonak és vége is a munkanak.

Az EddigiFoglalasok eljaras célja és miikddése

Az EddigiFoglalasok eljaras bemenetként a kincstari mutatot kapja, melynek segitsé-
gével sorszamozva kiirja az eddig rogzitett foglalasok adatait a felhasznaléi felilletre. Ez
egy kifejezetten egyszert eljaras, de a honapok nevének kiiratasat (szam/bett-konverzio)
egy érdekes triikkel oldottam meg, amely érdemel par szét.

A forraskod 17. soraban definidltam egy 13 elemt, stringek tarolasira alkalmas t&mbot.
A tdmb nulladik elemének egy dummy "h"-bett abboél a célbol, hogy a 0-12-es indexelést
kikeriilve 1-12-ig tudjam hasznalni és indexelni a t6mbot a programban. Ennek a lényege,
hogy ha a tomb els§ elemére hivatkozunk, akkor januart ad vissza, ha a masodikra, ak-
kor februart és igy toviabb. Ez kiviléan alkalmazhaté a honapok szdmanak névre torténd
cseréléséhez, amit kihasznél az EddigiFoglalasok eljards is. Az eljaras tulajdonképpen
semmi méast nem csinal, csak a mar megszokott mdodon bejarja a lancolt listat, majd sor-
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szaméaval egyiitt kiirja az egyes foglalasok adatait egy printf segitségével. A triikk a
printf argumentumaban van, ahol elSkeriil az el6bb ismeretett karaktertomb alkalmazé-
sa: Honapok[(SegedMutato->Honap)]. Lathato, hogy minden kiiratas esetén az aktualis
doboz honap rekeszében talalhat6 szaméval indexeljiik a tombiinket, amely a fent emlitett
okok miatt minden esetben a hénapok nevét fogja visszaadni.

Az FoglaloCegekNeve eljaras célja és miikddése

Az FoglaloCegekNeve eljaras bemenetként a kincstari mutatoét kapja, melynek segitsé-
gével kifrja a felhaszndléi feliiletre a foglald cégek neveit betdrendi sorrendben. Ez egy
komplex feladat, melynek keretei kdzott nemcsak végig kell jarni a listankat, hanem egy
rendezd algoritmust is meg kell valositani. Az eljaras elején a ListaMeret valtozo segitségé-
vel megszdmoljuk, hany foglalasunk van jelenleg a rendszerben. Ezek utdn megvizsgaljuk,
van-e méar foglalds a rendszerben, és ha nem, azonnal kilépiink az eljarasbol, hiszen a
semmit nem lehet rendezni, kiirni.

Ha van foglalas a rendszerben, akkor dolgunk van. Létrehozunk egy CegNevek t6mbot,
amelynek annyi rekesze lesz, ahany foglalas a rendszerben van. Ez a témb triikkés, hiszen
nem a cégek neveit fogja kozvetleniil tartalmazni, hanem csak a lancolt listink dobozainak
cimeit. Olyan cimeket, amelyeken kiilonb6z6 cégnevek vannak. Mivel szélsGséges esetben
elfordulhat, hogy minden egyes foglalds més céghez tartozik, fel kell késziilniink a leg-
rosszabbra, ezért készitiink el6 pontosan akkora tombdét, ahany foglalasunk a rendszerben
van.

Ha ez megvan, ismét beéllitjuk a munkamutatonkat a listank elejére, majd elkezdiink
végiggyalogolni a lancolt listankon a szokisos modon. Mivel a VanMar valtozénkat nullara
inicializéltuk, az els6 lépésnél egybdl a 395. sorban kezd6ds if agba keriiliink, amely
belerakja az aktualis dobozra mutaté mutatét a CegNevek tombbe, az s valtozot eggyel
megnoveli és kocog tovabb a lancolt listan. Ez vilagos, az elsé doboz cégneve még biztosan
nem szerepel a cégnevek kdzott, azt mindenképpen be kell rakni az egyedi cégnevek kozé.
Még egyszer célszerti hangstlyozni: nem a cégnevet mentjiik el, hanem csak a dobozra
mutatd mutatot, amellyel a cégnév is elérhetd, természetesen.

Ha nem az els6 doboznal jarunk, akkor minden egyes 4j doboznal meg kell vizsgalni,
hogy az abban szerepl§ cégnév szerepel-e méar a cégneves listankban. Ezt a klasszikus
strcmp fliggvény segitségével tesszitk meg, és ténylegesen a CegNevek tdmb rekeszeiben
talalhaté cimeken taldlhatd cégneveket hasonlitjuk Ossze a munkamutaténk dobozanak
cégnevével. Amennyiben a munkamutatd cégneve méar szerepel a listaban, gy beallitjuk
az indikatorvaltozonkat egyre és egy break segitségével kiugrunk a CegNevek tomb rekeszeit
bejaro for-ciklusbol. Ha nem taldlunk egyez6t, akkor az indikatorvaltozot nullara allitjuk
és a mar ismeretett modon (395-398. sorok) berakjuk a doboz cimét a CegNevektombbe.

Ha ezzel végeztiink, megvannak azon dobozok cimei, amelyek egyedi cégneveket tartal-
maznak, de még nem névsorrendben. Rendezni kell ket tehat. Ehhez egy els6 végtelennek
t1inG while-ciklust irtam (while(1)). Az iteraciot ugy valositottam meg, hogy egy id6 utén
egészen biztosan egy olyan dgéara fogunk futni, amely egy break utasitassal kirdg minket
a végtelen ciklusbol. Az els6 ilyen 4g az s=1 esete. Ekkor csak egy cégnév van, nincs mit
rendezni, végeztiink. Ha egynél tobb név van, akkor jon a tényleges rendezés. Egy for
segitségével elindulunk a cégnevek mutatoit tartalmazo témbiinkon. Osszehasonlitjuk az
elsé két egymads mellett elhelyezkedd cimen 16vs cégnevet. Ha az els6 cégnév "nagyobb"
(névsorban hatrébb van), mint a masodik, megcseréljiik ket. Ehhez segitségként kell mun-
kamutat6, ahova elmentjiik a csere idejére az els§ cimet, majd az els6 helyére beirjuk a
méasodikat, végiil pedig a munkamutatoébol a masodikba beirjuk az els6t. Mivel ebben a
fazisban még nem sikeriilt végigmenniink a témbbon csere nélkiil, egy indikatorvaltozdval
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jelezziik, hogy még nincsen sorban a lista. Ezutdn megszakitjuk a for-ciklust, kezd&dik
elolrél a végtelen while, ismét elindulunk a cégneves tombbdn, ha sziikséges, akkor cseré-
liink és igy tovabb.

Mindezt addig folytatjuk, amig a for-iteracié végig nem tud menni a témbdn csere nél-
kiil. Ha ez 0sszejott, akkor az indikdtorvaltozéval jelezziik, hogy sorban vannak a cégnevek,
és ezek utan egy specialisan erre az esetre irt if-4ggal kiragjuk magunkat a végtelen ciklus-
bél. Ezek utan mar csak ki kell irni a sorban elhelyezkedd cégneveket a cégnevek témbben
talalhaté mutatok segitségével.

A FoglalasTorles fliggvény célja és miikbdése

A FoglalasTorles segitségével sorszam szerint lehetséges torolni az egyes foglalasokat
az adatbazisbol (a listabol). Mivel ezuttal is el6fordulhat, hogy a lista elejérsl torliink,
ezért ismét mutatéra mutaté mutatot sziikséges alkalmazni.

A fiiggvény els6 lépése a rendszerben 16v6 foglalasok szamanak meghatarozésa a méar
ismeretett modon. Amennyiben dgy talaljuk, hogy nincs foglalds a rendszerben, ezt ko-
z0ljiik a felhasznaloval és kilépiink (visszaadunk 1-et, konvenciondlisan). Ha van foglalas,
bekérjiik a felhasznalotol tordlni kivant foglalas sorszamat. A BemenetHiba fiiggvény se-
gitségével a méar ismertetett modon itt is megvizsgaljuk elGszor, hogy formailag helyesen
adta-e meg az inputot (értsd: szamot adott-e meg). Ha ez rendben van, megnézziik, hogy
van-e egyaltalan ilyen szamu foglalas gy, hogy megvizsgaljuk, nagyobb-e a beadott szam,
mint a rendszerben 1év§ foglaldsok szama. Ha nagyobb, akkor nem jo értéket adott meg a
felhasznald, szoélunk neki és kirtigjuk a meniipontbdl.

Ha j6 és értelmes sorszamot adott meg a felhasznald, a foglalast térolhetjiik a listabol.
Ismét végigfutunk a szokasos mdédon a listankon, és ha eljutottunk a torlendd foglaldshoz,
torlink. ElGszor is kozoljlik a felhasznaloval, hogy melyik foglalast toroljiik, kifrjuk tehat a
foglalas adait. Ezek utan meg kell vizsgalnunk, hogy a torlendd foglalas a lista els6 eleme-e.
Ha igen, modositani kell a kincstari listamutatonkat a régi méasodik/uj elsé doboz cimére.
Ha nem az els§ elemet toroljiik, akkor a térlendé dobozban taldlhaté kovetkezs cimet at-
méasoljuk a torlendd doboz el6tt 1évs doboz kovetkezs cimébe (igy iktatjuk ki a torlendd
elemet a lancbol). Ekkor még a torlends adat a memoriaban van, de mivel az méar nem ré-
sze a lancnak, nem tudnank elérni. A felhasznalt memoriateriiletet a free (SegedMutato) ;
paranccsal fel is szabaditjuk, szélunk a usernek, hogy a torlés sikeres volt és kirtgjuk ma-
gunkat a listavégigjaro ciklusbol.

A main () fiiggvény miikédése

A main () tulajdonképpen nem mas, mint egy lehet&ségvalasztiasos menii, amely a vé-
lasztastol fiiggfen meghivija a mar ismertetett fiiggvények és eljarasok valamelyikét. A
menii szerkezete annyira klasszikus, hogy én is egy interneten talalhato verziot pofoztam
at a sajat feladatomra. A forumot meg is hivatkozom a forraskéd 512-es soraban. A
fliggvény elején létrehozunk egy mutatdt, amely alkalmas a definialt struktirankra térténd
mutatisra. Ezt NULL-ra inicializaljuk, de régtén utdna az AdatBeolvasas fiiggvény segit-
ségével beolvassuk az adatfajl tartalmat és értékiil adjuk neki a lista kezdGcimét. Fzek
utan bekérjiik a felhasznal6tol, hogy mit szeretne csindlni. Lehet&sége van vélasztani 1-6
meniipontok koziil. Itt is alkalmazzuk a mar ismeretett ellenérzést arra vonatkozéan, hogy
szamot ad-e meg a felhasznélé. Ha nem, addig nem hagyjuk békén, amig szdmot nem ad
meg. A switch-case agon pedig a bekért sorszamtol fiiggen meghivjuk az adott feladat
ellatasara alkalmas fliggvényeket, eljarasokat.
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Ko6szonetnyilvanitas

A programot a konzultacidkon elhangozttak, valamint az eddigi programozési tapaszta-
lataim alapjan magam irtam, amely a legjobb tudasom szerint megfelelen miikédik. A
program megvaldsitasa tartalmaz ugyanakkor egy-két olyan gyakorlatiasabb fogast, prak-
tikdt és megoldast, amelyek talmutatnak az alapszintid programozasi ismereteken. FEl-
gondolésilag, nem szintaktikailag. Fzen megoldasokert (példaul a BemenetHiba fliggvény
Otletéért, a foglaltsag ellendrzésére szolgild segéd-indikatortdmb hasznalatanak javaslaté-
ért, valamint a fajl olvasasdhoz/irasdhoz hasznalt format string alkalmazasaért) nagy
készonettel tartozom baratomnak és volt kollégdmnak, Budai Tamaésnak, akivel a projekt-
feladat elkészitése soran tébbszor is konzultaltam.

Budapest, 2017. november 4.
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