Unger Tamés Istvan FTD1YJ

Név: Unger Tamas Istvan
Neptun: FITD1YJ
Web: http://maxwell.sze.hu/ ungert

A PROJEKTFELADATOM DOKUMENTACIOJA
(PROGRAMOZASI ALAPISMERETEK)

Ebben a dokumentumban réviden és érthetGen igyekszem Osszefoglalni a Programozasi
alapismeretek c. kurzus projektfeladatanak megvalositasat. A program forraskodjat az
UngerTamasIstvan.c fajl tartalmazza. Mivel a projektfeladat keretei kozott megvalosi-
tottam a fajlkezelést is, ezért a program futtatasihoz elengedhetetlen a foglalasok.txt
nevi fajl, amelynek a forraskod jelenlegi allapotaban a programmal megegyezé mappaban,
helyen kell elhelyezkednie.

Az 546 soros program a main () fiiggvényen kiviil Gsszesen nyolc fliggvényt/eljarast
tartalmaz, ezek nevei forraskod szerinti sorrendben:

AdatBeolvasas;

e AdatMentes;

e DatumHasonlit;

e BemenetHiba;

o UjFoglalas;

e EddigiFoglalasok;
e FoglaloCegekNeve és
e FoglalasTorles.

A forraskodot és a program mikddését célszertien az egyes fiiggvények szerint tagolva fo-
gom bemutatni a tovabbiakban. Az egyes részekben arra térekedtem, hogy bemutassam,
mit és hogyan valdsitottam meg. Ahol sziikségesnek gondoltam, ott részletesen igyekszem
megindokolni, hogy miért pont az adott tipustt megvalésitas mellett déntéttem a munkam
soran.

Az alkalmazott adatstruktiira bemutatasa

A forraskod 35. soratol kezdsdé els fiiggvény bemutatisa el6tt célszert par szot szol-
ni az alkalmazott adatstruktirarol. A 12. sorban definidltam az eléfordité szdmara egy
ADATFAJL nevd valtozét, melynek értéke az alkalmazott foglalasok.txt fajl neve. Lz
célszerd a fajlnév esetleges megvaltozasanak konnyt, egy atirassal torténd kezelésének cél-
jabol. A foglalasok adatainak taroldsahoz egyszeresen lancolt listat alkalmaztam, melynek
lényege, hogy az egyes foglalasok adatait tartalmazé listaelemek tartalmazzak annak a
listaelemnek a cimét, amelyek kozvetleniil mellettiik dllnak a listdban "jobbra", tehat a
kovetkezs elem cimét. A lista utolsé elemének azon rekeszét, amely a kiovetkezs elemre
mutatna, konvencionalisan NULL értékre allitom minden esetben. Innen fogjuk tudni, hogy

1. oldal

http://maxwell.sze.hu/~ungert

Unger Tamés Istvan FTD1YJ

a lista végére értiink, amikor bejarjuk a listat. A lista sematikus abraja az 1. abran lathato.
A lista legfontosabb része az abran *Lista jel6lést kapott mutaté, amely a lista elsé elemé-
re mutat. Ez az tgynevezett kincstari mutato, ezzel fogjuk tudni megtalalni az adatainkat
a memoridban. Ha elveszitjlik vagy feliilirjuk, az adataink elvesznek a memoridban. Nem
torlgdnek, csak soha nem fogjuk ket megtalalni.

AdatokN-1|s AdatokN

Adatok1 |s| | Adatok2

=14

k
Adatok3

CF L AL L 7

< o

o

*Lasta

1. dbra. Egyszeresen lancolt lista

A lista elemei specidlis adatstruktarak, amelyeket a feladatnak megfelelGen alakitot-
tam ki. A struktira definidlasa a 21. és 31. sorok kozott taldlhatd, a neve pedig Adatok.
Tekintsiik ezt a strukturat egy doboznak, amely a definicié szerint tartalinaz egy 20 hosszu-
sagn karaktersztring tarolaséra alkalmas tombot (ide keriil a cégek neve), 5 darab elGjel
nélkiili egész szam tarolasara alkalmas valtozot (a foglalas éve, honapja és napja, vala-
mint a foglalas kezdeti 6réja és végss ordja) és egy ugyanilyen Adatok strukturara mutatod
pointert, amelybe mindig a kovetkezs listaelem cimét fogjuk eltarolni. Az emlitett CegNev
tombnek ebben az esetben 21 rekeszt sziikséges kialakitani, hiszen szdmolni kell a karak-
terlancot lezaré null terminator jelenlétével is. Ezt a hosszt definidlja az el6forditonak a
MAXCEGNEV valtozo, melynek értéke 21. Igy ha késébb rajoviink, hogy hosszabb cégneveket
szeretnénk alkalmazni, elég csak a kéd 15. sordban atirni az értéket.

Az AdatBeolvasas fiiggvény célja és miikddése

Az AdatBeolvasas fiiggvény beolvassa a foglalasok.txt nevd fajlban elhelyezkeds fog-
lalasokat, létrehozza a lancolt listat, feltolti azt a fajlbol beolvasott foglalasok adaival
és visszaadja a lista elejére mutatd kincstari mutatot. A 35. sorban talalhaté Adatokx
AdatBeolvasas() definialasbol latszik, hogy nem kér bemenetet, kimenetként pedig egy
Adatok tipust struktdrara mutaté pointert fog visszaadni. Péar fontos kikdtés:

e A foglalasok.txt fajl szerkezete kotott. Sorokbol all, minden egyes sor egy-egy
foglalas adatait tartalmazza.

e Az egyes sorokban 1évé foglalasok adatai pontosvesszével vannak elvalasztva egy-
mastol. Az adatok sorrendje is kdtott: cégnév, foglalds éve, honapja, napja, kezdd
ordja és végss oraja.

e Az egyes sorok végén szintén pontosvesszé van.

e A program feltételezi, hogy a fajlban 1évé adatok minden szempontbél helyesek és a
benne lév§ adatok mar sorban vannak. Erre kiilon ellenérzést a program nem végez.
Azért igy valdsitottam meg, mert a program maga irja is a fajlt, nem csak olvassa.
Amikor viszont irja, akkor a mar sorbarendezett lancolt lista tartalmat irja bele,
kovetkezésképpen az adatok sorban lesznek.

A fiiggvényben létrehoztam egy *FajlMutato pointert, amely a fajlban torténd ba-
rangolashoz sziikséges. Ezek utadn fopen segitségével olvasasra megnyitom a fajlt, majd
egy FoglalasokSzama valtoz6 segitségével megszamolom, hogy hany sora van. Ehhez egy
specialis format stringet alkalmaztam, amely illeszkedik a féjl egyes soraira.

2. oldal

Unger Tamés Istvan FTD1YJ

Ezt a format stringet nagyjabol ugy érdemes elképzelni, mint egy reguléris kifejezést
UNIX-kérnyezetben, csak nyilvanvaléan mas a szintaktikaja. A kifejezés megiraséhoz egy
internetes forrast hasznaltam, amelyet a forraskod 42. soraban elhelyezett kommentben fel
is tiintettem. Mivel a szdmolasnal nem szeretnénk elmenteni a beolvasott tartalmat, ezért
minden egyes érték elé *-ot kell helyezni a specifikicié szerint. Igy az fscanf fiiggvény
beolvassa ugyan a fajl tartalmat, de azt nem rendeli hozzd témbhoz, viltozohoz, stb.
Ebben az esetben ugyanis csak a sorokat szdmoljuk meg.

Amennyiben a fajl tires (FoglalasokSzama=0), Ggy nincs mit beolvasni, a fiiggvény
visszaadja a NULL értéket a lista elejére mutatod pointer értékének és be is fejezédik az
eljaras. Ha a fajlban mar van adat, ugy a rewind segitségével visszapakolom a fajlmutatot
a fajl elejére és elkezdem a tényleges beolvasést.

A lancolt lista elkészitéséhez létrehozunk harom mutatot. Az *ElsoElem lesz a kincstéri
mutato, ezt adja majd vissza az eljaras. Az elemek Osszelancolasdhoz két mutaté kell: az
aktualis elemre mutaté *AktualisElem és az el6zére mutaté *ElozoreMutato. Kezdetben
mindharom mutaté értékét NULL-ra inicializaljuk. Mivel méar tudjuk, hany sora van a
fajlnak, igy batran alkalmazhatunk for iterdciét annyi lépéssel, ahany sorunk van. A
lancolt lista elkészitésének lépései:

1. Az aktuélisan beolvasand6 adatok szamara létrehozunk egy *AktualisElem dobozt;

2. Ebbe a dobozba fscanf segitségével bepakoljuk az aktualisan beolvasandé foglalasi
adatokat;

3. Amennyiben ez a doboz a lista els§ lancszeme, ugy beallitjuk a kincstari *ElsoElem
mutatét ennek a doboznak az értékére;

4. Ha nem ez az elsd lancszem, akkor ennek a doboznak a cimét beirjuk az el6z6 doboz
kovetkezo rekeszébe, igy hozzicsapjuk dobozunkat a listdhoz;

5. Megvizsgaljuk, hogy ez-e az utolsé doboz, és ha igen, akkor a kovetkezo rekeszbe
beirjuk a NULL-t, ezzel zarjuk le a listat;

6. Az iteracio kivetkezs 1épéséhez elmentjiik az aktuélis doboz cimét a *ElozoreMutato-
ba;

7. Kezdjik elolrsl a folyamatot addig, amig le végig nem léptiink a fajl Ssszes soran.
Ha végigmentiink, bezarjuk a fajlt és visszaadjuk a kincstari mutato értékét.

Igy az adatokat beolvastuk, listaba fiiztiik és visszaadtuk a lista kezdGcimét, tudunk
vele tehat dolgozni a tovabbiakban.

Az AdatMentes fliggvény célja és miikédése

Az AdatMentes fliggvény célja, hogy a rendezett lancolt listaban taldlhat6é adatokat beleir-
ja a kezelt fajlba az el6re megkotott fajlstruktira szerint. Ehhez ismét megnyitjuk a fajlt,
de ezuttal irasra. Nagyon fontos, hogy ebben az esetben az fopen fliggvény argumentuma
"w", tehat nem hozzairunk a fajlhoz, hanem kitordljik annak tartalmat és ujrairjuk az
egészet. Igy a legegyszeriibb megoldani a feladatot, hiszen amikor irjuk a fajlt, akkor agy-
is mindig csak az aktudlis, a lancolt listdban talalhato foglalasokat szeretnénk elmenteni
bele. Az pedig kénnyen el&fordulhat, hogy idékézben nemcsak hozzétoldottunk, hanem
toroltiink is a foglalasok listajabol.

A fajlba irdshoz a *SegedMutato nevii munkamutaténknak értékiil adjuk a kincstari
mutatot, tehat a lista kezdGcimét, majd egy fprintf és a mér ismertetett format string

3. oldal

Unger Tamés Istvan FTD1YJ

segitségével addig (while) pakolgatjuk bele a fajlba az egyes foglalasok adatait, amig a
munkamutatonk értéke NULL nem lesz, tehat amig a lista végére nem ériink. Ehhez ter-
mészetesen minden egyes lépésnél bedllitjuk a munkamutatot a kovetkezs elem cimére
(SegedMutato = SegedMutato->kovetkezo). A ciklusbol valo kilépés esetén minden fog-
lalas adatat beleirtuk a fajlba, becsukjuk tehat a fajlt, kozoljiik a felhasznaloval, hogy a
mentés sikeres és mar végeztiink is.

A DatumHasonlit fiiggvény célja és miikédése

A DatumHasonlit fiiggvény célja eldonteni, hogy két foglalasi datum (idépont) koziil me-
lyik a nagyobb (melyik van idében késébb). A fliggvény bemenetként két Adatok tipusa
strukturara mutat6 pointert kap, kimenetként pedig

e 1-et ad vissza, ha az elsé argumentumnak megadott idépont a késébbi;
e -1l-et ad vissza ha a méasodik argumentumnak megadott idépont a késéhbi, és
e 0-at ad vissza, ha a két id6pont azonos.

A figgvényt négy darab if-péaros segitségével valdsitottam meg. Az els§ paros az évet
vizsgalja meg. Ha barmelyik feltétel teljesiil, a fiiggvény visszaadja a megfelels visszatérési
értéket majd befejezédik. Ha nem ez torténik, akkor az évek azonosak, ellenérizhetjiik
a honapokat ugyanezen modszer szerint, majd a napokat és a foglalasok kezdeti orait.
Amennyiben egyik sem teljesiil, akkor a két datum azonos, tehat a fiiggvény nullat ad
vissza.

A BemenetHiba eljaras célja és miikddése

Adatok bekérése soran elsfordulhat, hogy a felhasznalé nem olyan tipusi adatot ad meg
inputként, mint amilyet a program varna. Ilyen eset az, amikor szamot varunk (tehat pél-
daul egy int tipusa véltozoba olvasunk be adatot) de a felhasznald karakter(sztringe)t ad
be. Ezt az esetet célszerd lekezelni, erre valé a BemenetHiba eljards. Meghivisa soran téa-
jékoztatjuk a felhasznal6t, hogy nem értelmezhets adattal drvendeztette meg a programot,
majd a hibas inputot a 155. sorban taldlhatd scanf segitségével "lenyeljiik"’.

Erdemes megfigyelni, hogy mindezt sztringként tessziik, ami univerzalis megoldas. Mi-
ként azt megtanultuk, szdmok is értelmezhetSek sztringként, ellenben mashogy kddolod-
nak, mintha ténylegesen szamként kezelnénk &ket. Ha az inputot sztringként kezeljiik,
biztos, hogy sikeres lesz a sztenderd inputon maradt szemét elnyelése. Ezért valasztottam
ezt a megoldast.

Az UjFoglalas fliggvény célja és miikédése

Az UjFoglalas fiiggvény bekéri a felhaszndlotol a foglalasanak az adatait, majd megvizs-
galja, hogy szintaktikailag helyesen adta-e meg. Ezek utdn megvizsgalja, hogy a datum
helyes-e, beleértve a szoksévek esetét is. Ezek utan megvizsgéilja, hogy szabad-e a kért
id6pontban a terem, és ha szabad, a foglalast elmenti, behelyezi a lancolt lista megfeleld
helyére. Ez lényegében a program els§ meniipontjanak feladatat fogja ellatni. Nézzik
végig, hogyan.

Fontos, hogy ez a fliggvény nem a lista elejének a cimét, hanem a cimnek a cimét kapja
bemenetként (Adatok **Lista). Ez egy mutatéra mutaté mutatd (pointer to pointer),
amelynek elénye, hogy igy nemcsak hasznélni tudjuk az értékét a bemenetként kapott
mutaténak, hanem azt is tudjuk moddositani, hogy hova mutat. Gondoljuk meg, hogy

4. oldal

Unger Tamés Istvan FTD1YJ

miért van erre sziikség! ElSfordulhat, hogy olyan foglalast kell régziteni, amely a lancolt
lista elejére kell, hogy keriiljon. Ebben az esetben a besziras soran mddositani kell a lista
els6 elemének cimét, hiszen az els6 elem cime az aktualisan besztirandé elem cime lesz. Az
els§ elem cime pedig nem més, mint az an. kincstari mutatd. A kincstari mutatot kell
tehat modositani az 4j elem cimére, ez pedig csak Ggy lehetséges, ha nem kézvetleniil a
pointer értékét, hanem a pointer értékének a cimét adjuk &t a fiiggvényiinknek.

A fiiggvény elején létre kell hozni ideiglenes véltozdkat, ahovi az adatok bekérését
elvegezzik. Ezen kiviil létrehozunk egy mutatot (Adatok *UjFoglalas;, 168. sor), amely
sikeres foglalas esetén az 0j dobozunkra fog majd mutatni, amelybe a foglalas adatait
pakoljuk el. Létrehozunk még egy Foglaltsag nevi 24 elemd tombét és inicializaljuk ugy,
hogy minden elemét nullara allitjuk be. FEz a témb kulcsszerepet fog jatszani a foglaltsag
ellenérzésében, amelyet kés6bb mutatok majd be.

A bekérési interface a 182-198. sorok kozott talalhatd. Itt egyrészt bekérjik a fel-
hasznalotol a foglalas adatait, majd bekérés utan kézvetleniil megvizsgéljuk azt is, hogy
formailag helyes-e a beadott érték. Erre szolgal a JolAdtaMeg indikatorvaltozo és a ko-
rdbban bemutatott BemenetHiba fiiggvény. Kezdetben a JolAdtaMeg értéke 1. ElGszor
bekérjiik a felhasznalotol az évet (2000 és 2099 kozott). Ezt scanf segitségével tessziik
meg, amely most egyszerre két szerepet is igyekszik betdlteni. FEgyrészt ténylegesen be-
kéri a felhasznalétol az adatot a megfelels ideiglenes valtozoba. Méasrészt pedig a scanf
fliggvény kimenetét eredményiil adjuk a JolAdtaMeg valtozénak is.

Ez miért j67 A scanf fiiggvény visszaadja a sikeresen beolvasott karakterek szamét.
Ez — amennyiben a beolvasas sikeres volt — egy nullatol nagyobb érték kell, hogy legyen.
Amennyiben a beolvasas sikertelen volt (értsd: nulla karaktert olvasott be sikeresen), ugy a
fiiggvény nullat ad visszatérési értékként. Ezt ellendrzi a kovetkezs if-4g. Amennyiben ide
bekeriiliink, tgy a felhaszndlé biztos, hogy nem adta meg helyesen az adatot, meghivjuk
a BemenetHiba fiiggvényt, szélunk a felhasznalénak, kitakaritjuk a standard inputot majd
kidobjuk a felhasznalot a meniipontbdl (return 1).

Ha idaig eljutottunk, kévetkezhet az adatok helyességének ellen6rzése. Megvizsgaljuk,
hogy a felhasznal6 a lehetséges évintervallumbél valasztott-e, valamint hogy a megadott
hénap és nap létez6 datum-e abban az évben, és természetesen megnézziik azt is, hogy
az idépontként megadott szam tényleg létezs déra-e, valamint hogy a foglalas vége késébb
van-e, mint a foglalas eleje. Ellenérizziik a szokéévek esetét is. Amennyiben a felhasz-
naléd februdr 28-nal késébb februéri idépontra szeretne foglalni és az évszam néggyel vald
osztdsanak maradéka nem nulla (négyévente van szokGév), szolunk a felhasznélonak, hogy
hibisan adta meg a datumot és kirigjuk a fémeniibe.

Amennyiben ez rendben van, eljutottunk arra a pontra, hogy tudjuk, hogy a felhasznal6
létezd idépontra kivan foglalni. Kévetkezd lépés annak megvizsgaldsa, hogy a terem abban
az idGszakban foglalt-e. Ehhez készitiink egy munkamutatot, amelynek értékiil adjuk a
kincstari mutatot, tehat a lancolt lista elejére pakoljuk azt. Ezek utan egy while segitsé-
gével végigfutunk a lancolt lista minden elemén, egyenként megvizsgaljuk Gket, és ha tgy
talaljuk, hogy az a foglalads éppen ugyanarra a napra szél, mint az aktuélis foglalasi igény,
elgvesszitk a Foglaltsag nevii indikdtortombiiket, és a listaban szerepld foglalas kezdeti
id6pontja és végidSpontja kozott egy for iteracié segitségével bebillentjiik az 6sszes olyan
indikatort 0-rol 1-re, amelyhez tartoz6 6rakban a terem mar foglalt.

Ha ezzel az iteracidval végeztiink, az indikatortomb tisztan és vildgosan fogja jelezni
az aznapi foglaltsagi helyzetet. Meg tudjuk tehat nézni, hogy a széban forgo foglalasi
igény teljesithets-e. Készitiink egy for-iteraciot a foglalasi igény kezdeti és a végidGpontja
kozott, és amennyiben ezen a szakaszon barhol taldlunk egyest az indikatortémbben, az azt
jelenti, hogy a foglalasi igény nem teljesithetd, a terem mar foglalt. Ezt a nulldra inicializélt
MarFoglalt valtozo egyre torténd billentésével jelezziik. Amennyiben ezen indikator értéke

5. oldal

Unger Tamés Istvan FTD1YJ

1, kozoljiik a felhasznaloval, hogy foglalt a teremn és kidobjuk a f&meniibe.

Ha ez nem torténik meg, a foglalas teljesithetd, el kell tehat helyezniink a lancolt listaba.
Lefoglaljuk neki helyet, elkészitjiik a "dobozt" (UjFoglalas = malloc(sizeof (Adatok));),
majd a doboz megfelels rekeszeit megpakoljuk az aktualis foglalési igény adataival (284-289.
sorok). A munkamutatonkat a lista elejére allitjuk, majd létrehozunk még egy segédmu-
tatot, hogy a lista végigjarasa sordn el tudjuk menteni az el6z6 doboz cimét. Ezt nullara
inicializaljuk.

Ha ez megvan, lekezeljiik azt az esetet, amikor nincsen a listdban semmi. Ekkor az
aktudlis foglalas doboza lesz az els6 a listdban. A doboz kévetkez§ dobozra mutatd cimét
NULL-ra allitjuk, a kincstari mutaténkat pedig beallitjuk ennek a doboznak a cimére, hiszen
mostantdl ez lesz az els§ lancszem, innen fog kezd@ddni az adatsorunk. Pontosan ez a
modositas az, amiért kettds pointeraritmetikat kell alkalmmazni. Ebben az esetben ugyanis
nemcsak hasznéljuk a kincstari mutatonkat, de még az értékét is modositanunk kell.

Amennyiben nem az aktuélis foglalds doboza a lista els§ eleme, ugy elindulunk végig a
listan. Minden doboz esetén megnézziik, hogy az aktuélisan beszurandé foglalas idépont-
ja kés6bb van-e, mint az a foglalas, amelyet éppen vizsgalunk. Amennyiben ez teljesiil,
vandorolhatunk tovabb a listdn. Elmentjik az aktuélis doboz cimét és tovabbpakoljuk a
segédmutatot a kovetkezd dobozra. Amennyiben a kvetkezd doboz cime NULL, Ggy a lista
végére értlink, a végére kell beszurni a dobozt. Ez specidlis eset, hiszen a beszirandé doboz
kovetkezére mutatd pointerét NULL-ra kell allitani, valamint az elétte 1é6vS doboz kévetkezé-
re mutaté pointerét az aktualisan besztrando doboz cimére kell allitani. Es ennyi, készen
vagyunk, break utasitdssal kiléphetiink a teljes listavégigjarasi folyamatbol. Amennyiben
ez nem teljesiil, continue utasitassal robogunk tovabb a listén, elére.

Ha a forraskod 320. sordig eljutunk, az azt jelenti, hogy az els§ if-4gba nem léptiink
be, tehat az 1j foglalds kordbban van, mint az, amelyen éppen a munkamutaténk all.
Ekkor az aktuéalis foglalds dobozanak kdvetkezére mutatd cimét a munkamutatd aktudlis
cimére allitjuk. Kérdés, hogy az a doboz, amely elé be kell sztrni az aktualis dobozt, a
lista els6 eleme-e. Ezt ellenérzi a 323. sorban 1évs feltétel. Amennyiben nem, gy nemes
egyszertiséggel be kell allitani az elStte 1évé doboz kdvetkezd dobozra mutaté cimét az
aktuélisan beszirandé doboz cimére és készen is vagyunk. Mas a helyzet, ha az els6 elem
elé kell beszarnunk a dobozunkat. Ekkor a régi kincstari mutaté értékét kell értékiil adni a
frissen beszirandé doboz kovetkez& dobozra mutatd cimének, valamint médositanunk kell
a kincstari mutatonkat a frissen beszurand6 doboz cimére. Ezzel becsatoltuk a lanc elejére
az 1j dobozunkat, végeztiink.

Ha mindezekkel megvagyunk, a lista rendezett és kész, a foglalds el van mentve. Szo-
lunk a felhasznalonak és vége is a munkanak.

Az EddigiFoglalasok eljaras célja és miikddése

Az EddigiFoglalasok eljaras bemenetként a kincstari mutatot kapja, melynek segitsé-
gével sorszamozva kiirja az eddig rogzitett foglalasok adatait a felhasznaléi felilletre. Ez
egy kifejezetten egyszert eljaras, de a honapok nevének kiiratasat (szam/bett-konverzio)
egy érdekes triikkel oldottam meg, amely érdemel par szét.

A forraskod 17. soraban definidltam egy 13 elemt, stringek tarolasira alkalmas t&mbot.
A tdmb nulladik elemének egy dummy "h"-bett abboél a célbol, hogy a 0-12-es indexelést
kikeriilve 1-12-ig tudjam hasznalni és indexelni a t6mbot a programban. Ennek a lényege,
hogy ha a tomb els§ elemére hivatkozunk, akkor januart ad vissza, ha a masodikra, ak-
kor februart és igy toviabb. Ez kiviléan alkalmazhaté a honapok szdmanak névre torténd
cseréléséhez, amit kihasznél az EddigiFoglalasok eljards is. Az eljaras tulajdonképpen
semmi méast nem csinal, csak a mar megszokott mdodon bejarja a lancolt listat, majd sor-

6. oldal

Unger Tamés Istvan FTD1YJ

szaméaval egyiitt kiirja az egyes foglalasok adatait egy printf segitségével. A triikk a
printf argumentumaban van, ahol elSkeriil az el6bb ismeretett karaktertomb alkalmazé-
sa: Honapok[(SegedMutato->Honap)]. Lathato, hogy minden kiiratas esetén az aktualis
doboz honap rekeszében talalhat6 szaméval indexeljiik a tombiinket, amely a fent emlitett
okok miatt minden esetben a hénapok nevét fogja visszaadni.

Az FoglaloCegekNeve eljaras célja és miikddése

Az FoglaloCegekNeve eljaras bemenetként a kincstari mutatoét kapja, melynek segitsé-
gével kifrja a felhaszndléi feliiletre a foglald cégek neveit betdrendi sorrendben. Ez egy
komplex feladat, melynek keretei kdzott nemcsak végig kell jarni a listankat, hanem egy
rendezd algoritmust is meg kell valositani. Az eljaras elején a ListaMeret valtozo segitségé-
vel megszdmoljuk, hany foglalasunk van jelenleg a rendszerben. Ezek utdn megvizsgaljuk,
van-e méar foglalds a rendszerben, és ha nem, azonnal kilépiink az eljarasbol, hiszen a
semmit nem lehet rendezni, kiirni.

Ha van foglalas a rendszerben, akkor dolgunk van. Létrehozunk egy CegNevek t6mbot,
amelynek annyi rekesze lesz, ahany foglalas a rendszerben van. Ez a témb triikkés, hiszen
nem a cégek neveit fogja kozvetleniil tartalmazni, hanem csak a lancolt listink dobozainak
cimeit. Olyan cimeket, amelyeken kiilonb6z6 cégnevek vannak. Mivel szélsGséges esetben
elfordulhat, hogy minden egyes foglalds més céghez tartozik, fel kell késziilniink a leg-
rosszabbra, ezért készitiink el6 pontosan akkora tombdét, ahany foglalasunk a rendszerben
van.

Ha ez megvan, ismét beéllitjuk a munkamutatonkat a listank elejére, majd elkezdiink
végiggyalogolni a lancolt listankon a szokisos modon. Mivel a VanMar valtozénkat nullara
inicializéltuk, az els6 lépésnél egybdl a 395. sorban kezd6ds if agba keriiliink, amely
belerakja az aktualis dobozra mutaté mutatét a CegNevek tombbe, az s valtozot eggyel
megnoveli és kocog tovabb a lancolt listan. Ez vilagos, az elsé doboz cégneve még biztosan
nem szerepel a cégnevek kdzott, azt mindenképpen be kell rakni az egyedi cégnevek kozé.
Még egyszer célszerti hangstlyozni: nem a cégnevet mentjiik el, hanem csak a dobozra
mutatd mutatot, amellyel a cégnév is elérhetd, természetesen.

Ha nem az els6 doboznal jarunk, akkor minden egyes 4j doboznal meg kell vizsgalni,
hogy az abban szerepl§ cégnév szerepel-e méar a cégneves listankban. Ezt a klasszikus
strcmp fliggvény segitségével tesszitk meg, és ténylegesen a CegNevek tdmb rekeszeiben
talalhaté cimeken taldlhatd cégneveket hasonlitjuk Ossze a munkamutaténk dobozanak
cégnevével. Amennyiben a munkamutatd cégneve méar szerepel a listaban, gy beallitjuk
az indikatorvaltozonkat egyre és egy break segitségével kiugrunk a CegNevek tomb rekeszeit
bejaro for-ciklusbol. Ha nem taldlunk egyez6t, akkor az indikatorvaltozot nullara allitjuk
és a mar ismeretett modon (395-398. sorok) berakjuk a doboz cimét a CegNevektombbe.

Ha ezzel végeztiink, megvannak azon dobozok cimei, amelyek egyedi cégneveket tartal-
maznak, de még nem névsorrendben. Rendezni kell ket tehat. Ehhez egy els6 végtelennek
t1inG while-ciklust irtam (while(1)). Az iteraciot ugy valositottam meg, hogy egy id6 utén
egészen biztosan egy olyan dgéara fogunk futni, amely egy break utasitassal kirdg minket
a végtelen ciklusbol. Az els6 ilyen 4g az s=1 esete. Ekkor csak egy cégnév van, nincs mit
rendezni, végeztiink. Ha egynél tobb név van, akkor jon a tényleges rendezés. Egy for
segitségével elindulunk a cégnevek mutatoit tartalmazo témbiinkon. Osszehasonlitjuk az
elsé két egymads mellett elhelyezkedd cimen 16vs cégnevet. Ha az els6 cégnév "nagyobb"
(névsorban hatrébb van), mint a masodik, megcseréljiik ket. Ehhez segitségként kell mun-
kamutat6, ahova elmentjiik a csere idejére az els§ cimet, majd az els6 helyére beirjuk a
méasodikat, végiil pedig a munkamutatoébol a masodikba beirjuk az els6t. Mivel ebben a
fazisban még nem sikeriilt végigmenniink a témbbon csere nélkiil, egy indikatorvaltozdval

7. oldal

Unger Tamés Istvan FTD1YJ

jelezziik, hogy még nincsen sorban a lista. Ezutdn megszakitjuk a for-ciklust, kezd&dik
elolrél a végtelen while, ismét elindulunk a cégneves tombbdn, ha sziikséges, akkor cseré-
liink és igy tovabb.

Mindezt addig folytatjuk, amig a for-iteracié végig nem tud menni a témbdn csere nél-
kiil. Ha ez 0sszejott, akkor az indikdtorvaltozéval jelezziik, hogy sorban vannak a cégnevek,
és ezek utan egy specialisan erre az esetre irt if-4ggal kiragjuk magunkat a végtelen ciklus-
bél. Ezek utan mar csak ki kell irni a sorban elhelyezkedd cégneveket a cégnevek témbben
talalhaté mutatok segitségével.

A FoglalasTorles fliggvény célja és miikbdése

A FoglalasTorles segitségével sorszam szerint lehetséges torolni az egyes foglalasokat
az adatbazisbol (a listabol). Mivel ezuttal is el6fordulhat, hogy a lista elejérsl torliink,
ezért ismét mutatéra mutaté mutatot sziikséges alkalmazni.

A fiiggvény els6 lépése a rendszerben 16v6 foglalasok szamanak meghatarozésa a méar
ismeretett modon. Amennyiben dgy talaljuk, hogy nincs foglalds a rendszerben, ezt ko-
z0ljiik a felhasznaloval és kilépiink (visszaadunk 1-et, konvenciondlisan). Ha van foglalas,
bekérjiik a felhasznalotol tordlni kivant foglalas sorszamat. A BemenetHiba fiiggvény se-
gitségével a méar ismertetett modon itt is megvizsgaljuk elGszor, hogy formailag helyesen
adta-e meg az inputot (értsd: szamot adott-e meg). Ha ez rendben van, megnézziik, hogy
van-e egyaltalan ilyen szamu foglalas gy, hogy megvizsgaljuk, nagyobb-e a beadott szam,
mint a rendszerben 1év§ foglaldsok szama. Ha nagyobb, akkor nem jo értéket adott meg a
felhasznald, szoélunk neki és kirtigjuk a meniipontbdl.

Ha j6 és értelmes sorszamot adott meg a felhasznald, a foglalast térolhetjiik a listabol.
Ismét végigfutunk a szokasos mdédon a listankon, és ha eljutottunk a torlendd foglaldshoz,
torlink. ElGszor is kozoljlik a felhasznaloval, hogy melyik foglalast toroljiik, kifrjuk tehat a
foglalas adait. Ezek utan meg kell vizsgalnunk, hogy a torlendd foglalas a lista els6 eleme-e.
Ha igen, modositani kell a kincstari listamutatonkat a régi méasodik/uj elsé doboz cimére.
Ha nem az els§ elemet toroljiik, akkor a térlendé dobozban taldlhaté kovetkezs cimet at-
méasoljuk a torlendd doboz el6tt 1évs doboz kovetkezs cimébe (igy iktatjuk ki a torlendd
elemet a lancbol). Ekkor még a torlends adat a memoriaban van, de mivel az méar nem ré-
sze a lancnak, nem tudnank elérni. A felhasznalt memoriateriiletet a free (SegedMutato) ;
paranccsal fel is szabaditjuk, szélunk a usernek, hogy a torlés sikeres volt és kirtgjuk ma-
gunkat a listavégigjaro ciklusbol.

A main () fiiggvény miikédése

A main () tulajdonképpen nem mas, mint egy lehet&ségvalasztiasos menii, amely a vé-
lasztastol fiiggfen meghivija a mar ismertetett fiiggvények és eljarasok valamelyikét. A
menii szerkezete annyira klasszikus, hogy én is egy interneten talalhato verziot pofoztam
at a sajat feladatomra. A forumot meg is hivatkozom a forraskéd 512-es soraban. A
fliggvény elején létrehozunk egy mutatdt, amely alkalmas a definialt struktirankra térténd
mutatisra. Ezt NULL-ra inicializaljuk, de régtén utdna az AdatBeolvasas fiiggvény segit-
ségével beolvassuk az adatfajl tartalmat és értékiil adjuk neki a lista kezdGcimét. Fzek
utan bekérjiik a felhasznal6tol, hogy mit szeretne csindlni. Lehet&sége van vélasztani 1-6
meniipontok koziil. Itt is alkalmazzuk a mar ismeretett ellenérzést arra vonatkozéan, hogy
szamot ad-e meg a felhasznélé. Ha nem, addig nem hagyjuk békén, amig szdmot nem ad
meg. A switch-case agon pedig a bekért sorszamtol fiiggen meghivjuk az adott feladat
ellatasara alkalmas fliggvényeket, eljarasokat.

8. oldal

Unger Tamés Istvan FTD1YJ

Ko6szonetnyilvanitas

A programot a konzultacidkon elhangozttak, valamint az eddigi programozési tapaszta-
lataim alapjan magam irtam, amely a legjobb tudasom szerint megfelelen miikédik. A
program megvaldsitasa tartalmaz ugyanakkor egy-két olyan gyakorlatiasabb fogast, prak-
tikdt és megoldast, amelyek talmutatnak az alapszintid programozasi ismereteken. FEl-
gondolésilag, nem szintaktikailag. Fzen megoldasokert (példaul a BemenetHiba fliggvény
Otletéért, a foglaltsag ellendrzésére szolgild segéd-indikatortdmb hasznalatanak javaslaté-
ért, valamint a fajl olvasasdhoz/irasdhoz hasznalt format string alkalmazasaért) nagy
készonettel tartozom baratomnak és volt kollégdmnak, Budai Tamaésnak, akivel a projekt-
feladat elkészitése soran tébbszor is konzultaltam.

Budapest, 2017. november 4.

9. oldal

