
Unger Tamás István FTD1YJ

Név: Unger Tamás István
Neptun: FTD1YJ
Web: http://maxwell.sze.hu/~ungert

A projektfeladatom dokumentációja
(Programozási alapismeretek)

Ebben a dokumentumban röviden és érthet®en igyekszem összefoglalni a Programozási
alapismeretek c. kurzus projektfeladatának megvalósítását. A program forráskódját az
UngerTamasIstvan.c fájl tartalmazza. Mivel a projektfeladat keretei között megvalósí-
tottam a fájlkezelést is, ezért a program futtatásához elengedhetetlen a foglalasok.txt

nev¶ fájl, amelynek a forráskód jelenlegi állapotában a programmal megegyez® mappában,
helyen kell elhelyezkednie.

Az 546 soros program a main () függvényen kívül összesen nyolc függvényt/eljárást
tartalmaz, ezek nevei forráskód szerinti sorrendben:

• AdatBeolvasas;

• AdatMentes;

• DatumHasonlit;

• BemenetHiba;

• UjFoglalas;

• EddigiFoglalasok;

• FoglaloCegekNeve és

• FoglalasTorles.

A forráskódot és a program m¶ködését célszer¶en az egyes függvények szerint tagolva fo-
gom bemutatni a továbbiakban. Az egyes részekben arra törekedtem, hogy bemutassam,
mit és hogyan valósítottam meg. Ahol szükségesnek gondoltam, ott részletesen igyekszem
megindokolni, hogy miért pont az adott típusú megvalósítás mellett döntöttem a munkám
során.

Az alkalmazott adatstruktúra bemutatása

A forráskód 35. sorától kezd®d® els® függvény bemutatása el®tt célszer¶ pár szót szól-
ni az alkalmazott adatstruktúráról. A 12. sorban de�niáltam az el®fordító számára egy
ADATFAJL nev¶ változót, melynek értéke az alkalmazott foglalasok.txt fájl neve. Ez
célszer¶ a fájlnév esetleges megváltozásának könny¶, egy átírással történ® kezelésének cél-
jából. A foglalások adatainak tárolásához egyszeresen láncolt listát alkalmaztam, melynek
lényege, hogy az egyes foglalások adatait tartalmazó listaelemek tartalmazzák annak a
listaelemnek a címét, amelyek közvetlenül mellettük állnak a listában "jobbra", tehát a
következ® elem címét. A lista utolsó elemének azon rekeszét, amely a következ® elemre
mutatna, konvencionálisan NULL értékre állítom minden esetben. Innen fogjuk tudni, hogy

1. oldal

http://maxwell.sze.hu/~ungert

Unger Tamás István FTD1YJ

a lista végére értünk, amikor bejárjuk a listát. A lista sematikus ábrája az 1. ábrán látható.
A lista legfontosabb része az ábrán *Lista jelölést kapott mutató, amely a lista els® elemé-
re mutat. Ez az úgynevezett kincstári mutató, ezzel fogjuk tudni megtalálni az adatainkat
a memóriában. Ha elveszítjük vagy felülírjuk, az adataink elvesznek a memóriában. Nem
törl®dnek, csak soha nem fogjuk ®ket megtalálni.

Adatok1
k

ö

v

*Lista

Adatok2
k

ö

v

Adatok3
k

ö

v

AdatokN-1
k

ö

v

AdatokN

N

U

L

L

1. ábra. Egyszeresen láncolt lista

A lista elemei speciális adatstruktúrák, amelyeket a feladatnak megfelel®en alakítot-
tam ki. A struktúra de�niálása a 21. és 31. sorok között található, a neve pedig Adatok.
Tekintsük ezt a struktúrát egy doboznak, amely a de�níció szerint tartalmaz egy 20 hosszú-
ságú karaktersztring tárolására alkalmas tömböt (ide kerül a cégek neve), 5 darab el®jel
nélküli egész szám tárolására alkalmas változót (a foglalás éve, hónapja és napja, vala-
mint a foglalás kezdeti órája és végs® órája) és egy ugyanilyen Adatok struktúrára mutató
pointert, amelybe mindig a következ® listaelem címét fogjuk eltárolni. Az említett CegNev
tömbnek ebben az esetben 21 rekeszt szükséges kialakítani, hiszen számolni kell a karak-
terláncot lezáró null terminator jelenlétével is. Ezt a hosszt de�niálja az el®fordítónak a
MAXCEGNEV változó, melynek értéke 21. Így ha kés®bb rájövünk, hogy hosszabb cégneveket
szeretnénk alkalmazni, elég csak a kód 15. sorában átírni az értéket.

Az AdatBeolvasas függvény célja és m¶ködése

Az AdatBeolvasas függvény beolvassa a foglalasok.txt nev¶ fájlban elhelyezked® fog-
lalásokat, létrehozza a láncolt listát, feltölti azt a fájlból beolvasott foglalások adaival
és visszaadja a lista elejére mutató kincstári mutatót. A 35. sorban található Adatok*

AdatBeolvasas() de�niálásból látszik, hogy nem kér bemenetet, kimenetként pedig egy
Adatok típusú struktúrára mutató pointert fog visszaadni. Pár fontos kikötés:

• A foglalasok.txt fájl szerkezete kötött. Sorokból áll, minden egyes sor egy-egy
foglalás adatait tartalmazza.

• Az egyes sorokban lév® foglalások adatai pontosvessz®vel vannak elválasztva egy-
mástól. Az adatok sorrendje is kötött: cégnév, foglalás éve, hónapja, napja, kezd®
órája és végs® órája.

• Az egyes sorok végén szintén pontosvessz® van.

• A program feltételezi, hogy a fájlban lév® adatok minden szempontból helyesek és a
benne lév® adatok már sorban vannak. Erre külön ellen®rzést a program nem végez.
Azért így valósítottam meg, mert a program maga írja is a fájlt, nem csak olvassa.
Amikor viszont írja, akkor a már sorbarendezett láncolt lista tartalmát írja bele,
következésképpen az adatok sorban lesznek.

A függvényben létrehoztam egy *FajlMutato pointert, amely a fájlban történ® ba-
rangoláshoz szükséges. Ezek után fopen segítségével olvasásra megnyitom a fájlt, majd
egy FoglalasokSzama változó segítségével megszámolom, hogy hány sora van. Ehhez egy
speciális format stringet alkalmaztam, amely illeszkedik a fájl egyes soraira.

2. oldal

Unger Tamás István FTD1YJ

Ezt a format stringet nagyjából úgy érdemes elképzelni, mint egy reguláris kifejezést
UNIX-környezetben, csak nyilvánvalóan más a szintaktikája. A kifejezés megírásához egy
internetes forrást használtam, amelyet a forráskód 42. sorában elhelyezett kommentben fel
is tüntettem. Mivel a számolásnál nem szeretnénk elmenteni a beolvasott tartalmat, ezért
minden egyes érték elé *-ot kell helyezni a speci�káció szerint. Így az fscanf függvény
beolvassa ugyan a fájl tartalmát, de azt nem rendeli hozzá tömbhöz, változóhoz, stb.
Ebben az esetben ugyanis csak a sorokat számoljuk meg.

Amennyiben a fájl üres (FoglalasokSzama=0), úgy nincs mit beolvasni, a függvény
visszaadja a NULL értéket a lista elejére mutató pointer értékének és be is fejez®dik az
eljárás. Ha a fájlban már van adat, úgy a rewind segítségével visszapakolom a fájlmutatót
a fájl elejére és elkezdem a tényleges beolvasást.

A láncolt lista elkészítéséhez létrehozunk három mutatót. Az *ElsoElem lesz a kincstári
mutató, ezt adja majd vissza az eljárás. Az elemek összeláncolásához két mutató kell: az
aktuális elemre mutató *AktualisElem és az el®z®re mutató *ElozoreMutato. Kezdetben
mindhárom mutató értékét NULL-ra inicializáljuk. Mivel már tudjuk, hány sora van a
fájlnak, így bátran alkalmazhatunk for iterációt annyi lépéssel, ahány sorunk van. A
láncolt lista elkészítésének lépései:

1. Az aktuálisan beolvasandó adatok számára létrehozunk egy *AktualisElem dobozt;

2. Ebbe a dobozba fscanf segítségével bepakoljuk az aktuálisan beolvasandó foglalási
adatokat;

3. Amennyiben ez a doboz a lista els® láncszeme, úgy beállítjuk a kincstári *ElsoElem
mutatót ennek a doboznak az értékére;

4. Ha nem ez az els® láncszem, akkor ennek a doboznak a címét beírjuk az el®z® doboz
kovetkezo rekeszébe, így hozzácsapjuk dobozunkat a listához;

5. Megvizsgáljuk, hogy ez-e az utolsó doboz, és ha igen, akkor a kovetkezo rekeszbe
beírjuk a NULL-t, ezzel zárjuk le a listát;

6. Az iteráció következ® lépéséhez elmentjük az aktuális doboz címét a *ElozoreMutato-
ba;

7. Kezdjük elölr®l a folyamatot addig, amíg le végig nem léptünk a fájl összes során.
Ha végigmentünk, bezárjuk a fájlt és visszaadjuk a kincstári mutató értékét.

Így az adatokat beolvastuk, listába f¶ztük és visszaadtuk a lista kezd®címét, tudunk
vele tehát dolgozni a továbbiakban.

Az AdatMentes függvény célja és m¶ködése

Az AdatMentes függvény célja, hogy a rendezett láncolt listában található adatokat beleír-
ja a kezelt fájlba az el®re megkötött fájlstruktúra szerint. Ehhez ismét megnyitjuk a fájlt,
de ezúttal írásra. Nagyon fontos, hogy ebben az esetben az fopen függvény argumentuma
"w", tehát nem hozzáírunk a fájlhoz, hanem kitöröljük annak tartalmát és újraírjuk az
egészet. Így a legegyszer¶bb megoldani a feladatot, hiszen amikor írjuk a fájlt, akkor úgy-
is mindig csak az aktuális, a láncolt listában található foglalásokat szeretnénk elmenteni
bele. Az pedig könnyen el®fordulhat, hogy id®közben nemcsak hozzátoldottunk, hanem
töröltünk is a foglalások listájából.

A fájlba íráshoz a *SegedMutato nev¶ munkamutatónknak értékül adjuk a kincstári
mutatót, tehát a lista kezd®címét, majd egy fprintf és a már ismertetett format string

3. oldal

Unger Tamás István FTD1YJ

segítségével addig (while) pakolgatjuk bele a fájlba az egyes foglalások adatait, amíg a
munkamutatónk értéke NULL nem lesz, tehát amíg a lista végére nem érünk. Ehhez ter-
mészetesen minden egyes lépésnél beállítjuk a munkamutatót a következ® elem címére
(SegedMutato = SegedMutato->kovetkezo). A ciklusból való kilépés esetén minden fog-
lalás adatát beleírtuk a fájlba, becsukjuk tehát a fájlt, közöljük a felhasználóval, hogy a
mentés sikeres és már végeztünk is.

A DatumHasonlit függvény célja és m¶ködése

A DatumHasonlit függvény célja eldönteni, hogy két foglalási dátum (id®pont) közül me-
lyik a nagyobb (melyik van id®ben kés®bb). A függvény bemenetként két Adatok típusú
struktúrára mutató pointert kap, kimenetként pedig

• 1-et ad vissza, ha az els® argumentumnak megadott id®pont a kés®bbi;

• -1-et ad vissza ha a második argumentumnak megadott id®pont a kés®bbi, és

• 0-át ad vissza, ha a két id®pont azonos.

A függvényt négy darab if-páros segítségével valósítottam meg. Az els® páros az évet
vizsgálja meg. Ha bármelyik feltétel teljesül, a függvény visszaadja a megfelel® visszatérési
értéket majd befejez®dik. Ha nem ez történik, akkor az évek azonosak, ellen®rizhetjük
a hónapokat ugyanezen módszer szerint, majd a napokat és a foglalások kezdeti óráit.
Amennyiben egyik sem teljesül, akkor a két dátum azonos, tehát a függvény nullát ad
vissza.

A BemenetHiba eljárás célja és m¶ködése

Adatok bekérése során el®fordulhat, hogy a felhasználó nem olyan típusú adatot ad meg
inputként, mint amilyet a program várna. Ilyen eset az, amikor számot várunk (tehát pél-
dául egy int típusú változóba olvasunk be adatot) de a felhasználó karakter(sztringe)t ad
be. Ezt az esetet célszer¶ lekezelni, erre való a BemenetHiba eljárás. Meghívása során tá-
jékoztatjuk a felhasználót, hogy nem értelmezhet® adattal örvendeztette meg a programot,
majd a hibás inputot a 155. sorban található scanf segítségével "lenyeljük"'.

Érdemes meg�gyelni, hogy mindezt sztringként tesszük, ami univerzális megoldás. Mi-
ként azt megtanultuk, számok is értelmezhet®ek sztringként, ellenben máshogy kódolód-
nak, mintha ténylegesen számként kezelnénk ®ket. Ha az inputot sztringként kezeljük,
biztos, hogy sikeres lesz a sztenderd inputon maradt szemét elnyelése. Ezért választottam
ezt a megoldást.

Az UjFoglalas függvény célja és m¶ködése

Az UjFoglalas függvény bekéri a felhasználótól a foglalásának az adatait, majd megvizs-
gálja, hogy szintaktikailag helyesen adta-e meg. Ezek után megvizsgálja, hogy a dátum
helyes-e, beleértve a szök®évek esetét is. Ezek után megvizsgálja, hogy szabad-e a kért
id®pontban a terem, és ha szabad, a foglalást elmenti, behelyezi a láncolt lista megfelel®
helyére. Ez lényegében a program els® menüpontjának feladatát fogja ellátni. Nézzük
végig, hogyan.

Fontos, hogy ez a függvény nem a lista elejének a címét, hanem a címnek a címét kapja
bemenetként (Adatok **Lista). Ez egy mutatóra mutató mutató (pointer to pointer),
amelynek el®nye, hogy így nemcsak használni tudjuk az értékét a bemenetként kapott
mutatónak, hanem azt is tudjuk módosítani, hogy hová mutat. Gondoljuk meg, hogy

4. oldal

Unger Tamás István FTD1YJ

miért van erre szükség! El®fordulhat, hogy olyan foglalást kell rögzíteni, amely a láncolt
lista elejére kell, hogy kerüljön. Ebben az esetben a beszúrás során módosítani kell a lista
els® elemének címét, hiszen az els® elem címe az aktuálisan beszúrandó elem címe lesz. Az
els® elem címe pedig nem más, mint az ún. kincstári mutató. A kincstári mutatót kell
tehát módosítani az új elem címére, ez pedig csak úgy lehetséges, ha nem közvetlenül a
pointer értékét, hanem a pointer értékének a címét adjuk át a függvényünknek.

A függvény elején létre kell hozni ideiglenes változókat, ahová az adatok bekérését
elvégezzük. Ezen kívül létrehozunk egy mutatót (Adatok *UjFoglalas;, 168. sor), amely
sikeres foglalás esetén az új dobozunkra fog majd mutatni, amelybe a foglalás adatait
pakoljuk el. Létrehozunk még egy Foglaltsag nev¶ 24 elem¶ tömböt és inicializáljuk úgy,
hogy minden elemét nullára állítjuk be. Ez a tömb kulcsszerepet fog játszani a foglaltság
ellen®rzésében, amelyet kés®bb mutatok majd be.

A bekérési interface a 182-198. sorok között található. Itt egyrészt bekérjük a fel-
használótól a foglalás adatait, majd bekérés után közvetlenül megvizsgáljuk azt is, hogy
formailag helyes-e a beadott érték. Erre szolgál a JolAdtaMeg indikátorváltozó és a ko-
rábban bemutatott BemenetHiba függvény. Kezdetben a JolAdtaMeg értéke 1. El®ször
bekérjük a felhasználótól az évet (2000 és 2099 között). Ezt scanf segítségével tesszük
meg, amely most egyszerre két szerepet is igyekszik betölteni. Egyrészt ténylegesen be-
kéri a felhasználótól az adatot a megfelel® ideiglenes változóba. Másrészt pedig a scanf

függvény kimenetét eredményül adjuk a JolAdtaMeg változónak is.
Ez miért jó? A scanf függvény visszaadja a sikeresen beolvasott karakterek számát.

Ez − amennyiben a beolvasás sikeres volt − egy nullától nagyobb érték kell, hogy legyen.
Amennyiben a beolvasás sikertelen volt (értsd: nulla karaktert olvasott be sikeresen), úgy a
függvény nullát ad visszatérési értékként. Ezt ellen®rzi a következ® if-ág. Amennyiben ide
bekerülünk, úgy a felhasználó biztos, hogy nem adta meg helyesen az adatot, meghívjuk
a BemenetHiba függvényt, szólunk a felhasználónak, kitakarítjuk a standard inputot majd
kidobjuk a felhasználót a menüpontból (return 1).

Ha idáig eljutottunk, következhet az adatok helyességének ellen®rzése. Megvizsgáljuk,
hogy a felhasználó a lehetséges évintervallumból választott-e, valamint hogy a megadott
hónap és nap létez® dátum-e abban az évben, és természetesen megnézzük azt is, hogy
az id®pontként megadott szám tényleg létez® óra-e, valamint hogy a foglalás vége kés®bb
van-e, mint a foglalás eleje. Ellen®rizzük a szök®évek esetét is. Amennyiben a felhasz-
náló február 28-nál kés®bb februári id®pontra szeretne foglalni és az évszám néggyel való
osztásának maradéka nem nulla (négyévente van szök®év), szólunk a felhasználónak, hogy
hibásan adta meg a dátumot és kirúgjuk a f®menübe.

Amennyiben ez rendben van, eljutottunk arra a pontra, hogy tudjuk, hogy a felhasználó
létez® id®pontra kíván foglalni. Következ® lépés annak megvizsgálása, hogy a terem abban
az id®szakban foglalt-e. Ehhez készítünk egy munkamutatót, amelynek értékül adjuk a
kincstári mutatót, tehát a láncolt lista elejére pakoljuk azt. Ezek után egy while segítsé-
gével végigfutunk a láncolt lista minden elemén, egyenként megvizsgáljuk ®ket, és ha úgy
találjuk, hogy az a foglalás éppen ugyanarra a napra szól, mint az aktuális foglalási igény,
el®vesszük a Foglaltsag nev¶ indikátortömbüket, és a listában szerepl® foglalás kezdeti
id®pontja és végid®pontja között egy for iteráció segítségével bebillentjük az összes olyan
indikátort 0-ról 1-re, amelyhez tartozó órákban a terem már foglalt.

Ha ezzel az iterációval végeztünk, az indikátortömb tisztán és világosan fogja jelezni
az aznapi foglaltsági helyzetet. Meg tudjuk tehát nézni, hogy a szóban forgó foglalási
igény teljesíthet®-e. Készítünk egy for-iterációt a foglalási igény kezdeti és a végid®pontja
között, és amennyiben ezen a szakaszon bárhol találunk egyest az indikátortömbben, az azt
jelenti, hogy a foglalási igény nem teljesíthet®, a terem már foglalt. Ezt a nullára inicializált
MarFoglalt változó egyre történ® billentésével jelezzük. Amennyiben ezen indikátor értéke

5. oldal

Unger Tamás István FTD1YJ

1, közöljük a felhasználóval, hogy foglalt a terem és kidobjuk a f®menübe.
Ha ez nem történik meg, a foglalás teljesíthet®, el kell tehát helyeznünk a láncolt listába.

Lefoglaljuk neki helyet, elkészítjük a "dobozt" (UjFoglalas = malloc(sizeof(Adatok));),
majd a doboz megfelel® rekeszeit megpakoljuk az aktuális foglalási igény adataival (284-289.
sorok). A munkamutatónkat a lista elejére állítjuk, majd létrehozunk még egy segédmu-
tatót, hogy a lista végigjárása során el tudjuk menteni az el®z® doboz címét. Ezt nullára
inicializáljuk.

Ha ez megvan, lekezeljük azt az esetet, amikor nincsen a listában semmi. Ekkor az
aktuális foglalás doboza lesz az els® a listában. A doboz következ® dobozra mutató címét
NULL-ra állítjuk, a kincstári mutatónkat pedig beállítjuk ennek a doboznak a címére, hiszen
mostantól ez lesz az els® láncszem, innen fog kezd®dni az adatsorunk. Pontosan ez a
módosítás az, amiért kett®s pointeraritmetikát kell alkalmazni. Ebben az esetben ugyanis
nemcsak használjuk a kincstári mutatónkat, de még az értékét is módosítanunk kell.

Amennyiben nem az aktuális foglalás doboza a lista els® eleme, úgy elindulunk végig a
listán. Minden doboz esetén megnézzük, hogy az aktuálisan beszúrandó foglalás id®pont-
ja kés®bb van-e, mint az a foglalás, amelyet éppen vizsgálunk. Amennyiben ez teljesül,
vándorolhatunk tovább a listán. Elmentjük az aktuális doboz címét és továbbpakoljuk a
segédmutatót a következ® dobozra. Amennyiben a következ® doboz címe NULL, úgy a lista
végére értünk, a végére kell beszúrni a dobozt. Ez speciális eset, hiszen a beszúrandó doboz
következ®re mutató pointerét NULL-ra kell állítani, valamint az el®tte lév® doboz következ®-
re mutató pointerét az aktuálisan beszúrandó doboz címére kell állítani. És ennyi, készen
vagyunk, break utasítással kiléphetünk a teljes listavégigjárási folyamatból. Amennyiben
ez nem teljesül, continue utasítással robogunk tovább a listán, el®re.

Ha a forráskód 320. soráig eljutunk, az azt jelenti, hogy az els® if-ágba nem léptünk
be, tehát az új foglalás korábban van, mint az, amelyen éppen a munkamutatónk áll.
Ekkor az aktuális foglalás dobozának következ®re mutató címét a munkamutató aktuális
címére állítjuk. Kérdés, hogy az a doboz, amely elé be kell szúrni az aktuális dobozt, a
lista els® eleme-e. Ezt ellen®rzi a 323. sorban lév® feltétel. Amennyiben nem, úgy nemes
egyszer¶séggel be kell állítani az el®tte lév® doboz következ® dobozra mutató címét az
aktuálisan beszúrandó doboz címére és készen is vagyunk. Más a helyzet, ha az els® elem
elé kell beszúrnunk a dobozunkat. Ekkor a régi kincstári mutató értékét kell értékül adni a
frissen beszúrandó doboz következ® dobozra mutató címének, valamint módosítanunk kell
a kincstári mutatónkat a frissen beszúrandó doboz címére. Ezzel becsatoltuk a lánc elejére
az új dobozunkat, végeztünk.

Ha mindezekkel megvagyunk, a lista rendezett és kész, a foglalás el van mentve. Szó-
lunk a felhasználónak és vége is a munkának.

Az EddigiFoglalasok eljárás célja és m¶ködése

Az EddigiFoglalasok eljárás bemenetként a kincstári mutatót kapja, melynek segítsé-
gével sorszámozva kiírja az eddig rögzített foglalások adatait a felhasználói felületre. Ez
egy kifejezetten egyszer¶ eljárás, de a hónapok nevének kiiratását (szám/bet¶-konverzió)
egy érdekes trükkel oldottam meg, amely érdemel pár szót.

A forráskód 17. sorában de�niáltam egy 13 elem¶, stringek tárolására alkalmas tömböt.
A tömb nulladik elemének egy dummy "h"-bet¶ abból a célból, hogy a 0-12-es indexelést
kikerülve 1-12-ig tudjam használni és indexelni a tömböt a programban. Ennek a lényege,
hogy ha a tömb els® elemére hivatkozunk, akkor januárt ad vissza, ha a másodikra, ak-
kor februárt és így tovább. Ez kiválóan alkalmazható a hónapok számának névre történ®
cseréléséhez, amit kihasznál az EddigiFoglalasok eljárás is. Az eljárás tulajdonképpen
semmi mást nem csinál, csak a már megszokott módon bejárja a láncolt listát, majd sor-

6. oldal

Unger Tamás István FTD1YJ

számával együtt kiírja az egyes foglalások adatait egy printf segítségével. A trükk a
printf argumentumában van, ahol el®kerül az el®bb ismeretett karaktertömb alkalmazá-
sa: Honapok[(SegedMutato->Honap)]. Látható, hogy minden kiiratás esetén az aktuális
doboz hónap rekeszében található számával indexeljük a tömbünket, amely a fent említett
okok miatt minden esetben a hónapok nevét fogja visszaadni.

Az FoglaloCegekNeve eljárás célja és m¶ködése

Az FoglaloCegekNeve eljárás bemenetként a kincstári mutatót kapja, melynek segítsé-
gével kiírja a felhasználói felületre a foglaló cégek neveit bet¶rendi sorrendben. Ez egy
komplex feladat, melynek keretei között nemcsak végig kell járni a listánkat, hanem egy
rendez® algoritmust is meg kell valósítani. Az eljárás elején a ListaMeret változó segítségé-
vel megszámoljuk, hány foglalásunk van jelenleg a rendszerben. Ezek után megvizsgáljuk,
van-e már foglalás a rendszerben, és ha nem, azonnal kilépünk az eljárásból, hiszen a
semmit nem lehet rendezni, kiírni.

Ha van foglalás a rendszerben, akkor dolgunk van. Létrehozunk egy CegNevek tömböt,
amelynek annyi rekesze lesz, ahány foglalás a rendszerben van. Ez a tömb trükkös, hiszen
nem a cégek neveit fogja közvetlenül tartalmazni, hanem csak a láncolt listánk dobozainak
címeit. Olyan címeket, amelyeken különböz® cégnevek vannak. Mivel széls®séges esetben
el®fordulhat, hogy minden egyes foglalás más céghez tartozik, fel kell készülnünk a leg-
rosszabbra, ezért készítünk el® pontosan akkora tömböt, ahány foglalásunk a rendszerben
van.

Ha ez megvan, ismét beállítjuk a munkamutatónkat a listánk elejére, majd elkezdünk
végiggyalogolni a láncolt listánkon a szokásos módon. Mivel a VanMar változónkat nullára
inicializáltuk, az els® lépésnél egyb®l a 395. sorban kezd®d® if ágba kerülünk, amely
belerakja az aktuális dobozra mutató mutatót a CegNevek tömbbe, az s változót eggyel
megnöveli és kocog tovább a láncolt listán. Ez világos, az els® doboz cégneve még biztosan
nem szerepel a cégnevek között, azt mindenképpen be kell rakni az egyedi cégnevek közé.
Még egyszer célszer¶ hangsúlyozni: nem a cégnevet mentjük el, hanem csak a dobozra
mutató mutatót, amellyel a cégnév is elérhet®, természetesen.

Ha nem az els® doboznál járunk, akkor minden egyes új doboznál meg kell vizsgálni,
hogy az abban szerepl® cégnév szerepel-e már a cégneves listánkban. Ezt a klasszikus
strcmp függvény segítségével tesszük meg, és ténylegesen a CegNevek tömb rekeszeiben
található címeken található cégneveket hasonlítjuk össze a munkamutatónk dobozának
cégnevével. Amennyiben a munkamutató cégneve már szerepel a listában, úgy beállítjuk
az indikátorváltozónkat egyre és egy break segítségével kiugrunk a CegNevek tömb rekeszeit
bejáró for-ciklusból. Ha nem találunk egyez®t, akkor az indikátorváltozót nullára állítjuk
és a már ismeretett módon (395-398. sorok) berakjuk a doboz címét a CegNevektömbbe.

Ha ezzel végeztünk, megvannak azon dobozok címei, amelyek egyedi cégneveket tartal-
maznak, de még nem névsorrendben. Rendezni kell ®ket tehát. Ehhez egy els® végtelennek
t¶n® while-ciklust írtam (while(1)). Az iterációt úgy valósítottam meg, hogy egy id® után
egészen biztosan egy olyan ágára fogunk futni, amely egy break utasítással kirúg minket
a végtelen ciklusból. Az els® ilyen ág az s=1 esete. Ekkor csak egy cégnév van, nincs mit
rendezni, végeztünk. Ha egynél több név van, akkor jön a tényleges rendezés. Egy for

segítségével elindulunk a cégnevek mutatóit tartalmazó tömbünkön. Összehasonlítjuk az
els® két egymás mellett elhelyezked® címen lév® cégnevet. Ha az els® cégnév "nagyobb"
(névsorban hátrébb van), mint a második, megcseréljük ®ket. Ehhez segítségként kell mun-
kamutató, ahová elmentjük a csere idejére az els® címet, majd az els® helyére beírjuk a
másodikat, végül pedig a munkamutatóból a másodikba beírjuk az els®t. Mivel ebben a
fázisban még nem sikerült végigmennünk a tömbbön csere nélkül, egy indikátorváltozóval

7. oldal

Unger Tamás István FTD1YJ

jelezzük, hogy még nincsen sorban a lista. Ezután megszakítjuk a for-ciklust, kezd®dik
elölr®l a végtelen while, ismét elindulunk a cégneves tömbbön, ha szükséges, akkor cseré-
lünk és így tovább.

Mindezt addig folytatjuk, amíg a for-iteráció végig nem tud menni a tömbön csere nél-
kül. Ha ez összejött, akkor az indikátorváltozóval jelezzük, hogy sorban vannak a cégnevek,
és ezek után egy speciálisan erre az esetre írt if-ággal kirúgjuk magunkat a végtelen ciklus-
ból. Ezek után már csak ki kell írni a sorban elhelyezked® cégneveket a cégnevek tömbben
található mutatók segítségével.

A FoglalasTorles függvény célja és m¶ködése

A FoglalasTorles segítségével sorszám szerint lehetséges törölni az egyes foglalásokat
az adatbázisból (a listából). Mivel ezúttal is el®fordulhat, hogy a lista elejér®l törlünk,
ezért ismét mutatóra mutató mutatót szükséges alkalmazni.

A függvény els® lépése a rendszerben lév® foglalások számának meghatározása a már
ismeretett módon. Amennyiben úgy találjuk, hogy nincs foglalás a rendszerben, ezt kö-
zöljük a felhasználóval és kilépünk (visszaadunk 1-et, konvencionálisan). Ha van foglalás,
bekérjük a felhasználótól törölni kívánt foglalás sorszámát. A BemenetHiba függvény se-
gítségével a már ismertetett módon itt is megvizsgáljuk el®ször, hogy formailag helyesen
adta-e meg az inputot (értsd: számot adott-e meg). Ha ez rendben van, megnézzük, hogy
van-e egyáltalán ilyen számú foglalás úgy, hogy megvizsgáljuk, nagyobb-e a beadott szám,
mint a rendszerben lév® foglalások száma. Ha nagyobb, akkor nem jó értéket adott meg a
felhasználó, szólunk neki és kirúgjuk a menüpontból.

Ha jó és értelmes sorszámot adott meg a felhasználó, a foglalást törölhetjük a listából.
Ismét végigfutunk a szokásos módon a listánkon, és ha eljutottunk a törlend® foglaláshoz,
törlünk. El®ször is közöljük a felhasználóval, hogy melyik foglalást töröljük, kiírjuk tehát a
foglalás adait. Ezek után meg kell vizsgálnunk, hogy a törlend® foglalás a lista els® eleme-e.
Ha igen, módosítani kell a kincstári listamutatónkat a régi második/új els® doboz címére.
Ha nem az els® elemet töröljük, akkor a törlend® dobozban található következ® címet át-
másoljuk a törlend® doboz el®tt lév® doboz következ® címébe (így iktatjuk ki a törlend®
elemet a láncból). Ekkor még a törlend® adat a memóriában van, de mivel az már nem ré-
sze a láncnak, nem tudnánk elérni. A felhasznált memóriaterületet a free(SegedMutato);
paranccsal fel is szabadítjuk, szólunk a usernek, hogy a törlés sikeres volt és kirúgjuk ma-
gunkat a listavégigjáró ciklusból.

A main () függvény m¶ködése

A main () tulajdonképpen nem más, mint egy lehet®ségválasztásos menü, amely a vá-
lasztástól függ®en meghívja a már ismertetett függvények és eljárások valamelyikét. A
menü szerkezete annyira klasszikus, hogy én is egy interneten található verziót pofoztam
át a saját feladatomra. A fórumot meg is hivatkozom a forráskód 512-es sorában. A
függvény elején létrehozunk egy mutatót, amely alkalmas a de�niált struktúránkra történ®
mutatásra. Ezt NULL-ra inicializáljuk, de rögtön utána az AdatBeolvasas függvény segít-
ségével beolvassuk az adatfájl tartalmát és értékül adjuk neki a lista kezd®címét. Ezek
után bekérjük a felhasználótól, hogy mit szeretne csinálni. Lehet®sége van választani 1-6
menüpontok közül. Itt is alkalmazzuk a már ismeretett ellen®rzést arra vonatkozóan, hogy
számot ad-e meg a felhasználó. Ha nem, addig nem hagyjuk békén, amíg számot nem ad
meg. A switch-case ágon pedig a bekért sorszámtól függ®en meghívjuk az adott feladat
ellátására alkalmas függvényeket, eljárásokat.

8. oldal

Unger Tamás István FTD1YJ

Köszönetnyilvánítás

A programot a konzultációkon elhangozttak, valamint az eddigi programozási tapaszta-
lataim alapján magam írtam, amely a legjobb tudásom szerint megfelel®en m¶ködik. A
program megvalósítása tartalmaz ugyanakkor egy-két olyan gyakorlatiasabb fogást, prak-
tikát és megoldást, amelyek túlmutatnak az alapszint¶ programozási ismereteken. El-
gondolásilag, nem szintaktikailag. Ezen megoldásokért (például a BemenetHiba függvény
ötletéért, a foglaltság ellen®rzésére szolgáló segéd-indikátortömb használatának javaslatá-
ért, valamint a fájl olvasásához/írásához használt format string alkalmazásáért) nagy
köszönettel tartozom barátomnak és volt kollégámnak, Budai Tamásnak, akivel a projekt-
feladat elkészítése során többször is konzultáltam.

Budapest, 2017. november 4.

9. oldal

