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Elész6

Az utébbi évek véltozdsai a felsboktatdsban (4j szakok, 1j tantirgyak, val-
tozatos oktatdsi formak, sth.) a kordbbinal jéval nagyobb mértékben igénylik a
tantargyak aktudlis tematikajihoz szorosan illeszkedd segédanyagokat. A Szegedi
Tudoméanyegyetem Természettudomanyi Kardnak els6éves matematika tandr, ma-
tematikus, alkalmazott matematikus, programozé matematikus, programtervezé
matematikus, kézgazdasagi programozé matematikus, miiszaki informatikus és in-
formatika tandr szakos hallgatéi egy féléves tantdrgy keretében ismerkednek meg
a linedris algebra alapjaival. Bar e témabél nagyon sok helyen taldlhat anyagot
az érdekl8do hallgaté, ezekbél csak szelektaldssal és rendszerezéssel tud a vizsgara
felkésziilni. Ezt nem véarhatjuk el minden elsé éves hallgatétél. A jelen jegyzet
célja elsésorban az, hogy segitséget nytjtson az emlitett hallgaték kotelezd linedris
algebra tanulményaihoz, s ennek megfelelen a targy jelenleg érvényes tematiks-
jdhoz igazodik. Természetesen a mas egyetemeken tanuld hallgaték szamadra is jél
hasznélhaté, és alkalmas lehet a linedris algebra alapjainak 6n4llé elsajatitdsdra is.

A jegyzet targyalasmédja a Bolyai Intézet hagyomdnyaira és jelenlegi gyakor-
latéra egyarant tdmaszkodik. Megirdsakor figyelembe vettem a sajat és kollégdim
tobb éves gyakorlat soran kikristdlyosodott eléadésait. Természetesen a szakiroda-
lomra is tdmaszkodtam.

E helyen is koszonetemet fejezem ki B. Szendrei Miria egyetemi tandrnak, e
Jegyzet alapos lektordnak, aki hasznos észrevételeivel és tandcsaival sokat segitett.

Szeged, 2003. mércius 16.

Szabd Liszlo
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1. Bevezetés

A linedris algebraban vizsgalt objektumok (métrixok, determinnsok, egyen-
letrendszerek, vektorok, stb.) targyaldsa soran mindig elére meg kell adni az dn.
skaldrok halmazit. A jegyzetben a skaldrok mindig szamok, melyek halmaza zdrt
a négy alapmiiveletre. Egy didk, aki fels6foki matematikai kurzusokat még nem
hallgatott, szamon dltaldban valés szdmot ért, hiszen a kézépiskolai kitelezd tana-
nyagban nem szerepelnek a komplex szamok. Ennek ellenére a jegyzetben szdmon
mindig komplex szdmot értiink. Mivel a hallgaték a linedris algebraval parhuzamo-
san hallgatott targyakban megismerkednek a komplex szamokkal, ezért a komplex
szdmok ismertetésével nem foglalkozunk. Amig az olvasé nem ismeri a komplex sza-
mokat, addig a megfontoldsokban szoritkozhat a valés szamok halmazéra, s amint
szert tesz a komplex szdmok ismeretére, konnyen ellenérizheti, hogy minden addigi
megfontolds érvényes marad komplex szdmokra is. A jegyzetben a pozitiv egész
szamok, a természetes szdmok, a racionalis szimok, a valds szamok és a komplex
szdmok halmazdt rendre N, Ny, Q, R és C jelli.

1.1. Definicié. Szdmtesteknek nevezziik a komplex szaimok halmazanak olyan lega-
labb kételemii részhalmazait, melyek zartak a négy alapmiiveletre, azaz tartalmaz-
zak barmely két clemik osszegét, kiilonbségét, szorzatit és hinyadosit (amennyi-
ben az oszté nem 0). A szdmtestek elemeit skaldroknak is hivjuk.

Minden szamtest tartalmaz 0-té] kiilonboz6 elemet, amit onmagdval elosztva
1-et kapunk, és 1-bél a négy alapmiivelet segitségével minden racionalis szdm meg-
kaphaté. Tehat minden szidmtest tartalmazza a raciondlis szdmok Q halmazait.
Szdmtestek példaul a kévetkezs halmazok: C, R, Q, {a+bv2: a,be Q1.

A linedris algebra targyaldsa sordan sokszor fordulnak el t5bb tagu Osszegek,
melyeket a ) (szumma) jel hasznélatdval 1ényegesen kénnyebben tudunk kezelni.
Példiul az

ay+...+a,




2 1. Bevezetés

Osszegre a
n
D a
=1

jelolést vezetjiik be; itt 7 az dsszegzési index, 1 és n pedig az dsszegzést hatdrok. A
3 jel legdltaldnosabb hasznalata a

Z tag
feltétel

formaban torténik. Ez azt jelenti, hogy képezni kell mindazon tagok Osszegét,
melyek eleget tesznek a 3 jel ald irt feltételnek. A tagokat természetesen egy elére
rogzitett halmazbdl vesszitk. Példaul

E a; =do . o T 0p—1-
1<i<n

Gyakran kell olyan tagokat Gsszeadni, melyek maguk is osszegzéssel keletkeznek
tovabbi tagokbol. Példaul

m mn i 0
Z aij | , amit altaldban Z Z aij
1

i=1 \j= i=1 j=1

alakban frunk, az

ai1 ai12 P Aln
Q21 Q22 ... d2p
Uml Gm2 .-- Gmn

tabldzatban szerepl6 szdmok dsszege oly médon, hogy elébb soronként Osszgeziink,
majd ezeket a részosszegeket dsszeadjuk. Természetesen ugyanerre az eredményre
jutunk, ha el6bb oszloponként Gsszegziink, vagyis

Ha m = n, akkor
m n n

ZZ“U helyett a Z i

i=1 j=1 i,j=1

1. Bevezetés 3

jelolést is hasznéljuk. A > jel haszndlata sordn eléfordulhat, hogy az Gsszegnek
nulla tagja van. Példdul, ha a fels6 hatér kisebb, mint az als6 hatér, vagy a 3 jel
ala irt feltételt egyetlen szdba jéhet6 tag sem elégiti ki. Ilyenkor az dsszeg definicié
szerint 0.

A T] (produktum) jel hasznalata analog a 3 jeléhez, csak tagok helvett mindig
tényezdket kell érteni, és ezeket dsszeszorozzuk. Példaul

. Il (w-a)=

1<i<j<n

= (a2 —a1)(as —a1)(as — a2) ... (an — a1)(an — a2) ... (an — an-1).

A nulla tényez6s szorzat definicio szerint 1.




2. Matrixok

2.1. Definicié. Legyen T szdmtest és m,n pozitiv egészek. A T szdmtest feletti
m X n-es mdatrizon egy olyan téglalap alaku tablazatot értiink, melynek m sora és
n oszlopa van, és elemei T-bél valék. A maétrixokat altaldban nagy latin betiik-
kel jeloljik, és részletesen ugy adjuk meg, hogy a tablizatot kerek zardjelek kozé
tesszilk. Ha egy m x n-es A matrix i-edik sordnak j-edik eleme a;;, akkor a métrix
alakja

aix a1z ... Qin

21 @22 ... da2p
A= .

am1 Am?2 s Omnp

Gyakran hasznaljuk a tomoérebb A = (@ij)mxn jelolést. Ha nem okoz félreértést,
akkor az m x n indexet elhagyjuk. Az 1 x n-es métrixokat sorvektoroknak, az
m x l-es matrixokat pedig oszlopvektoroknak is hivjuk. Az

G,;j

. a2j
(a1 a2 ... au), illetve

Amj

vektort az A métrix i-edik sorvektordnak, illetve j-edik oszlopvektoranak nevez-
zik, 1 <1< m, 1 < j <n A csupa nulla elemet tartalmazdé matrixokat null-
mdtrizoknak nevezziik, és méretiiktdl fiiggetleniil 0-val jeloljik. Ha az A matrix
sorainak és oszlopainak szdma megegyezik, akkor négyzetes mdtriznak hivjuk, s
ekkor az a11,a22,- .., an, elemek a matrix fédtldjat, az ain, a2 n-1....,an1 elemek
pedig a matrix mellékdtldgjat alkotjak. Az n x n-es matrixokat n-edrendii matrixok-
nak is nevezzitk. Azokat a négyzetes matrixokat, melyek mindegyik f6atlon kiviili
eleme nulla, diagondlis mdtrizoknak nevezziitk. Ha egy négyzetes matrix foatldja
alatt (felett) minden elem nulla, akkor a matrixot felsd (alsd) trianguldris mdt-
riznak hivjuk. Azt az n X n-es diagondlis métrixot, melynek fédtléjaban minden

2. Mdtrizok 5]

elem 1, egységmdtriznak nevezzik, és E,-nel jeloljiik. Ha nem okoz félreértést,
akkor az n indexet elhagyjuk. A T szamtest feletti m x n-es matrixok halmazsit
Tm*" el jeloljiik.

2.2. Definicié. Ertelmezziik mdtrixok Osszeaddasat és skaldrral vald szorzdsat a
kivetkez6képpen. Ha (a;;), (b;;) € T™*™ és A € T, akkor

@11 @12 ... Qip bin bia ... bin
a1 Gga ... Qo ba1 b2z ... bon
p . ; + . =
Aml Am2 ... Gmp b1 b2 ... b
aintbin ep+bie ... ap,+bin
az1 +ba  asa+ba ... asy + bay,
am1 + b1 Am2 +bma ... Grmn + bmn
és
ani a1 i A1n /\&11 )\alg i Aaln
aoy a9 ... Qon /\a21 )\agg A )\agh
A § : . = . . ,
Aml  Gm2 ... Gmn A1 ACmz ... A

vagy roviden
(az‘j)mxn + (bz'j)mxn = (U'ij + b‘ij)an és /\(aij)mxn = ()\az‘j)mxn-
A kovetkezé tételben felsoroljuk az ésszeadss és a skaldrral valé szorzés leg-

fontosabb tulajdonsdgait. Mindegyik a definiciék kozvetlen kovetkezménye. Ezért
a bizonyitdst az olvaséra bizzuk.

2.3. Tétel. Tetszbleges T szdmtest és m,n pozitiv egészek esetén a T™" halma-
zon most bevezetett dsszeadds mdvelet kommutativ és asszociativ. A nullmdtriz az
Osszeadds egységeleme (azaz A+0 = A minden A € T™*" esetén), és minden A
mdtriznak a —A = (—1)A mdtriz additiv inverze (azaz A+ (—A) = 0). Tovdbbd

MA+B) =M+ AB, (A+p)A=2A+pud, (A= A(pd)
tetszileges \,u € T és A, B € T™*" esetén.

2.4. Definici6. Legyen T szémtest és m,n, s pozitiv egészek. Ha A = (ai;) € T™*™
és B = (biy;) € T™*°, akkor az A és B métrixok AB-vel jeldlt szorzata az a




6 2. Mdtrizok

C = (¢ij) € T™>*® métrix, melyre ¢;; = ¥ p_;8aby; (1 <1< m, 1 £j < s),
azaz tomoren
n
B = (Zaikbkj) .
k=1 mxs

2.5. Tétel. Tetszbleges T szamtest, N € T és T feletti A, B,C matrizok esetén,
ha az aldbbi egyenldségek valamelyik oldala értelmezve van, akkor a masik oldal is
értelmes, és az egyenldséy is teljestil.

AAB) = (A)B = A(AB),
A(BC) = (AB)C,
A(B+C) = AB + AC,
(A+ B)C = AC + BC.

Tovabbd, ha A m x n-es mdtriz, akkor
E,A=AE, = A,

ahol E,,, (E,) az m x m-es (n X n-es) eqységmatriz.

Bizonyitds. A tétel utolsé dllitdsa a definicié kézvetlen kovetkezménye, ezért iga-
zoldsat az olvasdra bizzuk. Annak igazoldsat, hogy ha az elsé dllitdsban szerepld
egyenltségek valamelyik oldala értelmezve van, akkor a mdsik oldal is értelmes, és
a mérete is ugvanaz, szintén az olvaséra bizzuk. Ezek utdn csak azt kell igazolni,
hogy az egyenldségek kiilonbozd oldalain szereplé métrixok azonos helyen szereplo
elemei ugyanazok.

Tetszéleges M matrix esetén jeldlje (M);; az M matrix i-edik sordnak j-edik
elemét. Legyen A m x n-es, B pedig n x s-es matrix. Ha 1 <i<més 1 <k <5,
akkor

(MAB))ik = MAB)s =AY (4 U(ng—Z(»\ i7)(B)jx

i=1 i=1

= Z(’\A)ij(B)jk = ((AA)B).

=1

Tehat AM(AB) = (AA)B. A AM(AB) = A(AB) egyenloséget hasonldan igazolhatjuk.

2. Mdtrizok 7
Legyen C' s x t-s métrix. Ha 1 <i<més 1 <[ <t, akkor

((AB)C)it =) (AB)i(C)xt = > (i(A)ij(B)jk)(C)kt

k=1 k=1 4=1
=3 (X @y B(C) = 3 (D (s (B)(Cw)
k=1 j=1 J=L k=1

5

(A)ij(Z( ik C)kz) Z A)i;(BC)j = (A(BC))qr.

1 k=1 j=1
Tehat (AB)C' = A(BC).

Legyen most A m x n-es, B és C pedig n X s-es matrix. Ha 1 < i < m és
1 <k < s, akkor

)=

.
Il

n

(A(B +C))ik Z )ij(B +C)jk = Z(A)n (B)jk + (C)sk)

j=1 j=1
Z B)j + Z )i;(C)jk = (AB)ix + (AC)ux

= (AB + AC) .

Tehdt A(B+ C) = AB + AC.
Végiil legyen A és B m x n-es, C pedig n X s-es matrix. Ha 1 < 5 < m és
1 <k < s, akkor

n

(A+B)C)ik =Y (A+ B);j(C)z = Z( + (B)ii J(C)jk
j=1 j=1

= ”.(C Jk+Z

(AC' + BC)ik.-
Tehat (A + B)C = AC + BC.

]k — Ac)ak + (BC) ik

2.6. Definicié. A T szdmtest feletti A = (aij)mxn mAtrix transzponsltjsn azt az
AT-vel jelolt (bij)nxm matrixot értjiik, melyre b;; = aji;, 1 <i<nl1<j<m.
Tehat

ai; a2 ... Qip T aiz G221 ... Qm1

G21 Q32 ... Q2p aiz @2 ... Qg2

Am1  Qm2 ... Qmn Aln  A2n  --. Gmn
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Vegyilk észre, hogy AT megkaphaté A-bél, ha tiikrézziik az ayy,ass, ... elemeken
athaladé egyenesre (ha A négyzetes, akkor ez az egyenes a f6itl6). Ha A = AT,
akkor azt mondjuk, hogy A szimmetrikus mdtriz. Vegyik észre, hogy egy szim-
metrikus matrix szitkségképpen négyzetes.

2.7. Tétel. Tetszdleges T szdmtest, X € T és A, B azonos méreti T folotti madatrizok
esetén (AT)T = A, AA)T = AAT és (A+ B)T = AT + BT. Toudbbd, ha az
A és B milriz ésszeszorozhatd, akkor a BT és AT mdtriz is dsszeszorozhatd, €s
(ABYY = BTAT,

Bizonyitds. Az elsé hirom egyenlSség igazoldsat az olvaséra bizzuk. Legyen most
A m x n-es, B pedig n x s-es matrix. Hal <i<mésl <k <s, akkor a 2.5.
Tétel bizonyitasaban bevezetett jelolést felhaszndlva kapjuk, hogy

n

(AB) )t = (ABJis = 3 (A (Blse = S (BV)ig(AT)se = (BT AT

j=1 i=1

Tehat (AB)T = BTAT.

3. Az n-edrendii determinans

A determindns fogalmat, pontosabban az n-edrendii determindns fogalmét
Un. rekurziv definiciéval adjuk meg, azaz definidljuk n = 1-re, és az n > 2 esetben

az n-edrendii determindns fogalmdt visszavezetjiik az (n — 1)-edrend(i determindns
fogalmara.

3.1. Definicié. Legyen T szdmtest, n pozitiv egész szam és A = (aij) € T ™. Az
A mdtriz determindnsa, vagy mds széval az a;j, 1 <1,j < n, elemekbé] képezett

a1 a2 -+ Qip

Q21 Q22 -+ Q2n
Al = . ; :

Unl Qp2 *°* QGpp

n-edrendi determindns értéke a kivetkezé. Ha n = 1, akkor |A| = a;;. Han > 2,
alckor

n

|A| = @11 D11 — a12D1a + ... + (=1)" a1, Dy, = Z(*l)kHailek,
k=1

ahol
a1 v Q2k-1 A2k+1 0 Qg

Big=1 § = : : e R4y Bl g
Anl " Qnk-1 Gnk4+l - OGnp

Az |A| jelolés helyett a det A jelélést is hasznaljuk.

Az n =2 és az n = 3 esetben a definicié szerint

a1l Q12|
= 411022 — G12a21

az21 Q22
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és
a a a
H = = Q22 Q23 . a1 423 o a1 Q22
a9 22 Q = a1l — ad12 13
= o azz Q33 a3y ass az1 Q32

a31 @32 433
= a11(az2a33 — Gg3a32) — a12(aziass — angas:) + a13(az1032 — a2a31)

= (11029033 — Q11023032 — G12@21033 + 12023031 + 213021032 — A13322031-

3.2. Definicié. A T szimtest feletti n-edrendii (n > 2)

aj; a2 -+ Qip
apy Qg2 -+ G2n
D=| . . .
ap1  An2 crr OGnn
determinans esetén a
a11 ay,5—1 a1,5+41 a1n
. e a_ - a"# 3 . a‘7 . F
Dz‘j = ai—1,1 t—1,5—1 i—1,7+1 i-1,n ) 1.4 i, ] < n,
i1l 0t Gitlg—-1 Gl 0 Qitln
Qn1 e a'n.,j—l a‘n,j+1 AS ann

(n — 1)-edrendii determinénst az a;; elemhez tartozé komplementer aldetermi-
ndnsnak, az -
Ay = (1) Dy

szdmot pedig az a;; elemhez tartozé adjungdlt aldetermindnsnak nevezziik.

3.3. Tétel. Ha eqy determindns két sordt felcseréljiik, akkor értéke (—1)-szeresére
valtozik.

Bizonyitas. A determindns rendje szerinti teljes indukci6val bizonyitunk. n = 1l-re
nincs mit igazolni. n = 2-re konnyen ellendrizhetd, hogy igaz az allités. Legyen
n > 3, és tegyiik fel, hogy az (n — 1)-edrendii determindnsokra az 4llitas igaz.
Legyen A = (a;;) egy n x n-es matrix. Jel6lje A azt a matrixot, melyet gy kapunk
A-b6l, hogy az i-edik és a j-edik sordt felcseréljikk, 1 <¢ < j <n. Jeldlje tovabba

8. Az n-edrendd determindns 11

Dy, illetve Dy a k-adik sor [-edik eleméhez tartozé komplementer aldeterminanst
|A]-ban, illetve |A|-ban. Igazolnunk kell, hogy |A| = —|A|.

Eldszor tegyiik fel, hogy 1 < i < j. Ekkor Dj,-bél két sor felcserélésével
megkaphaté Dyi. Ezért az indukcids feltevés szerint Dy = —le, k=1,...n

Igy §
|A| = Z ar(=1)*1Dyy =
k=1

n n
= Z auc(—i)kﬂ(—le) = - Zalk('—l)kHD}k = —|A|-
k=1 k=1
Most tegyiik fel, hogy i = 1 és j = 2. Jelolje M¥ k # I, azt az (n—2)-edrendii
determinanst, melyet az eredeti determindnsbdl tgy kapunk, hogy toréljiik az elsé
és masodik sordt, valamint a k-adik és [-edik oszlopat. Ekkor

n
|A] = Z a1x(—1)**1 Dy
k=1

n k-1 n
o Z&Ik(“l)k-’.l (Z agt(*l)t-'_lMM e Z azl(_l)thl)
k=1

=1 I=k+1

k4l q rki k4141 kL
= Z argag(—1) MM + Z areazn (1)1 M
1<i<k<n 1<k<i<n

e Z arpaz(—1)F M 4 Z arkag (— 1)k K

1<k<I<n 1<i<k<n
n -1 n

an (Z Gzl(“l)H-l (Z alk(_l)k+1Mkl + Z alk(_l)kMkI))
i=1 k=1 k=l+1

I

- (Zaz,(—n’“f)u) = —|A].
I=1

Végiil, hai =1 ésj > 2 tetszbleges, akkor az els6 és a j-edik sor cseréje a kovetkezd
harom sorcserével elérheté: elébb felcseréljilk a masodik és j-edik sort, majd az
elsé és mésodik sort, és végil djra a masodik és a j-edik sort. Az elézéek szerint
mindhdrom csere megvaltoztatja a determindns el6jelét, azaz végeredményben a

determindns el6jele most is megviltozik. -
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3.4. Tétel. Legyen T szdmtest, n > 2 és A =

esetén

Bizonyitas. Legyen

ail ai2

az1 Q22
Di=i] ;

an1  On2

n
4]
k=1
A1n
a2n
; és D
Ann

(aij)
= Z aipAik.

a;1
ai

Ai—1,1
Qit1,1

ani
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€ TT!.XTL.

a2
a1z

Ai—1,2
Q41,2

an2

Tetszdleges 1 <i<n

Qin
Ain

Ai—1,n
Ait1,n

ann

Mivel D a D-b6l i — 1 szomszédos sor egymads utani felcserélésével megkaphaté (az
i-edik sort megceseréljiik a felette dlléval, azutdn djra a felette dlloval, stb.), ezért a
3.3. Tétel és a determindns definicidja szerint

B= (=1)"1D={

-3 aul-

k=1

n n
1) Za@-k(—l)’““m = ;aik(—

1+kD thki— Za'lkAzka

k=1

1)'i+kD1k

ahol Dir a D determindns elsé sordnak k-adik eleméhez tartozé komplementer

aldeterminanst jeloli. Felhasznaltuk, hogy Dig =Dy, k=1,...,n

A 3.4. Tételbeli egyenldség jobb oldaldn &ll6 Osszeget a determindns i-edik
sora szerinti kifejtésének hivjuk.

3.5. Tétel. (A determindns soraira vonatkoz6 tulajdonsagok.)
(3.5.1) Tetszdleges 1 < i < n és barmely ¢ € T esetén

a11
ai—1,1

Cay1
@541,1

an1

a12

@j—1,2
Cio
Q41,2

an2

A1n

A;—1,n
Cﬁ,‘n

Qi+l

aiy a2
Ai—1,1 Qi1
@41 a2
Q1,1 Qi1
Gn1 an2

Aln
2t Qi—ln
Ain
2 Giiln
Qnn
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(3.5.2) A determindns értéke nulla, ha valamelyik sordban mindegyik elem nulla.
(3.5.3) A determindns értéke nulla, ha van két egyforma sora.
(3.5.4) Tetszileges 1 < i < n esetén

a11
G;—1,1

a1 + b
Q41,1

Qn1
aiy
a;—1,1

=] a4
a34+1,1

Gn1

apo

a;—1,2
a2 + bio
aiy1,2

an2
@12
1,2

a2
@412

(n2

(3.5.5) Tetszbleges 1 <i,j <n,

ay; a2
a1 452
anl Qp2

Qin

Ain

G‘ﬂ.ﬂ

Qin

Qi—1,n
Qin + b’én
Qit1n

a'ﬂ,ﬂ

Q1n

Q;—1,n
Ain +
Qit1,n

ann

a1l
a;—1,1
bi

@i+1,1

Qnl

a2
ai—1,2
bin

Ai41,2

An2

i # 7 és barmely c € T esetén

ai

= | a41 + caj1

Qn1

@12

a;2 + cag2

Gn2

G1n

Ai—1,n
b‘in
Aiy1,n

a’ﬂﬂ

G1n

Qin + COjn

Qnn

Bizonyitéds. (3.5.1) Jelolje D, illetve D az egyenléség jobb illetve bal oldalén 4116
determindnst, A;;, illetve A;; pedig D, illetve D i-edik sordnak j-edik eleméhez

tartozo adjungalt aldeterminansat, 7 = 1,..
Vegyiik észre, hogy A;; = 4;5,1=1,...

n n
D= Z(caij)Aij = CZ aiinj =cD.
j=1 =1

.,n. Azt kell igazolni, hogy D = ¢D.
,n. Bzért

(3.5.2) Az 4llits a determindns i-edik sora szerinti kifejtésével azonnal adédik.
(3.5.3) Ha egy D determinéns két sora megegyezik, akkor az e két sor felcseré-
lésével kapott D determindsra azt kapjuk, hogy D=Dés D= —D, amib6l D =0

kovetkezik.
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(3.5.4) Jelolje rendre D, D és D' az egyenléségben szereplé harom deterni-
nénst balrél jobbra haladva. Azt kell megmutatni, hogy D = D + D'. Mivel a
hérom determindns csak az i-edik sorban kiilénbozik, ezért az i-edik sor j-edik
eleméhez tartozé adjungilt aldetermindns mindhdrom determindnsban ugyanaz,

mondjuk A;;, j=1,...,n. fgy

b= i(a"j +bij) A = _aAy + ) bijAi =D+ D'

=1

(3.5.5) A (3.5.4), (3.5.1) és (3.5.3) éllitasokat felhasznélva kapjuk, hogy

=1

Jj=1

ayi ai2 Ain
a1 +caj;1 age —i—ICﬂjg Qin + Cjp | =

Gny Qn2 Qnn
ail  a12 Qin ai; a2 A1n

= a;1 a2 a;n | tcC|@qj1 aj2 Ajn
Ap1  QAn2 Ann Anl Gp2 Gnn
ajy; a2 Q1n

= | G;1 Q2 Ain |,
an1 Qp2 - Qup

mert a c-vel szorzott determinéns i-edik és j-edik sora megegyezik, és (3.5.3) szerint
értéke nulla. -

3.6. Tétel. Bdarmely négyzetes mdtriz determindnsa megegyezik transzpondltjdnak
determindnsdval, azaz barmely T szdmtest, n > 1 ésa;; € T, 1 <i,j <n, elemek

esetén
11 @12 - din aip; @21 ' Gl
az1 Qg2 - d2p aiz Q22 -t QGn2
An1 Gn2 - Qpn ain Q2n - Qpn

8. Az n-edrendii determindns 15

Bizonyitds. Az dllitdst n szerinti teljes indukciéval bizonyitjuk. Ha n = 1, akkor az
allitds nyilvanvald. Tegyiik fel, hogy n > 2, és az (n — 1)-edrendii determindnsokra
teljesiil az allitas. Tekintsiik a

ail aiz - Qip a1l Qg1 v Gml

az1 a2z a2n aiz2 a2 an2
D= és D= |

Anl1 An2 " Qpn alpn A2n  *** Onn

determinénst. Jelolje Dy, illetve D7; az i-edik sor j-edik eleméhez tartozé komp-
lementer aldetermindnst D-ben, illetve D*-ban. Vegyiik észre, hogy az indukcids
feltevés szerint a D}, és a Dj; determindnsok megegyeznek. Fejtsiik ki D-t és D*-ot
mindegyik sora szerint, és ezek dsszegeként megkapjuk nD-t és nD*-ot:

n

al) = Zn:aij(_l)HjDij = Zn: (i az‘j(—l)HjDz‘j)
; s

=1 \j=1 i=1
n mn
=Y. (Z aij(q)iﬂp;i) = wli%,
j=1 \i=1

Végiil az nD = nD* egyenléséghdl D = D* kovetkezik. -

Egy métrix transzpondltjanak sorai rendre megegyeznek az eredeti matrix
oszlopaival, a métrix transzponaltjanak oszlopai rendre megegyeznek az eredeti
méatrix soraival. Az eldz6 tétel alapjdin adddik a kovetkezd fontos tény.

3.7. Determinanselméleti dualitdsi elv. Bdrmely determindnsokra vonatkozd ér-
vényes dllitdsbdl ismét érvényes dllitdst kapunk, ha benne a ,s0r” 526 helyett min-
denhol az ,oszlop” szdt, az ,0szlop” szd helyett pedig mindenhol a ,sor” szdt irjuk.

Az ilyen médon kapott llitdst az eredeti llitds dudlisanak nevezziik. Példaul
a 3.3. és 3.4. Tételek dudlisa a kdvetkezd:

3.8. Tétel. Ha egy determindns két oszlopdt feleseréljik, akkor értéke (—1)-
szeresére vdltozik.

3.9. Tétel. Legyen T szdmiest, n > 2 és A = (a;;) € T™*™. Tetszdleges 1 <i < n
esetén

|A| = Z i Ak
k=1




T
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A fenti egyenléség jobb oldaldn 4ll6 Gsszeget a determindns i-edik oszlopa
szerinti kifejtésének hivjuk.

A 3.5. Tételben szerepls, a determindns soraival kapcsolatos tulajdonsdgok
oszlopokra is érvényesek. Péld4ul a determindns értéke nulla, ha van olyan oszlopa,
melyben minden elem nulla, vagy ha van két egyforma oszlopa.

3.10. A ferde kifejtés tétele. Legyen T szdmtest, n > 2 és A = (ai;) € T ™.
Tetszbleges 1 < 0,7 < n esetén

= |A|, hai=3j, = |A], hai=j,
D> auwAje {o, heidj O ;a’” M0, haij.

k=1

Bizonyitas. Elég az elsd egyenléséget igazolni, hiszen a masodik az elsd dudlisa.
Az els6 egyenldség i = j esetén ugyanaz, mint a 3.4. Tétel. Tegyiik fel, hogy i # J,
és tekintsiik azt az A mdtrixot, melyet A-bél gy kapunk, hogy a j-edik sordba
rendre az i-edik sordnak elemeit irjuk:

( ai aia  ct Qln
. aj—11 Qj-1,2 - 4j-1n
A= a1 Q2 Qn
aj41,1  @5+1,2 7 Gitln
ani an2 e Ann )

Ekkor |A| = 0, hiszen A két sora megegyezik. Mivel a két determinans csak a j-edik
sorban kiilénbozik, ezért a j-edik sor elemeihez tartozé adjungélt aldetermindnsok
az |A| és az |A| determindnsban rendre ugyanazok. Végiil fejtsiik ki [A-t a j-edik
sora szerint: .
0= 11‘1| = ZaikAjk-
k=1

3.11. Definici6. Legyen T szémtest, n > 1 és xy,...,zn, € T. Ekkor a

1 z z2 - 2!

1 zp 23 - 237!
V(El,...,fﬂn): 2 5

1 = 4 g1

8. Az n-edrendii determindns 17
determinanst az z1,...,%, szdmokhoz tartozé Vandermonde-determindnsnak ne-
vezzik.

3.12. Tétel. Tetszdleges n > 1 és xy,...,x, szimok esetén

Vizs,..,za) = ] (25— 2).

1<i<j<n

Bizonyitas. A bizonyitds n szerinti teljes indukciéval torténik. n = 2 esetén

Vst == ‘ 1 z

comm= ] (g-a)

1 =z
2 1<i<j<2

vagyis érvényes az allitds. Legyen n > 2, és tegyiik fel, hogy (n — 1)-re érvényes az
allitas. Az indukcids feltevés miatt

V(I%'“;mn) == H (J:j ‘.’L‘@).

2<i<j<n

Vonjuk le V(z1,...,2,) mindegyik oszlopabdl hatulrél elére haladva az elétte 4116
oszlop zp-szeresét. A 3.5. Tétel dudlisa szerint a determindns értéke nem véltozik.
Ezutdn fejtsiik ki a kapott determinédnst az elsd sora szerint:

1 x 3311) sci‘_l
1 = $2 o Eﬂ_l
Vs 2 2 2
(3'11 )xn) — e
4 :1:,21 :1:2—1
0 0 0
2 f o
B 1 To — I Ty — T1x2 S'Ig 1756193121 .
2 . - o
l zp—31 T —T1Tn - I} 1—$1$22
Ty—x1 TE—zim2 - z§t —zpzh 2
Tp—%] X2 —Xyxy --r ztl_ggn?
T 1dn n 14y

Ta— 21 (Z2—21)22 (zg — xl)mg_z

Tp —T1 (T — Z1)Zn (zn — z1)zn ™2
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(emeljiik ki mindegyik sorbél a kozés tényezot)

1 g e B0
=(z2—z1)-...- (T — W} |} E
1 z, - 332—2
= (22 —21) ... (Zn —x1)V(Z2, -+, Zn)
= (2 — 1) " ... - (Tn — %1) H (z; —x:) = H (z; — z:).
2<i<j<n 1<i<j<n

3.13. Definicié. Legyen T szamtest,n > 1, 1 <r < nés A = (aij) egy T feletti
n x n-es matrix. Ha kijeldljiikk az A métrix r sordt és r oszlopat, akkor a kijelolt
sorokban és a kijelolt oszlopokban 4116 elemekbél képezett r-edrendii determinanst

az A métrix aldetermindnsdnak nevezziik. Legyenek iy < iy < ... < ir & kijelolt
sorok és j1 < ja < ... < jr a kijeldlt oszlopok indexei. Jelolje M 7> " az

A métrix iy, g, . ..,i, soraiban és ji, j2,. .., jr oszlopaiban &ll6 elemeibdl képezett

r-edrendfi aldeterninanst, azaz

Qiygy  Qiyga "0 Gigge
o ‘ Qi Wiade W O
T et B ‘2
11,22, T 2

Qi1 Girjz 77 Bipjr

Legyen D723 a7 A métrix azon (n — r)-edrendi aldeterminasa, melyet a mat-

11,82, 0p
rix 41,42, . . ., ir-en kiviili sorai és a ji1, j2, . . . , jr-en kivili oszlopal hataroznak meg.
A DJ132-J" determindnst az M7 ;7> aldetermindns komplementer aldetermi-
1225t 3829yt

ndnsdnak nevezziik.

Bizonyitas nélkiil ismertetjiik az aldbbi fontos tételt, mely a 3.4. Tétel alta-
lanositdsa.

3.14. Laplace—tétel. Legyen T szdmtest, n > 2, A = (ai;) eqy T feletti n x n-es
mdtriz, 1 <r <nésl<i <ipg<...<i <. Fkkor

IA} _ Z Mjujﬂ.u-,?r i D:fl.j:z,---,jr _(_l)il+1:'2+-.o+ir'+j]+j2+-h+jr‘

11,824.-050 11,8240 090r
1< <Je<...<jr S0

A fenti Gsszeget a determindns iy, i, .. .,1, sorai szerinti kifejtésének nevez-

ziik.

1
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Ha a 3.14. Tételben r = 1, 4, =i és ji = j, akkor M} = a;; és D! = D,;.
Ekkor a tétel allitdsa a kovetkezo:
|l = Y MIDI(-1)" =Y a;Dy(-1)"*,
1<i<n g=i
ami ugyanaz, mint a 3.4. Tétel.
Természetesen érvényes a a 3.14. Tétel dudlisa is:

3.15. Tétel. Legyen T szdmtest, n > 2, A = (a;;) egy T feletti n x n-es mdtriz,
1<r<nésl<j<jo<...<jr <n. Ekkor
|A] = Z MAvdzede | pitdaeeade (_1)1‘:1+1:2+...+i,-+j1+jg+..-+jr,

11,82, 008r 11,282yl
1<i1<i2<... <1, <0

A fenti Gsszeget a determindns j1,ja, ...
vezzik.

,Jr 0szlopai szerinti kifejtésének ne-

3.16. A determindnsok szorzastétele. Tetszéleges A és B megegyezd méretii négy-
zetes mdtrizok esetén

|AB| = |A|-|B|.

Bizonyitds. Legyen A = (aj;) és B = (by;) n x n-es métrix, C' = (¢;;) = AB, és
tekintsiik a

aj; ap - ay 00 -0 0
az1 aze -+ a4 O 0O -+ O
T o an1  Gp2 Onn 0 0 .- 0
-1 0 - 0 by b - big
0 -1 -+ 0 by by - ba,
0 0 o -1 bnl b‘ﬂ.2 i bnn

determinanst. Eldszor fejtsitk ki D-t az 1,2, ..., n sorai szerint:

p- ¥

1<j1<fa<...<jr <0

J1d2s 0 0n J1,025--0n 1424, ] i j
M1,2, , ; 'DI,Q. ; .(_1) +2+.tntiitia e in

Ha (j1,72,...,dn) # (1,2,...,n), akkor az 1"fo12“”m“1 determindns 0, mert van

olyan oszlopa, melynek mindegyik eleme 0. Ezért
1,2,...
D= M5 - Dyglin - (S1) Ittt

= |A[ -8,
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hiszen M1122: = |4|, Dig: =|B|, és a —1 kitevdje paros szam.

Alakitsuk 4t a D determinnst a kovetkezéképpen: minden 1 < j < n-re
adjuk hozzé az n + j-edik oszlophoz az elsé oszlop byj-szeresét, a mésodik oszlop
baj-szeresét, és igy tovabb, az n-edik oszlop by;-szeresét. Ezen dtalakitasok utdn a

kovetkezd D-vel egyenld determindnst kapjuk:

ai;1 a2 -+ dip Ci1 €12 - Cip
a1 a2 dap C21 Cp2 o Cap
n1 Qp2 - Qpn Cpl Cp2 ' Cpn
-1 0 - 0 0 o - 0
0 -1 0 0 0 0
0 o -+ =1 0 o - 0
Fejtsiik ki ezt a determindnst is az 1,2, ...,n soral szerint. Ha

(rsdaiesesdn) # (BEL R+ 25 005 20),

akkor a Dfiﬁfi_z_f;;;‘j" determindns 0, mert van olyan oszlopa, melynek mindegyik
eleme 0. Ezért

_ agnt+lnd2,....2n n+1,n+2,..,2n 1424 4+n+(n+1)+(n+2)+...4+2n
D= M1,2,...,n : Dl,z,...,n ' (_1)

- |CL : (_1)11 ; (_1)1+2+,.,+n+(n+1)+(n+2)+...+2n _ |C]\ - |AB|,

o n+1,n+2,...,2n __ n+1,n4+2,...,2n _ n 2 f 1
hiszen My, ") =|C|, Di3, " = (—1)", és a —1 kitevije

n+(1424+...+n+n+1)+n+2)+...+2n) =n+ (1 +2n)n = 2n + 2n°

ATOS SzAIm.
= n

4. Inverzmatrix

4.1. Definicié. Legyen T szamtest, n > 1 és A € T™*". Azt mondjuk, hogy
X € T™*™ az A mdtriz inverze, ha X A = AX = E, ahol E az nxn-es egységmatrix.
A kovetkez6 tétel szerint az A matrixnak legfeljebb egy inverze van, s amennyiben
létezik, azt A= 1-gyel jelsljiik.

4.2. Tétel. Minden mdtriznak legfeljebb egy inverze van. Egqy négyzetes A mdtriz-
nak akkor és csak akkor van inverze, ha |A| # 0. Ha az A és B nxn-es mdtrizoknak
van inverze, akkor (A~1)"1 = A, (AB)™! = B~1471 5 (AT)! = (A~ 1)T.

Bizonyitds. Ha A-nak X és Y is inverze, akkor X = XE = X(AY) = (XA)Y =
EY =Y. Tehat A-nak legfeljebb egy inverze van. Ha A-nak X inverze, akkor
1= |E| =|AX|=|4|-|X|, amib8l |4| # 0 kovetkezik.

Legyen A = (aij)nxn, és tegytk fel, hogy |A| # 0. Megmutatjuk, hogy

A Ao - Apg

-1 _ 1 A A o Ane
| Al E R

Aln AZn E Ann

ahol A;; az i-edik sor j-edik eleméhez tartozé adjungdlt aldetermindns |A|-ban.
Jeldlje B az egyenl6ség jobb oldaldn 4116 matrixot. A ferde kifejtési tétel sorokra
vonatkozd allitdséit felhasznalva kapjuk, hogy

aj; aip - Qg An Ay - Am
1 | aar ass -+ as, Az Az -+ Ape
AB = — b : : p =
|4
nl Qp2 - Gpp Aln AZn te Ann
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Al 0 - 0
i 1| 0 4 -~ 0
e G Aag = . L . =k,
|A(Z) i R
XN
0 0 - |4

A BA = E egyenldséget a ferde kifejtési tétel oszlopokra vonatkozé allitésat fel-
hasznalva hasonléan igazolhatjuk. Igy valéban B = A1
Vegyiik észre, hogy az AA™! = A~'A = E, illetve az

ATA DT =(A'AT=ET=E & (A H)TAT=(A4)T=ET=E

egyenldségekbol az inverz egyértelmiisége miatt kovetkezik, hogy A~ inverze éppen
A, azaz (A~1)~! = A, illetve AT inverze éppen (A~1)T, azaz (AT)™! = (A71)T.
Végiil

(AB)(B'A Y = (A(BB ™ 1)A™ 1 = (AE)A"' = AA" ' =E

és
(B1A™1)(AB) =B }((A"'A)B) = B"Y(EB)=B™'B=E,
amibél djra a métrix inverzének egyértelmiiségét hasznalva (AB)™' = B71A™!

kovetkezik.
]

4.3. Definicié. Azt mondjuk, hogy az A négyzetes matrix elfajuld (nemelfajuld),
ha |A| =0 (|A] # 0).

4.4. Definicié. Legyen T szamtest, n > 1 és A, B € T™*", Azt mondjuk, hogy
A és B hasonld, ha van olyan X € T™*" nemelfajulé matrix, hogy B = X—1AX.
Jele: A~ B.

4.5. Tétel. A mdtrizok hasonlésdgi reldcidja a T™*™ halmazon reflexiv (azaz A =~ A
minden A € T™ ™ mdtrizra), szimmetrikus (azaz A = B-bdl B = A kivetkezik) és
tranzitiv (azaz, ha A~ B és B = C, akkor A =~ C). Hasonlé mdtrizok determi-
nansa megegyezik.

Bizonyitas. Tetsz6leges A métrixta A = E~'AE miatt A =~ A, azaz = reflexiv.
Ha A = B, azaz B = X 'AX valamely X madtrixra, akkor A = XBX™L =
(X~1)~'BX~! miatt B ~ A. Tehdt ~ szimmetrikus. Ha A=~ B'és B = C, azaz
B =X"1AX és C = Y 1BY valamely X,Y matrixokra, akkor

C=Y"BY =Y }{(X1AX)Y = (XY)14(XY),

4. Inverzmdtriz 23

azaz A =~ C. Tehat ~ tranzitiv.
Végil, ha A = B, azaz B = X "'AX valamely X métrixra, akkor a determi-

nansok szorzastételét felhasznalva kapjuk, hogy
|B] = [X1AX| = |X1|AlIX| = |Al(x 1 X])
=|AlIX7'X| = |4]|B| = AL = |4].




5. Linedris egyenletrendszerek

5.1. Definicié6. Egy T szimtest folotti m egyenletbol all6 n-ismeretlenes linearis
egyenletrendszer altalanos alakja
a11Z1 + 01272 + ... + @1pTh = b1

anT1 + 22T + . . . + G2nTn = b2

(*)
Am1T1 + @matz + ...+ GmnTn = bm

ahol az a;; egyiitthatok és a b; konstansok T-bol valok, 1 <i < m, 1<j<n. Azt

., cn € T sorozat vagy a (c1,...,¢n) € T™ elem-n-es a (%)

j hogy a cy, - . ’
mondjuk, hogy a ci, s,

egyenletrendszer egy megolddsa, ha az x1,...,Z, helyére rendre a ci, .. ;
mokat irva, mindegyik egyenletbdl érvényes egyenl6ség lesz. Ha az egye"nletren -
szernek van megoldasa, akkor azt mondjuk, hogy megoldhatd, ellenkezd esetben

ellentmondd. _ ) R
Képezziik az egyenletrendszer adataibédl a kovetkezd matrixokat:
a1 012 a1n ann a2 - G| b
21 Qg2 -+ G2n az; azz - Qo2p b
A= A : , Alb= : I : A
mi Am2 *°° Omn ml Om2 ‘' Omn bm
b1 I aij
bo T3 az; e
b= , L= . ) QJ = B ul— 1> 2 1T
bm In Amj

Az A matrixot az egyenletrendszerl mdtrizdnak, az Alb matrixot pedig az egyenlet-
rendszer béuvitett mdtrizdnak nevezziik. Uj jeloléseink segitségével az eg‘yenletrend—
szer a kivetkezd métrix egyenlet és vektor egyenlet alakban is felirhato:

(%) Az =b
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és
(% * %) T18y +...+zna, =b.

A (¥x) alakban az egyenletrendszer megoldisa egy olyan ¢ € 77*1 oszlopvektor,
melyre Ac = b. A (#**) alakban pedig az egyenletrendszer megolddsa olyan skalé-
rokbol 416 ey, . . ., ¢, sorozat, melyekre a c1a, +.. .+ cpa,, oszlopvektor megegyezik
a b vektorral.

Az Az = 0 alaki egyenletrendszereket homogén linedris egyenletrendszerek-
nek nevezziik. Az ilyen egyenletrendszereknek a csupa nulla elembél 116 oszlop-
vektor mindig megolddsa, melyet trividlis megolddsnak neveziink.

A linedris egyenletrendszerek elméletének feladata olyan médszerek kidolgo-
zasa, melyek segitségével meg tudjuk dllapitani, megoldhaté-e egy adott egyenlet-
rendszer vagy sem, és ha megoldhaté, akkor szolgiltatja az 6sszes megolddst. A
kovetkez8kben ismertetiink egy ilyen médszert az tin. Gauss-kikiiszobolést, vagy
latinosan a Gauss-elimindcidt.

5.2. Definicié. K¢t egyenletrendszer ekvivalens, ha pontosan ugyanazok a megol-

dasaik. Egy egyenletrendszer elemi dtalakitdsai a kovetkezdk:

(5.2.1) Ha valamelyik egyenletben mindegyik egyiitthatdé és az egyenltség jobb
oldaldn szerepl6 konstans is nulla, akkor az egyenletet elhagyjuk.

(5.2.2) Valamelyik egyenlet mindkét oldaldt megszorozzuk ugyanazon nullatél kii-
lonbozo skalarral.

(5.2.3) Valamelyik egyenlethez hozzdadjuk egy maésik egyenlet skaldrszorosat.

(5.2.4) Két egyenletet felcseréliink.

Ezek az atalakitdsok rendre megfelelnek az egyenletrendszer bévitett matrixdnak

sorain végrehajtott kovetkez6 elemi dtalakitdsoknak:

(5.2.a) Ha valamelyik sorban mindegyik elem nulla, akkor a sort elhagyjuk.

(5.2.b) Valamelyik sor minden elemét megszorozzuk egy nullatél kiilonbézé skaldr-
ral.

(6.2.c) Valamelyik sorhoz hozzdadjuk egy masik sor skaldrszorosit.

(5.2.d) Két sort felcseréliink.

Konnyen ellenérizhetd, hogy barmely egyenletrendszert az elemi dtalakitasok
vele ekvivalens egyenletrendszerbe viszik 4t.

| 'S
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5.3. Definici6. Azt mondjuk, hogy a linedris egyenletrendszer lépcsds alakd, ha

bévitett matrixa rendelkezik a kovetkezd harom tulajdonsiggal:

(5.3.1) Nincs olyan sora, melynek mindegyik eleme nulla.

(5.3.2) Minden sorban az elsé nem nulla elem 1-es, és ezen 1-esek oszlopdban a
tobbi elem mind nulla.

(5.3.3) Minden sorban az els6 nem nulla elem hétrabb van, mint a folotte allé sor
hasonlé eleme.

5.4. Tétel. Ha eqy egyenletrendszer valamelyik egyiitthatdja vagy konstansa nem
nulla (azaz bovitett mdtriza nem a nullmdtriz), akkor elemi dtalakitdsokkal lépcsds

alakra hozhatd.

Bizonyitas. Az 4llitist az egyenletek szima szerinti teljes indukciéval igazoljuk. Ha
egyetlen egyenlet van, akkor megszorozva a bdvitett matrix egyetlen sorit a sorban
szerepld elsé nem nulla elem reciprokaval, lépcsds alakot kapunk. Tegyiik fel, hogy
m > 1 egyenletiink van, és az m-nél kevesebb egyenletbdl 4116 egyenletrendszerekre
igaz az &llitas. Végezziik el a kovetkezd elemi dtalakitdsokat: A bévitett matrixban
véalasszunk ki egy olyan nem nulla elemet, amely elétti oszlopokban minden elem
nulla. (Ha z; egyiitthatéja mindegyik egyenletben nulla, akkor ez az elem nem az
elsé oszlopban van.) Ezen elem sorat cseréljiik fel az els§ sorral, majd szorozzuk
meg az elsé sort a sorban szerepld elsé nem nulla elem reciprokdval. Ekkor a
kovetkezé alakil bévitett matrixhoz jutottunk:

o0 --- 0 1, ay,k+1
0 -+ 0 as azi41

_ L k>1
0 -+ 0 amk G@mk+l

Levonva minden i-re, 2 < i < m, az els6 sor a;x-szorosat az i-edik sorbdl, és azutan
clhagyva a nullatél kiilonb6z6 elemet nem tartalmazé sorokat a kovetkezd alaki
bévitett matrixot kapjuk:

0 -+ 0 1 aigs4r
0 -+ 0 0 dakyr
) - : , k=1, 1<m
0 -« 0 0 diktr

Ha ennek a matrixnak egyetlen sora van, akkor a neki megfelelé egyenletrendszer
lépesés alaki. (Ez a helyzet akkor, ha az egyenletrendszer mindegyik egyenlete
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megkaphatd az elsé egyenlethdl gy, hogy megszorozzuk mindkét oldalat egy al-
kalmasan valasztott szammal.) Ha a mdtrixnak legaldbb két sora van, akkor az
indukcids feltevés szerint alkalmas elemi atalakitdsokat végezve a 2,...,[ sorokon,
az els6 sort figyelmen kiviil hagyva, a matrix 1épcs6s alak lesz:

0 0 1 a §9 b 83 c Sy bl
¢ «« B 0 -« 0 1 wo d 0 »o« & 0 = by
0 ««+- 00 «++ 0 0 -+« 0 1 - f O ---|bg
B osse B W oees B OB wse 0 B e B 1 eun| B
Az els6 sorban a tobbi sor elsé nem nulla elemei oszlopaban szereplé s, 53, ..., 5y

szdmok nem biztos, hogy mind nulldk. Ha az els6 sorbél rendre levonjuk a masodik
sor sp-szeresét, a harmadik sor s3-szorosit, és igy tovabb, az r-edik sor s,-szeresét,
akkor lépcsés alakil matrixot kapunk. Vildgos, hogy ezt a méatrixot a kiindulasi

matrixbol elemi atalakitdsokkal kaptuk.
=

5.5. Gauss-elimindcié. Legyen adott egy n-ismeretlenes linedris egyenletrendszer.
Ha minden egyiitthaté és minden konstans nulla (azaz a b&vitett matrix a nullmat-
rix), akkor mindegyik egyenlet 0 = 0 alak, és ezért minden szdm-n-es megold4s.
Ellenkezd esetben az 5.4. Tétel szerint az egyenletrendszert elemi atalakitdsokkal
lépestsse alakithatjuk. Tegyiik ezt meg, és vizsgéljuk ezt a lépcsds alaki egyenlet-
rendszert, melynek pontosan ugyanazok a megolddsai, mint az eredetinek.

Ha a bévitett métrix utolsé sora (0...0[1), azaz az utolsé egyenlet 0 = 1
alaki, akkor az egyenletrendszer ellentmondé. Ellenkezé esetben a bévitett matrix
a kovetkezé alal:

0 0 1 a b 0 e 0 -] by
0 0o o - 01 d 0 e 0 - b
0 0o o0 - 0 0 1 f o b3
B owww [ @ swd @ O ews B s 0 L osu]
Legyenek a sorokban 1év6 els6 nem nulla elemek oszlopindexei rendre i, ..., i,.
Ekkor az ezen bévitett matrixnak megfeleld egyenletrendszer a kivetkezd:
Zgy + -+ aZi—1 + + bxi—1 + +cxi, 1 + =b
Ti, +...+dzi—1+ Feri 1+ = by
P R ) 4 I = b3
T, +...= b,
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.z, ismeretleneket kifejezhetjitk a tobbi ismeretlen

.

Vegyiik észre, hogy az z;,, ...

segitségével:
Ty =bl—...—a.ﬁ.':z'zfl7...—()151'3_1*...—Cﬂ:zr_lﬁ...
iy =bo— ... —dpj_1—... — €T 1 — ...
Ty =b3ﬁ...—fﬂ:'1;r_1—...
Ii_zbr—...

Ezért az z;,, .. ., T;, ismeretleneket ktdtt ismeretleneknek, a tébbin—r ismeretlent
pedig szabad ismeretlennek hivjuk. Vildgos, hogy ez az egyenletrendszer megold-
haté, tovabba minden megolddst megkaphatunk 1igy, hogy a szabad ismeretlenek-
nek tetszélegesen értékeket adunk, és a kotott ismeretleneket a fenti egyenldsé-
gek felhasznaldsaval kiszamoljuk. (Innen szarmazik a ,szabad”, illetve a ,kotott”
jelzé.) Ha n = r, akkor nincs szabad ismeretlen, és az egyenletrendszernek egyetlen
megolddsa van. Ha r < n, akkor n —r > 0 szabad ismeretlen van. Ekkor annyi
megoldés van, ahdnyféleképpen értékeket adhatunk a szabad ismeretleneknek. Mi-
vel a szabad ismeretlenek egy szamtesthdl szabadon vélaszthaték, aminek végtelen
sok eleme van, a megolddsok szdma is végtelen lesz.

5.6. Példak.
(5.6.1) Oldjuk meg a kévetkezd egyenletrendszert:

1+ T2+ 223 =3
4dzy +4x9+ 523 =6
Ty + Tze + 8x3 = 10.

Végezziik el az egyenletrendszer bovitett matrixan az aldbbi elemi atalakitasokat:

1 1 213 11 2 3 1 1 2(3 11 0| ~1
4 45 6|~|l00 -3 6|~[001/2|~|00 1| 2
7 7 8|10 0 0 —-6]-11 0 0 0f1 0 0 0] 1

Az elsé 1épésben levontuk az elsd sor négyszeresét a masodik sorbdl, a hétszeresét
pedig a harmadik sorbél. A mésodik lépésben levontuk a masodik sor kétszeresét
a harmadik sorbél, majd elosztottuk a masodik sort —3-mal. A harmadik 1épés-
ben levontuk a mésodik sor kétszeresét az elsd sorbol. A negyedik matrix lépesos
alaki, és az utolsé sora miatt az egyenletrendszer ellentmondé. Ez mér a harmadik
métrixbél is megdllapithato.
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(5.6.2) Oldjuk meg a kivetkezd egyenletrendszert:

T] 4+ 229+ 33 =4
oxy + 6z + Tx3 =8
9z + 1029 + 1123 = 12
13z1 + 1dx5 4 1523 = 16.
A kovetkezképpen jarhatunk el:

1 2 3|4 1 2 g 4

5 6 7|8 0 -4 -8 —12

9 10 11| 12 0 -8 -—16| —24|"

13 14 15| 16 0 —12 -24| —36
1 2 3|4

o1 2]3 I =1 —2
0000”(012’3)'
00 0|lo

Az utolsé matrixhoz tartozé egyenletrendszer:
x1 —r3=-2
Io + 2zx3 = 3.

Most x3 az egyetlen szabad ismeretlen, melybdl a masik két ismeretlen a kévetke-
z6képpen kaphato:

1 =—2+413

o = 3— 22’:3.

5.7. Definicié. Azt mondjuk, hogy a (%) egyenletrendszer szabdlyos, ha m = n
(azaz ugyanannyi egyenlete van, mint ismeretlene), és |A| # 0.

5.8. Cramer-szabély. Ha a (*) egyenletrendszer szabdlyos, akkor egyetlen megolddsa
van, mégpedig

Tp = Nk 1 <k<n,
ahol D = |A| és
ann v Gk-1 b1 a1 r anm
D a921 L0 a2 k—1 bg Q2 k+1 e Qon
k= 3 1< k <n
anl an,k—l b.n_ ﬂ‘n,k.+1 A ann
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Bizonyitds. Tegyiik fel, hogy a (*) egyenletrendszer szabalyos, és legyen a ¢ 0sz-
lopvektor megoldds, azaz Ac = b. Mivel |[A] # 0, ezért létezik az A~! matrix,
és

c=Ec=(A""A)c=A"Y (4= 47"

Tehat csak A~1b lehet a megoldds, és A~'h valéban megoldés, hiszen
A(A7 D) = (AA " H)b=FEb=1b.

Most kiszdmoljuk az A~'h megolddsvektor elemeit. A 4.2. Tétel bizonyitdsdban
lattuk, hogy

An An - Am

A1 = 1 Az Az - Ap2
S 7T O B I &

Aln A2n e Ann

ahol A;; az i-edik sor j-edik eleméhez tartozé adjungélt aldetermindns | A|-ban. Igy

An A - Am
. L ) by
atp= 1| A Aw o A b
B | e A e |
: : -, : b,

Al'n A2n T Aﬂﬂ

n D
Zi:l biAjy T)l
I i
== ‘5 Ei:l bz'Aik. = D )
2 iz bidin &
hiszen >, b;A; a Dy determindns k-adik oszlop szerinti kifejtése, k = 1,...,n.

5.9. Kovetkezmény. Hao Ax = 0 olyan homogén linedris egyenletrendszer, melynek
mdtriza négyzetes, és van trividlistdl kilonbozé megolddsa, akkor |A| = 0.

Bizonyitas. Ha |A| # 0, akkor a Cramer-szabaly szerint az egyenletrendszernek
egyetlen megoldasa lenne, a trividlis, ami ellentmond a feltevésnek. -
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5.10. Definicié. Ha Az = b linedris egyenletrendszer, akkor azt mondjuk, hogy az
Az = 0 homogén linedris egyenletrendszer az Ax = b egyenletrendszerhez tartozd
homogén linedris eqyenletrendszer.

5.11. Tétel. Legyen Az = b egy linedris egyenletrendszer, és Az = 0 a hozzd tartozd

homogén linedris eqyenletrendszer. Ervényesek a kovetkezdk:

(5.11.1) Ha ¢ és d megolddsa Az = b-nek, akkor ¢ — d megolddsa Az = 0-nak.

(5.11.2) Ha ¢,d megolddsa Az = 0-nak és \ tetszéleges skaldr, akkor ¢ +d és A¢ is
megolddsa Az = 0-nak (azaz homogén linedris egyenletrendszer megoldd-
sainak halmaza zdrt az dsszeaddsra €s tetszdleges skaldrral vald szorzdsra).

(5.11.3) Legyen ¢, megolddsa Az = b-nek. Ha d tetszéleges megolddsa Az = 0-nak,
akkor ¢y + d is megolddsa Az = b-nek. Forditva, az Az = b egyenletrend-
szer tetszdleges ¢ megolddsdhoz van az Az = 0 egyenletrendszernek olyan.
d megolddsa, hogy c = ¢y + d.

Bizonyitas. (5.11.1) Ha ¢ és d megoldasa Az = b-nek, akkor
Alc—d)=Ac—-Ad=b-b=0.
(5.11.2) Ha ¢, d megolddsa Az = 0-nak és A egy skalar, akkor
Alc+d)=Ac+Ad=0+0=0 é A(\)=AAc)=X0=0.
(5.11.3) Ha ¢, megolddsa Az = b-nek, d pedig Az = 0-nak, akkor
Alco+d) = Acy+ Ad=b+0=b

Ha ¢ és ¢ megoldisa Az = b-nek, akkor d = ¢ — ¢, megoldésa Az = 0Q-nak, és

c=¢y+d.
8 m




6. Vektortér, altér, generalas

6.1. Definicié. Legyen T szamtest, V pedig egy nemiires halmaz, melyen értelmezve
van egy osszeaddsnak nevezett kétvaltozds miivelet, mely barmely két u,v € V
elemhez hozzdrendel egy u + v-vel jelolt V-beli elemet. Tovdabba minden A € T-hez
tartozik egy V-n értelmezett egyvéltozds miivelet, mely V tetszOleges u eleméhez
hozzarendeli V' egy Au-val jelolt elemét (adott A esetén ezt a miveletet A-val vald
szorzdsnak nevezziik). Az emlitett miiveletekkel elldtott V' halmazt 1" feletti vektor-
térmek, elemeit pedig vektoroknak nevezziik, ha teljesiilnek az alabbi tulajdonsdgolk,
az un. vektortér-ariomak:

(6.1.1) az Osszeadds kommutativ: v+ v = v+ u minden u,v € V-re;

(6.1.2) az Osszeadds asszociativ: (u+v) +w = u+ (v+ w) minden u,v,w € V-re;

(6.1.3) az Osszeaddsra nézve létezik egységelem, vagyis olyan o vektor, melyre
u+ 0 = u minden u € V-re (késébb igazoljuk, hogy az Osszeaddsra nézve
egyetlen egységelem van, melyet nullvektornak vagy zérévektornak neve-
ziink és 0-val jeloliink);

(6.1.4) V bdrmely v elemének van az &sszeaddsra vonatkozdan inverze, dn. addi-
tiv tnverze, azaz olyan v" elem, hogy v + v' = 0 (késibb igazoljuk, hogy
mindegyik v vektornak egyetlen additiv inverze van, amit —v-vel jeloliink);

(6.1.5) AMu+v) = Au+ Av minden A € T és u,v € V esetén;

(6.1.6) (A+ p)u = Au+ pu minden A, 0 € T' és u € V esetén;

(6.1.7) (Ap)u = A(pw) minden A, € T és u € V esetén;

(6.1.8) lu = u barmely u € V-re.

6.2. Példak.

(6.2.1) A sikbeli vektorok, illetve a térbeli vektorok az IR valés szamtest felett vek-
torteret alkotnak, ha a vektorok dsszeaddsat és skalarral vald szorzdsit a szokasos
maédon értelmezziik. .

(6.2.2) Tetszoleges T szamtest és m,n € N esetén az m x n-es matrixok 77*" hal-
maza a 2.3. Tétel szerint T' feletti vektortér, ha a miiveletek a matrixok Gsszeaddsa
és a matrixok skaldrral valé szorzasa.
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(6.2.3) A valés szamsorozatok RY halmaza vektortér R felett, ha a sorozatokat (a
szokdsos mddon) tagonként adjuk Gssze, és skaldrral Uigy szorzunk, hogy a sorozat
minden tagjit megszorozzuk a skaldrral.

(6.2.4) A valés fiiggvények R® halmaza vektortér R felett, ha a fiiggvényeket a
szokasos médon adjuk dssze és szorozzuk skalarral: (f + g)(z) = f(z) + g(z) és
(Mf)(z) = Af(x), minden f,g fiiggvény és A skaldr esetén.

(6.2.5) Tetszoleges T szdmtest és n € N esetén a T-beli elemekbd] képezett elem-
n-esek T halmaza T feletti vektortér az alabbi miiveletekkel:

(ige oo B (Wi vovylin) = (80 FWYyo ey Bn + )
Mzyy ..oy zn) = (Azy, ..., Azy),

minden (1,...,Zn), (Y1,-.-,yn) € T™ és XA € T esetén.

6.3. Tétel. Tetszbleges T szdmtest és T feletti V' vektortér esetén teljesiilnek a
kovetkezdk:
(6.3.1) A V-n értelmezett dsszeaddsra vonatkozdan egyetlen egységelem van.
(6.3.2) Minden vektornak egyetlen additiv inverze van.
(6.3.3) N0 =0v=0 bdrmely A€ T ésv €V esetén.
(6.3.4) Ha Av =0 valamely A € T és v € V esetén, akkor A = 0 vagy v = 0.

) (=A)v = A(=v) =

(6.3.5 —(Av) bdrmely A €T ésv e V esetén.

Bizonyitas. A (6.3.1) allitds igazolasdhoz elég megmutatni azt, hogy ha o1 és o2
is a vektor Gsszeaddsra nézve egységelem, akkor o; = 0. Ez pedig igaz, mert
01 = 01 + 02 = 03 (az els6 egyenlGség azért teljesiil, mert 0o egységelem, a masodik
pedig azért, mert o; egységelem). Ha valamely u vektornak w; és us is additiv
inverze, akkor u; = w1 + 0 = uy + (u + u2) = (w1 + u) + up = 0 + uz = ug, amibdl
kivetkezik (6.3.2). Ha v € V és A € T, akkor a vektortér-axiémskat felhasznilva
kapjuk, hogy

A0 =20 +0= A+ (A0 + (=A0)) = (M + AQ) + (—AQ)
=A0+0)+ (=M) = A0+ (—M0) =0

“ O0v =0v+0=0v+ (0v+ (—0v)) = (0v+ 0v) + (—0v)
= (04 0)v+ (—0v) = Ov + (—0v) = 0.

Ezzel a (6.3.3) dllitast is igazoltuk. A (6.3.4) 4llitds bizonyitdsdhoz elég a kovetkez&t
belatni: ha Av =0 és A #£ 0, akkor v = (. Ez pedig igaz, mert ha Av =0 és A # 0,

} N
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akkor (6.3.3)-at felhasznalva kapjuk, hogy
1 o1
v=1v= (—X)\)v: -X()\U) = /\Q_Q.

Végill hav €V és A € T, akkor
Mo+ (=N =+ (~X)p=00=0

és

A+ M=v) = M+ (-v)) =20 =0,

-. ’ . = - l-a
mibél kvetkezik, hogy (—A)v és A(—v) is Av additiv inverze, azaz —Av. Ezigazol
a »

(6.3.5)-0t. -
. . "
6.4. Definicié. Legyen V vektortér a T szémtest felett. Ertelmezziik a vektoro

iilonbségét:
kilonbség s ()

minden u,v € V-re.

§ ssu, v €V
6.5. Tétel. Legyen V vektortér a T szdmtest felett. Tetszdleges A, pu € T ésu,
esetén

AMu—v)=du—Av és (A — pju = Au — pu.

Bi ftas. Ha \,pe T ésu,v €V, akkor az axiémakat és (6.3.5)-6t felhasznalva
izonyitas. : ) ,

kapjuk, hogy
A —v) = ANu+ (-v)) = Aut A(=v) = Au + (—Av) = du — Av
) (A — p)u = (A + (—p)u = du+ (—pJu = Au+ (—pu) = Au — pu.
|

ktortér valamely nemiires U részhal’ma—
kot T felett azzal a vektor 6sszeadasse?l
1, melyet ugyanigy kell elvégezni,
a skalarral valo szorzas nem

6.6. Definici6. Egy T szémtest feletti V' ve
zat altérnek nevezziik, ha U vektorteret al’ '
és a vektorok T-beli szdmokkal val6 szorzasav:

mint a V vektortérben (azaz U-n az 6ssz:3adas, 1l{etve Y
méas, mint a V-beli dsszeadds, illetve skaldrral vald szorzas U-1
k]
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6.7. Tétel. Legyen V wvektortér a T szdmtest felett.

(6.7.1) Ha U altér V-ben, akkor U nullvektora megegyezik V' nullvektordval, és
U bdrmely elemének U-beli additiv inverze ugyanaz, mint o V-beli additiv
Inverze.

(6.7.2) AV wvektortér valamely nemiires U részhalmaza akkor és csak akkor altér,
ha zdrt az dsszeaddsra és a skaldrral valé szorzdsra, azaz tetszéleges u,v € U
ésAET eseténu+v, \uecl.

(6.7.3) Alterek metszete is altér.

Bizonyitds. (6.7.1) Ha U altér és v € U, akkor felhasznslva azt, hogy a skaldrral
valo szorzdst ugyantgy kell elvégezni az altérben, mint V-ben, azt kapjuk, hogy

0=0vel é —v=(-1wel.

Tehdt U tartalmazza V' nullvektorat és minden elemének V-beli additiv inverzét.
Vildgos, hogy 0 egységelem az Ssszeadésra nézve az U altérben is. Mivel az altérben
1s egyetlen egységelem van az osszeaddsra nézve, ezért az U altér nullvektora is 0.
Vilagos, hogy ha v € U, akkor —v € U a v vektor additiv inverze az altérben is.
(6.7.2) Legyen U nemiires részhalmaza V-nek. Ha U altér, akkor zart az Gssze-
addsra és a skaldrral valé szorzasra nézve, mert az altérben a vektorok Osszeadasat
és skaldrral valé szorzdsat ugyanigy kell elvégezni, mint a V vektortérben. For-
ditva, tegyiik fel, hogy U zért az Gsszeaddsra és a skaldrral vald szorzasra. Vilagos,
hogy ekkor az Gsszeadds és a skaldrral valé szorzés U-ra valé megszoritdsa is telje-
siti a (6.1.1), (6.1.2), (6.1.5)-(6.1.8) axiémakat. A (6.7.1) bizonyitdsaban lefrtakkal
megegyezden most is beldthats, hogy 0 € U, és —v € U minden v € U esetén.
Ezért az osszeadas U-ra valé megszoritasa teljesiti a (6.1.3) és (6.1.4) axidmakat is.
(6.7.3) Az alitdst az egyszer(iség kedvéért két altérre igazoljuk. Legyen U,
és Uy két altér. A (6.7.2) szerint elég azt megmutatni, hogy U; N U, nemiires, és
zart az Osszeaddsra és a skaldrral vald szorzdsra. A (6.7.1) szerint 0 € Uy, Us, s
ezért 0 € Uy NUy. Tehdt U; N Us nemiires. Ha u,v € UyNUs és A € T, akkor
u,v € Uy, Us, és ezért u+ v, \u € Uy, Us, amibél u + v, Mu € U1 N Uy kovetkezik.

6.8. Példak.

(6.8.1) Minden V vektortérben {0} és V altér. Oket trividlis altereimek hivjuk.
A nemtrividlis altereket valddi altereknek nevezziik. Ha lerégzitiink a térben egy
Descartes-féle koordinatarendszert, akkor minden térbeli vektor megegyvezik egy
origébél kiindulé tin. helyvektorral, melyet egyértelmiien meghatdroz a végpontja.
fey a tér minden pontja egy térbeli vektort hatdroz meg. Ha azonositjuk a tér
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pontjait a megfeleld vektorral, akkor a térbeli vektorok R feletti vektorterében
altér minden origén atmend egyenes és sik, és nincs més valodi altér.

(6.8.2) A sorozatok vektorterében altér azoknak a sorozatoknak a halmaza, melyek
i-edik tagja nulla minden i € I-re, ahol T C N egy rogzitett halmaz. Altér azoknak
a sorozatoknak a halmaza is, melyeknek csak véges sok tagja nem nulla.

(6.8.3) A valos fiiggvények vektorterében altér a polinomok halmaza, €s altér azok-
nak az f(x) fiiggvényeknek a halmaza, melyekre f(z) = 0 minden z € X esetén,
ahol X C R egy rogzitett halmaz.

6.9. Definici6. Legyen V vektortér a T szémtest felett, vi,...,un € V és

A,... A € T. Ekkor a
v=AU1+ .-+ An

vektort a v, ...,vUn vektorok Aoy An egyiitthatokkal képezett linedris kombi-
ndcidjénak nevezzilk. A szumma jel segitségével felirva v = Yoo M. Ha
M=...=2 =0, aklkor trivialis linedris kombindeiordl beszéliink. Megengedjiik a
nulla tagi lineéris kombinéci6t is: han =0, akkora d ;3 Aivs linedris kombindacié
megallapodds szerint a nullvektor.

Tetszoleges X C V részhalmaz esetén jelolje [X] az X-beli vektorok Osszes

linedris kombinéciéjanak halmazat, azaz

n
{X]:{Z)\WHHEO, Ula'-‘JUHEXJ Alﬂ"w)\nET}'

i=1

Mivel a nulla tagi linedris kombindcié a nullvektor, ezért 0 € [X] minden X C Vv
esetén, specidlisan [0] = {0}. Ha [X] =V, akkor azt mondjuk, hogy X generdtor-
rendszer a V vektortérben, illetve X kifesziti vagy generdlja a V vektorteret. Ha
X = {v1,...,Vk}, akkor a [ Rty o ¢ , Uk }] helyett a [v1,...,vk] jelolést is hasznéljuk.

6.10. Tétel. A T szimtest feletti V vektortér birmely X részhalmaza esetén [X] a
legsziikebb X -et tartalmazd altér V-ben. Tovdbbd X C [X] = [[X]] minden X CV

esetén, ha X C Y, akkor [X] C [Y].

Bizonyitas. Hau,v e [X]és AeT, akkor

m n
u = E Au; 68 v= E iU
i=1 i=1
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valamely 1, Uy, U &
3 %8 by y Uy, U EXESA A 4
" : Liooos Amy 1, iy € T esetén. Ezért
m
u+v= Z ANui+ D v € (X] b5 du=Y (A)u; € [X]
i=l1 i=1 i=1 ’

(;s fgy a (6.7.2) sz'er'int [X] altér. Tovdbbd X C [X], ugyanis minden v € X-re v —
;, znmt egy tagu linedris kombinaci6, eleme [X]-nak. Az, hogy [X] a legsziikZbg
: _i ]tartalmazo ‘alter, pontosan azt jelenti, hogy minden X-et tartalmazé alté
Uar a sznfzza (X ]—a[t;.( ] Ez valéban igaz, mert ha U olyan altér, hogy X C U z:
an i1 MV € yaholn >0, v,...,v, € X , i - ol
Osszeadasra és a skaldrral vald szorzdsra. ' RS S St s
La s
) ztzlii,to};(t)égg X gl EX;] }Ebbol X helyére [X]-et irva kapjuk, hogy [X] C
' muveletek tulajdonsagait felhasznélva ko A 5 y
ha [X]-beli vektorokbdél, azaz X -beli BTt oot
, -beli vektorok linesris kombindciéibdl inedri
kombindcidt képeziink, akkor el e
nici ; a kapott vektor ugyancsak X-beli inedri
kombindcidja. Ezért [[X]] C [X], és igy [[X l] = [)g] el elsorelfueds
. Vegui\, ha X C Y és v € [X], azaz v = Y | N\jv; valamely vy,...,u, € X
1oy An € T esetén, akkor v;,...,v, € Y miatt v = S Ay € [Y: nT A
e, ey NN |. Tehét
|

6.11. Definicié. Ha U, és Us, altér valamely vektortérben, akkor az
Uy +Us :{u1 +ug:uy € Uy és ug € Ug}

halmazt az U és Us alterek osszegének nevezziik.

6.12. Tétel. Ho U; € 3
: 1 és Uy altér valamel : ,
mégpedig Uy + Un = [U; U Us]. amely vektortérben, akkor Uy + Uy is altér,

Bl _ . ,
onyitas. Legyen U és U, altér a T szdmtest feletti vektortérben u,v € Uy +U-
, Wy 2

és A eT. Ekkor u = u :
=uy + Uz éS U = vy + v ;
esetén. Ezért ! 2 valamely u1,v1 € Uy és ug, v € Uy

u+v = (ur +uz) + (v1 4 v2) = (w1 +v1) + (ug + 1) € Uy + Us

, Au:/\(u1+uz)=/\u1+/\uz€U1~l~Ug.
Tehat Uy 4 Uy altér.
» 'Az [U1 U Uy altér definiciéjabol latszik, hogy Uy + Uz C [U; UUs]. Mésrésat
vilagos, hogy Uy, Us C Uy + Us, mert 0 € Uy, Us. fgy U uE@ c +‘U Mivzl
2 =~ 2. (]

[U1 U Us] a legsziikebb olyan alté
e yan altér, mely tartalmazza Uy U Us-t, azért [U; U Us] C
i




7. Linearisan fiiggetlen és fiiggd vektorrendszerek

7.1. Definicié. Legyen V vektortér a T szamtest felett. A vektor(;)kb?lellcee;z—i
zett véges rendszereket vektorrendszereknek nevezzilk. A vektorren szitonendw
ismétlddhetnek, de sorrendjitk nem lényeges. A V' vektortér vy, ... ,’Uk. Vg ene
szere linedrisan figgetlen, ha valahényszor A\jv1 + .. + AkUk = 0, ,n‘%mkan b{néd-
M=...=x=0 (azaz a v1,.. -, Uk vektorrendszer valla'xfu_aly lineéris c:m

ha a linedris kombinécié trividlis). Ellenkezo esetben

6ia csak akkor a O veltor, ci br ) enke: 1
ait mondjuk, hogy a vi,...,Vk vektorrendszer linedrisan (6ssze)figgo. Az lires

vektorrendszer megallapodas szerint linedrisan fiiggetlen.
7.2. Tétel. Eqy T szdmtest feletts V wvektortér bdrmely vi,...,Vk vektorrendszerére
o kévetkezé hdrom dllitds ekvivalens: o

(7.2.1) Awvi,oony Uk vektorrendszer linedrisan figgo. ]

(722) Van o[yan i€ {1, = .,k}, hogy v; € [’U]_, vy Vie 1, Vit e 0 Vk|-

(7.2.3) Van olyan 1 € {1,...,k}, hogy vi € [v1,.- - vical]-

Bizonyitds. A (7.2.3) = (7.2.2) allités nyilvanvalo.

(1.2.2) = (7.2.1). Ha valamely i-re v; € [U1,. ., Vi=1,Vit1, - - ., Uk}, aZaz

v = Mup 4 oo+ Aic1ticy H Adipavip +e + Ak Uk,

valamely A1, ...y Aie1, Ait1se- A, € T esetén, akkor

PV T Ai—1ti—1 + (41)’04; + A1Vl + - + Mvg =0

iatt vq,. .., vk linedrisan fliggo. o '
o (712 1) = (7.2.3). Ha vy, ..o,V linedrisan fiiggd, akkor van olyan nem csupa

nulla Aq M €T, hogy Aqvg +... + Ao = 0. Ha Xy a legnagyobb index{i nem

nulla egyiitthaté, akkor

Vi = f—l—(Al’Ul + Ve + Ai—]’”i—l)!
A
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és ezért v € [T)l, o :'Uifll-

Akdr a definiciét, akdr a 7.2. Tételt figyelembe véve kénnyen beldthats, hogy
egyelemii vektorrendszer pontosan akkor lindrisan fiiggs, ha vektora a nullvektor,
kételemii vektorrendszer pedig pontosan akkor linedrisan fiiggd, ha valamelyik vek-
tora a mésik skalarszorosa. A térbeli vektorok terében hirom vektor pontosan
akkor linearisan fiiggetlen, ha nem esnek egy sikba.

7.3. Tétel. Bdrmely vektortérben érvényesek a kivetkezdk:
(7.3.1) Linedrisan fiiggetlen vektorrendszer minden részrendszere linedrisan fiig-

getlen.

(7.3.2) Linedrisan figgd vektorrendszert tartalmazé bdrmely vektorrendszer lined-
risan fliggd.

(7.3.3) Hawy,...,v linedrisan figgetlen és vy, ..., vk, vke1 linedrisan fiiggd, akkor
Vk+1 € [’Ui, & & ,’L?k].

(7.3.4) Ha vy,...,vx linedrisan figgetlen, akkor bdrmely v € [v1,...,vK] vektor
felirdsa vy, ..., v linedris kombindcidjaként eqyértelmd.

Bizonyitds. (7.3.2) Elég azt megmutatni, hogy linedrisan fiigg$ vektorrendszerb6l
egy vektor hozzaadasaval ugyancsak linedrisan fiiggé vektorrendszert kapunk. Ha
v1,...,Ux linedrisan fiigegd vektorrendszer, akkor a 7.2. Tétel szerint van olyan
i, hogy v; € [v1,...,vi_1], és ezért vq,..., Uk, k41 linedrisan fiiged minden vy
vektor esetén.

(7.3.1) Ha egy linedrisan fiiggetlen vektorrendszer valamely részrendszere li-
nedrisan fiiggd lenne, akkor (7.3.2) szerint az eredeti vektorrendszer is linedrisan
fiiggd lenne.

(7.3.3) Ha v1,..., v linedrisan fiiggetlen és vy,..., vk, vgy1 linedrisan fiiggd,
akkor a 7.2, Tétel szerint v; € [v1,...,v;_1] valamely i-re, 1 < i < k + 1. Most
© = k+1, mert ellenkezd esetben ugyancsak a 7.2. Tétel szerint vy, . . ., vy linedrisan
fiiggd vektorrendszer lenne.

(7.3.4) Legyen vy, ..., v linedrisan fiiggetlen vektorrendszer, és legyen v tet-
szdleges vektor. Ha

k k
U= E Aivz‘ és = Z'uivi
=1 =1

valamely Ai,..., Ak, p1,- .., ux € T-re, akkor

k

k k
Z(’\i — Wi)vi = Z)\m = me =v—v=0,
=1 i=1

i=1
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amibél a vektorrendszer linedris fiiggetlensége miatt tetszoleges i = 1,...,k13
A — pi = 0, és fgy A = p; kovetkezik. Tehat a v vektor egyféleképpen irhaté fel a
v1,. .., v vektorrendszer linedris kombinacidjaként. -
7.4. Kicserélési tétel. Legyen uq,...,ug €s vi,..., v a T szdmtest feletti V' vek-
tortér két vektorrendszere. Ha ui,...,ux linedrisan figgetlen és

T = ['Ul,...,w],

akkor bdarmely u; vektorhoz van olyan v; vektor, hogy
ULy s Ugm1y Vg Ui 1y -0y Uk

is linedrisan figgetlen.

Bizonyitas. Tegyiik fel, hogy az uq,...,ux ésavy, ..., 0 vektorrendszerek teljesitik
a tétel feltételeit. Ha az 4llitds nem igaz, akkor van olyan i € {1,...,k}, hogy az
ULy .o s Wi 1y Wig], - - - » Uk, Vj Vektorrendszer linedrisan fiiggh minden j-re, 1 < j < 1.
Ekkor (7.3.3) szerint v; € [ug, ..., %1, Uit1, - - - cup], L< g <1, és

U € {'Ul,...,'U;] g [M]‘,.. vy Ug—1, Uyl - - ':uk]r

amibél a 7.2. Tétel szerint azt kapjuk, hogy ui, ..., ux linedrisan fiiggd. Tehdt az

a feltevésiink, hogy a tétel dllitdsa nem igaz, ellentmondast eredményezett. -

7.5. Kovetkezmény. Legyen u, ..., uk €svy,...,up aT szdmtest feletti V vektortér
két vektorrendszere. Ha uq, ..., uy linedrisan fuggetlen és uy,... uk € Db i)
akkor k < 1.

Bizonyitds. Tegyiik fel, hogy az uy, ..., ux ésavy,..., 0 vektorrendszerek teljesitik
a kovetkezmény feltételeit. A kicserélési tétel szerint van olyan vektor a mésodik
vektorrendszerben, mellyel uj-et kicserélve djra linearisan fiiggetlen vektorrend-
szert kapunk. Az egyszeriiség kedvéért legyen ez a vektor v;. Tehat

U, U2y - - -, Uk
linedrisan fiiggetlen. Vildgos, hogy ua, ... ug, V1 € [v1,...,u). Ha k > 2, akkor
a kicserélési tételt tjra alkalmazva kapunk olyan v;-t — az egyszeriség kedvéért
legyen most j = 2 (a linedris fiiggetlenség miatt v; # 1) — , hogy
V1, V2, U3y - -+, Uk
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linedrisan fiiggetlen. Ha & > 3, akkor a kicserélé

olyan v; si tételt djra alkalmazva kapunk

-t — az egyszeriiség kedvéé :
. rt legyen — W .
miatt v; # v1,v3) — , hogy BYeR most J = 3 (a linedris fiiggetlenség

Ul,‘Ug,'U3,U4,__.’uk

linedrisan fiiggetlen. Ezt az eljarast addi

nem cseréltiik. Ezért k& < [, g folytathatjuk, amig az uy vektort is ki




8. Véges dimenzids vektorterek

B ; i s
8.1. Definicié. Egy T szamtest feletti V vektortér véges dimenzids, ha Ye;nl vegd—
o : 0 j tortér végtelen di-
i tben azt mondjuk, hogy a vek
-eneritorrendszere. Ellenkez6 ese ; hogy t "
%nenzz’o’s A V vektortér X generatorrendszerét manimdlis genemtorrgndszerg ‘
. g ] i er. Az
nevezziik, ha barmely v € X esetén X \ {v} mar nem generatorren SZ o
ndjuk, hogy v1 v € V mazimdlis linedrisan fiiggetlen vektorren sz’: 1,
. :  vel 65 i é ; v mar line-
linedrisan fiiggetlen vektorrendszer, es minden v € V esetén vy, - . ,vk’ ; rkat
4risan fiiggd. A linedrisan fuggetlen generatorrendszereket a vektorteér

nevezziik.

515 fre
8.2. Tétel. Egy T szdmtest feletti V wvektortér bdrmely vi,...,Vk vektorrendszereé
a kévetkezd hdrom dllitds ekvivalens:
(8.2.1) v1,..., vk bdzis.

(8.2.2) 1,2k minimdlis generdtorrendszer.

(8.2.3) v1,- ..,k mazimdlis linedrisan figgetlen vektorrendszer.

Bizonyitas. (8.2.1) = (8.2.2). Haavy,..., % bazis nem minimalis generatorrend-
izo . (8.2. 1A

-t, elhagyva Ujra generatorrendszert

i it, mondjuk v;
szer, akkor valamelyik vektora j i Rl e oseel

kapunk, amibél v; € [U1y v ey Vic1y Vitly - Uk
i V1, ..., V) linedrisan fiiggetlen. ’ o
hlszeIES ; 2) = (8.2.3). Han vy minimalis generdtorrendszer, akkor linedrisan
2. 2.3). ey ‘ rrendszer, ey
fiiggetlen, mert ellenkezd esetben valamelyik vektora a tobbi linearis k(;(mbrllr‘lac;; Jb :
és ha ezt, a vektort elhagyjuk, akkor djra generatorrendszert kapunk. lov

v e Uk IIlaX].IDahS llIIEallsa.Il fuggel len VektOI‘I'eIIdSZQI mert genelatOIreIldSZeI
k] L] il bl

s  itése linedrisan filggs.
4 ezért barmely bévitése linearisan fug B )
o (8.2.3) = (8.2.1). Hawy, ..., Uk maximalis linearisan fiiggetlen vektorrendszer,

ineari iggd, é 5 .3) szerint
kkor barmely v € V esetén v1,..., Uk, v linearisan fiiggd, és ezért (7.3.3)
a 7 I s’ -
A zZis.
v € [n vg]. Tehdt v1,..., vk generatorrendszer, és ezert ba i
Py
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8.3. Tétel. Véges dimenzids vektortérben minden linedrisan fiiggetlen vektorrend-
szer kiegészithetd bdzissd, és minden generdtorrendszer tartalmaz bdzist. Tovdbbd
barmely két bdzis ugyanannyi elemdl.

Bizonyitds. Legyen a T szémtest feletti V vektortér véges dimenziés. Ekkor V-
nek van véges, mondjuk [ elemii generdtorrendszere. Legyen vq, ..., v linedrisan
fiiggetlen vektorrendszer V-ben. Ha vy, ..., vx nem maximalis linedrisan fiiggetlen
vektorrendszer, akkor alkalmas vektorral bévitve tjra linedrisan fiiggetlen vektor-
rendszert kapunk. Ha ez sem maximalis linedrisan fiiggetlen vektorrendszer, akkor
tovabb boévithetjitk gy, hogy a bévités ismét linedrisan figgetlen. Mivel a 7.5.
Kévetkezmény szerint V' minden linedrisan fiiggetlen vektorrendszere legfeljebb [
elemii, ezért ezzel a bévitési eljardssal véges sok lépésben maximalis linedrisan fiig-
getlen vektorrendszert kapunk, ami a 8.2. Tétel szerint bézis.

Legyen most vy, ..., v tetszleges generdtorrendszer V-ben. Ha ez a genera-
torrendszer nem minimalis, akkor alkalmas vektoranak elhagyssaval djra generator-
rendszert kapunk. Ha ez sem minim4&lis generatorrendszer, akkor tovabb sziikitve
ismét generdtorrendszert kapunk. Ezzel a sziikitési eljarassal legfeljebb k lépésben
minimélis generdtorrendszert kapunk, ami ugyancsak a 8.2. Tétel szerint bazis.
Végiil, ha uy,...,ux és vy,..., v bézis V-ben, akkor a 7.5. Kévetkezmény szerint
k<lésl <k, ésezért k=1 -

8.4. Definicié. Ha V véges dimenzids vektortér, akkor bazisainak (kozos) elemsza-
mat a vektortér dimenzidjinak nevezziik, és dim V-vel jeloljiik. Ha ey, ...,e, bdzis
V-benésv = Ae1+...+ \pep, akkora A, ..., \, skaldrokat, illetve a (Ay,...,An)
szam-n-est a v vektor ey, ..., e, bdzishoz tartozd koordindtdinak, illetve koordind-
tasordnak nevezziik. (A (7.3.4) 4llitds szerint a Ay, ..., \, skaldrokat a v vektor és
az ei,...,en bazis egyértelmilen meghatarozza.)

Példaul a sikbeli vektorok vektortere 2-dimenziés, mert két nem egy egyenesen
lev6 vektor a sikban bdzist alkot, a térbeli vektorok vektortere pedig 3-dimenzids,

mert hirom nem egy sikban levé vektor a térben bazist alkot. A T szidmtest feletti
(6.2.5)-ben megadott T™ vektortérben az

b Qo o0, T o 0)s w5 40.00,0) v o 6,1

vektorrendszer bézis, az Un. standard bdzis, és a vektortér n-dimenzids. Eb-
ben a bazisban a (A1,A2...,\,) € T" vektor koordinitii rendre AL, A2, 0, A
Ugyantigy lathaté, hogy az m x n-es métrixok T™*" vektorterében azon Eis,
1 <4< m, 1< j < n, mitrixok, amelyekben az i-edik sor j-edik eleme 1, a
tobbi elem 0, bézist alkotnak, és igy a T™*™ vektortér mn-dimenzids.
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8.5. Tétel. Ha V véges dimenzids vektortér, akkor V-ben minden dimV elemi
generdtorrendszer és minden dim V' elemii linedrisan fiiggetlen vektorrendszer bdzis.

Bizonyitds. Ha egy generétorrendszer dim V' elemii, akkor a 8.3. Tétel szerint tar-
talmaz bdzist, mely ugyancsak dim V' elemii, és ezért megegyezik a generatorrend-
szerrel. Ha egy linedrisan fiiggetlen vektorrendszer dim V elemli, akkor a 8.3. Tétel
szerint bovithetd bazissd, mely ugyancsak dim V' elem, és ezért megegyezik a li-

nearisan fuggetlen vektorrendszerrel. -

8.6. Tétel. Legyen U altér a V véges dimenzids vektortérben. FEkkor U is véges
dimenzids, és dimU < dim V. Tovdbbd, dimU = dimV akkor és csak akkor, ha
U =V, és dimU = 0 akkor és csak akkor, ha U = {0}.

Bizonyitas. Minden U-beli linedrisan fiiggetlen vektorrendszer V-ben is linedrisan
figgetlen vektorrendszer, igy a 7.5. Kovetkezmény szerint legfeljebb dim V' elemdi.
Ezért az iires halmaz bévithetd U-ban maximalis linedrisan fiiggetlen vektorrend-
szerré, ami bézis U-ban. Tehat U véges dimenzids, és a 7.5. Kovetkezmény szerint
dimU < dim V. Vilagos, hogy ha U =V, akkor dimU = dim V', ha pedig U = {0},
akkor dim U = 0. Fordiva, ha dimU = dimV/, akkor a 8.5. Tétel szerint U min-
den bazisa V-ben is bézis, és ezért U = V. Végiil pedig, ha dimU = 0, akkor
[/-ban nincs egyelemt linedrisan fiiggetlen vektorrendszer, azaz nincs U-ban 0-t6l

kiilonbozé vektor. -

8.7. Alterek dimenziététele. Ha U és V véges dimenzids altér valamely vektortér-
ben, akkor UNV és U+ V is véges dimenzids, €s

dim (U + V) = dim U + dim V — dim (U N V).

Bizonyitas. A 6.7. és a 6.12. Tételekben lattuk, hogy U NV és U + V is altér.

Mivel U NV altér U-ban is, ezért a 8.6. Tétel szerint U NV véges dimenzios.
Legyen q,...,u; az [/ 1V altér bizisa. A 8.3. Tétel szerint ez a vektor-

rendszer kiegészitheté U és V bézisava is, Legyen i, ..., Uk, Uktl,--->Um 82 U

altér, U1, . . ., Uk, Vkt1, - - -, Un Pediga V’ altér béazisa. A tétel dimenzidkra vonatkozd

allitasanak igazolisdhoz elég megmutatni, hogy

ul1'"3uk5uk+1y'"1umavk+1:"'1vn
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[)faj_lSVU JI V-ben. Mivel tartalmazza U és V béazisit, ezért generitorrendszere
-nek. Ha valamely Ay,..., A\, pigs, ... . ln skaldrok esetén

Arun + .o Xpug A+ A1t + oot Amlim + R 1Uke1 F o oty =0

akkor
u :. At + o At + App1Ukpr + A Aty = “HEF1Vk+1 — o= fpUn, € UNV,
és ezért vannak olyan X, ... X ] =
y 15+ -1 Ak skaldrok, hogy u = Nu; + ... + Apug. Ekkor
I
AU1 o+ ANtk ke 1V 41 F e F fnUn = 0,
amlfol Iaz ULy« ooy Uk, Ukt 1, - - -, U Vektorrendszer linedris fiiggetlensége miatt )\, —
=N = kg1 == pn =0, u=0és igy
Ay o Apug + Akt1tht1 + oo+ Aptty = 0
addédik. Mivel az us,. .., u,, vektorrendszer linedrisan fiiggetlen, ebbél A\ = --- =
Ak = Akt1 = ... = A = 0 kovetkezik. Tehst az

Ul,-..,Uk,uk+1,--.,U,n,’l,'k.'_l,...,’Un

vektorrendszer linedrisan fiiggetlen, és ezért I/ + V' bézisa

8.8. Definicio i i

oo n!cm. Azt mondjuk, hogy az r nemnegativ egész szam a T szamtest feletti
1 e’,\lgrter V1, ..., Uk vektorrendszerének rangja, ha van a vektorrendszernek r

e e . .o I I s )
- n}u_ lneaflsan fiiggetlen részrendszere, és minden r-nél tobb elemii részrendszere

linedrisan fiiggs. Jele: r(vy, ..., V).

R i y 8 i .

8 g I Etel Eg j za”btf&t Felettz [/ Uekta? t81 ba?"mel (5] k T JE?Ld szere
y O 'Uek'tO

esﬁt&”l(u ,---,Uk)—dlm[v geaay Uk

Blzonyltas: Legyen r = r(v1,...,vx), és az egyszerliség kedvéért tegyiik fel, ho

U1, ...,y linedrisan fiiggetlen. Elegendd azt megmutatni, hogy vy v, "energ’y
t?rrendszer, és igy bézis a [vy,.. ., k] altérben. Mivel vy, . .. 'Uk—l,);n. ,ni:ui 3“1
Fobb elemi linedrisan fiiggetlen részrendszer, vy, ..., v, v; fineéjrisan fiiggs mil?;_dne
7 e {r+1,... k} esetén. Ezért a (7.3.3) szerint v; € [vy,...,v,] mindegf i-r 'I(‘3n
h.e'mt az altér generdtorelemei eléallnak v1,...,0, linedris I,com};ir:écié'aké t . i ?_
kovetkezik, hogy vy,. .., v, generdtorrendszer a [v1,..., vk altérbenJ el
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8.10. Definicid. Két vektorrendszert ekvivalensnek neveziink, ha mindkét rendszer
barmelyik vektora megkaphato a masik vektorrendszer linedris kombindciéjaként.
Vegyiik észre, hogy ez pontosan azt jelenti, hogy a két vektorrendszer ugyanazt az

alteret generilja.

A vektorrendszer rangjdnak meghatdrozasanal fontos szerepet jatszanak a

vektorrendszerek tn. elemi atalakitésai.

8.11. Definici6. A vektorrendszerek elemt Gtalakitdsai a kovetkezok:
(8.10.1) A vektorrendszer valamelyik tagjat helyettesitjiik a \-szorosaval, ahol A

egy nulldtél kilonbozo skalar.
(8.10.2) A vektorrendszer valamelyik tagjat helyettesitjiik ezen vektor és a vektor-
rendszer egy masik vektora (tetszdleges) skalarszorosanak Osszegével.

(8.10.3) Elhagyjuk a vektorrendszerbdl a nullvektorokat.

Alkalmasan valasztott négy elemi atalakitdssal egy vektorrendszer barmelyik
két vektora felcserélhets. Elegendd ezt az u,v kételemii vektorrendszerre megmu-
tatni. Adjuk hozzd u-hoz a v vektor (—1)-szeresét, majd az igy kapott vektort

adjuk hozza v-hez:
U—v,v

U — U,U.

Ezutén adjuk hozzd u-t u — v-hez, majd szorozzuk meg —v-t —1-gyel:
—v,u
U, U

A 8.9. Tételbél, valamint a 8.10. és 8.11. Definiciékbol egyszeriien kapjuk a kovet-

kezot:

8.12. Kovetkezmény. Bdrmely vektorrendszert az elemi dtalakitdsok vele ekvivalens

vektorrendszerbe viszik dt. Ekvivalens vektorrendszerek rangja megegyezik.

9. Matrixok rangja

9.1. Definicié. Legyen T szémtest, rn,n > 1 és A € T™*? Ekkor az A matri
oszlopvektorai a T™*!, sorvektorai pedig a T'*" vektortér elemei. Az A mZtE:cc
oslz{topm.,ngjénak az oszlopvektorai rendszerének rangjét, sorrangjdnak pedig a sor-
;:3( ;;rja; éleirlldszerenek rangjat nevezzik. Az oszloprangot r,(A), a sorrangot pedig

’ Az A matrix r-edrendd aldetermindnsainak nevezziik a kovetkezéképpen kap-
haté determindnsokat: kijel6ljiikk a métrix r sordt és r oszlopit, majd e sorok p
oszquok talalkozdsdban 1év6 elemekbdl alkotott r x r-es métrix éeterminénsét keéE-;
pezziik. Azt mondjuk, hogy az A métrix determindnsrangja r, ha van az A métrix-
ban{ r-edrendd nem nulla (mds széval: nemeltiing) aldeterminans, és A-ban minden
r-n¢l nagyobb rendil aldetermindns nulla. A determindnsrangot :rd(A) jeloli.

9.2. Matrixok rangszamtétele. Tetszileges A mdtriz esetén 1,(A) = ry(A) =
. —

l‘d(A).

Blz.onyltas. Legyen A = (aij)mxn egy tetszbleges matrix. Mivel A sorvektorai-
nak rendszere, illetve oszlopvektorainak rendszere lényegében ugyanaz, mint AT
oszlopvektorainak rendszere, illetve sorvektorainak rendszere, ezért ’

15(4) = 1,(AT) és 1,(4) =1,(AT).

Vl}ag-os, hogy ha D egy r-edrendii nemelt(ing aldetermindns az A, illetve az AT
Tnatrucban, akkor D transzpondltja r-edrend(i nemeltiing aldetermindns lesz az AT
illetve az A matrixban. Ezért 7

ra(A) = ra(AT).

A teTsel lbizonyitéséhoz most mar elég csak azt megmutatni, hogy a méatrixok sor-
rangja etq determindnsrangja megegyezik, mert ebbdl a fenti észrevételeket is fizye-
lembe véve azt kapjuk, hogy *

15(A) = 1,(AT) = 1z(AT) = r4(A).




48 9. Mdtrizok rangja

A 8.12. Kovetkezmény szerint a matrixok sorrangja nem véltozik a sorain
végrehajtott elemi dtalakitisok soran. Most megmutatjuk, hogy a determinans-
rang sem valtozik. Ha a matrix elemi atalakitdsa egy olyan sor elhagydsa, melynek
mindegyik eleme nulla, akkor a kapott métrixnak ugyanaz a determindnsrangja,
mint az eredetinek, mert a nemelt{ing aldetermindnsok egyik sora sem szarmazhat
az elhagyott sorbél. A tovéabbi kétfajta elemi atalakitdsok eredményeként kapott
matrixokbél alkalmasan vélasztott ugyanolyan tipusi elemi atalakitassal vissza-
kaphatjuk az eredeti matrixot. Ezért annak igazoldsdhoz, hogy ezek alkalmazdsa
sorén sem viltozik a determindnsrang, elég azt megmutatni, hogy a determindns-
rang nem csokken.

Legyen A determindnsrangja r, €s legyenek 1 < i3 < ... <ir <mésl <
41 < ... < jr < naz A métrix olyan sorai és oszlopai, melyek altal meghatarozott
D aldeterminéns nem nulla:

iy  Qigge 77 Qigge
Qingy  (agge "7 Qugge

D= . 5 .| #0
a‘ir'jl a'ier e (‘L"':rjr'

Hajtsunk végre egy emlitett tipusi elemi stalakitist az A matrix sorain, és jelolje
A a kapott matrixot, D pedig az A matrixban az iy, . . ., i,-edik sorok és ji,..., Jr-
edik oszlopok dltal meghatdrozott aldeterminanst. Azt kell igazolni, hogy az A
matrix rangja legaldbb r. Ehhez elég azt megmutatni, hogy van A-ban is r-edrendii
nemeltiing aldetermindns.

Ha az elemi atalakitds az A matrix k-adik sordban 1év6 elemek c-vel vald
szorzésa, 1 < k < m, ¢ # 0, akkor D = eD vagy D = D aszerint, hogy k €
{i1,....ir} vagy sem. Tehat A-ban is van r-edrendfi nemelt{ing aldeterminds.

Tegyiik fel most, hogy az elemi dtalakitds a kovetkezd: az A matrix k-adik
sorahoz hozzdadjuk az [-edik sordnak c-szeresét, 1 < k1 <m, k #1ésctetszdleges
skalér. Ha k ¢ {i1,...,ir}, akkor D = D # 0. Ha k,l € {iy,...,ir}, akkor D
megkaphaté D-bél gy, hogy valamelyik sordahoz hozzdadjuk egy masik soranak
c-szeresét. Ezért D = D, és gy D most sem nulla. Végiil ha k € {i1,...,ir} és
1 ¢ {i1,...,ir}, akkor

Biidi @iy 4o s Qiyj

U)
Il

Qjy + €Ay Qg T €A, Gkg T COLG | =

i, 51 (L7 ) kK A, q,
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Qiyjy  Qdyge -0 Qigje Aiyji  Qizga = Gigy,
= | Okji Gkjy  c Okj | T C| Qi Qi o dig |
Qinjy Qipga -0 Oij, Qigy @ige 0 Oqgg,
azaz
Qivgjr Qdyga 70 Qigjgy,
D=D+c¢ agj, Qyg, v Ay,
Qg Gipga "0 Qi

Ha D # 0, akkor készen vagyunk. Ha D = 0, akkor a fenti egyenl8séghdl D # 0
miatt

Qiyiy  Qiyga 0 Qi

ayj, oy, o ay, |#0

Qigr Gipga " Qige
kovetkezik. Ez a determinans pedig legfeljebb a sorainak sorrendjében kiilonbézik
az A matrix azon aldetermindnsatdl, melyet az {i1,...,i,,l}\ {k} halmazban 1évé

soral és a j1,...,Jr oszlopai hatdroznak meg. Tehat A-ban most is van r-edrendii
nemeltling aldeterminds. Ezzel igazoltuk azt, hogy a métrixok determindnsrangija
nem valtozik a sorokon elvégzett elemi atalakitdsok sordn.

A fenti el6készitd megfontoldsok utdn az A métrix sorrangjinak és determi-
nansrangjinak egyenlOségét a kovetkezéképpen bizonyithatjuk. Ha A a nullmétrix
akkor mindegyik rangja nulla, és ezért igaz az 4llitds. Tegyiik fel, hogy A nem a:
nullmétrix. Ekkor az 5.4. Tétel szerint az A mdtrixbél a sorain végrehajtott elemi
atalakitdsokkal egy A r x n-es 1épesés alakti matrix kaphaté (azaz olyan A mdtrix
mely rendelkezik az (5.3.1), (5.3.2) és (5.3.3) tulajdonsagokkal): |

0 - 0 1 a 0 b 0 c 0
o .- 0 0 01 d 0 e 0
i=l0 - 00 0 0 0 1 f 0
O =+ 0 0 w50 D 0 wee 0 0 = 0 i

Az eléz6leg igazoltak szerint

15(A) = 15(A) és r4(A) = ry(4).
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Az A matrix determindnsrangja r, mert ha toréljikk A azon oszlopait, melyek nem
tartalmazzak egyik sor els6 nem nulla elemét sem, akkor az r x r-es egységmatrixot
kapjuk, melynek a determindnsa nem nulla. Az A matrix sorrangja is r, mert
sorvektorainak rendszere linearisan fiiggetlen. Valéban, az A métrix sorvektorainak
A, ..., Ay egyiitthatdkkal képezett linedris kombinacidja

(s ALy ey A2y A3 Ay )
alakd, ami csak a A\; = 0,..., A, = 0 esetben a nullvektor. Tehat
ro(4) =1s(A) =r = ra(A) = ra(A).
@

9.3. Definicié. A rangszdmtétel szerint tetszéleges A métrix oszloprangja, sor-
rangja és determinansrangja megegyezik. Ezt a szamot egyszer(ien az A mdtric
rangjdnak nevezziik, és r(A)-val jeloljik.

Az alibbi két allités a definiciék és a métrixok rangszdmtételének kozvetlen

kovetkezménye.

0.4, Kovetkezmény. Tetszdleges n x n-es A mdiriz esetén a kivetkezd dllitdsok

ekvivalensek:

(9.4.1) |A]| #0.
(9.4.2) A oszlopvektorainak rendszere linedrisan figgetlen.

(9.4.3) A sorvektorainak rendszere linedrisan fiiggetlen.

Bizonyitds. (9.4.1) = (9.4.2). Ha |A| # 0, akkor a determindnsrang n, igy az

oszloprang is n, és ezért az n elemil oszlopvektorrendszer linedrisan fiiggetlen.
(9.4.2) = (9.4.3). Ha az oszlopvektorok rendszere linearisan fliggetlen, akkor

az oszloprang n, igy a sorrang is n, és ezért az n elemt sorvektorrendszer linearisan

fiiggetlen.
(9.4.3) = (9.4.1). Ha a sorvektorok rendszere linedrisan fiiggetlen, akkor a

sorrang és a determindnsrang is n. Ezért az egyetlen n-edrendii aldetermindns
4] # 0. =

Ha néhany éllitds ekvivalens, akkor tagadasaik is ekvivalensek:
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9.5. Kdvetkezmény. Tetszéleges n x n-es A mdtriz esetén a kivetkezd allitdsok
ekvivalensek:

(9.5.1) |A| =0.

(9.5.2) A oszlopvektorainak rendszere linedrisan fliggd.

(9.5.3) A sorvektorainak rendszere linedrisan fiiggéd.

9.6. Tétel. Legyen A és B olyan mdtriz, melyekre az AB szorzat létezik. Ekkor
1(AB) < r(A),r(B). Ha A invertilhatd, akkor 1(AB) = r(B). Ha B invertdlhatd,
akkor r(AB) = 1(A). Hasonlé mdtrizok rangja megegyezik.

Bizonyitds. Ha egy vektorrendszer minden vektora egy mdsik vektorrendszer alkal-
mas linedris kombindcidja, akkor az els6 vektorrendszer 4ltal generalt altér sziikebb,
mint a masodik vektorrendszer altal generalt altér, s ezért a 8.6. és a 8.9. Tételek
szerint az elsé vektorrendszer rangja nem nagyobb, mint a masodik vektorrendszer
rangja. A mdtrixok szorzdsanak definiciéjit figyelembe véve lathatd, hogy AB
oszlovektorai az A matrix oszlopvektorainak linedris kombinécidi, AB sorvektorai

pedig a B matrix sorvektorainak linedris kombinaciéi. Ezért
1(AB) = 1,(AB) < 1,(4) = 1(A)

és
1(AB) = 1,(AB) < r1,(B) = r(B).

Ha A invertalhatd, akkor r(B) = r(A~1(AB)) < r(AB), és igy r(AB) =1(B). Ha
B invertdlhaté, akkor r(A) = r((AB)B~') < 1(AB), és igy 1(AB) =r(A4). Ha A
és B hasonld, azaz B = X 1 AX valamely X invertalhaté médtrixra, akkor az €l6z4
allitds szerint 1(B) = r((X1A)X) = r(X'4) = r(A). "

A rang fogalmat alkalmazva sziikséges és elégséges feltétel adhaté arra, hogy
mikor oldhaté meg egy linedris egyenletrendszer.

9.7. Kronecker-Capelli-tétel. Legyen T szamtest, myn > 1, A € T™*" g5 p ¢

T™*Y Az Az = b linedris egyenletrendszer akkor €s csak akkor oldhatd meg, ha
(4) = (A]).

Bizonyitas. Jelolje a,,...,a, az A métrix oszlopvektorait, és vizsgaljuk az egyen-
letrendszert az

$1Q1+...+3;ngnzé
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vektoregyenlet alakban. Ha ¢1,...,¢n megoldas, azaz b = c1g; + ... + Cnly, akkor
(@150 018y = (@1, - an, b

Ezért

I(A) G I'(Ql?" i a@n) - dlm({glﬂ R ‘1911” = diln([-@]-"' ' ’Qn’b})

- r(gb s vgnvb) = r(A“—))
Forditva, ha r(A4) = r(A|b), akkor

dim gy, > ay]) = 1@y, - -+8q) = T(A) = 7(A[D)

=r(ay,...,0,,0) = ittt { ety s 5 1@ 0])s
amibdl a 8.6. Tétel szerint
a1, -1 8n) = la15- -1 2 0]
kovetkezik. Tehat b € [ay, ... ,a,], azaz van olyan ¢1, ..., Cn, hogy

b=cia, + ... +cny-

10. Linedris leképezések és linedris transzformaciok.
Vektorterek izomorfizmusa

10.1. Definicié. Legyen U és V ugyanazon T szdamtest feletti vektortér. Egy
@: U — V leképezést linedris leképezésnek neveziink, ha barmely u,v € U és
A € T esetén

(u+v)p =up+wvp é (M)p= A(up).

A
Kero={ueU: up =0}, illetve Imp = {up: v e U}

halmazokat a ¢ linedris leképezés magjdnak, illetve képterének nevezziik. Az U-bol
V-be men6 linedris leképezések halmazat Hom (U, V) jelsli. A Hom (U, U) halmaz
elemeit az U vektortér linedris transzformdcidinak hiviuk. Ha ¢ € Hom (U, V)
bijektiv, akkor azt mondjuk, hogy ¢ (vektortér) izomorfizmus.

Minden vektortérnek linedris transzforméciéja az identikus leképezés, az a
leképezés, mely minden vektorhoz hozzdrendeli a nullvektort és tetszoleges ¢ ska-
lar esetén az a leképezés, mely mindegyik vektorhoz hozzarendeli a c-szeresét. A
sikbeli vektorok vektorterének linearis transzforméacioja tetszdleges o szbg esetén
a vektorok origd koriili o szoggel valé elforgatdsa, tetszéleges origén atmend e
egyenes esetén a vektoroknak az e egyenesre vald tiikrozése, illetve az a leképezés,
mely mindegyik vektorhoz hozzarendeli az e egyenesre esé meréleges vetiiletét. A
térbeli vektorok vektorterének linedris transzformaciéja tetszéleges origén dtmené
s sik esetén a vektoroknak az s sikra vald tikrozése, illetve az a leképezés, mely
mindegyik vektorhoz hozzirendeli az s sikra esé meréleges vetiiletét.

10.2. Tétel. Legyenck U és V ugyanazon T szdmtest feletti vektorterek. Tetszdleges
w € Hom (U, V) esetén érvényesek a kévetkezdk:

(10.2.1) 0p = 0.

(10.2.2) Kery altér U-ban, Im @ pedig altér V-ben.
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(10.2.3) w akkor és csak akkor injektiv, ha Ker ¢ = {0}. ’
(10.2.4) Ha uy,...,uy generdtorrendszer U-ban, akkor uiyp,...,urp generdtor-

rendszer Im @-ben.

Bizonyitds. Legyenek U és V ugyanazon T szdmtest feletti vektorterek, és legyen
@ € Hom (U, V).

(10.2.1) 0p = (00)¢ = 0(0p) = 0.
(10.2.2) A Ker ¢ nemiires, mert a (10.2.1) szerint tartalmazza a nullvektort.

Ha u,v € Kerp, azaz up =ve =0, és A € T, akkor
(utv)p=up+vp=0+0=0
és
Ezért w4+ v, \u € Ker o, és igy Ker g altér. Ha u,v € Im, azaz valamely @,v € U
velktorokra u = 1y és v = vy, és A € T, akkor
utv=uap+tp=(G+70)pclme

és
M= ATp) = (Mi)p € Imp.

Tehat Im ¢ is altér. ) .
(10.2.3) Ha ¢ injektiv és u € Ker ¢, azaz uwp = 0 = Qp, akkor u = 0 kovetkezik,
és ezért Keryp = {0}. Ha Kerp = {0}, és valamely u,v € U-ra up = vy, akkor
(u — v)¢ = up — vy =0, amibdl u — v € Kerp = {0} kévetkezik. Ezért u —v = 0,
és igy u = v. Tehat @ injektiv. )
(10.2.4) Ha w1, ..., ur generatorrendszer U-ban és u € Im ¢, akkor u = iy
valamely @ € U-ta, és i = Ajuy + ... + Apug valamely Ay, ..., Ay € T-re. Ezért

u=1up=(Aur+...+ ARtk )p = /\1(1.&1(,0) +...+ /\k(ukcp).

Tehat w1, . . ., ugp generdatorrendszer Im ¢-ben. -

10.3. Linedris leképezések dimenziététele. Legyen U és V ugyanazon T szdmiest
feletti vektortér, és legyen @ € Hom (U, V). Ha U véges dimenzids, akkor

dim U = dim (Ker ¢) + dim (Im ¢).
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Bizonyitas. Lattuk (10.2.2)-ben, hogy Ker¢ altér U-ban, Im ¢ pedig V-ben. A
8.6. Tétel szerint Ker ¢, (10.2.4) miatt pedig Im ¢ is véges dimenzids. Legyen

u1,...,uk a Kery bdzisa és u,, .. o3 Uks Uk+1, - - -, Un €8y olyan bévitése, mely U-
nak bazisa. Elég azt igazolni, hogy Uk+1$, - - -, Unp bazis Im p-ben. Ha valamely
/\k+1, viisAn € T-re

0= Aes1(uh+19) + - + A (8n0) = (Mks1ht1 + - - + Antin) g,
akkor Apy1ugt1 + ...+ Apu, € Ker . Ezért van olyan A\;,... A\ € T, hogy

/\k+1uk+1 Nl = M. 4 AkUg,

azaz
—A1tg — ... — Apug + /\k+1uk+1 +... 4 Mu, =0.

EbbSl Apy1=...=X, =0 kovetkezik, mert uy, . . ., u, bdzis. Ezzel beldttuk, hogy

Uk4+1, . . ., Ung lindrisan fuggetlen. Masrészt (10.2.4) szerint

Uy :Q»---auk¢:ﬂauk+l(9=--wunfp

generatorrendszer Im p-ben, amibél a O-okat elhagyva is generitorrendszert ka-

unk.
P n

10.4. Kdvetkezmény. Legyen V véges dimenzids vektortér a T szdmtest felett. Tet-
szbleges ¢ € Hom (V, V) esetén ¢ akkor és csak akkor injektiv, ha szirjektiv.

Bizonyitds. Ha ¢ injektiv, akkor a (10.2.3) szerint Kerp = {0}. Ezért a 10.3.
Tétel szerint

dim (Im ¢) = dim V — dim (Ker ¢) = dim V — dim {0} =dimV -0 =dim V.

Ebbél a 8.6. Tétel szerint Im ¢ = V' kivetkezik. Tehat  sziirjektiv.
Ha ¢ sziirjektiv, akkor Img = V, igy a 10.3. Tétel szerint

dim (Ker ¢) = dimV — dim (Im¢) = dimV — dim V = 0,

és igy Ker ¢ = {0}, amibél a (10.2.3) szerint kévetkezik, hogy ¢ injektiv.

10.5. Tétel. Legyen T szdmtest, m,n > 1 és A € Tmxn, Az Az = 0 homogén
lindris egyenletrendszer megolddsainak halmaza (n —1(A))-dimenzids altér o TP*!
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vektortérben. Ha m = n és |A| = 0, akkor az Az = 0 homogén lindris egyeizl/etv
rendszernek van nemtrividlis megolddsa, azaz az 5.9. Kovetkezmény megforditdsa

15 1Gaz.

Bizonyitds. Tekintsiik a : 7™ — T™>! z — Ag leképezést. Tetszéleges a,b €
T7*1 és A € T esetén
(a+blp=A(a+b)=Aa+ Ab=ap +by
és
(Aa)p = A(Aa) = A(Ag) = Aap).

Ezért ¢ linearis leképezés. Vegyik észre, hogy egy T7*Lbeli vektor pontolsan
akkor megolddsa az Az = 0 egyenletrendszernek, ha eleme Ker cp-nek: Tehat a
megolddsok halmaza Ker o, ami (10.2.2) szerint altér. A 10.3 Tétel szerint

dim (Ker ¢) = dim (7™*') — dim (Im ¢) = n — dim (Im ¢).

Most mér csak azt kell megmutatni, hogy dim (Im ¢) :.r(A). ’ o -
Legyen a; az A matrix j-edik oszlopvektora, 1 < j < n, és tekintsiikk a T

vektortér 1 g 0
0 il 0

B = y €9 = £ 1 oeee g Ep T
0 0 1

béazisat. A (10.2.4) allitds szerint
erp=Ae, =8y, eap=Aey =0y, ..., €0 = A, = a,
generdtorrendszer Im ¢-ben. Ezért
dim (Im ¢) = dim [a;, a5, - - -,8,] = To(A) = (A).

Végiil, ha m = n és |A| = 0, akkor r(A) < n és n—1(4) > 0 ”Teheit a
megolddsok altere legaldbb egydimenzids, s ezért van benne 0-tdl kiilonbéz6 vektor,

azaz van nemtrividlis megoldés. -

10.6. Definicié. Legyen egy homogén lindris egyenletrendszer megoldésainzla,k hal-
maza U. Ekkor U-nak, mint altérnek, a bézisait fundamentdlis megolddsrend-

szereknek vagy alaprendszereknek nevezziik.

A 10.5. és 8.5. Tételekbdl kovetkezik, hogy egy megoldasokbdl 4ll6 *«;ektor—l
rendszer pontosan akkor alaprendszer, ha linedrisan fiiggetlen, és n—r ('alemu, aho
n az ismeretlenek szdma, r pedig az egyenletrendszer matrixdnak rangja.
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10.7. Tétel. Tetszéleges U, V és W ugyanazon T szdmtest feletti vektorterekre
érvényesek a kovetkezdk:

(10.7.1) Ha ¢ € Hom (U, V) és ¢ € Hom (V, W), akkor i) € Hom (U, W).
(10.7.2) Ha ¢ € Hom (U, V) bijektiv, akkor ¢~ € Hom (V,U).

Bizonyitds. (10.7.1) Legyen ¢ € Hom (U, V) és ¢ € Hom (V,W). Ekkor minden
u,v € U-ra és minden \ € T-re

(u+v) (1) = ((u+ V)l = (up + ve)y = (up) + (Vo) = u(py) + v(pw),

(Au)(ep) = ((Mu)e)y = (A(up))p = M(up)y) = A(u(pw)).
Tehét v € Hom (U, W).

(10.7.2) Ha @ € Hom (U, V) bijektiv, akkor tetszéleges u,v € V esetén van
(egyetlen) olyan u, D € U, hogy u = @y és v = vp. Ekkor @ = up™!, 5 = vp~1, és
ezért

(w+0)e™" = (a9 + vp)p™" = (5 + B)p)p! =
=([@+0)(pp ) =0+ 0=up ! +vp?

és

(u)e™ = (Mag))e™ = ((M)p)e™" = (MD)(pp™) = i = Aup™), AeT.

Tehat 1 € Hom (V, U). .

10.8. Definicié. Legyen U és V ugyanazon T szamtest feletti vektortér. Azt

mondjuk, hogy U izomorf V-vel, ha létezik w: U — V vektortér izomorfizmus.
Jele: U =V,

10.9. Tétel. Adott T szdmtest feletti vektorterek barmely halmazdn az = reldcié
reflexiv (azaz V 2V minden V vektortér esetén ), szimmetrikus (azaz, U = V-bél
V 2 U kovetkezik) és tranzitiv (azaz, ha U =V és V = W, akkor U =W ),

Bizonyitds. Legyen U, V, W vektortér a T szémtest felett. Nyilvan U = U, mert
U identikus transzformiciéja izomorfizmus. Ha U =~ V, akkor van ¢: U —» V
izomorfizmus. A (10.7.2) llitds szerint o= 1: V — U is izomorfizmus, igy V = U.
Ha Ul =V és V = W, akkor létezik w: U—Vésp: V— W izomorfizmus. Ismert,
hogy bijektiv leképezések szorzata bijektiv, tehat @: U — W bijektiv. A (10.7.1)
allitds pedig biztositja, hogy i linesris. fgy ey U — W izomorfizmus, tehat
U=Ww.
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10.10. Tétel. Ha V a T szdmtest feletti n-dimenzids vektortér, akkor V izomorf
a T" vektortérrel. Bdrmely két T feletti n-dimenzids vektortér izomorf egymdssal.
Ha U,V izomorf vektorterek és U n-dimenzids, akkor V is n-dimenzios.

Bizonyitds. Legyen e1,...,en a V vektortér bazisa, és tekintsiik a
n
@ET™ 3 Vo (Ngs vondn) 3 Z}\iei
=1

leképezést. Megmutatjuk, hogy ¢ izomorfizmus. Sziirjektiv, mert e1,...,€n ;;:m?-
ratorrendszer, és (7.3.4) miatt injektiv is. Ha (A1,...,An), {fiyss w b)) '€ és

c €T, akkor
((Ay- ey dn) + (ty o)) = A+ 1,0 A+ n ) )
= Z()\i + pi)e; = Z)\iﬁ’z + Z#iez‘
=1 i=1 i=1
= (A1yoe o An)@ + (U1s s i)

és

(e(A1,- - An))p = (€A1, .-, CAn)p
= 3 Aidei = ¢ Aie;) = e[(Ai 00 » An)@)-
;(c Jei =c 2;

: i s fgy Tm 2 V.
Ezzel belattuk, hogy ¢ izomorfizmus, és igy T' ‘ } .
Ha U is T feletti n-dimenziés vektortér, akkor T™ = U, igy a 10.9. Tétel szerint

U = V. Végiil ha ¢: U — V izomorfizmus, és €1, .., €n bézis U-ban, akkor (‘10.2.4)
szerint €1, . . ., Entp generatorrendszer V-ben. Ha valamely M1,..., A, skaldrokra

0= M(e19) + ...+ Aalen) = (Me1 + ...+ Anen)p,

aldkor
Mei+ ...+ Apen € Kerop.

Mivel ¢ izomorfizmus, azért (10.2.3) szerint Kerp = {0}, ezért Ajer+...+Anen = 0

kovetkezik. Mivel ey, ..., e, linedrisan fiiggetlen, azért Ay = ... = Ay =0, Teflét
az €1, ..., enp vektorrendszer linearisan fiiggetlen is. Tehat eip,...,enp bazis
V-ben, és ezért dimV = n. »

11. Miiveletek linedris leképezésekkel

11.1. Definicié. Legyenek U és V ugyanazon T szamtest feletti vektorterek. Ertel-
mezziik linedris leképezések Gsszegét és skaldrral vald szorzatét a kévetkezdképpen.
Ha v, € Hom(U,V) és ¢ € T, akkor ¢ és ¢ osszege, illetve ¢ c-szerese az a
@ + -vel, illetve cp-vel jelolt leképezés, melyekre

u(p+9) =up+uyp é ulcp) =c(up) minden u € U esetén.

11.2. Tétel. Tetszéleges U és V ugyanazon T szdmtest feletti vektorterek esetén

Hom (U, V) a most bevezetett dsszeaddssal és skaldrral vald szorzdssal vektorteret
alkot.

Bizonyitas. Elszor megmutatjuk, hogy Hom (U, V')-bél nem vezet ki az dsszeadas

és a skaldrral valé szorzds. Legyen ¢,v € Hom (U, V) és ¢ € T. Ekkor tetszbleges
w,v € U és X\ € T esetén

(u+v)(e+9) = (vt v)p+ (u+ o) = (up +ve) + (ug + vih)
= (up + uph) + (v +v9) = (o +¥) + v(p + ¥),
(Au)(e + ) = Qe + (M) = Muep) + Mu) = Mup + uh) = AMu(p + ),
(u+v)(ew) = e((u+v)p) = clup + v) = c(up) + e(ve) = u(cp) + v(cp)

és
(Au)(ep) = e((Mr)g) = c(Mugp)) = (cA)(up) = (Ac)(up) = Me(up)) = Au(cp)).

Tehdt ¢ + 4, cp € Hom (U, V).

Most megmutatjuk, hogy teljesiilnek a vektortér-axiémak. A linearis leképe-
zések Osszeaddsdnak definici6jat, a vektordsszeadds kommutativitisét és asszocia-
tivitasat figyelembe véve egyszerii szdmoléssal igazolhaté, hogy Hom (U, V)-ben az
osszeadds kommutativ és asszociativ. Ezért a részleteket az olvaséra bizzuk. Jeldlje
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0:U/ — V azt a leképezést, mely minden U-beli vektorhoz V' nullvektorit rendeli.
Ekkor nyilvdn 0 € Hom (U, V), és minden ¢ € Hom (U, V)-ra és u € U-ra

we+0) =up+ud=up+0=up
és
u(p + (=1)p) = up + u((-1)p) = up + (~1)(up) = 0 = u0,
azaz o+ 0 = @ és g+ (—1)p = 0. Tehat 0 egységelem az Gsszeaddsra nézve, (—1)¢

pedig ¢ additiv inverze.
Legyen végiil ¢, € Hom (U, V) és ¢,d € T. Ekkor tetszéleges u € T esetén

u(e(p + 1)) = c(ulyp + ) = c(up + uyp) = c(up) + c(uy)
= u(cp) + u(ey) = ulep + ),
u((c+ d)e) = (¢ + d)(up) = ((c + dJu)p = (cu + du)yp
= (cu)p + (du)p = u(ep) + u(dp) = u(cp + dp),
u((ed)p) = (cd)(up) = c(d(ugp)) = c(u(dy)) = u(c(dp))
és
u(lp) = 1(up) = ug.
Tehat valéban teljesiil, hogy

(o + ) =cp+ep, (c+dp =cp+dp, (cd)p =c(dp) é 1p = p.

11.3. Tétel. Tetszéleges U, V és W ugyanazon T szdmiest feletti vektorterekre

érvényesek a kévetkezdk:

(11.3.1) Ha ¢ € Hom (U, V) és ¢ € Hom (V, W), akkor c(¢y) = (cp) = p(cyp)
minden ¢ € T-re.

(11.3.2) Ha ¢,¥ € Hom (U, V) és 7 € Hom (V, W), akkor (¢+y¥)T =¢r+97. Ha
¢ € Hom (U, V) és 4,7 € Hom(V, W), akkor o(¥ + ) = ¢ + ¢T. (Ezt
a két dllitdst roviden gy is szoktuk mondani, hogy a leképezések szorzdsa
a linedris leképezések kirében disztributiv az dsszeaddsra vonatkozdan).

Bizonyitds. Legyen ¢ € Hom (U,V), ¢ € Hom(V,W) és c € T. Ekkor minden
u e U-ra

u(e(ey) = c(ulpy)) = c((up)y) = (up)(ey) = u(p(ey)).
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Tovabbd
ul(e(ew)) = c(uley)) = c(up)p) = (c(up))v = (u(ep))y = u((cp)i)).
Ezzel igazoltuk (11.3.1)-et .
Legyen ¢, € Hom (U, V) és 7 € Hom (V, W). Tetszdleges u € U esetén
ul(p +9)7) = (ulp +¥))7 = (wp + uh)7 = (up)7 + (ugh)r
= u(pr) + u(Yr) = u((pr) + (7).
Végiil legyen ¢ € Hom (U, V) és ¢, 7 € Hom (V,W). Tetszéleges v € U esetén
ul(¥ +7)) = (up) (¥ +7) = () + (up)r = u(ew) + u(ier) = u(wy + pr).
Tehat (11.3.2) is igaz.
|




12. Linedris leképezések matrixa

12.1. Tétel. Legyen U véges dimenzids, V pedig tetszbleges vektortér a T sza’mte:‘;t
felett. Tetszdleges e1,....en € U bdzis és v1,...,vn € V vektorrendszer eseten
pontosan egy olyan ¢ € Hom (U, V) létezik, amelyre e1p = V1, ..., €nP = Un-

Bizonyitas. Elészor tegyik fel, hogy ¢, ¢ € Hom (U, V') olyan, hogy e, = 'ui’:
e, i=1 n. Hau € U, akkor u = 3, Aie; valamely A1, ..., Aq € T esetén,
(] === Ay gt 3 — '

és ezért |
wp = (i Nedp =3 i) =Y Mlew) = (Q_ ey = uy-
=1 i=1 i=1 i=1

Tehit ¢ = 1. Bzzel az egyértelmiséget igazoltuk. ) -
Definialjuk a ¢:U — V leképezést a kovetkezképpen: tetszéleges u =

3%, Aiei esetén legyen
n n
up = (Z Aig:)p = Z)\ivi.
i=1 i=1

A ¢ leképezés ezen definicidja egyértelmii, mert minden U-beli vektor pontosan
egyféleképpen all eld e1,...,en linedris kombinaciéjaként. Vegyik észre, hogy
eo=vi, i=1,...,n. Hhu=730_ hej, v = S0 wiei és A € T, akkor

(u+v)p = (5_“: Aie; + i ,uge,;) p= (Z()\g- + ,u,)ez-) %)
i=1 i=1

i=1
n n, i
=3 i+ m)vi =) Avi+ D Hivi
i=1 i=1 =1

= (En: )\iez) @+ (Z .P'J'iEé) P =up+vp
i=1 i=1
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és

Aup) = A ((Z )\iei) ‘P) =A (Z )\ivi) = Z(/\/\i}vi

i=1

_ (Xn:()\)\z)ez) @ = (A (i )\iei)) p = (Au)p.

Tehat ¢ linedris leképezés. .

12.2. Definicié. Legyenek U és V' véges dimenzids vektorterek a T' szamtest felett,
E:e1,...,em bézis U-ban, F: fi,..., fn bazis V-ben, és ¢ € Hom (U, V). Legyen
tovabba

n
ech:E aiifs 1= Lya o i
j=1

Ekkor azt mondjuk, hogy az Af,"f = (@ij)mxn matrix a ¢ linedris leképezés mdtriza
az £ és F béazisokban. Ha nem okoz félreértést, akkor a matrix indexeit elhagyjuk.
Ha U =V, akkor csak egy bdzist valasztunk, azaz ekkor 7 = £. Ebben az esetben
AL*® helyett az AZ jelolést haszndljuk.

Vezessiik be a kovetkezd jeldléseket:
el fi e1p

e=| . |, f= , Ep=

€m I Emy

T
Zj=1 ai; f;

és

AT = :
E?=1 amj f
Vegyiik észre, hogy AS” f az AS% matrixbél és az f oszlopvektorbél a matrixszor-

zas szabdlyai szerint adédik. Ezen tomér jelslések felhasznéldsival a 12.2. Defini-
ciobeli egyenldségek a kovetkezéképpen irhatdk:

ep=Ay"f.

Mivel F bézis, az Af;}— méatrix az egyetlen olyan maétrix, mely az eléz6 egyen-
l6ségnek eleget tesz. Legyen az w € U vektor koordindtasora az £ bézisban
z = (z1,...,Tm), wp koordinitasora az F bazisban pedig y = (y1,...,Yn), vagyis

m n
u=y me=ze & up=9Y yfi=yf.
i=1

j=1
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Mivel ¢ linearis, up = (i, Tiei)p = 21 Ti(eip). Ezt a tomor jelélése'kkél
igy irhatjuk le: up = (ze)p = z(ep). A formalis matrixszorzas szabdlyait is
felhasznalva kapjuk a kovetkezot:

yf =up = (ze)p = z(ew) = 2(AFT ) = (€AF7)f,

amibol

kovetkezik, mert adott bazisban a vektorok koordinitasora egyértelmiien megha-
tarozott. Tehit a kovetkezdt kaptuk: bamely u € U vektor ¢ szerinti képének
koordinatasorat megkapjuk, ha u koordinatasorat jobbrol megszorozzuk ¢ matri-

xaval.

12.3. Tétel. Legyenek £, F és G rendre azU, V és W ugyanazon T szdmtest feletti
véges dimenzids vektorterek bdzisai. Ha @, € Hom (U, V), 7 € Hom (V,W) és
ce T, akkor

E,F E,F E,F EF __ EF 4 EG _ AEF AF G
Atp+1,b:A‘P +A4y,7, A =cA, és Ajy = A; AT,

azaz linedris leképezések Gsszegének mdtriza megegyezik a leképezések mdtrizainak
sszegével, linedris leképezés c-szeresének mdtriza o leképezés mdtrizdnak c-szerese,
és linedris leképezések szorzatdnak mdtriza megegyezik a leképezések mdtrizainak

szorzatdval.

Bizonyitas. Legyen £:e1,... €m, Fif1,-- oy fny Gig1,- 195 €5
€1 fi a1
: 3 i = i s g: :

€m fn

[38
Il
o

Ha ¢,v € Hom (U, V), 7 € Hom (V, W) és ¢ € T, akkor

AT f=elo+d)=eptep=A7"f+ AT =(AST + A5

Mivel F bazis, minden vektor koordinitasora egyértelmien meghatéarozott, igy

Ai’fw = A & A‘E)’“T kovetkezik. Hasonléan

AET | = e(cp) = clep) = (AZT ) = (AP,
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és innen ASF = cAET . Vigiil

ALPg = elpr) = (ep)r = (AL7 f)r = AGT(fr) = ALT(AT9g) = (ALT AT ),
és fgy A59 = ALT AT S,

12.4. Kovetkezmény. Ha U m-dimenzids, V pedig n-dimenziés vektortér a T' szdm-

- test felett, akkor a linedris leképezések Hom (U, V) vektortere izomorf a mdtrizok

T™m>" vektorterével, €s dgy mn-dimenzids.

Bizonyitds. Legyen £ az U, F pedig a V vektortér bazisa, és tekintsiik a
®: Hom (U, V) —» T™", ¢ A57

leképezést. Mivel egy linedris leképezés métrixa és a bézisvektorok képei koleso-
nosen egyértelmiien meghatarozzdk egymaist, ezért a 12.1. Tétel egyértelmiiségre
vonatkozo éllitdsabol @ injektivitdsa, a létezésre vonatkozé allitasabol pedig ® saiir-
jektivitdsa kovetkezik. Tehdt @ bijektiv. Ha ¢, € Hom (U, V) ésce T, akkor a
12.3. Tételt felhasznilva azt kapjuk, hogy

(p+9)® = A0, = ALT + A5 = o® 4 ¢
és
(cp)® = Af‘;f = cAf;,'}_ = ¢(p®).

Tehat ® izomorfizmus. A 8.4. Definicié utan lattuk, hogy 7™*" mn-dimenziés.

Ezért a 10.10. Tétel szerint Hom (U, V) is mn-dimenzids.
]




13. Attérés uj bazisra. Koordinata-transzformacio

13.1. Definici6. Legyen £:€1,...,€m és E':€l,... e a T szamtest feletti U vek-

tortér két bazisa. Ekkor

m m

Y pie; ¢ (=% pes i=1
(*) e; = pij€; € €= Pijeir ! ,

j=1 j=1

ahol pij, pij, 1<, <m,akét bézis altal egyértelmiien me

1m3

ghatdrozott skalarok.

A P = (pij)mxm matrixot az £ bdzisrdl az g’ bfiz’a:sm, a P '_ = (Pﬁj)mxm méatrixot
pedig az & bdzisrdl az € bdzisra vald dttéres mdtrimak hivjuk.

ik é ¢ inedri ormAciéjanak mat-
Vegyiik észre, hogy P’ az U vektortér azon linearis transzformacio}

rixa az €1,..-:em bézisban, mely az €1,--.,€m vektorokhoz rendre az €}, .- - e
vektorokat rendeli. Felhasznalva az
el e}
e=|: é =1 :
€m e;n

jeloléseket, a (%) alatti egyenldségek a kivetkezd tomor alakban frhatok:

p y

e=Pe ¢é ¢ =DPe,

ahol % ;
2_;5;:1 pljej

Pe = ) és Ple=

13
Zj:]_ Pmij€s!

n o
Zj:l P16

n f .
2;‘:1 Pmj€i

a métrixszorzas szabalya szerint adédik. A fenti két egyenléséghdl azt kapjuk, hogy

e = Pe' = P(P'e) = (PPe 6 € = P'e= P'(P¢) = (PP

amibdl
PP'=PP=E

kivetkezik, ahol £ az m x mi-es egységméatrix. Tehdt P és P’
és P' = P~'. Ezzel beldttuk a kivetkezot:

nemelfajulé matrixok,
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13.2. Tétel. Legyen a T szdmtest feletti U vektortér két bdzisa £ és &, tovdbbd
legyen P, illetve P’ az dttérés mdtriza az € bdzisrol az E'-re, illetve az £ bazisrdl
az E-re. Ekkor P és P’ nemelfajuld mdtrizok, és P' = P~1.

Legyen az u € U vektor koordinatasora az £ bazisban z = (1, .-
bézisban pedig 2’ = (z4,...,%;,), vagyis

. Tm), 82 &’

Tk m
=y 8= E zle}, vagy tomdren u=ze=2z'¢.
i=1

=1
Elkkor
r'e =u=ge=2z(Pe) = (zP)¢,

amibél ' = zP kovetkezik. Tehét érvényes az aldbbi allitas:

13.3. Tétel. Legyen a T szdmtest feletti U vektortér két bdzisa € és £’ tovdbbd
legyen P az dttérés mdtriza az € bdzisrdl az £'-re. Ekkor tetszéleges u € U vektor
esetén, ha u koordindtasora E-ben z, E'-ben pedig ', akkor fenndll az z' = zP
egyenldség.

Legyen most V egy véges dimenzids vektortér T' felett, és ¢ € Hom (U, V).
Legyen tovabba F: f1,..., fn és F': fi,..., fy, a V vektortér két bazisa,

fi f1
i = 3 .ff = ’
fn i
S az F bazisrél az F' bazisra val6 attérés matrixa, Ai'}- és Ag’}- ' pedig (¢ matrixa
a megfeleld bazisokban, azaz
=5, eo=A"f & do=A7Tf
Ekkor
A‘i L ir _ EISO _ (Pvlg)(p _ P‘l(gp) s P——I(Ai,}'i) -
= PN (AZT(8) = (P71 A7 8)f,
amibél
&' F' _ p-14EF
A" =PTAG S
kovetkezik. Ha U =V, E=F és &' = F', akkor P = § és
E' _ p—14E
A, =P ALP.

Ezzel igazoltuk a kovetkezdket:
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13.4. Tétel. Legyen U és V két T szdmtest feletti vektortér, és legyen E.& az U,
F.,F' pedig a V vektortér bdzisa. Jelolje P, illetve S az dttérés mdtrizdt E-rbl & -re,
illetve F-rél F'-re. Tekintsiink eqy @ € Hom (U, V') linedris leképezést, és legyen a
matriza o megfelels bdzisokban AST, illetve AS P . Ekkor AS"F = P71ATS.

13.5. Kévetkezmény. Legyen a T szdmtest feletti U vektortér két bizisa £ ésE'. Je-
lolie az € bdzisrdl az E'-re vald dttérés mdtrizdt P. Tekintsiink egy ¢ € Hom (U,U)
linedris transzformdcidt, és legyen a mdtriza az &, illetve £ bdzisban Ag, illetve
Ag. Ekkor Ag = P‘lAf,P. Tehdt egy linedris transzformdcid kilénbézé bdzisok-
ban felirt mdtrizai hasonldak.

A fentiek szerint véges dimenzids vektorterek kozotti linearis leképezések ki-
16nb6z6 bézisbeli matrixai megkaphaték egymasbdl alkalmas invertdlhaté matri-
xokkal valé szorzéssal. Ezért a 9.6. Tétel szerint e matrixok rangja megegyezik.
Tehat linedris leképezés minden bazisbeli métrixdnak rangja ugyanaz. Az utdbbi
allitasndl tobbet is mondhatunk.

13.6. Definici6. Valamely ¢ linedris leképezés rangjdn képterének dimenzi6jat
értjiik, és r(y)-vel jeldljiik. Tehat r(p) = dim (Im ).

13.7. Tétel. Véges dimenzios vektorterek kozitti linedris leképezés rangja megegye-
zik valamely (bdrmely) bdzisbeli mdtrizanak rangjdval.

Bizonyitas. Legyen U,V véges dimenziés vektortér a T szdmtest felett, ¢ €
Hom (U, V), €1, ..., €m bazis U-ban, fi,..., fn bizis V-ben és A = (aij) a @ linedris
leképezés matrixa az adott bizisokban. Azt kell igazolni, hogy dim (Im ) = r(4).
Tekintsiik a -
PV —=T" v :Z:Ujfj = (L1500 0y Ln)
=1
leképezést. A 10.10. Tétel bizonyitédsdban igazoltuk, hogy ¢ izomorfizmus, és mivel
az Im ¢ halmaz elemeinek 1 melletti képei éppen az Im (¢¢) halmaz elemei, azért

Yltm o Im — Im (1))

is izomorfizmus. Ismét a 10.10. Tétel szerint, dim (Im ¢) = dim (Im (¢1)). Vegyuk
észre, hogy

ei(ey) = (eip)y = (Z aii fi) = (air,. -1 0in), 1 i< m.
3=
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A ,(10.2.4) allitds szerint e)(wy), ..., en(py) generdtorrendszer Im (¢1)-ben, s
ezért ’

dim (Im ¢) = dim (Im (pv))) = dim [e; (@v), .. . , em (0]

= dim[(all, i v ,aln),...,(aml,...,amn)}
=r1((a11,.--,a1n)s ..., I -
=T1,(A) = r(4).

13.8. Kovetkezmény. Legyen ¢ linedris transzformdcié valamely V véges dimen-

zzos vektortérben. A ¢ transzformdeid akkor és csak akkor bijektiv, ha valamely
(bdrmely) bdzisbeli mdtriza nemelfajulé.

B-i.zunyités. Legyen ¢ métrixa valamely bazisban az A n x n-es métrix. Ha 7
b.ljlektiv, akkor a 13.7. Tétel szerint A (determinans)rangja megegyezik V' dimen-
zidjéval, és ezért |A| # 0. Forditva, ha |A| # 0, akkor dim (Imep) = 1(A) = n
amibdl a 8.6. Tétel alapjan Imy = V koévetkezik. Tehat ¢ szirjektiv, és ezért E;
10.4. Kovetkezmény szerint ¢ bijektiv. ,

]




14. Linedris transzformaciok és matrixok sajatértékei,
sajatvektorai és karakterisztikus polinomja

14.1. Definici6. Legyen T szédmtest, V vektortér T' felett és ¢ a V vektortér
linedris transzformdciéja. Azt mohdjuk, hogy a v € V vektor ¢ sajdtvektora, ha
v # 0, és van olyan A € T, hogy vy = Av. A M€ T szdm ¢ sajcite?’*r"téke, ha van
olyan v € V, v # 0, hogy vy = Av. A fenti esetekben azt is mondjuk, hogy A, v
sajatérték, sajatvektor parja ¢-nek. | -

Legyen n € N és A = (a;;) € T"*". Azt mondjuk, hogy z € T" az A m}atrlx
sajdtvektora, ha z # 0, és van olyan A € T, hogy zA = Az. A X € T szam A
sajdtértéke, ha van olyan z € T", z # 0, hogy zA = Az. A fenti esetekben azt is
mondjuk, hogy A,z sajatérték, sajitvektor parja A-nak. Az

ajy — % a12 Sht din
az] Qoo — XL " agn
falz) =|A—=zE| =
an1 Gn2 o Onp — T

polinomot az A matrix karakterisztikus polinomjanak, az fa(z) polinom T-be es0
gyokeit pedig az A mdtriz karakterisztikus gyokeinek nevezziik.

14.2. Tétel. Legyen V n-dimenzids vektortér a T szdmtest felett, ey, ..., en blciz.z's V-

ben, ¢ € Hom (V, V) és A a  lindris transzformdcid mdtriza azex, ..., en bazishan.

(14.2.1) Legyen z € T™ a v € V wvektor koordinatasora és A e T. Ekf’cor’ )\:U
akkor és csak akkor sajdtérték, sajdtvektor pdrja @-nek, ha A,z sajdtérték,
sajdtvektor pdrja A-nak. )

(14.2.2) A X € T akkor és csak akkor sajdtértéke az A mdtriznak, ha X gyoke A
karakterisztikus polinomjdnak. '

Bizonyitds. Az eléz6 két fejezet eredményeit figyelembe véve a kovetkezot kapjuk:

vp=X v < (ze)p=Aze) < z(ep) =Nze) —
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= z(Ae) = Mze) <= (zd)e= (Mr)e & zA= )z

Figyelembe véve még azt, hogy v # 0 pontosan akkor teljesiil, ha z # 0, ezzel az
elsd allitast igazoltuk.

Ha A € T sajitértéke az A matrixnak, akkor van olyan 0-t4l kiilsnbozé z
vektor, hogy zA4 = Az, amibdl

Z(A—AE)=0 é (A—AE)T2T =0
kovetkezik. Tehdt zT nemtrividlis megolddsa az (A — AE)T maétrixi homogén
linedris egyenletrendszernek. Ezért az 5.9. Kovetkezmény szerint

faN) =4 -2E| = (A~ AE)T| = 0.
Forditva, ha valamely A € T esetén

(A= AE)T| =|A - AE| = fa()) =0,
akkor a 10.5. Tétel szerint van olyan £ € T, z # 0, hogy (A — AE)TzT = 0,
amibdl

z(A—AE) =0, azaz zA = Az

kovetkezik.

14.3. Tétel. Hasonld mdtrizok karakterisztikus polinomja megegyezik.

Bizonyitds. Legyenek A és B hasonlé méatrixok. Ekkor alkalmas X invertalhaté
matrixra B = X ~1AX, és ezért
fo(z) = |B - zE| = |[X'AX — zE| = |X~}(A — zE)X|
=|X"Y|A~2B||X| = |XY|X||A - 2E| = X X||A - zE]|
= |E||A - zE| = |A — zE| = fa().

A 13.5. Kovetkezményben lattuk, hogy egy linedris transzformécié kiilon-
bozé bézisban felirt métrixai hasonldak, s ezért a 14.3. Tétel szerint egy lines-

ris transzformacié barmely bézisban felirt matrixdnak ugyanaz a karakterisztikus
polinomja.

14.4. Definicié. Véges dimenzids vektortér linedris transzformdcidjdnak karakte-
risztikus polinomja a linedris transzformécié valamely (bdrmely) béazisban felirt
matrixdnak karakterisztikus polinomja.




15. Bilinearis leképezések és kvadratikus alakok

15.1. Definicié. Legyen U és V vektortér a T szamtest felett. Egy U xV — T
leképezést bilinedris leképezésnek neveziink, ha

Ly + ug,v) = I(uy,v) + Hug,v),
Hu, vy +ve) = l{u,v1) + I(u, v2),
(A, v) = Yu, ) = A(u,v)

teljesiil tetszéleges u,ui,ug € U, v,v1,v2 € V és A € T esetén. Ha .U = Vkes
l(u,v) = (v, u) barmely u,v € U esetén, akkor azt mondjuk, hogy | szimmetrikus
bilinedris leképezés. N

Legyen U m-dimenziés, V n-dimenzids, e1,...,em bazis U-ban, fi1,...,fxn
bézis V-ben, tovabba legyen

m n
$:($11-'-7IM)ETms yz(yla"‘ayn)ETny u:ZIieiu Uzzlyjfj‘
B i=1 1=

Ekkor - ) " ;
l(u,v) = 1(2 xiehziﬁﬁ) = inl(eiazyjfj)
=1 j=1 =1 o
= imi Zn:yjl(% 1) =23 " Ues f5)miy; = zAy",
=1 j=1 i=1 j=1
ahol

A= (l(ei; fj))mxn-

Azt mondjuk, hogy az A métrix az | bilinedris leképezés mdtriza az adott bazisok-
ban, az xAy"T kifejezés pedig [ koordindtds alakja az adott bazisokban. Ha U = v,
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akkor ugyanigy, mint a linedris transzforméciék esetében, a két bazist azonosnak
valasztjulk.

15.2. Tétel. Legyen V wéges dimenzids vektortér a T szdmtest felett, és : V2 - T
bilinedris leképezés. Ha | szimmetrikus, akkor mdtriza bdrmely bdzisban szimmet-
rikus. Forditva, ha | mdtriza valamely bdzisban szimmetrikus, akkor | is szimmet-
rikus.

Bizonyitas. Legyen ey, ..., e, a V vektortér egy bézisa. Ha ! szimmetrikus, akkor
A = (l{ei,€;))nxn is szimmetrikus, hiszen l(ei,e;) = lej,e), 1 < 4,7 < n. Ha
A = (l(€i,€;))nxn szimmetrikus, és

T n
2= (F15...,Za) €T, = Wiy 0] €T, U:Zmeh szy;e,‘,
i=1 i=1

akkor
{u,v) = gAng = (QAET)T = yATgT = EAQT = (v, u).

Tehat [ szimmetrikus.

15.3. Definicié. Legyen V véges dimenzi6s vektortér a T szamtest felett. Aq:V —
T leképezést kvadratikus alaknalk nevezziik, ha van olyan [: V? — T szimmetrikus
bilinedris leképezés, melyre q(v) = I(v,v) minden v € V esetén.

15.4. Tétel. Bdarmely kvadratikus alak egyértelmien meghaidrozza o hozzd tartozé
szimmetrikus bilinedris leképezést.

Bizonyitds. Legyen q az | szimmetrikus bilinedris leképezés 4ltal meghatarozott
kvadratikus alak. Ekkor tetszdleges u és v vektorok esetén
qu+v) =lu+v,u+v) = l(u,u) + I, v) + (v, u) + (v, v)
= q(u) + 2l(u, v) + q(v),
amibél i
Hu,v) = S (a(u+v) - q(u) - ¢(v))

kivetkezik.

15.5. Definicié. Egy ¢ kvadratikus alak valamely bézisbeli matrixdn az &t meg-
hatdrozé szimmetrikus bilinedris leképezés matrixat értjiikk. Ha valamely bazisban
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q métrixa az n X n-es A = (a;;) matrix, és a v vektor koordinatasora z, akkor az

elézéek szerint q(v) = zAz". Az

n
zAzT =)
i=1j

n

aij.,’!?ziﬂj
1

kifejezést g koordindtds alakjanak nevezziik.

Legyen e1,--.,€n 6s f1,..., fn a V vektortér két bazisa, g Ped%g-egy kvad-
ratikus alak. Legyen tovdbbd a v vektor koordindtasora azl elsd bfm-sban 1 :
(z1,...,2Zn), a masodik bazisban pedig y = (y1,. .-, Yn), valammt’q m.atm::a' az’elso
bazisban A, a masodik bézisban pedig B. Végiil legyen S a mésodik bazisrdl az
elsé bazisra valé dtmenet métrixa. A 13. fejezetbdl tudjuk, hogy z = yS. Ekkor

egyrészt
q(v) =yBy",
masrészt
T
q(v) = zAz™ = (yS)A@S)" = (¥S)A(STY") = y(SAST)Y",
amibdl

B = SAST

kovetkezik. A fentiek szerint g kiilonb6z8 bazisbeli métrixai megkapha’ték egyrlnés-
bal alkalmas invertdlhaté matrixokkal vald szorzéssal. Ezért a 96 Tf:tellsz-en’nt e
métrixok rangja megegyvezik. Tehat kvadratikus alak minden banmsb}el-l ma.trlxana.k
rangja ugyanaz. A fenti szamolasbél az is kideriil, hogy ¢ elso bazlsbleh kc?.ordl-
nitds alakjabol a masodik bazisbeli alakjit gy kapjuk @eg;,'ho%y elvégezziik az
z = yS tn. nemelfajuld linedris helyettesitést. A nemelfajuld jelzo ’ar,ra ut}al? }fogy
;z S métrix determinansa nem nulla. Ezt az S métrixot a helyettesités mdtrizdnak
nevezziik. Ha S = (845)nxn, akkor

n

n
("Bla" '1$TI,) = & ZEJ_'S — (yla" = :yn)(sij)nxn = (Z S'ily‘ia" ¥ )zsinyi)y

i=1 =1

amibdl . |
-"L'j:E siyi, J=1L...,n,
i=1

kivvetkezil. Tehat ez elsé bazisbeli koordinatak a masodik bazisbeli koordindtdk
elséfoka kifejezései. Erre utal a , linedris” jelzo.
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15.6. Definicié. A g kvadratikus alak rangjin valamely bézisbeli matrixdnak rang-
jat értjiik, és r(q)-val jelsljiik. Azt mondjuk, hogy a q kvadratikus alak az e, ..., e,
bazisban kanonikus alaki, ha métrixa diagonalis.

Vegyiik észre, hogy a q kvadratikus alak pontosan akkor kanonikus alakii az
€1,...,¢n bizisban, ha koordindtds alakja 37| a;z?, ahol az ay, ..., a, sorozat q
métrixdnak féatléja. Ekkor g rangja megegyezik a 0-tél kiilonbozé a;-k szamaval.

15.7. Kvadratikus alakok alaptétele. Bdrmely véges dimenzids vektortéren értel-
mezett kvadratikus alakhoz megadhatd a vektortér olyan bdzisa, melyben a kvad-
ratikus alak kanonikus alakd. Ezzel ekvivalens dllitds o kovetkezd: bdrmely véges
dimenzios vektortéren értelmezett kvadratikus alak bdrmely bdzisbeli koordindtds
alakja nemelfajuld linedris helyettesitéssel kanonikus alakra hozhatd.

Bizonyitds. Mar lattuk, hogy az 4j bézisra valé attérés nemelfajulé linedris he-
lyettesitést indukal a kvadratikus alak koordindtss alakjan. Megforditva, ha S egy
nemelfajuld linedris helyettesitesités matrixa, akkor a helyettesités eredményeként
kapott alak a kvadratikus alak azon bdzisbeli koordinitds alakja, mely bazisrél az
eredeti bazisra valé dttérés mdtrixa S. Tehat a tétel két sllitasa ekvivalens. Ezért
elég a mésodikat igazolni. A bizonyitést a vektortér dimenziéja szerinti teljes in-
dukeiéval végezziik. Legyen a V n-dimenzids vektortéren értelmezett g kvadratikus
alak valamely bazisbeli matrixa az A = (@ij)nxn szimmetrikus matrix. Ekkor q
koordinatés alakja

3 n n
q=zAzT = Z Zaijari:cj = Zai,;x% +2 Z Qi T35
i=1 j=1 i=1 1<i<j<n
Ha A a nullmétrix, akkor ¢ kanonikus alak. Tegyiik fel, hogy A # 0. Han =1,
akkor ¢ = aj;27 kanonikus alakd.

Legyen n > 2, és tegyiik fel, hogy az n — 1 koordintés kvadratikus alakokra
érvényes a tétel dllitdsa. El6szor azt az esetet vizsgdljuk, amikor A f84tléjaban van
nullétél kiilénboz6 elem. Koénnyen ellenérizhetd, hogy a koordinitik atszamozdsa
nemelfajuld linedris helyettesités. Ezért feltehetd, hogy a1; # 0. Ekkor

n a n n
2 1i
¢ =au(ey +2 E :a_mlmé) ¥* Z E Qi TiT5.
i=2 "1 i=2 j—2
Elvégezve az

= a12 Ain
V=214 @yt R gy =, Y = T,
a1 all
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vagyis az
a ai i
I1:y1—£y2—----_"ym Tz =Ya,...y Tn = UYn
ay ayi

line4ris helyettesitést, azt kapjuk, hogy

qg=any;+q,

ahol ¢’ 8z y2, . . . , Yn koordinatdkban felirt kvadratikus alak. A helyettesités mdtrixa
1 0o - 0
—mz 1 .0
S B |

aii
nemelfajulé, mert determindnsa 1. Az indukciés feltevés szerint van olyan nemel-
fajulé (n — 1) x (n — 1)-es (s;;) matrix, melyre a
(Y2, Un) = (225 - -+ 20 ) (545)

helyettesités ¢’-t a ¢” kanonikus alakba viszi &t. Ekkor az (y1,...,¥n) =
(21, ..., 2n)S helyettesités, ahol '

1 0 ce 0
0 sn 0 S1m—1

8 = .
0 Sp—1,1 et Sp—1,n—-1

nemelfajulé, mert | S| = |si;| # 0, és alkalmazésa a ¢ = a112{ +¢” kanonikus alakot

adja.
Végiil, ha A f8atléjaban minden elem nulla, azaz

g=2 Z Q52T 5,

1<i<j<n
akkor A # 0 miatt van a f64tlén kiviil nulldtol kiilonbézd elem. Az egyszeriiség
kedvéért tegyiik fel, hogy aie # 0. Ekkor az

r1 =Y — Y2, $2=y1+y21 I3 =1Y35...5 Tn = Yn,

linedris helyettesités nemelfajuld, mert matrixa

1 10 -0
=1 1 10 0

.0 01 -+ 0
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melynek determindnsa 2. Ezen helyettesités alkalmazdsa a
q= 20,121;‘12 — 2&12?;3 +q

kvadratikus alakot adja, ahol § nem tartalmaz sem Yy3-es sem y3-es tagot. Tehdt g
ezen alakjanak mdtrixa olyan, hogy f64tléjanak elsé két eleme nem nulla. Ezért az
elsé esetben leirtak szerint alkalmas nemelfajulé linedris helyettesitéssel kanonikus
alaku lesz.

~ Mig a tétel allitdsa szerint egy kvadratikus alak nemelfajulé linedris helyette-
sitéssel egy lépésben kanonikus alakra hozhaté, addig a fenti gondolatmenetben ezt
csak tobb nemelfajulé linedris helyettesités egymads utdni alkalmazésaval értiik el.
Ezért még igazolni kell, hogy t6bb helyettesités egymas utdni végrehajtsa mindig
helyettesithetd eggyel. Ezt elég két helyettesités esetén megmutatni. Vilagos, hogy
az £ = yP, majd az y = 2Q) nemelfajuld linedris helyettesités végrehajtdsa ugyan-
azt eredményezi, mint az z = 2(QP) linedris helyettesités, ami |QP| = |Q] - |P|

miatt nemelfajuld. 5

A bizonyitésbél az is kideriil, hogy barmely kvadratikus alak nemelfajulé li-
nedris helyettesitéssel Z:ﬂ aia:f alakra hozhaté, ahol a1, ..., a, # 0. Lattuk, hogy
ekkor 7 a kvadratikus alak (barmely bazisban felirt) matrixanak rangja.

15.8. Kovetkezmény. Bdarmely A szimmetrikus mdtrizhoz megadhatd olyan S nem-
elfajuld mdtriz, melyre az SAST madtriz diagondlis.

Bizonyitds. Legyen A a T szamtest f5lotti n x n-es szimmetrikus maétrix, és legyen
g a T™ vektortéren értelmezett azon kvadratikus alak, melynek métrixa a standard
bazisban A. Az alaptétel szerint van olyan bazis, melyben ¢ kanonikus alaki, azaz
a métrixa diagondlis. Ha egy bézisban ¢ mdtrixa a B diagonslis maétrix, és errdl a

bdzisrél a standard bazisra valé dtmenet matrixa S, akkor B = SAST. -
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16.1. Definici6. Az R valds szamtest feletti véges dimenzids vektortereken értel-
mezett kvadratikus alakokat réviden valds kvadratikus alakoknak nevezzitk. Az

2

D3 ot BE —EE oy — i —

alaki kvadratikus alakokat normdlalakinak nevezziik (0 <k <r).

16.2. Tétel. Bdrmely valds kvadratikus alak nemelfajuld linedris helyettesitéssel

normdlalakra hozhatd.

Bizonyitds. Legyen g kvadratikus alak valamely R feletti n-dimenzids vektortéren.
Az el6z6 fejezetben lattuk, hogy ¢ alkalmas nemelfajul linedris helyettesitéssel

2
q:a1$%+...+ar$r

kanonikus alakra hozhatd, ahol r a kvadratikus alak rangja. Felteheto, hogy az
elsé k egyiitthaté pozitiv, a tébbi pedig negativ (0 < k < 7). Tehat

2 2
q=b1x3 4 ...+ bxal — bp1Tipy — .. — bey,

ahol by,....b, > 0. Ha végrehajtjuk az

1 1
L1 = —=Yl1+ 1 Tpr = —=Yr, Lr41 = Yr41;-- 1 Tn = Yn
1 \ﬁlyl T \/E 1 r
| 5 )
nemelfajulé helyettesitést, akkor a ¢ = y7 + ...+ y§ — Yy, — - - - — ¥ normalalakot

kapjuk.
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16.3. Tehetetlenségi tétel. Barmilyen mddon is hozunk normdlalakra nemelfajuld
linedris helyettesitéssel egy valds kvadratikus alakot, a pozitiv tagok, illetve a ne-
gativ tagok szdima mindig ugyanaz, azaz eqy valds kvadratikus alak normdlalakja
egyértelmiien meghatdrozott.

Bizonyitds. Legyen az R feletti n-dimenziés V vektortéren értelmezett r rangu

q kvadratikus alak normalalaki az ey,...,e, és az fi,..., fn bdzisban. Az els
bézisban ¢ koordindtas alakja

q::c?+...+:ci kmjzﬂ_l —...—:r;?,
a masodik béazisban pedig

g=yi+...+yl—yh—... -2
Azt kell igazolni, hogy k& = {. Ha k # [, mondjuk k > [, akkor az (n + k& — 1)-elemii

€1,.. ')ekafl+]1‘ o2} 7fn

vektorrendszer linedrisan fiiggd, mert a vektortér n dimenziéjandl t5bb eleme van.
Ezért vannak olyan nem csupa nulla Ay, ..., A\, ptig1, - . ., itn valés szamok, hogy

Arer + .+ Agek + g fier oo+ pnfn = 0.
Ekkor a

v=XAer+... .+ Mk =~ firr — - — tnfn
vektor nem a nullvektor. Ha ugyanis 0 lenne, akkor az ey, ..., ex és fivty-o s fn
vektorrendszerek linedris fiiggetlenségét felhasznélva azt kapnank, hogy mindegyik
egyiitthatd nulla. Ezért a Ay, ..., Ax szdmok és a gy 41, . .., un szémok kozott is van
nullatol kiilénbozs, amibdl egyrészt

glv) =X +...+ 2% >0,
masrészt
q(v) = —pfy —... —pl <0

kovetkezik, ami lehetetlen. A k < [ esetben a bizonyitds hasonléan torténik.

16.4. Definicié. Azt mondjuk, hogy a valés szdmtest feletti V vektortéren ér-
telmezett q kvadratikus alak pozitiv definit (negativ definit), ha barmely v € V
esetén q(v) > 0 (g(v) < 0), és q(v) = 0 csak a v = 0 esetben fordul el§. Ha
q(v) = 0 (g(v) <0) barmely v € V esetén, és g(v) = 0 nem csak a v = 0 esetben
fordul el8, akkor g pozitiv szemidefinit (negativ szemidefinit). Indefinit a kvadrati-
kus alak, ha pozitiv és negativ értéket is felvesz.

A kévetkezd tétel a definicidk kézvetlen kévetkezménye, s ezért a bizonyitast
az olvaséra bizzuk.
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16.5. Tétel. Valamely n-dimenzids vektortéren e’rtejmezett q valos kvadratikus alak
no-rn:tcimlakja legyen T3 + ...+ z} .—,xﬁﬂ T T I Ekkor.
6.5.1) g akkor és csak akkor pozitiv deﬁmi..‘, hak=r =R -
(16. ) q akkor és csak akkor negativ definit, ha k =0 és r = n;
( 3) ¢ akkor és csak akkor pozitiv szemidefinit, ha k =r < n;
1658, 2 akkor €s csak akkor negativ szemidefinit, ha k =0 ésr < n;
E ; g akkor és csak akkor indefinit, ha 0 < k < r.

Kovetkezmény. Bdrmely olyan A szimmetrikus valds mdtrizhoz, gmelyhe}z
16.? 26 zAz” kvadratikus alak pozitiv definit, megadhaté olyan P nemelfajuld valds
ftartozo LAL

mitriz, melyre az A = PP" egyenldség teljesiil

Bi itas. Legyen A n x n-es szimmetrikus valos mé,trix_, és legyen q az ]]?"‘ vek-
|zqnyl srtelmezett azon kvadratikus alak, melynek matrixa a standard bizisban

toen = me definit, akkor a 16.5. Tétel szerint normalalakjanak métrixa az

4. B pOthlVé métri;c. Legven S annak a nemelfajulé linedris helyettesitésnek

" ;ﬂfﬁ?j ot 4 sormdlataldd visd, Bkt B — SAST, il

am »

A= FEET) L= gt ()

- - T z ’
Kivetkezik. Legyen P = S~1. A 4.2. Tétel szerint (ST)! = ()T = PT, és fgy
ovetkezik. s :
ao(*) egyenldségbdl az A= PPT cgyenléséget kapjuk. |

16.7. Definicié. Egy A = (@ij )nxn valés matrix féminorainak hivjuk az

apnn Az ot O1k

a P a‘?k
a ?2 ™ lakan
A1 Qg2 Ok

determinansokat.

Végiil bizonyitas nélkiil ismertetjiik a kévetkezd fontos tételt:

= (@3 los kvadratikus alak mdtriza valamely

stel. Legyen A = (Gij)nxn €9y va tke ‘ el

;qlg'b;e qu kvadratikus alak akkor és csak akkor pozitiv definit, ha az A mdtriz
dzishan.

minden féminora pozitiv.

17. Euklideszi terek

17.1. Definicié. Azt mondjuk, hogy az R valds szdmtest feletti véges dimenzids V'
vektortér euklideszi tér a (—, =3 V2 5 R belsé szorzattal, ha (—, —) olyan szim-

metrikus bilinedris leképezés, melyhez tartozé V — R, v (v, v) kvadratikus alak
pozitiv definit, azaz

(¥ +v,w) = (u,w) + (v, w), (u,v) = (v, u), Mu, v) = (Au,v), (u,u) >0
minden u,v,w € V és minden \ € R esetén, és (u,u) = 0-bél u = 0 kévetkezik.
Az u vektor hosszdn (normdjdn) az ||u| = \/ (u, u) nemnegativ szamot értjik,

az u és v vektorok tdvolsdga ||u — v||. Az u vektor normdit, ha hossza 1.

17.2. Példa. Minden n = l-re az R" vektortér euklideszi tér az

n
<£!E) :E_T - inyi: T = ('Tl:-' -5$'n.)s y = (yla-'-ayn) S Rnr
=1

Un. standard belsé szorzattal,

17.3. Bunyakovszkij-Ca uchy-Schwarz-egyenIﬁtlenség. (BCS-

egyenldtlenség) Euk-
lideszi tér tetszéleges u, v vektora esetén

[{w, )| < [lufl]f])-

Bizonyitas. Ha u = 0, akkor igaz az &llitas, mert az egyenldtlenség mindkét oldala
nulla. Tegyiik fel, hogy « # 0. Ekkor minden ) € R esetén

0< A —v)2 = Q- v, Au —v) = (Au, Iu) — (Au,v) — (u, ) + (v, v) =

= [lulPA? — 2w, v) A + Jv]|2.
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Frért a2 ||quA2 — 2{u, v) A+ Hu”z mésodfoki polinom diszkrimindnsa nem pozitiv:
Ze: / !
4{u, v)* — 4lul*[|lv]|* < 0,

amibdl kovetkezik az dllitas. ;

17.4 Haromszog-egyenlotlenség. Euklideszi tér tetszoleges u,v vektora esetén

e+ vl < lufl + (vl

Bizonyitas. Négyzetre emelve az egyenl6tlenség mindkét oldalat a kovetkezd ekvi-
iz :

valens egyenlétlenseget kapjuk:
2
fu+v,u+v) = u+o]? < (lull + [l2])* = llll® + ([0l + 2lwllllvll,

7z
al? + 20,0 + [o]2 < [l + ol + 20l o],

ami kovetkezik a BCS-egyenlétlenségbol. | .

17.5. Definicié. Ha u,v # 0, akkor

i & {wy) 1
~ edllioll

4s ezért van pontosan egy olyan o (0 < a <), hogy

(u, v)

COSQ¥ = ———.
[l [

Eazt az o szoget az u és v vektorok szogének nevezziink. Az mondjuk, hogy az u és
ektorok merdlegesek (ortogondlisak), ha {(u,v) = 0. Jele: u J_ v ,
o A7 Uty .. Uk vektorrendszer ortogondlis, ha bdrmely 1 < i < j < k esetén
g H:a az u; (1 < i < n) vektorok normaltak is, akkor ortonormdlt yfakta?"-
" dszejr.‘r('il beszéliink. Az A n x n-es matrixot ortogondlis mdtrimak nevezziik, ha

ngvektorrendszere ortonormalt az R™ euklideszi térben.

Vilégos, hogy 0 L u minden u vek”tor esetén. ”Vc.e.gyiquk jészre, hog}: .kéttQ—
t6] kiilonbozé vektor pontosan akkor meroriﬂeges, ha szogt;k T e_;_sl egy A négyzetes
métrix pontosan akkor ortogondlis, ha AA" = E, azaz A- =A K - l

A kovetkezd tétel bizonyitdsa soran egy olyan algorlt’rr?ust ismertetiink, mely
{tségével linedrisan fiiggetlen vektorrendszerbél ortogoqahs vektorrefldszert kap-
;Zimk Az algoritmust Gram-Schmidt-féle ortogonalizdcionak nevezziik.
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17.6. Tétel. Euklideszi tér tetszéleges uy, ..., ux linedrisan fiiggetlen vektorrend-
szere esetén van olyan vy, ..., v ortogondlis vektorrendszer, melyre [uy, ... s W] =
[1)1,...,7)1], %= 1,...,."6.

Bizonyitds. A bizonyitds k szerinti teljes indukciéval torténik. Ha k — 1, ak-

kor a v; = u; egyelemii vektorrendszer eleget tesz a feltételeknek. Tegyiik fel,
hogy k > 2, és (k — 1)-re igaz az allitds. Legyen us,...,u; linearisan fiiggetlen
vektorrendszer. Az indukciés feltevés szerint van olyan v1,...,vx_1 ortogondlis
vektorrendszer, melyre [u1,...,u;] = [v1,...,7;], i =1,...,k — 1. Keressiik a Vg,
vektort

k-1

Vi :uk+z/\ivi: /\1;~-v;/\k—l € R,
i=1

alakban. Az ortogonalitdsi feltétel miatt minden j-re, 1 < 1£k~—-1,

k-1 k-1
0= (uk,v;) = (e + Y _ Nivi, v;) = (ug, v;) + > Aifvs,vj)
=1 i=1

= (uk,'uj) + /\j (Uj,?)j),

amibol
)\j:f(”’“’”ﬁ, 1€ 5 k=~1.
(Uj ) Uj)
Ha a vy vektort a most kiszdmolt egyiitthatékkal adjuk meg, akkor vq,..., v or-
togondlis vektorrendszer lesz, és az [ug,...,ux] = [vy,... ,Ux) feltétel is teljesiil,

hiszen a két vektorrendszer ekvivalens. Végiil megjegyezziik, hogy (v;,v;) # 0,
mert v; # 0, 1 <j <k — 1, ugyanis

k—1 :r(ul,...,uk_l) :dim[ul,...,uk,l]

=dim[vy,...,v-1] = r(vy,...  Uk—1)

miatt a vq,..., v 1 vektorrendszer linedrisan fiiggetlen, s ezért vektorai kilénbéz-
nek a 0-tdl.
|

17.7. Megjegyzés. Vegyiik észre, hogy ha uy, ... , 1y ortogondlis részrendszere az
uy, ..., u; vektorrendszernek, ! < &, akkor a Gram-Schmidt-féle ortogonalizacid
SOTan v1 = uy, ..., = w; adédik.

17.8. Kovetkezmény. Euklideszi tér barmely ortonormdlt vektorrendszere kiegészit-
heté ortonormdlt bdzissd. Euklideszi térben van ortonormdlt bdzis.
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Bizonyitds. Az els6 4llitas igazolasahoz legyen u1, . .., ux ortonormalt vektorrend-
szer valamely n-dimenzids euklideszi térben. El6szoér megmutatjuk, hogy ui,.. ., uk
linearisan fiiggetlen. Valéban, ha Zle Au; = 0, akkor

k k
(= (Q.uj) = (Z )\iuz,uj) = ZA@(U;‘,HJ') = )\j(ﬂj,’bﬂj) = )\j, 1 Sj S k.

i=1 i=1

Egészitsiik ki a vektorrendszert az wy, ..., uk, uy, 1, ..., u, bazissd, és alkalmazzuk
r4 a Gram-Schmidt-féle ortogonalizaciét. A 17.7. Megjegyzést is figyelembe véve,
az Ui, ..., Uk, ..., Uy ortogonalis vektorrendszert kapjuk. Mivel

(T N SN . [E) R e

azért a kapott vektorrendszer is bdzis. Ha a nem normalt vektorokat megszorozzuk
hosszuk reciprokdval, akkor a feltételnek eleget tevé vektorrendszerhez jutunk. A
masodik 4llitas igazolasahoz alkalmazzuk az els6 éllitast az lires vektorrendszerre.

17.9. Definicié. Az U és V euklideszi terek izomorfak, ha van olyan ¢:U — V

vektortér izomorfizmus, mely megtartja a belsé szorzatot, azaz {up,vp) = (u,v)
minden u,v € U esetén.

17.10. Tétel. Bdrmely n-dimenzids euklideszi tér izomorf az R™ euklideszi térrel.

Bizonyitas. Legyen V n-dimenzi6s euklideszi tér, ey, ..., e, ortonormalt bazis V-

ben, és tekintsiik a

e:R" =V, (£1,...,Zp) — Zmie;
i=1

leképezést. A 10.8. Tétel bizonyitdsdban lattuk, hogy ¢ vektortér izomorfizmus.
Ha (Z1,...,2Zn), (Y1, - -, Yn) vektorok R"-ben, akkor

n

(1, sz, (U1, Un)p) = (Z miei,Zyiei) =3 ziysleies)

i=15=1

n
= Zﬂh’yz : (((L‘ly- --;xn)a(yh'"!yﬂ))'
5

Tehdt y megtartja a belsd szorzatot. .

18. Szimmetrikus linedris transzformaciok,
a kvadratikus alakok fétengelytétele

18.1. Definicié. Ha a V euklideszi tér ¢ linedris transzformdcidjira (uyp,v) =
(u,vp) minden u,v € V esetén, akkor azt mondjuk, hogy ¢ szimmetrikus vagy
onadjungdlt linedris transzformdcid.

18.2. Tétel. Euklideszi tér szimmetrikus linedris transzformdcidjdnak mdtriza bdr-
mely ortonormdlt bdzisban szimmetrikus. Forditva, ha eqy linedris transzformdceié
mdtrize valamely ortonormdlt bdzisban szimmetrikus, akkor a linedris transzfor-
mdcid szimmetrikus.

Bizonyitas. Legyen V euklideszi tér és ey, ..., e, ortonormalt bazis V-ben. Ha a

¢ linedris transzformdcié métrixa A = (a;;), akkor a 12.2. Definicié szerint e =
! - e P . . .

Ek:l aikek, 1 <1 < n, ésezért minden 1 <1i,j < n esetén egyrészt

n

n
(eip,e5) = (Z Qikek, €5) = Zaik<€k:€j> = Q4j,
k=1 k=1
masrészt

L T
(ei,ejp) = <Eészajk3k> = Za;;k(ei,e,k) = Q5.
k=1 k=1

Ha ¢ szimmetrikus, akkor (e;p, e;) = {ei,e59), 1 <4,5 < n, igy a;; = aj; kivetke-
zik minden 1 <, < n esetén. Tehdt A szimmetrikus.

Forditva, ha a ¢ linedris transzformécié A = (ai;) métrixa szimmetrikus,
akkor a fenti szdmoldst figyelembe véve kapjuk, hogy

(eap, €5) = @iy = aji = (e, e50), 1 < 4,5 <n.

Ezért ha w= 3" ze,,v =31  ye; €V, akkor

(up,v) = (3 mieap,v) = (3 wileip), Y wies) =
i=1 3= =1
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mn mn n n
S ITTIIED ) e
i=1 j=1 i=1 j=1

- (i Ii@i,iyi(e;‘(ﬁ» = (u, (Z yie)) = (u, vp).

Tehét ¢ szimmetrikus. -

18.3. Segédtétel. Euklideszi tér barmely szimmetrikus linedris transzformdcidjdnak
van sajdtérték, sajatvektor pdrja.

Bizonyitas. Legyen ¢ a V' euklideszi tér szimmetrikus linearis trans’zfo'rméciéja,
legyen ey, ...,e, ortonormdlt bizis V-ben, és tegyiik fel, hogy w'matnxa Ebbefl
a bazisban az A szimmetrikus matrix. A 14.2. Tétel szerint elég meg’muta“tm,
hogy A karakterisztikus polinomjdnak, f4(z) = |A — zE|-nek van valosi gyoke.
A klasszikus algebra alaptétele szerint fas-nak van gyoke a komp}ex. szfnn‘ok C
testében. Jelolje A € C az egyik gyokot. Az A matrixnak, mint C folotti matnx?.a.’k
A karakterisztikus gyvoke, ezért ugyancsak a 14.2. Tétel szerint van olyan nulldtél
kilonbozé z = (x1,...,2,) € C" vektor, hogy £ A = A\z. Tetszdleges ¢ §£ komplex

konjugaltjat jelolje ¢. Ha (aq;) valamely C feletti métrix, akkor legyen (a;;) = (@)
Ekkor

XY 0t = MELT) = (B)e” = (B)e” = 5" = (FA)a” = (gA)a”
=E(4zT) = 2(A%2") = Z((eA)T) =BT = Xze") = A ) | miFn
a =1

ahonnan

A=X)D =z =0.
i=1

Mivel van olyan 1 < j < n, hogy z; # 0, ezért

n

S zme Skl £0,
=1

i=1

igy a korabbi egyenldségb6l A — X = 0, azaz A = A kovetkezik. Tehat A valés szam.
|
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18.4. Tétel. Fuklideszi tér tetszoleges o szimmetrikus linedris transzformdcidja
esetén az euklideszi térnek van ¢ sajdtvektoraibél dlls ortonormadlt bdzisa. Ebben
a bdzisban o mdtriza olyan diagondlis mdtriz, melynek fédtldjiban rendre a bdzis-
vektorokhoz tartozd sajdtértékek dllnak.

Bizonyitds. A tétel masodik, azaz ¢ matrixdra vonatkozé allitdsa a definicidk kz-
vetlen kovetkezménye, ezért a részleteket az olvaséra bizzuk. Az elsd allitas bizo-
nyitdsa a vektortér dimenzidja szerinti teljes indukcival torténik. Az egydimenzidés
esetben az 4llitds trivialis, mert barmelyik normalt vektor sajatvektor és bézis is.
Legyen n > 2, és tegyiik fel, hogy (n — 1)-dimenziés euklideszi terekben igaz az
éllités. Legyen ¢ az n-dimenziés V euklideszi tér szimmetrikus linedris transzfor-
macidja. A 18.3. Segédtétel szerint van p-nek sajitérték, sajatvektor parja. Legyen
egy ilyen par A, w. Ekkor az e = ﬂi}—”w normalt vektor is sajitvektor, mert

1 1

ep = (T—rw)p = m(w@ =

o () = M) = ke

L
[[w] [l
Tekintsiik az

et ={veVie Lv}

halmagzt, az e vektor n. ortogondlis komplementerét. Ha u,v € et és u € R, akkor
{e,u) = {e,v) =0,

(eut+v) = {e,u) + (e,v) = 0+0=0,

(e, v} = ple,v) =p0 =0
és

{e,v0) = (ep,v) = (Ae,v) = Me,v) = N0 =0,

amibdl u+v, pv, v € el kovetkezik. Tehdt et olyan altér, melyet  6nmagéba visz,
azaz melynek |, szimmetrikus lineéris transzformdciéja. A 17.8. Tétel szerint
az e vektor kiegészithetd e, vy, . .. » Un—1 ortonormaélt bazissa V-ben. Mivel e g el
ezért el nem lehet n-dimenzids altér. Masrészt Vi,-..,Vp_1 € et miatt et legaldbb
(n — 1)-dimenziés. Tehat el pontosan (n — 1)-dimenziés. Az indukciés feltevés
szerint van ¢|.. sajitvektoraibél &ll6 e, . . . »€n—1 ortonormélt bazis el-ben. Ekkor

€,€1,...,6n_1 a  linedris transzformacié sajatvektoraibél allé ortonorméalt bizis

V-ben
[ |

18.5. Kovetkezmény. Bdrmely A valds szimmetrikus mdtrizhoz megadhatd olyan
P ortogondlis mdtriz, melyre P~YAP diagondlis.
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Bizonyitas. Legyen az R™ euklideszi térben eq, ..., e, a standard ortonormalt ba-
zis, és ¢ az a linedris transzformdcié, melynek mdtrixa ebben a bazisban az A
szimmetrikus matrix. A 18.2. Tétel szerint ¢ szimmetrikus, ezért a 18.4. Tétel
szerint van olyan e}, ..., e, ortonormalt bézis, melyben ¢ matrixa D diagonélis.
Ha az els6 bazisrél a masodik bazisra valé dtmenet métrixa P, akkor a 13. feje-
zetben igazoltak szerint D = P~'AP. Most mér csak azt kell megmutatni, hogy
P = (p;;) ortogonalis matrix. Tudjuk, hogy e; = >_,_, pikek, 1 < i < n. Ezért ha
1 <1i,j < n, akkor

n n k3
((pits -+ Pin)o(Ds1r- -2 Pin)) = Y pikPik = »_ 3 pikpsr{eh, €})
k=1

k=11=1

n n - .

; ; 1, hai=j

= Pike Pik€r) = (€4, €5) = : :
(O pucks Yopel) = (oo | Tt

A 15.8. Tétel szerint barmely A szimmetrikus métrixhoz megadhat6 olyan §
nemelfajulé matrix, melyre az SAST matrix diagonalis. A valés matrixokra vo-
natkozdan a 18.5. Tétel sokkal ,,erésebb” allitas, mint a 15.8. Tétel, hiszen minden
ortogonalis matrix nemelfajuld, és ortogondlis matrix inverze megegyezik a matrix
transzponaltjdval.

18.6. Kvadratikus alakok fotengelytétele. Fuklideszi térben barmely kvadratikus
alakhoz megadhatd az euklideszi tér olyan ortonormdlt bdzisa, melyben o kvadratikus

alak kanonikus alaki.

Bizonyitds. Legyen g valamely n-dimenzids V' euklideszi téren értelmezett kvadra-
tikus alak, eq,...,e, ortonorméalt bazis V-ben és A a ¢ kvadratikus alak matrixa
ebben a bazisban. Legyen ¢ V' azon linearis transzformiciéja, melynek matrixa
ugyanebben a bazisban A. Mivel A szimmetrikus, a 18.2. Tétel szerint ¢ szim-
metrikus linedris transzformécié. Ezért a 18.4. Tétel szerint van olyan ef, ..., e},
ortonormélt bazis, melyben ¢ matrixa diagondlis. Jeldlje D ezt a diagondlis mét-
rixot. Ha a madsodik bdzisrdl az elsé bazisra valé dtmenet métrixa S, akkor a
13.5. Kévetkezmény szerint D = SAS™L. A 18.5. Tétel bizonyitdsabdl tudjuk,
hogy S ortogondlis, azaz S—1 = ST, Ezért D = SAST, ami egyben ¢ métrixa a
masodik bazisban. .
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