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1. Bizonyítsuk a közbens® értékek felvételér®l szóló tételt!

Tétel:

Tegyük fel, hogy f(x) folytonos [a, b]-n és q ∈ R tetsz®leges, hogy f(a) < q < f(b) vagy
f(b) < q < f(a). Ekkor ∃ olyan c ∈ (a, b), hogy f(c) = q.

Bizonyítás:

Induljunk ki abból az esetb®l, hogy f(a) < q < f(b). Vegyünk egy S halmazt, amelyet
úgy de�niálunk, hogy

S ··= {x ∈ [a, b] : f(x) ≤ q} .

Két dolgot egyb®l állíthatunk:

1. Mivel abból indultunk ki, hogy f(a) < q, ezért a ∈ S, tehát S biztosan nemüres
halmaz, és mivel

2. S ⊆ [a, b], tehát részhalmaza egy felülr®l korlátos halmaznak, ezért S felülr®l korlátos
lesz.

A tanult axióma kimondja, hogy a valós számok minden nemüres, felülr®l korlátos részhal-
mazának létezik legkisebb fels® korlátja, azaz ∃ c = supS. Azt a fentiek alapján állíthatjuk,
hogy b biztosan egy fels® korlátja az S halmaznak, ebb®l következik, hogy c ≤ b. Tudjuk
továbbá, hogy a ∈ S, és mivel c = supS, ezért a ≤ c. Ezek alapján biztos, hogy

a ≤ c ≤ b.

Eddig jó. Következ® lépésben az egyenl®ségeket lenne szükséges kizárnunk. Ha azt feltételez-
zük, hogy f(c) > q, akkor f(x) > q egy (c− δ1, c], δ1 > 0 intervallumon. De tudjuk azt is,
hogyha c legkisebb fels® korlát, akkor ∃ x′ ∈ S, amelyre c − δ1 < x′ < c lesz igaz. Mivel
S halmazt úgy de�niáltuk, hogy f(x′) ≤ q, ezért a két állítás ellent mond egymásnak. Így
tehát f(c) ≤ q, c 6= b és c < b lesz igaz.

Amennyiben f(c) < q, úgy f(x) < q egy [c, c + δ2), δ2 > 0 intervallumon. De ha
x ∈ S, akkor x ∈ (c, c + δ2), ebben az esetben viszont c már nem lesz fels® korlát, ami
ellentmondáshoz vezet. Így tehát f(c) = q, amelyb®l adódik, hogy c 6= a, azaz c > a, tehát
a < c < b lesz igaz.

2. Definiáljuk a legnagyobb alsó korlátot!

Legyen S egy nemüres halmaz, S ∈ R. Azt mondjuk, hogy k alsó korlátja S-nek, ha
∀x ∈ S esetén x ≥ k. Ha S-nek ∃ k-ja, akkor S-t alulról korlátosnak nevezzük. Az m ∈ R
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az S halmaz legnagyobb alsó korlátja, ha m alsó korlát és ∀ k esetén m ≥ k. A legnagyobb
alsó korlát jelölése: m = inf S.

Tétel:

Ha m = inf S és ε > 0 tetsz®leges, akkor ∃ x ∈ S, melyre m < x < m+ ε.
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Nézzük meg a de�níciós határértéket!
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Eredményre juthatunk a de�nícióból is, ha ismerjük az egyszer¶ L'Hospital-szabályt, amely
szerint

lim
x→u
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.

Deriváljuk tehát a külön-külön a számlálót és a nevez®t h szerint parciálisan:
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Helyettesítsünk be h = 0-át és végezzük el az osztást:
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Egyez® eredményekre jutottunk.
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6. Legyen

f(x) =

{
x3 + 1, ha x ≥ 1,

3x2 − 1, ha x < 1.
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• Hol folytonos f(x)?

• Hol di�erenciálható f(x)?

Megoldás:

Az f(x) függvény két polinomfüggvény összeillesztése az x = 1 pontban. Mivel a
polinomfüggvények folytonosak, így a folytonosság megállapításához elegend® csupán az
összeillesztési pont környezetén vizsgálódni. Tudjuk, hogy a függvény akkor folytonos az
x = 1 pontban, ha bal és a jobb oldali határértéke létezik és véges, ráadásul megegyeznek
egymással és a függvény helyettesítési értékével is. Vizsgáljuk meg, hogy teljesülnek-e ezek
a feltételek!

lim
x→1+

f(x) = lim
x→1+

(
x3 + 1

)
= 13 + 1 = 2, lim

x→1−
f(x) = lim
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)
= 3 · 12 − 1 = 2,

f(x = 1) = 13 + 1 = 2.

Az f(x) függvény tehát folytonos ∀x ∈ R esetén.
A di�erenciálhatósággal kapcsolatban azt mélyebb vizsgálat nélkül is ismét biztonság-

gal állíthatjuk, hogy az összeillesztési ponton kívül mindenhol di�erenciálható a függvény,
hiszen a de�níciós határértékek léteznek és végesek. Az érdekes ismét az x = 1 környezete.
Amennyiben az x = 1-ben vett bal és jobb oldali deriváltak nem egyeznek meg, úgy a
pontbeli derivált nem létezik, tehát a függvény ebben a pontban nem di�erenciálható.

Vizsgáljuk meg el®ször ezt a de�níciós határértékek szerint:
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Látjuk, hogy a bal és a jobb oldali derivált nem egyezik meg az x = 1 pontban, tehát a
függvény ebben a pontban nem di�erenciálható. Megfordítva: a függvény az x ∈ R \ {1}
intervallumon di�erenciálható. Természetesen ugyanerre az eredményre kell jutnunk, ha
megvizsgáljuk a két függvény deriváltfüggvényének értékét az x = 1 pontban:(
x3 + 1

)′
= 3x2 → f ′(x = 1) = 3 · 12 = 3,

(
3x2 − 1

)′
= 6x→ f ′(x = 1) = 6 · 1 = 6.

Remek példa, amely egyértelm¶en láttatja az el®adáson tanultakat: ha a függvény de-
riváltja létezik az x = a pontban, akkor a függvény folytonos is, de ez az állítás megfordítva
nem igaz, hiszen jelen esetben bár folytonos a függvény, mégsem di�erenciálható az x = 1-
ben.
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16. Írjuk fel a függvény x0-beli pontjába húzható érint® egyenes

egyenletét!

f(x) = x2 + 7x+ 2, x0 = 5.

Megoldás:

Tudjuk, hogy
y = f(x = x0) + f ′(x = x0)(x− x0).

f(x = x0) = 52 + 7 · 5 + 2 = 25 + 35 + 2 = 62,

f ′(x) =
(
x2 + 7x+ 2

)′
= 2x+ 7, f ′(x = x0) = 2 · 5 + 7 = 17.

y = 62 + 17(x− 5) = 62 + 17x− 85 = 17x− 23.

17. Írjuk fel a függvény x0-beli pontjába húzható érint® egyenes

egyenletét!

f(x) = x cosx, x0 = 0.

Megoldás:

f(x = x0) = 0 · cos 0 = 0 · 1 = 0,

f ′(x) = (x cosx)′ = cosx− x sinx, f ′(x = x0) = cos 0− 0 sin 0 = 1− 0 = 0.

y = 0 + 1 · (x− 0) = x.

18. Írjuk fel a függvény x0-beli pontjába húzható érint® egyenes

egyenletét!

f(x) =
√
x2 + 4x− 2, x0 = 1.

Megoldás:

f(x = x0) =
√

12 + 4 · 1− 2 =
√
3,
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1

2

1√
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(2x+ 4) =
2x+ 4

2
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=
x+ 2√

x2 + 4x− 2
,

f ′(x = x0) =
1 + 2√

3
=

3√
3
.
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√
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19. Írjuk fel a függvény x0-beli pontjába húzható érint® egyenes

egyenletét!

f(x) = e3x + 1, x0 = 0.

Megoldás:

f(x = x0) = e3·0 + 1 = e0 + 1 = 1 + 1 = 2,

f ′(x) = e3x · 3 = 3e3x, f ′(x = x0) = 3e3·0 = 3e0 = 3 · 1 = 3.

y = 2 + 3 (x− 0) = 2 + 3x.

20. Hol differenciálható az alábbi függvény?

f(x) =

{
1
x , ha x > 1,

−x+ 2, ha x ≤ 1.

Nem fogok minden esetben kitérni rá, de egyértelm¶, hogy az ilyen típusú feladatok arra
kérik a hallgatót, hogy az összeillesztési pontban vizsgálja meg a függvény folytonosságát.
A komponensek deriváltfüggvényei természetesen léteznek, nincsen ezen semmi különös.
Az összeillesztési pont az x = 1. Nézzük meg, hogy a bal és a jobb oldali derivált ebben a
pontban megegyezik-e. Ha igen, a függvény a teljes értelmezési tartományon di�erenciál-
ható lesz. Fussunk neki:

lim
x→a+

f(x)− f(a)
x− a

= lim
x→1+

1
x − 1

x− 1
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x→1+

1

x
· 1− x
x− 1
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−1

x

x− 1

x− 1
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−1

x
· 1 =

= −1

1
· 1 = −1.

lim
x→a−

f(x)− f(a)
x− a

= lim
x→1−

−x+ 2− 1

x− 1
= lim

x→1−

−x+ 1

x− 1
= lim

x→1−

−(x− 1)

x− 1
= −1.

A bal és a jobb oldali di�erenciálhányados megegyezik, a függvény tehát a teljes értelmezési
tartományon di�erenciálható.

21. Hol differenciálható az alábbi függvény?

f(x) =

{
1
x , ha x ≥ 1,

x, ha x < 1.

Egyszer¶ dolgunk van, hiszen a függvény x = 1 pontban vizsgált jobb oldali deriváltja
megegyezik az el®z® feladatban kiszámolt di�erenciálhányadossal. Gyorsan lássuk be tehát
hogy ez a függvény csak ∀x ∈ R \ {1} esetén di�erenciálható:

lim
x→a+

f(x)− f(a)
x− a

= lim
x→1+

1
x − 1

x− 1
= lim

x→1+

1

x
· 1− x
x− 1

= ... = −1.

6. oldal



Unger Tamás István FTD1YJ

lim
x→a−

f(x)− f(a)
x− a

= lim
x→1−

x− 1

x− 1
= 1.

Érdemes ábrázolni is a függvényt, jól látszik rajta, miért nem lehet di�erenciálni f(x)-et
az összeillesztési pontban. Még akkor is, ha a függvény folytonos.
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