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1. VEGEZZUNK MONOTONITAS- ES SZELSOERTEK-VIZSGALATOT A KOVETKEZO
FUGGVENYEN:

Megoldas:

Az értelmezési tartomany Dy = R\ {—2,2}, mert 22 —4 # 0 — 2% # 4 — 2 # £2.
Ezek alapjan a fiiggvény nevezetes pontjai: —oo, —2, 2, co. A fiiggvény hatarértékei a
nevezetes pontokban:
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A fiiggvény monotonitasanak megvizsgaldsahoz sziikség van annak elsé derivaltjara:
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Az els6 derivalt a szamlald alapjan az © = 0 helyen lesz nulla, igy a fliggvénynek ebben
a pontban lehet szélsGértéke. Készitsiink tablazatot, melybe belefoglaljuk a nevezetes
pontokban a derivalt elGjelét, a fiiggvény hatarértékeit a nevezetes pontokban, valamint a
fliggvény menetének tendenciajat is.

fl(a) =
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A derivaltfiiggvény nevezéje mindig pozitiv lesz, a szamlalo pedig negativ z-ek esetén po-
zitiv, pozitiv x-ek esetén pedig negativ lesz, ezért a deriviltfiiggvény negativ x-ek esetén
pozitiv, pozitiv z-ek esetén pedig negativ el§jeli lesz. Ahol az elGjel pozitiv, ott a fliggvény
monoton nd, ahol negativ, ott monoton csékken. Ebbdl kévetkezik, hogy a fliggvénynek
az x = 0 pontban lokélis maximuma van, f(z) = 0. Ezek alapjan a fiiggvény gorbéje mar
felrajzolhato.

571

10

o

-10

1. dbra. f(z) a nevezetes pontok kérnyezetében

A fiiggvény képletébdl egyszertien belathato, hogy f(z) = f(—=z), tehat a fiiggvény paros.
Ha szeretnénk, megkisérelhetjitk meghatarozni a fiiggvény masodik derivaltjanak segitsé-
gével is, hogy az x = 0-nél 1év§ szélsGérték lokilis maximum. Ehhez allitsuk el6 a mésodik
derivaltat:

b =8\ —8(a%—4)? 4322 (% — 4)
o= (o) - e

Helyettesitsiink be x = 0-at. A nevezd pozitiv, a szamlaloban szerepls Gsszeg méasodik
tagja nulla, az els6 pedig negativ, a pontos értéke lényegtelen. A mésodik derivalt tehat
ebben a pontban negativ, ami a tanultak alapjan azt jelenti, hogy a fliggvénynek lokalis
maximuma van.

2. VEGEZZUNK MONOTONITAS- ES SZELSOERTEK-VIZSGALATOT A KOVETKE-
z0 FUGGVENYEN:

f(z) = JrInz.

Megoldas:

Az értelmezési tartomany a logaritmus miatt Dy = (0,00). Ezek alapjan a fiiggvény
nevezetes pontjai: 0, co. A fiiggvény hatarértékei a nevezetes pontokban:
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lim /zlnz = 0o - 00 = oo.
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A definicios haromszog a L’Hospital-szabaly alkalmazasat jelenti. A fiiggvény monotoni-
tasdnak megvizsgaldsadhoz sziikség van annak els§ deriviltjara:
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Ez csak akkor lehet nulla, ha

flnz+3=0—-Inz=-3—>z=e "

A fiiggvénynek tehat az = e~3 ~ 0,05 helyen szélsGértéke lehet. Nézziik meg a derivalt
elgjelét egy ettdl kisebb, valamint egy ett6l nagyobb a esetén:
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Latjuk tehat, hogy a fiiggvénynek az x = e~ 3-ban lokalis minimuma van. Készitsiink
tablazatot:
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Tulajdonképpen készen is vagyunk.
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2. abra. f(z) a nevezetes pontok kornyezetében

A fiiggvény szélsGértékét behelyettesitéssel hataroztam meg:
f(z= 6_3) =Ve3lne 3 =—-3Ve 3 =—-3¢e".

Minden bizonnyal eredményre lehetne jutni a méasodik derivaltas probéval is a szélsGérték
tekintetében, de ez igy most egyszertibbnek bizonyult.
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3. VEGEZZUNK MONOTONITAS- ES SZELSOERTEK-VIZSGALATOT A KOVETKE-
Z0 FUGGVENYEN:

Megoldas:
Az értelmezési tartomany Dy = (—oo0, —2] U [2,00), masképpen irva Dy = R\ (-2,2),

mert 22 —4 > 0 — 22 > 4. Ezek alapjan a fiiggvény nevezetes pontjai: —oo, —2, 2, co. A
hatarértékek ezen nevezetes pontokban:
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Vizsgaljuk meg, van-e lokalis szélsGértéke a fiiggvénynek! Ehhez derivaljuk f(z)-et:
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Latjuk, hogy f’(x) = 0-hoz

kell, hogy igaz legyen, ami azt jelenti, hogy x = v/x2 — 4, ami azt mondja, hogy 2? = 22 —4,
melynek nincsen megoldasa a valos szamok halmazan. A fliggvénynek igy nincsen lokalis
minimum- vagy maximumhelye. Ett6l fiiggetleniil a szokisos tablazat felvehets, a gorbe
felrajzolhato.
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A fiiggvény grafikonjat ismét a nevezetes pontok kérnyezetében célszert felvenni. A gra-
fikon alapjan is egyértelmten latszik, hogy az nem rendelkezik lokdlis szélsGértékkel, az
értékkészlete is leolvashato:

Ry = (—o0, —2] U (0,2].
4. VEGEZZUNK MONOTONITAS- ES SZELSOERTEK-VIZSGALATOT A KOVETKEZO
FUGGVENYEN:

Megoldas:

Az értelmezési tartomany Dy = R\ {0}, mert z2 # 0. A nevezetes pontok tehat: —oo, 0
és oo. Nézziik meg a hatarértékeket:
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Vizsgaljuk meg a fiiggvény derivaltjat a lokélis szélsGértékek megkeresésének érdekében:
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Ez csak akkor lehet zérus, ha a nevez§ alapjan

z? = —4,

vagy
_1
e =2 =0.

Mivel a valés szamok halmazan egyiknek sincsen megoldasa, ezért a fiiggvénynek nincsen

lokalis maximuma, minimuma. Vegyiik fel a szokasos tabldzatot, mely alapjan a fliggvény
grafikonja mar megrajzolhato.
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4. dbra. f(x) a nevezetes pontok kdornyezetében

5. VEGEZZUNK MONOTONITAS- ES SZELSOERTEK-VIZSGALATOT A KOVETKEZO
FUGGVENYEN:

Megoldas:

Az értelmezési tartomany Dy = R\ {1}, mert 1 —2 # 0 — = # 1. Ezek alapjan a
fliggvény nevezetes pontjai: —oo, 1, co. A fliggvény hatarértékei a nevezetes pontokban:
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A fiiggvény monotonitasahoz sziikségiink van az elsé derivaltra:
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A derivaltfiiggvénynek ott lesz zérushelye, ahol a nevezs felveszi a nullat. Ez az 27 = 0 és
az xo = 2 pontok esetén lesz igaz. Ezen pontokban tehét a fiiggvénynek lokalis szélsGértéke

lehet.

l1—=z
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Amennyiben a derivaltfiiggvénybe egy negativ z-értéket helyettesitiink be, tgy a nevezdje
miatt annak elGjele is negativ lesz, a fiiggvény tehat monoton csékken. Amennyiben egy
nullatoél nagyobb, de egytdl kisebb szamot helyettesitiink be (példaul 0, 5-6t), gy pozitiv
lesz az elGjele, a fliggvény tehat monoton ng. Emiatt a fiiggvénynek az z = 0 pontban
lokalis minimuma van, értéke f(z) = 0. A derivaltfiiggvény el6jele az (1,2) intervallumon
pozitiv lesz, igy ott a fiiggvény monoton né. A (2,00) intervallumon ez az eljel negativ,
igy ott a fiiggvény monoton csokken. FEnnek a két allitasnak a kovetkezménye, hogy a
fiiggvénynek az x = 2-ben lokélis maximuma van, értéke f(z) = —4.
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5. abra. f(x) a nevezetes pontok kérnyezetében
6. BizONYITSUK BE A KOVETKEZO TETELT:

Tegyiik fel, hogy f folytonos [a,b]-n és differencialhat6 (a,b)-n. Ekkor ha f'(x) < 0
Vz € (a,b) < f monoton csokken [a, b]-n.

Megoldas:

Tegyiik fel, hogy f'(z) <0, Vz € (a,b). Legyen a < 21 < x9 << b. Ekkor biztos, hogy f
folytonos lesz [z, x9]-n és differencidlhato lesz (x1,x2)-n is. A Lagrange-tétel értelmében
ekkor 3 ¢ € (z1,x2), hogy

fw2) — f(x1)

T2 — X

flle) = — flz2) = f(z1) = f'(c) (w2 — x1).

Feltevéseink alapjan biztosan tudjuk, hogy zo — x1 > 0, valamint hogy f’(¢) < 0. Emiatt

f(2) = f@1) = f'(c) (w2 — 1) < 0.

Masként fogalmazva f(x;) legaldabb akkora, mint f(x2).
Tegyiik fel, hogy f monoton cstkken [a,b]-n. Ekkor x,zg € (a,b), x # xo esetén

f(x) — f(xO) < 0’ amely miatt f/(xo) — lim f(ﬂf) — f(‘r())
L= Zo Towo T — X

<0.
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