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1. Végezzünk monotonitás- és széls®érték-vizsgálatot a következ®

függvényen:

f(x) =
x2

x2 − 4
.

Megoldás:

Az értelmezési tartomány Df = R \ {−2, 2}, mert x2 − 4 6= 0 → x2 6= 4 → x 6= ±2.
Ezek alapján a függvény nevezetes pontjai: −∞, −2, 2, ∞. A függvény határértékei a

nevezetes pontokban:

lim
x→−∞

x2

x2 − 4
= lim

x→−∞

x2

x2
· 1

1− 4
x2

= 1 · 1

1 + 0
= 1.

lim
x→∞

x2

x2 − 4
= lim

x→∞

x2

x2
· 1

1− 4
x2

= 1 · 1

1− 0
= 1.

lim
x→−2−

x2

x2 − 4
= lim

x→−2−
x2

(x− 2) (x+ 2)
=

4

−4 · 0−
=∞.

lim
x→−2+

x2

x2 − 4
= lim

x→−2+
x2

(x− 2) (x+ 2)
=

4

−4 · 0+
= −∞.

lim
x→2−

x2

x2 − 4
= lim

x→2−

x2

(x− 2) (x+ 2)
=

4

0− · 4
= −∞.

lim
x→2+

x2

x2 − 4
= lim

x→2+

x2

(x− 2) (x+ 2)
=

4

0+ · 4
=∞.

A függvény monotonitásának megvizsgálásához szükség van annak els® deriváltjára:

f ′(x) =

(
x2

x2 − 4

)′
=

2x
(
x2 − 4

)
− x2 (2x)

(x2 − 4)2
=

2x3 − 8x− 2x3

(x2 − 4)2
=

−8x
(x2 − 4)2

.

Az els® derivált a számláló alapján az x = 0 helyen lesz nulla, így a függvénynek ebben

a pontban lehet széls®értéke. Készítsünk táblázatot, melybe belefoglaljuk a nevezetes

pontokban a derivált el®jelét, a függvény határértékeit a nevezetes pontokban, valamint a

függvény menetének tendenciáját is.
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x −∞ (−∞,−2) −2− −2+ (−2, 0) 0 (0, 2) 2− 2+ (2,∞) ∞
f(x) 1 ↗ ∞ −∞ ↗ 0 ↘ −∞ ∞ ↘ 1

f ′(x) + + − −
A deriváltfüggvény nevez®je mindig pozitív lesz, a számláló pedig negatív x-ek esetén po-

zitív, pozitív x-ek esetén pedig negatív lesz, ezért a deriváltfüggvény negatív x-ek esetén

pozitív, pozitív x-ek esetén pedig negatív el®jel¶ lesz. Ahol az el®jel pozitív, ott a függvény

monoton n®, ahol negatív, ott monoton csökken. Ebb®l következik, hogy a függvénynek

az x = 0 pontban lokális maximuma van, f(x) = 0. Ezek alapján a függvény görbéje már

felrajzolható.
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1. ábra. f(x) a nevezetes pontok környezetében

A függvény képletéb®l egyszer¶en belátható, hogy f(x) = f(−x), tehát a függvény páros.

Ha szeretnénk, megkísérelhetjük meghatározni a függvény második deriváltjának segítsé-

gével is, hogy az x = 0-nál lév® széls®érték lokális maximum. Ehhez állítsuk el® a második

deriváltat:

f ′′(x) =

(
−8x

(x2 − 4)2

)′
=
−8
(
x2 − 4

)2
+ 32x2

(
x2 − 4

)
(x2 − 4)4

.

Helyettesítsünk be x = 0-át. A nevez® pozitív, a számlálóban szerepl® összeg második

tagja nulla, az els® pedig negatív, a pontos értéke lényegtelen. A második derivált tehát

ebben a pontban negatív, ami a tanultak alapján azt jelenti, hogy a függvénynek lokális

maximuma van.

2. Végezzünk monotonitás- és széls®érték-vizsgálatot a követke-

z® függvényen:

f(x) = 3
√
x lnx.

Megoldás:

Az értelmezési tartomány a logaritmus miatt Df = (0,∞). Ezek alapján a függvény

nevezetes pontjai: 0, ∞. A függvény határértékei a nevezetes pontokban:

lim
x→0+

3
√
x lnx = lim

x→0+

lnx
1

x
1
3

= lim
x→0+

lnx

x−
1
3

, lim
x→0+

1
x

−1
3x
− 4

3

= lim
x→0+

−3 3
√
x = 0.
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lim
x→∞

3
√
x lnx =∞ ·∞ =∞.

A de�níciós háromszög a L'Hospital-szabály alkalmazását jelenti. A függvény monotoni-

tásának megvizsgálásához szükség van annak els® deriváltjára:

f ′ (x) =
(
x

1
3 lnx

)′
=

1

3
x−

2
3 · lnx+ 3

√
x
1

x
=

x−
2
3 lnx

3
+

x
1
3

x1
=

lnx

3
3
√
x2

+
1

x
2
3

=
lnx+ 3

3
3
√
x2

.

Ez csak akkor lehet nulla, ha

f lnx+ 3 = 0→ lnx = −3→ x = e−3.

A függvénynek tehát az x = e−3 ≈ 0, 05 helyen széls®értéke lehet. Nézzük meg a derivált

el®jelét egy ett®l kisebb, valamint egy ett®l nagyobb x esetén:

f ′ (x = 1) =
ln 1 + 3

3
3
√
12

=
3

3 · 1
= 1.

f ′ (x = 0, 005) =
ln 0, 005 + 3

3 3
√

0, 0052
≈ −26, 2.

Látjuk tehát, hogy a függvénynek az x = e−3-ban lokális minimuma van. Készítsünk

táblázatot:

x 0+
(
0, e−3

)
e−3

(
e−3,∞

)
∞

f(x) 0 ↘ −3e−1 ↗ ∞
f ′(x) - 0 +

Tulajdonképpen készen is vagyunk.
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2. ábra. f(x) a nevezetes pontok környezetében

A függvény széls®értékét behelyettesítéssel határoztam meg:

f
(
x = e−3

)
=

3
√
e−3 ln e−3 = −3 3

√
e−3 = −3e−1.

Minden bizonnyal eredményre lehetne jutni a második deriváltas próbával is a széls®érték

tekintetében, de ez így most egyszer¶bbnek bizonyult.
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3. Végezzünk monotonitás- és széls®érték-vizsgálatot a követke-

z® függvényen:

f(x) = x−
√
x2 − 4.

Megoldás:

Az értelmezési tartomány Df = (−∞,−2] ∪ [2,∞), másképpen írva Df = R \ (−2, 2),
mert x2 − 4 ≥ 0→ x2 ≥ 4. Ezek alapján a függvény nevezetes pontjai: −∞, −2, 2, ∞. A

határértékek ezen nevezetes pontokban:

lim
x→−∞

(
x−

√
x2 − 4

)
= lim

x→−∞

(
x−

√
x2
(
1− 4

x2

))
= lim

x→−∞

(
x+ x

√
1− 4

x2

)
=

= lim
x→−∞

(
x

(
1 +

√
1− 4

x2

))
= −∞ ·

(
1 +
√
1
)
= −∞ · 2 = −∞.

lim
x→−2

(
x−

√
x2 − 4

)
= −2−

√
4− 4 = −2− 0 = −2.

lim
x→2

(
x−

√
x2 − 4

)
= 2−

√
4− 4 = 2− 0 = 2.

lim
x→∞

(
x−

√
x2 − 4

)
= lim

x→∞

(
x−

√
x2
(
1− 4

x2

))
= lim

x→∞

(
x− x

√
1− 4

x2

)
=

= lim
x→∞

(
x

(
1−

√
1− 4

x2

))
=∞ ·

(
1−
√
1
)
=∞ · 0 = 0.

Vizsgáljuk meg, van-e lokális széls®értéke a függvénynek! Ehhez deriváljuk f(x)-et:
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3. ábra. f(x) a nevezetes pontok környezetében

f ′(x) =
(
x−

√
x2 − 4

)′
= 1− 1

2

1√
x2 − 4

· 2x = 1− 2x

2
√
x2 − 4

= 1− x√
x2 − 4

.
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Látjuk, hogy f ′(x) = 0-hoz
x√

x2 − 4
= 1

kell, hogy igaz legyen, ami azt jelenti, hogy x =
√
x2 − 4, ami azt mondja, hogy x2 = x2−4,

melynek nincsen megoldása a valós számok halmazán. A függvénynek így nincsen lokális

minimum- vagy maximumhelye. Ett®l függetlenül a szokásos táblázat felvehet®, a görbe

felrajzolható.

x −∞ (−∞,−2) -2 2 (2,∞) ∞
f(x) −∞ ↗ -2 2 ↘ 0

f ′(x) + -

A függvény gra�konját ismét a nevezetes pontok környezetében célszer¶ felvenni. A gra-

�kon alapján is egyértelm¶en látszik, hogy az nem rendelkezik lokális széls®értékkel, az

értékkészlete is leolvasható:

Rf = (−∞,−2] ∪ (0, 2] .

4. Végezzünk monotonitás- és széls®érték-vizsgálatot a következ®

függvényen:

f(x) = xe−
1
x2 .

Megoldás:

Az értelmezési tartomány Df = R \ {0}, mert x2 6= 0. A nevezetes pontok tehát: −∞, 0
és ∞. Nézzük meg a határértékeket:

lim
x→−∞

xe−
1
x2 = lim

x→−∞

x

e
1
x2

=
−∞
1

= −∞.

lim
x→0−

xe−
1
x2 = lim

x→0−
x · lim

x→0−
e−

1
x2 = 0 · 0 = 0.

lim
x→0+

xe−
1
x2 = lim

x→0+
x · lim

x→0−
e−

1
x2 = 0 · 0 = 0.

lim
x→∞

xe−
1
x2 = lim

x→∞

x

e
1
x2

=
∞
1

=∞.

Vizsgáljuk meg a függvény deriváltját a lokális széls®értékek megkeresésének érdekében:

f ′(x) =
(
xe−

1
x2

)′
= e−

1
x2 + xe−

1
x2 · 2 1

x3
= e−

1
x2 +

2e−
1
x2

x2
=

(
x2 + 2

)
e−

1
x2

x2
.

Ez csak akkor lehet zérus, ha a nevez® alapján

x2 = −4,

vagy

e−
1
x2 = 0.

Mivel a valós számok halmazán egyiknek sincsen megoldása, ezért a függvénynek nincsen

lokális maximuma, minimuma. Vegyük fel a szokásos táblázatot, mely alapján a függvény

gra�konja már megrajzolható.
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x −∞ (−∞, 0) 0− 0+ (0,∞) ∞
f(x) −∞ ↗ 0 0 ↗ ∞
f ′(x) + +
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4. ábra. f(x) a nevezetes pontok környezetében

5. Végezzünk monotonitás- és széls®érték-vizsgálatot a következ®

függvényen:

f(x) =
x2

1− x
.

Megoldás:

Az értelmezési tartomány Df = R \ {1}, mert 1 − x 6= 0 → x 6= 1. Ezek alapján a

függvény nevezetes pontjai: −∞, 1, ∞. A függvény határértékei a nevezetes pontokban:

lim
x→−∞

x2

1− x
= lim

x→−∞

x2

x

1
1
x − 1

= lim
x→−∞

x · 1
1
x − 1

= −∞ · 1

0− 1
=∞.

lim
x→1−

x2

1− x
=

1

0+
=∞.

lim
x→1+

x2

1− x
=

1

0−
= −∞.

lim
x→+∞

x2

1− x
= lim

x→+∞

x2

x

1
1
x − 1

= lim
x→−∞

x · 1
1
x − 1

=∞ · 1

0− 1
= −∞.

A függvény monotonitásához szükségünk van az els® deriváltra:

f ′(x) =

(
x2

1− x

)′
=

2x (1− x) + x2

(1− x)2
=

2x− 2x2 + x2

(1− x)2
=

2x− x2

(1− x)2
=

x (2− x)

(1− x)2
.

A deriváltfüggvénynek ott lesz zérushelye, ahol a nevez® felveszi a nullát. Ez az x1 = 0 és

az x2 = 2 pontok esetén lesz igaz. Ezen pontokban tehát a függvénynek lokális széls®értéke

lehet.
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x −∞ (−∞, 0) 0 (0, 1) 1− 1+ (1, 2) 2 (2,∞) ∞
f(x) ∞ ↘ 0 ↗ ∞ −∞ ↗ -4 ↘ −∞
f ′(x) - 0 + + 0 -

Amennyiben a deriváltfüggvénybe egy negatív x-értéket helyettesítünk be, úgy a nevez®je

miatt annak el®jele is negatív lesz, a függvény tehát monoton csökken. Amennyiben egy

nullától nagyobb, de egyt®l kisebb számot helyettesítünk be (például 0, 5-öt), úgy pozitív

lesz az el®jele, a függvény tehát monoton n®. Emiatt a függvénynek az x = 0 pontban

lokális minimuma van, értéke f(x) = 0. A deriváltfüggvény el®jele az (1, 2) intervallumon

pozitív lesz, így ott a függvény monoton n®. A (2,∞) intervallumon ez az el®jel negatív,

így ott a függvény monoton csökken. Ennek a két állításnak a következménye, hogy a

függvénynek az x = 2-ben lokális maximuma van, értéke f(x) = −4.
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5. ábra. f(x) a nevezetes pontok környezetében

6. Bizonyítsuk be a következ® tételt:

Tegyük fel, hogy f folytonos [a, b]-n és di�erenciálható (a, b)-n. Ekkor ha f ′(x) ≤ 0
∀x ∈ (a, b) ⇔ f monoton csökken [a, b]-n.

Megoldás:

Tegyük fel, hogy f ′(x) ≤ 0, ∀x ∈ (a, b). Legyen a ≤ x1 < x2 <≤ b. Ekkor biztos, hogy f
folytonos lesz [x1, x2]-n és di�erenciálható lesz (x1, x2)-n is. A Lagrange-tétel értelmében

ekkor ∃ c ∈ (x1, x2), hogy

f ′(c) =
f(x2)− f(x1)

x2 − x1
→ f(x2)− f(x1) = f ′(c) (x2 − x1) .

Feltevéseink alapján biztosan tudjuk, hogy x2 − x1 > 0, valamint hogy f ′(c) ≤ 0. Emiatt

f(x2)− f(x1) = f ′(c) (x2 − x1) ≤ 0.

Másként fogalmazva f(x1) legalább akkora, mint f(x2).

Tegyük fel, hogy f monoton csökken [a, b]-n. Ekkor x, x0 ∈ (a, b), x 6= x0 esetén

f(x)− f(x0)

x− x0
≤ 0, amely miatt f ′(x0) = lim

x→x0

f(x)− f(x0)

x− x0
≤ 0.
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