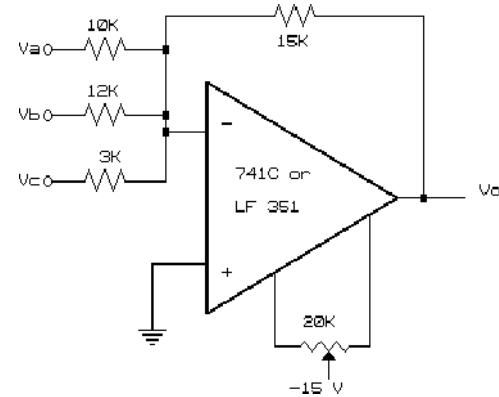


EL 351 Linear Integrated Circuits Laboratory

INVERTING AND DIFFERENTIAL SUMMING AMPLIFIERS


By: Walter Banzhaf
 University of Hartford
 Ward College of Technology
 USA

Equipment:

- Agilent 54622A Deep-Memory Oscilloscope
- Agilent E3631A Triple-Output DC power supply
- Agilent 33120A Function Generator
- Agilent 34401A Digital Multimeter

I. Test of an Inverting Summing Amplifier

NOTE: In this schematic, the op-amp power supply pins MUST be connected to +/- 15 V to power the op-amp. In addition, the 20k Ω potentiometer must be connected as shown, with the wiper ALSO connected to -15 V. This potentiometer is used to null the output voltage, V_o , to 0.00 when input voltages V_a , V_b and V_c are quiescent (i.e., connected to 0.00 V, which is ground).

1. Obtain and measure all resistors. Use measured values in all calculations.
2. Determine, BY CALCULATION, the gain from each input to V_o . Write the equation below with specific numerical gains.

$$V_o = K_a V_a + K_b V_b + K_c V_c$$

3. Connect the circuit and make all inputs quiescent. Null the output.
4. Measure the DC gain from each input separately to the output; be sure to keep other inputs quiescent. Compare measured gains with calculated gains.
5. Apply the following inputs simultaneously:

$$V_a = +5 \text{ VDC} \quad V_b = -10 \text{ VDC} \quad V_c = +3 \text{ VDC}$$

- a. predict V_o , using the measured gains from 4. above.
- b. measure V_o . Compare predicted V_o with measured V_o .
- c. measure I_a , I_b , I_b , and I_o in a way that minimally disturbs the circuit. Discuss how you did this, and what the results were. Hint: Kirchhoff's laws are always true, Ohm's law works.

II. Design and Test of a Differential Amplifier

1. Design an amplifier such that: $V_o = 4 V_a - 5 V_b - 8 V_c$
2. Test the circuit to ensure that it performs properly, in two ways:

Be sure to measure each gain individually, and also subject the amplifier to three simultaneous inputs.

- 1 Choose input voltages for V_a , V_b and V_c that will keep the amplifier in its linear operating range.