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Filters, or the selective amplification or attenuation of frequencies, are the most common element in
analog electronic circuits. Filters are not only used in audio systems for tone control (EECS 210).
Actually, they are used in    all systems. Every time you “tune” in a radio/TV station, you are using at
least 3 filters (and in high quality systems, 5 filters). The word “tune” means that you “pass” certain
frequencies (the radio/TV channel you want) and “attenuate” or “reject” other frequencies. It is very
common to have a total rejection of 80 dB for the next FM or TV station which is only 200 KHz (FM)
and 5 MHz (TV) away. We will talk about AM and FM modulation and radio receivers later in the lab
manual.
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Figure 1: Combined effect of several filters in a TV receiver.

As mentioned in class, filters can be low-pass, high-pass, band-pass or band-reject (Fig. 2a). The
tone control filter in Exp. #6 of EECS 210 were LP/Agilent filters depending on the boost/cut setting.
Also, midband audio filters (or equalizers) are bandpass/band-reject filters depending on the
boost/cut setting (Fig. 2b). Most filters used for radios/TV receivers are of the bandpass type;
selecting one channel and rejecting others.
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Figure 2: (a) Action of typical bass and treble controls. From The Science of Sound, Second
Edition, Rossing, p. 444. (b) A midrange filter response. From Application Specific Analog Products
Databook, 1995 Edition, p. 1-229.

Analog filter theory is quite complicated but very elegant. Actually, there are entire books and
courses of this subject alone! Filters can be designed to give a maximally-flat response
(Butterworth), a small ripple in the passband but sharper attenuation curve (Chebysher) or a very
sharp attenuation curve with a small ripple in the passband and stop-band (elliptic).
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Figure 3: Low-Pass Filter Prototypes of Butterworth, Chebysher and Elliptic.

The filter response can be designed to have a specific bandwidth (from ~100% to 0.1%) and a
certain attenuation curve (or roll-off). The roll-off is determined by the number of poles and zeros in
filter function. In a Butterworth (maximally flat response) design, every pole results in (1/ω) roll-off
which is equivalent to -20 dB/decade.
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One-pole H(s) ∝   
1

ω
ω >> ωo –20 dB/dec or –6 dB/Oct

Two-pole H(s) ∝  
1 2

ω




 ω >> ωo –40 dB/dec or –12 dB/Oct

N-pole H(s) ∝  
1

ω






N

ω >> ωo –20xN dB/dec or –6xN dB/Oct

In radio receivers (FM, TV, wireless telephones, …), it is very typical to result in an effective 10-pole
(or higher) bandpass filter having a narrow bandwidth and an elliptic roll-off curve of 100+

dB/Octave.

Tradeoffs: Filter design is always full of tradeoffs, as are most engineering problems. Typically, the
steeper the cutoff slope, the greater the chance for ringing and overshoot. As we’ll see in
Experiment 1, we can adjust the “Q” of the filter to get faster risetime, but a higher Q also means
more ringing and more variability with small changes in component values.”
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Figure 4: Filter response vs. number of poles.

First and Second-Order Circuits in Digital Systems:

The main interest in digital circuits is in the time domain response of pulses. As mentioned in class,
the input of a digital circuit is modeled by a parallel RC circuit, and the output of a digital circuit is
modeled by a series resistor. The digital connection between gates 1 and 2 is therefore:
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Figure 5: Risetime in digital circuits.

Two important things happen here: One is that there is a time delay (called propagation delay, tD)

between the two gates given by the speed of the pulse and the distance between the gates. The
speed of the pulse is given approximately by c rε , where c is the speed of light (3x108 m/s) and

ε r  is the relative dielectric constant of the material (EECS 230).  In fiberglass digital boards with

ε r =4, the speed of the pulse is around c/2, which is 1.5x108 m/s. Inside of a silicon chip (ε r =11.9),

the speed of the pulse is around 0.8x107 m/s. This delay needs to be considered when designing
very high speed circuits on large digital boards (clock frequency > 200 MHz), but is generally not the
limiting factor in 100’s MHz clocks.

Another more limiting factor is the risetime of the pulse due to the input capacitance of the digital
gate (tR). For a first-order circuit (Fig. 5), the risetime is given by 1/RsC and is a simple exponential.

We see that the gate capacitance of the input transistor (or gate) and the series resistance of the
output transistor (or gate) are the most important factor in limiting the risetime! One way to solve this
is to build transistors with very small gates (submicron dimensions) and large (W/L) ratios for low
series resistances. The smaller dimensions result in smaller area taken by the transistor which
reduces the risetime of the input pulse (for the same resistance), and therefore increases the
highest operating speed. In the early 1980’s, a 2 µm silicon process was the standard dimension in
silicon technology. In 1997, the 0.35 µm silicon process is the norm and some companies have
even a 0.16 µm silicon process resulting in GHz speed systems.

Sometimes in high-speed digital boards, the input pulse shows some ringing (Fig. 6). This is quite
bad since it delays the settling time of the pulse and therefore slows down the digital circuit. This is
the response of a second-order circuit and is due to a small inductance which is in series with the
input gate capacitance. The inductance can be due to very thin lines on the digital board, or to not-
so-good ground connections between the digital chips and the board. It is very hard to measure the
value of this inductance but it can be accurately estimated from the oscillation frequency. Also, the
Q of the circuit (and therefore the resistance) can be estimated from the level of the first peak. One
should always try to maintain a Q of less than 1.5 to keep the overshoot below 25% of the pulse
level (which is not that easy in very high speed circuits (f > 300 MHz)).
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Figure 6: Ringing in digital circuits.

Low-Pass Filters

A general low-pass filter has a transfer function given by

H s
K

s Q s
s jo

o

( ) =
+( ) +

=ω
ω ω

ω
2

2
0
2/

(1)

with a low-frequency (ω→ 0) gain of K, a “resonant” frequency of ωo, and a quality factor Q. The
frequency response is shown in Figure 1. For Q > 0.5, ωo is called the “resonant” frequency, while
for Q < 0.5, ωo is called the “mean” frequency, i.e., it is the mean frequency between two poles ω1

and ω2 (ω ω ωo = 1 2 , see Fig. 1). At ω ω ω= ( ) =o oH KQ,  and ∠ ( ) = −H oω 90˚ . The roll-off for

large ω is proportional to 1 2ω  which is -40 dB/decade. It is easy to determine K, ωo , and Q from

the frequency domain measurements as shown in Figure 1.
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Determining      K,      ω      o     ,      and      Q     from      Time-Domain       Measurements :

If a step function, Au(t), is impressed on the low-pass filter, the output voltage (see Fig. 2) is (Q >
0.5):
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Determining       K   : The value of K can be measured from the final value of the response and
knowledge of A.

K
V t

A

V

A
o f=

→∞( ) =

Determining      ω      o   : The oscillation frequency of the decaying sinusoid is

ω π π ωR R R of t
Q

= = = −2 2 1
1

4 2

For Q R o> ≅3,ω ω  with less than 1.5% error.
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Figure 1a. Low-pass frequency response, magnitude vs. frequency. This is called a Bode-Plot.

Figure 1b. Low-pass frequency response, phase vs. frequency.
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Figure 2. Time domain step response of a low-pass filter with K = 1, Q = 5 and A = 1.

Determining      Q   :

Method      1:      The      Overshoot      Approach  :

The first, and highest peak occurs at t = t1 when dVo/dt = 0. To find the peak overshoot value, first
find t1 and replace it in equation (2) above. When all is done, we find:

V K e u tp
Q= +









 ( )

−

−1 4 12

π

The overshoot value is defined as Vp – Vo(t →∞) and is:
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Figure 3. Overshoot vs. Q. Notice the error in Q for a small measurement error when Q > 8.

Figure 3 shows the value of the overshoot vs. Q for K = 1, A = 1. Notice that for Q > 5, any
measurement error in the value of the overshoot voltage results in a large error in the determination
of Q. For this reason, this method is accurate for 0.5 < Q < 5 and is risky for Q > 5.

There are also other reasons why this method should be used with caution in high Q systems. The
op-amp could be slew-rate limited (the output voltage will not change fast enough to arrive to the
first peak). This is especially true in high frequency filters (fo > 500 kHz) where the op-amp

bandwidth might limit the total voltage swing. Also, for small-signal op-amps, it could be in a current-
limiting mode, and therefore will not be able to drive the necessary currents in the capacitors in the
circuit. Since i = C dVo(t)/dt, this will limit the slope of the voltage and result in reduced first peak.

Again, this may occur for high frequency filters (dt is very small). Therefore, use this method with
caution for high-Q filters and at high frequencies!

Method      2:      The      Decaying      Peaks     Approach  :

A much better way to determine Q in high-Q filters is from the decay values of the sinusoidal
waveform peaks. First, measure the values of several peaks and their corresponding times (Vp1, t1;
Vp2, t2; ...). see Fig. 2. The peak values occur when the sinusoid in equation (2) is equal to 1, so it

can be removed from the analysis. The Q can then be calculated from the peak values and times of
two peaks (m, n) at times (tm, tn), where 0 < tm < tn (one of the peaks could very well be the first

peak).
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The two peaks (m, n) should be chosen carefully. One one side, they should be spaced far apart to
minimize errors, but one the other side, the peaks must be well defined above the final value. For
example, in Fig. 3, the peaks after t = 0.9 ms should not be used since they are very small and not
well defined. Therefore, this method is not very accurate for small Q filters (Q < 2) where all the
peaks (after the first one) are poorly defined.

Revisiting      ω      o     for      0.5      <      Q      <      2   :

In this case, the natural resonant frequency (ωR) is different from the resonant frequency ωo( ) .

From equation (2), we have ω ωR o Q
= −1

1

4 2
. The best way to solve it is to first determine Q from

the overshoot method with ω ωR o≅ , and then use Q to determine ωo from the measurement of
ωR.

What   if      Q      <      0.5      ?   :

For Q < 0.5, the frequency response is similar to a single pole system with ω ω1 ≅ oQ, (Fig. 1). The
risetime of the step response can be used to determine ω1 accurately (problem 3 in pre-lab). The

final value of the output voltage is still AK and this can be used to determine K. We cannot really
determine Q and ω2 from the time domain measurements alone, but this is not important. The
system performance is limited by ω1, and we know how to find its value!
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Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

Goal: To determine the frequency response of an active second order low-pass filter circuit for
underdamped (Q > 0.5) and overdamped (Q < 0.5) cases, and to see the effect of Q in
time domain using the step-response.

Equipment: • Agilent E3631A Triple output DC power supply
•  Agilent 33120A Function Generator
•  Agilent 34401A Multimeter
•  Agilent 54645A Oscilloscope

1.0 Low-Pass Filter Implementation:

A Sallen-Key non-inverting low-pass filter is shown below:

+

–

+
+

– Vcc

+ Vcc

R3= 10 KΩ

V0

R11

–

R2

–

Vi

A

R1

C1 = 2.7 nF

R4= 10 KΩ

C2 = 2.7 nF

R12

LM
741

R11  =  R12

R1  =  R11  | |  R12

220 µF

220 µF

1 µF

Vcc =12 V

The transfer function is given by:

Vo

Vi

=

1
R1 R2 C1 C2

1 + R4

R3







R12

R12 + R11







s2 + 1
R2 C1

+ 1
R1 C1

− R4

R2 R3 C2







s + 1
R1 R2 C1 C2

(s = jω)

where 
R12

R12 + R11







 is the input voltage divider, and 1+ R4

R3







 is the non-inverting op-amp low-

frequency gain when C1 and C2 are open-circuited. The 1 µF capacitor at the input is a DC-block

capacitor and will act as a short circuit for f > 100 Hz (EECS 210).
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For C1 = C2 = C, we have:

K
R

R

R

R R
low frequency filter gain

C R R
cut off frequency also called corner frequency

R
Q C

Q K K
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
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and Q = 1
R2

R1

+ R1

R2

− R4

R3

R1

R2

= 1

R2

R1

+ R1

R2

1− R4

R3







For the case of R4 = R3 and R11 = R12, we have ′K = 2  and:

K = 1, ω0 = 1
C R1 R2

and Q = R1

R2

In reality 0.95 < K < 1.5 due to resistance values inaccuracies (   +   5%).

Low-Q Active Filter:

1. Assemble the circuit as shown above with:

R11 = R12 = 2.4 KΩ  and R2 = 33 KΩ

C1 = C2 = C = 2.7 nF

This is the low-Q case with Q ~ 0.19, fo ~ 9.3 KHz. (Again, fo can change by    +   10% due
to capacitor values inaccuracies of    +   10%).

As indicated by Problem 5 in the Pre-Lab, the transfer function has effectively 2-poles,
one at f1 ~_  Q fo, and one at f2 ~_   fo/Q.

❏ Draw the filter circuit in your notebook.

2. ❏ Measure the op-amp DC voltages, V(-), V(+) and Vo and make sure that they are all

in the mV levels. Write them in your notebook.
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Frequency      Response   :

3. Connect Vo to scope channel 1 and Vi to channel 2.

a. ❏ Set the function generator to give a sinusoidal voltage of Vppk = 1 V and
measure the frequency response (Vo/Vi) from 50 Hz to 200 KHz (amplitude

only). For the low-Q case, you should do it at 100, 200, 500, 1000 Hz, etc.
Above 20 KHz, the output voltage will be very low and you should increase the
input voltage to 10 V ppk in order to measure accurately Vo.

❏ b. Measure the phase delay between the input and output waveform in the region
around 8-10 KHz and determine exactly the frequency where it is -90˚. This is ωo
(= 2 π fo)!

❏ c. Measure Vo/Vi at this frequency (|H(ωo)| = K Q ~-   Q for K ~-   1). This is your Q!

(Remember, that under the Measure 
Time

 menu, you will find a softkey at the
bottom of the screen which measures the    phase   delay between Channel 1 and
Channel 2.)

Step      Response   :

4. ❏ Set the function generator to give a   square   wave   voltage of f = 500 Hz and Vppk =
1 V. Measure the risetime of the output waveform (10% - 90% of peak value). Draw
the waveform on your lab notebook.

(Remember that under the Measure 
Time

 menu, you can find a   Risetime    softkey at
the bottom of the screen.)

5. ❏ The risetime is dominated by the first pole at f C R KHz1 2 21 2 1 8= π ~ . . Therefore
C1 has virtually no effect on this pole. Remove C1 from the circuit and measure the

risetime again. What do you notice?

6. ❏ Now, put C1 back into the circuit. Change the input square-wave frequency to 4 KHz
and measure Voppk. Plot Vi and Vo and label the ppk voltages. Why does Vo look

like a triangular wave?
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High-Q Active Filter:

1. Change the values of R11 and R12, and R2 to be:

R11 = R12 = 120 KΩ  and  R2 = 1 KΩ

Keep C1 = C2 = C = 2.7 nF.

This is the high Q case with Q R Rideal( ) .= =1 2 7 7 . However, since C1 is not identical

to C2 and also there are some parasitic capacitances in the circuit, you will find a Q

between 3 and 12. The resonant frequency is:

f
C R R

KHzo = 1

2
7 6

1 2π
~ .  but could change (   +   10%) due to capacitor values

inaccuracies.

The low frequency gain, K, is still equal to 1 (0.95 < K < 1.05 due to resistance
inaccuracies).

❏ Draw the circuit in your lab notebook.

Frequency      Response   :

2. a. ❏ Set the function generator to a  sinewave    with Vippk = 1 V. Measure the

frequency response from 50 Hz to 200 KHz.

Be careful, the frequency response changes very quickly around fo! First

determine fo max V Vo i( )  by a quick frequency scan (using the knob), and

then measure the frequency response taking several more points around fo.

(For example; the -3 dB, -6 dB, -10 dB points of H(ω) max).

b. ❏ Measure the phase of Vo/Vi around fo and determine the frequency where the

phase delay is -90˚. This frequency will be very close to where |H (ω)| is
maximum and is the exact ωo.

c. ❏ Measure Vo/Vi at this frequency. (|H (ωo)| = K Q ~-   Q for K ~-   1). This is your Q!

3. Set the function generator for a  square       wave    of frequency fo (whatever you have

measured, ~ 7.6 KHz) and Vppk = 1 V.

a. ❏ Measure the output voltage. Plot Vi and Vo and label the ppk voltages. What is

the shape of the output voltage waveform?

b. ❏ Measure Vi and Vo in frequency domain in dB (fo, 3fo, 5fo and 7fo ). Be careful,

choose at least a 100 KHz frequency span so as not to get aliasing on the FFT.

Step      Response   :

4. ❏ Set the function generator to a 200 Hz   square      wave    with Vppk = 1 V. Sketch the
input and output voltage in your lab notebook for one period and label the output
voltage when the ripple settles down, (Vf).
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a. ❏ For the positive portion of the waveform, measure the exact time of the first

peak (t1) and its value (Vp). (You can do this using the Measure 
Cursors

 menu.)
The overshoot value is (Vp - Vf).

fR = 1/∆t

t1

Vp
V

~ 0.5 V

Overshoot

t2 t3

Vf

b. ❏ From the waveform determine the ripple frequency, fR. (Again, you can do this

quickly under the Measure 
Cursors

 menu).

c. ❏ If you have a Q lower than 4-5, measure the values and times of the second,
third and fourth peaks. You will need this to calculate Q in the post-lab report. If
you have a high-Q (Q > 4-5), then measure the third, fifth and seventh peaks
(value & time). This will result in a more accurate determination of Q.
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Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

Pre-Lab Assignment

1. Using the Golden Rules (Ideal OP-Amp):

(Ignore the 1 µF DC-block capacitor. Assume it is a short-circuit at all frequencies.)

a. In the low-pass filter, why is R1 = R11 || R12? (Disconnect the circuit to the right of the arrow

and determine the Thevenin's equivalent of the source circuit.)

b. Draw the filter circuit at ω << ωo (caps. are open-circuit) and determine V Vo i .

c. Draw the filter circuit at ω >> ωo and determine V Vo i .

d. What is the input impedance of the circuit (seen by Vi) for ω << ωo?

2. a. Check that the resistor/capacitor values given in the experiment result in the quoted fo, Q, K

for the low-Q and high-Q cases.

b. In the low-pass filter, the circuit will    never work if R12 is not present (and Vs is a pure   ac 

source). Explain why (think of the non-ideal op-amp properties).

3. The frequency response of a first order filter is given by:

V

V s
where RC and f

RC
o

i

=
+







= =1

1

1 1

2

1

1 1

ω

ω
π

The risetime of a function (tR) is defined as the time from 0.1 Vpk to 0.9 Vpk.

The time response to a step function of amplitude 1 is given by:

V t e eo

t
RC

t( ) = − = −− −
1 1 τ

where τ = ≡RC time constant.

a. Determine tR as a function of τ  (the time

constant).

b. Express tR as a function of f1.

0.1 Vpk

V(t)
0.9 Vpk

Vpk

ttR

1 – e-t/RC

(This expression is very useful, since once you know the risetime in seconds, you can quickly
determine the corner frequency in Hz (and vice versa).)
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4. Calculate Vo/Vo(max) (for a constant Vi) when the filter response (transfer function)   drops  by: 3

dB (really –3 dB), 6 dB, 10 dB, 15 dB, 20 dB, 30 dB, 40 dB.

Graphically, this means
Vo/Vomax = (?)

–3 dB

–6 dB

Vo(max)

Vo/Vomax = (?)

5. A low-pass filter transfer function is given by:

Vo

Vs

s( ) = H s( ) = K ωo
2

s2 + ωo Q( )s + ωo
2

s = jω
f o = 10 KHz

and
H ω( ) = K ωo

2

ω0
2 − ω2[ ] 2

+ ωo Q( )ω[ ] 2

and  K ≡ low frequency gain

a. Derive |H(ω)|.

b. For K = 1 and using MATLAB, plot    on     the     same      graph    (dB, log f) the filter response for Q =
0.2, Q = 1 and Q = 10. The horizontal scale should be from 0.01 fo (100 Hz) to 100 fo (1

MHz). The vertical scale should be from +20 dB to -60 dB. Reminder: dB = 20 log |H(ω)|.

c. Derive the equation of the phase of H(ω) and plot   on the  same      graph    the phase for Q = 0.2,
Q = 1 and Q = 10 over the above mentioned frequency range. What is the phase of H(ω) as
ω→0, ω→∞ and ω = ωo.

d. Prove that at ω ωo H KQ, ( ) =  and the phase of H(ωο) is -90˚.

e. For the special case of Q << 1 (Q = 0.2), the transfer function can be very well approximated
by two poles at ω1 = Qωo and ω2 = ωo/Q. For Q << 1, ω1 dominates the response. For the

case of Q = 0.2, plot

H1 s( ) = 1

1+ s

ωo Q







1+ s

ωo Q







and compare it with the function of part (b) with Q = 0.2 (on the same graph).

f. Prove mathematically that, for Q << 1, H1(s) is nearly equal to H(s). You can do this by
expanding the denominator of H1(s), determining which factor you must ignore so that H1(s)

= H(s), and proving that for Q << 1, this factor is insignificnat.
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Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

Lab-Report Assignment

1. a. Draw the filter circuit and neatly summarize    all your measured data for the low-Q and high-Q

cases (R values, V+, V-, Vo (DC), fo, Q, f1, tR, overshoot, t1, etc. ..., everything except the

frequency response data).

b. Using Matlab, plot the measured transfer function for the low-Q, high-Q filters    on   the    same
Bode-plot   (f: 50 Hz–200 KHz, dB: +10 or +20 dB–depending on your measured high-Q- to -
60 dB minimum). Label clearly the low frequency gain (K), the '“resonant” frequency (fo) and

the Q of the filter for the low-Q and high-Q cases.

2. Low-Q Filter:

a. From the bode-plot, determine the low frequency pole, f1, (-3 dB pt). Knowing ωo (or fo)
from the phase measurement and that f1 ~-   Qfo, determine Q.

b. Using the risetime (tR) from the time domain measurements, determine f1 using the pre-lab
problem #3. Determine Q (knowing ωo). Does it agree with part (a) above?

c. Knowing the low frequency pole, f1, and for a square-wave of Vi = 1 Vppk and f = 4 KHz,
calculate Voppk and compare with measurements of Section 6 of the low-Q design.

3. High-Q Filter:

a. From the time domain measurements, determine fo from the ripple frequency. Compare

with frequency domain data.

b. From the time domain measurements, determine Q from the overshoot value. Compare
with frequency domain data.

c. From the time domain measurements, determine Q from the ripple peaks. In one case, use
the first two measured peaks (and times), and in another case, use the first and last
measured peaks (and times). Compare both Q's with the frequency domain data.

4. a. For a square-wave of Vpk = 0.5V (Vppk = 1 V) and f = fo (~ 7.6 KHz–use your values),

calculate the fundamental, third, fifth and seventh harmonic levels of the square-wave (in V
and dB)    before    and    after   it passes by the high-Q low-pass filter. Compare with frequency-
domain measurements for Vi and Vo. (Use Fourier-Series to calculate the frequency

components of the input square-wave).

b. For Vo, what is the value (in V and dB) of the third and fifth harmonic level compared to the
fundamental? Is this a “clean” sinewave at fo? Calculate the THD (total harmonic distortion)

of the output signal (THD is defined in your EECS 210 lab manual).
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Some Problems with the Active Sallen-Key Low-Pass Filter:

1.    Oscillations  :

The denominator of the transfer function H s V Vo i( ) = is:

s
R C R C

R

R R C
s

R R C C
2

2 1 1 1

4

2 3 2 1 2 1 2

1 1 1+ + −






+

When 
R

R R C R C R C
4

2 3 2 2 1 1 1

1 1





> +






, the denominator has the form:

s a s ao
2

1 0− + =

The solutions of this quadratic equation will always result in at least one positive pole, and
therefore the system response will “blow” up. Since this is an active circuit, the filter will oscillate
and generate a somewhat sinusoidal voltage limited by    +   Vcc. Therefore, always choose the

components such that 
R

R R C R C R C
4

2 3 2 2 1 1 1

1 1< +  and you are guaranteed a good second-order

low-pass filter. The above is especially true for high-Q filters where R1 >> R2. In this case,
oscillations will    not   occur when:

R4

R2 R3 C2

> 1

R2 C1

+ 1

R1 C1

negligible

⇒
R4

R3

>1 .

C1 =C2 =C( )

Therefore, always maintain R4 < R3 for stable high-Q filters.

2.    Uncertainty   in      Q     for      high-Q      designs  :

The Q of a Sallen-Key non-inverting low-pass filter (with C1 = C2 = C) is given by:

Q
R

R

R

R

R

R

=
+ −





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1

12

1

1

2

4

3

which simplifiers to Q R R= 1 2  for R4 = R3.
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However, in a high-Q design, R1 >> R2 and any slight non-equalities in R4 and R3 can change
the value of Q by a large fraction. Let us consider the example where R1 = 30 KΩ, R2 = 1 KΩ ,

and:

Q
R R

=
+ −( )

1

0 183 5 48 1 4 3. .

which simplifies to Q = 5.5 for R4 = R3 exactly.

However, for R4 = 1.02 R3, we have Q = 13.6, and for R4 = 0.98 R3, we have Q = 3.4. Therefore,
3.4 < Q < 13.6, for a    +   2% change in the R4/R3 resistor ratio!

This holds true for C1 = C2 = C. However, C1 /=  C2 due to capacitor inaccuracies and parasitic
capacitances in the circuit. Therefore, even if one maintains R4 = R3, Q can still vary between 3 and

14 due to capacitance variations alone. Therefore, the Sallen-Key filter is simply not a good design
for high-Q filters!

In the above example, one could also ask what happens to Q when R4/R3 = 1.05 (with C1 = C2 =

C). In this case, Q < 0 and the circuit will oscillate (see above). Therefore, it is always good to
maintain R4    <    R3 and use    +    1% resistors (instead of the standard    +   5% resistors) for R4 and R3 in

Sallen-Key high-Q filters.

For the above reasons, a sensitivity analysis is always done in commercial engineering applications.
The sensitivity analysis tells the engineer how much variation in output specifications to expect for a
small change in component value. This is especially important in high-volume manufacturing, where
a parts vendor could supply you with a whole run of components, all at the upper end of their
tolerance limit.”

Equations you may need for the lab report:

– The Fourier-Series of a square-wave signal is

given by V t
V

n
n t

n
o( ) = ( )

=

∞

∑ 4

1 π
ωsin  where V is the

peak voltage (and    not   peak-to-peak).

t

+V

–V

– Total Harmonic Distortion, THD, is defined as:

THD
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P
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( )∑ 100
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