

Digital Logic Design Course

By: Dr. A. D. Johnson
EECS: 1100 Digital Logic Design
The University of Toledo
USA

Objective

This set of 12 experiments are part of a complete Digital Logic Design course. Students will gain basic knowledge and skills in the analysis and design of logic circuits, while becoming familiar with using state-of-the-art test and measurement instruments.

After completing this course, the student will:

- a. Become familiar with the Lab Environment and basic test & measurement instrumentation
- b. Develop skills in analyzing and testing the behavior of sequential and combinational logic circuits
- c. Gain experience in creating logic circuit representation of logic functions
- d. Get hands-on experience with various SSI and MSI circuits

Equipment

- Agilent 33120A Function Generator
- Agilent 54645D Mixed-Signal Oscilloscope
- Agilent E3631A DC power supply
- Proto board
- A PC
- Various SSI and MSI IC's (see Labs)

Experiments

- Syllabus: Digital Logic Design
- EECS 1100 Laboratory Report Guidelines
- Lab 1: Intro to Lab Equipment and Procedures
- Lab 2: Number Representation
- Lab 3: Implementation of SOP and POS Form Logic Functions
- Lab 4: Implementation of Parity Logic
- Lab 5: Code Conversion: BCD to Gray Code
- Lab 6: NAND/NOR Implementation of Logic Functions
- Lab 7: Multiplexer/Decoder Implementation of Logic Functions
- Lab 8: Properties of Latches/Flip-Flops
- Lab 9: Properties of Flip-Flops
- Lab 10: Shift Register
- Lab 11: Design of Synchronous Counters
- Lab 12: FPGA Implementation of Sequential Logic