

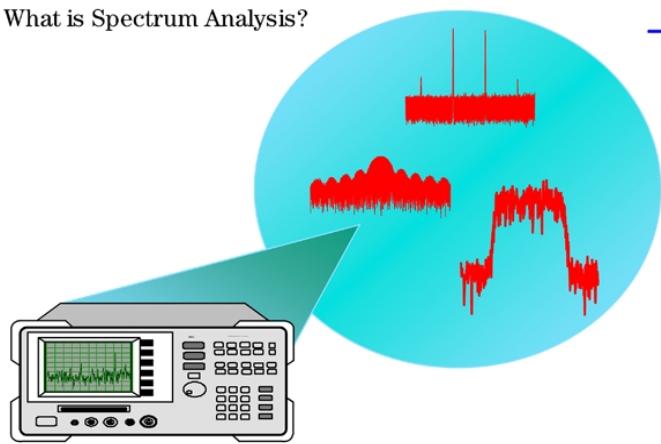
An Introduction to RF Signal, Noise and Distortion Measurements in the Frequency Domain [Spectrum Analysis]

By: Agilent Technologies

Microwave Instruments Division
1400 Fountaingrove Parkway
Santa Rosa, California 95403 U.S.A
© Agilent Technologies 1997

Purpose

This lab is intended to be a beginning tutorial on RF spectrum analysis. It is written for those who are unfamiliar with spectrum analyzers, and would like a basic understanding of how they work, what you need to know to use them to their fullest potential, in signal, noise and distortion measurements. It is written for university level engineering students, therefore a basic understanding of electrical concepts is recommended.


Equipment:

Agilent ESG-D4000A signal generator
Agilent ESA-L1500A spectrum analyzer

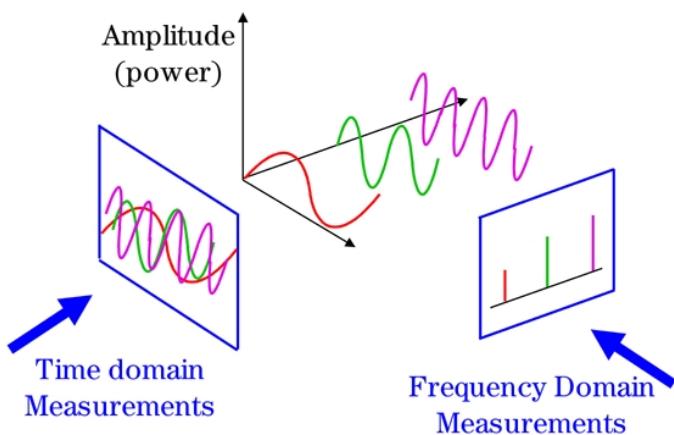
Pre-Study:

—

Overview
What is Spectrum Analysis?

How can we measure electrical signals in a circuit to help us determine the overall performance of the system?

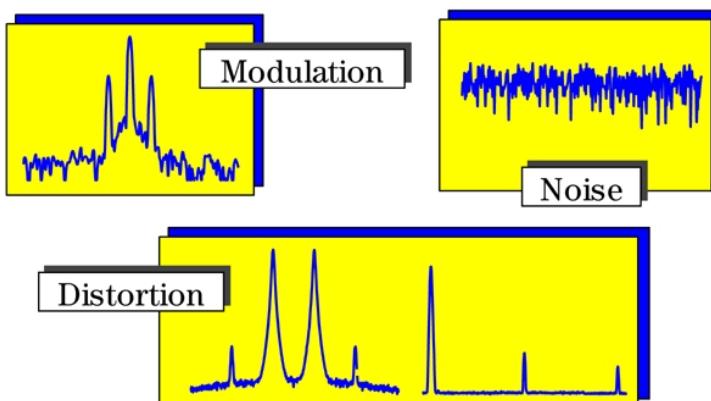
First, we need a "passive" receiver, meaning it doesn't do anything to the signal under test. It just displays it in a way that makes it easy to analyze the signal, without masking the signal's true characteristics. The receiver most often used to measure these signals in the time domain is an oscilloscope. In the frequency domain, the receiver of choice is called a spectrum analyzer.


Spectrum analyzers usually display raw, unprocessed signal information such as voltage, power, period, waveshape, sidebands, and frequency. They can provide you with a clear and precise window into the frequency spectrum.

Depending upon the application, a signal could have several different characteristics. For example, in communications, in order to send information such as your voice or data, it must be modulated onto a higher frequency carrier. A modulated signal will have specific characteristics depending on the type of modulation used. When testing non-linear devices such as amplifiers or mixers, it is important to understand how these create distortion products and what these distortion products look like. Understanding the characteristics of noise and how a noise signal looks compared to other types of signals can also help you in analyzing your device/system. Understanding the important aspects of a spectrum analysis for measuring all of these types of signals will give you greater insight into your circuit or systems true characteristics.

Overview

Frequency versus Time Domain



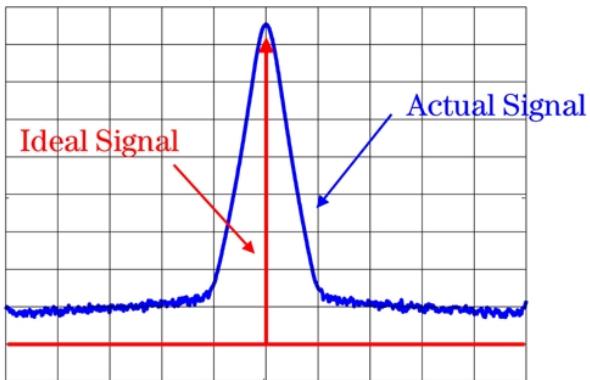
Traditionally, when you want to look at an electrical signal, you use an oscilloscope to see how the signal varies with time. This is very important information; however, it doesn't give you the full picture. To fully understand the performance of your device/system, you will also want to analyze the signal(s) in the frequency-domain. This is a graphical representation of the signal's amplitude as a function of frequency. The spectrum analyzer is to the frequency domain as the oscilloscope is to the time domain. (It is important to note that spectrum analyzers can also be used in the fixed-tune mode (zero span) to provide time-domain measurement capability much like that of an oscilloscope.) The figure shows a signal in both the time and the frequency domains. In the time domain, all frequency components of the signal are summed together and displayed. In the frequency domain, complex signals (that is, signals composed of more than one frequency) are separated into their frequency components, and the level at each frequency is displayed. Frequency domain measurements have several distinct advantages. For example, let's say you're looking at a signal on an oscilloscope that appears to be a pure sine wave. A pure sine wave has no harmonic distortion. If you look at the signal on a spectrum analyzer, you may find that your signal is actually made up of several frequencies. What was not discernible on the oscilloscope becomes very apparent on the spectrum analyzer. Some systems are inherently frequency domain oriented. For example, many telecommunications systems use what is called Frequency Division Multiple Access (FDMA) or Frequency Division Multiplexing (FDM). In these systems, different users are assigned different frequencies for transmitting and receiving, such as with a cellular phone. Radio stations also use FDM, with each station in a given geographical area occupying a particular frequency band. These types of systems must be analyzed in the frequency domain in order to make sure that no one is interfering with users/radio stations on neighboring frequencies. We shall also see later how measuring with a frequency domain analyzer can greatly reduce the amount of noise present in the measurement because of its ability to narrow the measurement bandwidth. From this view of the spectrum, measurements of frequency, power, harmonic content, modulation, spurs, and noise can easily be made. Given the capability to measure these quantities, we can determine total harmonic distortion, occupied bandwidth, signal stability, output power, intermodulation distortion, power bandwidth, carrier-to-noise ratio, and a host of other measurements, using just a spectrum analyzer.

Overview

Types of Tests Made

The most common measurements made using a spectrum analyzer are: modulation, distortion, and noise.

Measuring the quality of the modulation is important for making sure your system is working properly and that the information is being transmitted correctly. Understanding the spectral content is important, especially in communications where there is very limited bandwidth. The amount of power being transmitted (for example, to overcome the channel impairments in wireless systems) is another key measurement in communications. Tests such as modulation degree, sideband amplitude, modulation quality, occupied bandwidth are examples of common modulation measurements.


In communications, measuring distortion is critical for both the receiver and transmitter. Excessive harmonic distortion at the output of a transmitter can interfere with other communication bands. The pre-amplification stages in a receiver must be free of intermodulation distortion to prevent signal crosstalk. An example is the intermodulation of cable TV carriers that moves down the trunk of the distribution system and distorts other channels on the same cable. Common distortion measurements include intermodulation, harmonics, and spurious emissions.

Noise is often the signal you want to measure. Any active circuit or device will generate noise. Tests such as noise figure and signal-to-noise ratio (SNR) are important for characterizing the performance of a device and/or its contribution to overall system noise.

For all of these measurements, it is important to understand the capabilities and limitations of your test equipment for your specific requirements. It is the goal of this lab to familiarize the student with the most important fundamental concepts in spectrum analysis and their applications in circuit design, verification and troubleshooting.

— Tuning [Carrier Analysis]

Lab Procedure:

This lab procedure is written around an Agilent ESG-D4000A signal generator and an Agilent ESA-L1500A spectrum analyzer. Lets begin by measuring some simple known signals with the spectrum analyzer. The first step in this process is to set up the signal source. For this lab we will use the ESG-D4000A RF Signal Generator as our source.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESG-D4000A to a known state	[Preset]
Select an output frequency	[Frequency][300][MHz]
Select output signal level	[Amplitude][0][dBm]
Enable RF output	[RF On/Off]

Once the signal generator has been configured, set up the spectrum analyzer to display the generated signal, by connecting the RF output of the signal generator to the RF input of the spectrum analyzer and following the instructions below.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]
Select a frequency range to display	[Frequency]
Adjust the analyzers vertical display resolution to 10 dB per division.	[Start Freq][250][MHz] [Stop Freq][350][MHz]
For the greatest frequency accuracy use the spectrum analyzer's built-in frequency counter to read out the frequency and amplitude of the signal under test	[Marker][Freq Count] [Resolution Man][1][Hz] _____ MHz _____ dBm

Please take 5 minutes to discuss with your lab group why the frequency and amplitude values for the signal under test that are being displayed by the signal generator and spectrum analyzer are not identical. Write your explanation below.

Estimate the cable loss between the signal generator and spectrum analyzer _____ dB

Calculate the frequency error between the signal generator and spectrum analyzer in parts per million (PPM) given our carrier frequency of 300 MHz _____ PPM

Connect the 10 MHz **Reference Output** on the rear panel of the signal generator to the 10 MHz **Reference Input** on the rear panel of the spectrum analyzer and repeat the frequency error calculation.

Repeat the step above, to read out the frequency of the signal under test. _____ MHz

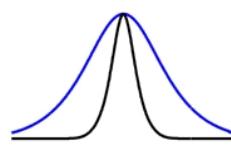
Re-calculate the frequency error between the signal generator and spectrum analyzer in parts per million (PPM) given our carrier frequency of 300 MHz _____ PPM

As you can see, even in the simplest of communications systems, synchronization between transmitter and receiver is essential. Imagine its importance in a complex system like a GSM or CDMA cellular telephone system.

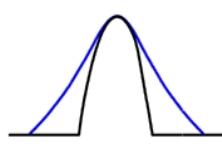
To reduce the spectrum analyzer's sweep time, turn off the frequency counter function.

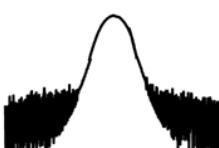
[Freq Count][Marker Count Off]

Given that the signal generator is outputting a single unmodulated 300 MHz CW signal, why is the spectrum analyzer displaying a response that is something other than a verticle frequency impulse response at 300 MHz? Please take 5 minutes to discuss this questions within your lab group then write your explaination below.



In actuality, both the signal generator and spectrum analyzer are contributing to the "spreading" of the signal under test. Although the signal generator's absolute frequency accuracy and short and long term stability can cause the energy in the carrier signal to be distributed over some finite band of frequencies centered around the carrier, in most cases it is the spectrum analyzer's RF characteristics that will be the major contributor to the broad frequency response that you have seen. Let's briefly review four of the largest contributing factors limiting a spectrum analyzers frequency resolution.


— What Determines Frequency Resolution?


Resolution Bandwidth

Residual FM

RES BW Type and Shape

Noise Sidebands

These factors are spectrum analyzer resolution filter bandwidth and shape factor, local oscillator residual FM and noise sidebands.

As we discovered earlier, a signal cannot be displayed as an infinitely narrow line. It has some width associated with it. The shape that you see is the spectrum analyzer's tracing of its own Resolution Bandwidth (IF filter) shape as it tunes past a signal. Thus, if we change the filter bandwidth, we change the width of the displayed response. Most spectrum analyzers specify the 3 dB bandwidth, although some specify the 6 dB bandwidth.

— IF Filters Limit the Resolution of Narrowband Signals

Instruction

Vary the RBW filter 3 dB BW
and notice the change in the
spectrum analyzer's displayed response

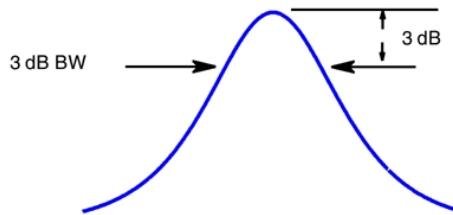
Keystroke

[BW/Avg][1][MHz]
[100][kHz]
[10][kHz]
[1][kHz]

You may have noticed that as you decreased the RBW the ability of the spectrum analyzer to resolve frequency improved, however at the expense of sweep speed. Repeat the same steps once again, only this time document the sweep time associated with each RBW setting.

Instruction

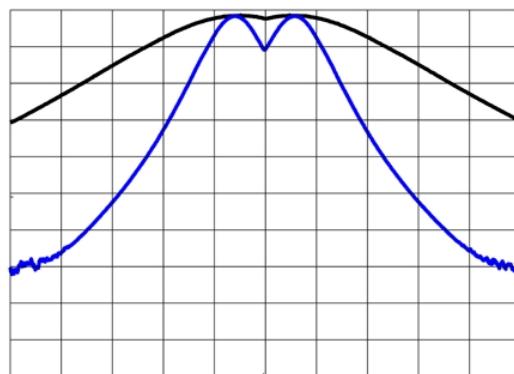
Vary the RBW filter 3 dB BW
and record the change in the
spectrum analyzer's displayed response
and sweep time


Keystroke

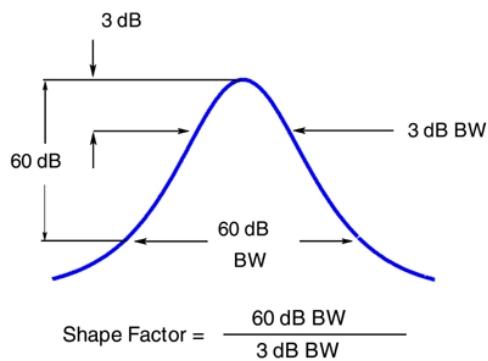
[BW/Avg][1][MHz][Sweep] _____ ms
[BW/Avg][100][kHz][Sweep] _____ ms
[BW/Avg][10][kHz][Sweep] _____ s
[BW/Avg][1][kHz][Sweep] _____ s

Once you have recorded the sweep times [BW/Avg][100][kHz]
return the spectrum analyzer's RBW to 100KHz

Resolution Bandwidth

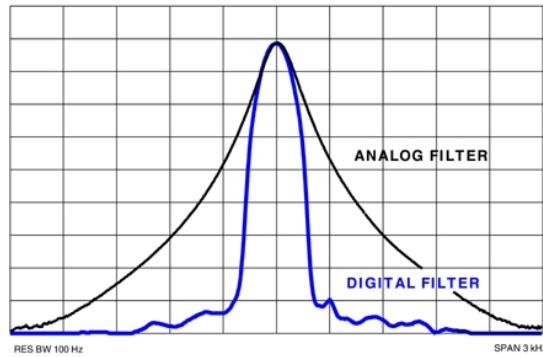

Determines Resolution of Two Equal
Amplitude Signals

The **3 dB bandwidth** tells us how close together equal-amplitude signals can be and still be distinguishable from one another (by a **3 dB "dip"**). In general, two equal-amplitude signals can be resolved if their separation is greater than or equal to the 3 dB bandwidth of the selected resolution bandwidth filter. The two signals shown in the slide below are 10 kHz apart, a 10 kHz Res BW easily separates the responses. However, with wider Res BWs, the two signals appear as one.



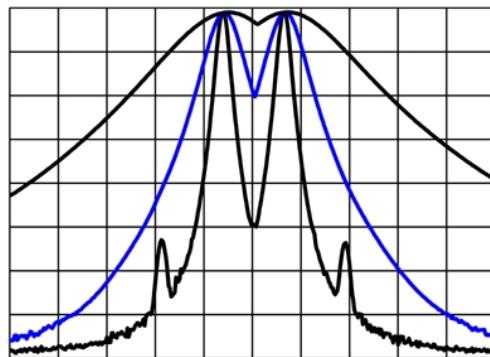
— Resolving Two Signals of Equal Amplitude

— Shape Factor of the IF Filter


Determines Resolution of Unequal Amplitude Signals

Usually we look at signals of unequal amplitudes. Since both signals in our example trace out the filter shape, it is possible for the smaller signal to be buried in the filter skirt of the larger one. **Two signals unequal in amplitude by 60 dB must be separated by at least one half the 60 dB bandwidth** to resolve the smaller signal (with approximately a 3 db "dip"). Hence, shape factor, the ratio of the 60 dB to 3 dB filter bandwidth, is key in determining the resolution of unequal amplitude signals.

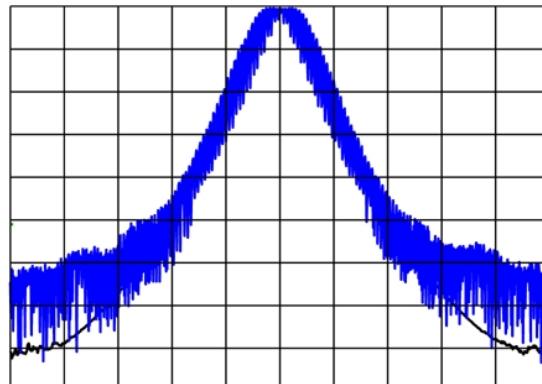
— Digital Resolution BWs off Superior Shape and Measurement Speed —



Typical Selectivity

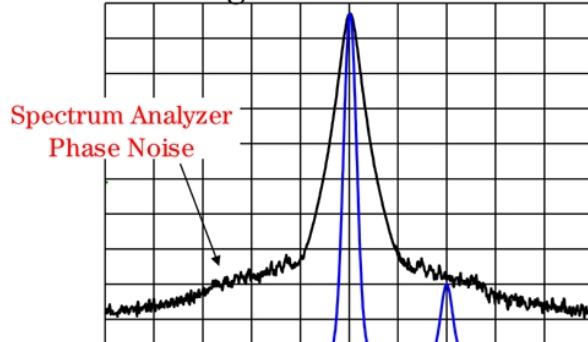
Analog 15:1

Digital 5:1


— Resolving Two Signal of Unequal Amplitude —

With a 10 kHz filter, resolution of the equal amplitude tones is not a problem, as we have seen. But the distortion products, which can be 50 dB down and 10 kHz away, could be buried. If the shape factor of the 3 kHz filter is 15:1 then the filter width 60 dB down is 45 kHz, and distortion will be hidden under the skirt of the response of the test tone. If we switch to a narrower filter (for example, a 1 kHz filter) the 60 dB bandwidth is 15 kHz and the distortion products are easily visible.

— Residual FM "Smears" the Signal

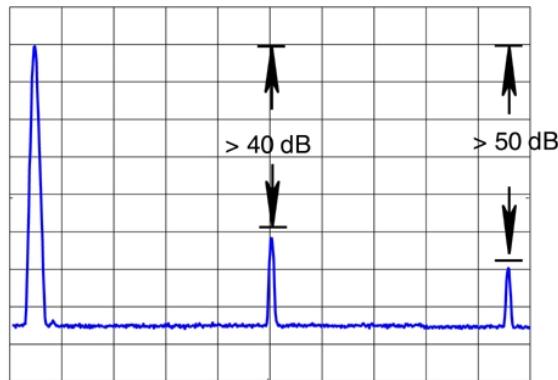


Another factor affecting resolution is the frequency **stability** of the spectrum analyzer's local oscillator. A spectrum analyzer cannot have a resolution bandwidth so narrow that it allows observation of its own instability. If it did, we could not then distinguish between the analyzer's residual FM and that of the incoming signal. Also, the residual FM "smears" the signal so that two signals within the specified residual FM cannot be resolved.

This means that the spectrum analyzer's residual FM dictates the **minimum resolution bandwidth** allowable, which in turn determines the minimum spacing of equal amplitude signals. Our required residual FM for this measurement is residual FM 1 kHz.

Phase locking the LOs to a reference reduces the residual FM and reduces the minimum allowable Res BW. Higher performance spectrum analyzers are more expensive because they have better phase locking schemes with lower residual FM and smaller minimum Res BWs.

— Noise Sidebands Hide Close-In Low Level Signals



Noise Sidebands can prevent resolution of unequal signals

The remaining instability appears as **noise sidebands** at the base of the signal response. This noise can mask close-in (to a carrier), low-level signals that we might otherwise be able to see if we were only to consider bandwidth and shape factor. These noise sidebands affect resolution of close-in, low-level signals.

— Harmonic Distortion

Now that we have a better practical understanding of the limitations of a spectrum analyzers let's proceed with the laboratory. The next measurement that we will make is second and third order harmonic distortion.

Instruction

Increase the spectrum analyzer's stop frequency to allow you to view the 2nd & 3rd harmonics of the signal under test. Find and record the frequency and amplitude of fundamental signal.

Keystroke

[Frequency]
[Stop Freq][1000][MHz]
[Marker][Peak Search]
_____ MHz _____ dBm

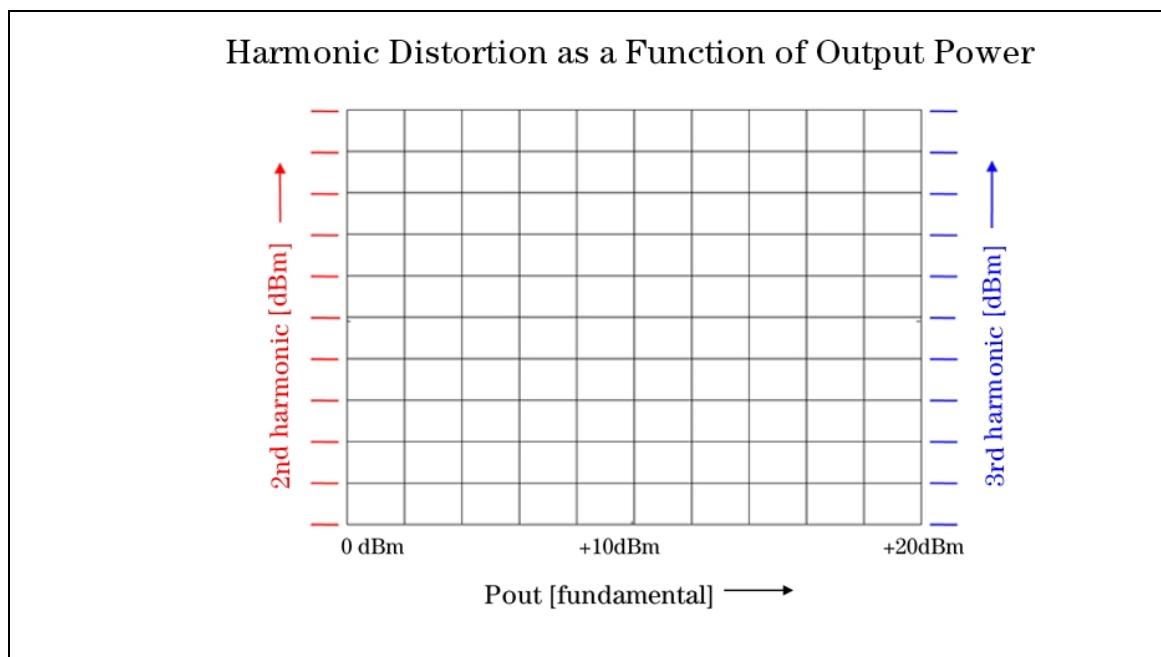
Using the fundamental as a reference, use one of the Marker Next Peak functions to step through the second and third order harmonic distortion products and record their values, in absolute frequency (MHz) and relative amplitude (dBc).

[Marker]
[Marker Delta]
[Search]

2nd _____ MHz _____ dBc
3rd _____ MHz _____ dBc
Once complete turn off all markers.

[Next Pk Right]
[Next Pk Right]
[Marker] [Marker All Off]

Use the spectrum analyzer to measure the signal under test's fundamental and harmonic (2nd & 3rd order) output power in dBm, as you increase the signal generators output power from 0 dBm to +20 dBm in 2 dB increments. Once you have recorded the results in the table below, plot the data on the blank grid given below.



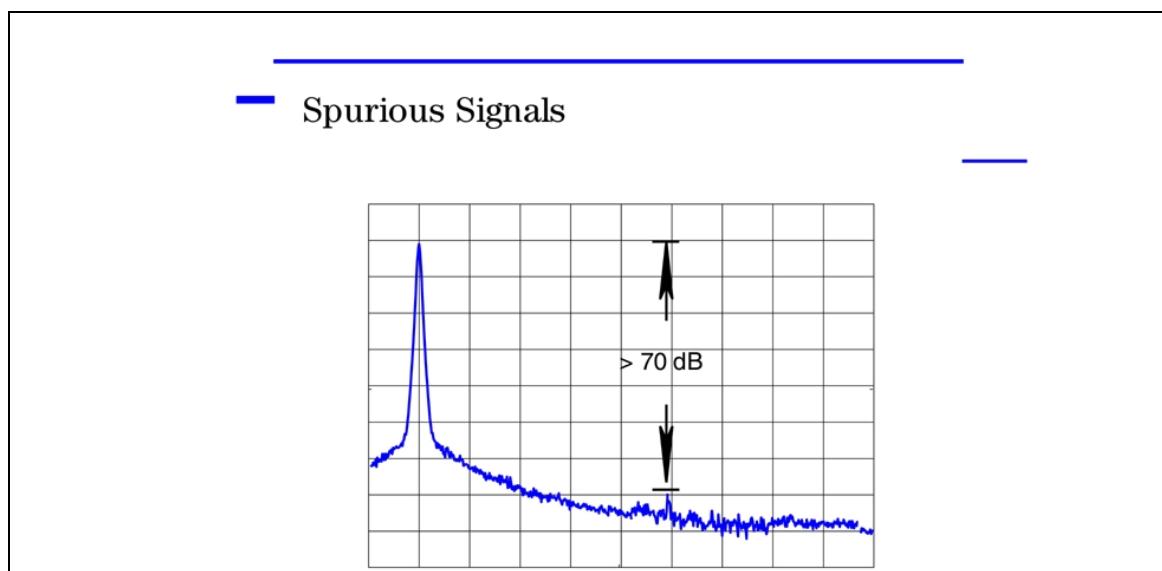
Pout = 0 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = + 2 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = + 4 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = + 6 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = + 8 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +10 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +12 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +14 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +16 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +18 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm
Pout = +20 dBm	Fundamental _____ dBm	2nd _____ dBm	3rd _____ dBm

Once you have completed this section of the lab turn off all frequency and amplitude markers.

Turn off all markers.

[Marker] [Marker All Off]

Please explain (quantitatively) the rate of increase in harmonic signal levels.



Once you have completed the harmonic measurements above return the signal generator output power to 0 dBm.

<u>Instruction</u>	<u>Keystroke</u>
Reset ESG-D4000A signal generator's output power [Pout]	[Amplitude][0][dBm]

One of the primary uses of a spectrum analyzer is to search out and measure low-level spurious signals. Because these spurious signals are small and appear at frequencies that are non-harmonically related to the carrier signal they can be difficult to find and measure accurately. The indication of how well any receiver can detect and measure small signals is its sensitivity. A perfect receiver would add no additional noise to the natural amount of thermal noise present in all electronic systems, represented by kT_B (k =Boltzman's constant, T =temperature, and B =bandwidth). In practice, all receivers, including spectrum analyzers, add some amount of internally generated noise.

Spectrum analyzers usually characterize this by specifying the displayed average noise level (DANL) in dBm, with the smallest RBW setting. DANL is just another term for the noise floor of the instrument given a particular bandwidth. It represents the best-case sensitivity of the spectrum analyzer, and is the ultimate limitation in making measurements on small signals. An input signal below this noise level cannot be detected. Generally, sensitivity is on the order of -90 dBm to -145 dBm.

It is important to know the sensitivity capability of your analyzer in order to determine if it will adequately measure your low-level signals.

During this section of the lab you will configure the spectrum analyzer to find and measure the value of the largest spurious signal (non-harmonic) in dB relative to the carrier level (dBc) across the operating frequency range of the spectrum analyzer.

Note: The analyzer will display all marker frequencies and amplitude values in absolute terms. Find the largest spur within the bandwidth of interest and calculate its value relative to the fundamental. Be careful that you are measuring a spurious signal and not the peak of the noise floor.

<u>Instruction</u>	<u>Keystroke</u>
Set the spectrum analyzer's frequency range to its maximum span	[Frequency] [Start Freq][9][kHz] [Stop Freq][1500][MHz]
Open the spectrum analyzer's resolution	[BW/Avg][5][MHz]

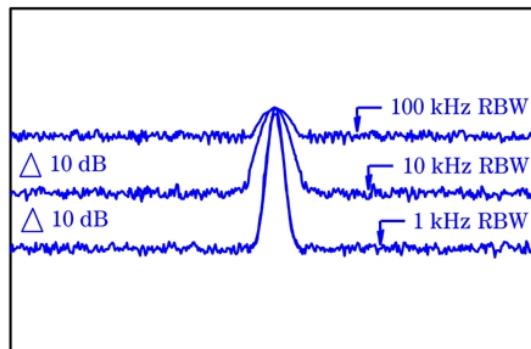
bandwidth to its maximum value

Find and record the frequency and [Peak Search]
amplitude of fundamental signal.

Fundamental _____ MHz _____ dBm

Is there a spur that is easily detectable above the spectrum analyzers noise floor? _____

If not, why not (please explain)?



Hint: If the signal under test has very good spurious output specifications, you may need to reduce the spectrum analyzer's RBW. Practically, this action reduces the noise power being detected by the spectrum analyzer's signal detection circuitry and enables the receiver to resolve lower level signals that are no longer masked by the noise floor of the analyzer. You can reduce the RBW until you feel you have reached a good compromise between sensitivity and sweep speed (update rate).

— **Displayed Noise is a Function of Receiver Filter Bandwidth** —

Decreased BW = Decreased Noise = Increased Sensitivity

Measure and record the value of the largest spur in the bandwidth of interest.

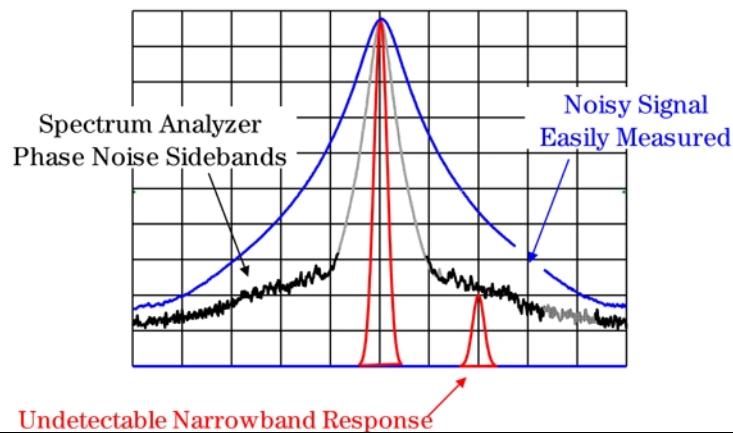
Largest spur _____ MHz _____ dBm

Largest spur _____ MHz _____ dBc

Now use the spectrum analyzers delta marker measurement mode to automatically display the spur value in dBc.

Find and record the frequency and [Peak Search]

Using the fundamental as a reference [Marker]
 [Marker Delta]


Record the frequency and amplitude of
 the largest spur (dBc) [Next Peak]

Largest spur _____ MHz _____ dBc

Configure the spectrum analyzer to measure the phase noise of the signal under test. When measuring signal phase noise characteristics it is important to remember a few key measurement fundamentals.

1. Signals below the noise sidebands of the spectrum analyzer will be undetectable.
2. Phase noise is measured relative the carrier level, at a specific offset and referenced to a specific noise bandwidth (e.g., 1 Hz).
3. Unlike coherent signals, noise is random, and therefore to accurately measure its level, it should be measured using a sampling detection technique rather than the peak detection technique usually used for coherent signal analysis.

Spectrum Analyzer Phase Noise Limits Narrowband Measurements

Configure the spectrum analyzer to measure the phase noise of a 860 MHz carrier in a 1 Hz bandwidth at a 10 kHz offset.

Instruction

Return the ESG-D4000A to a known state

Select an output frequency

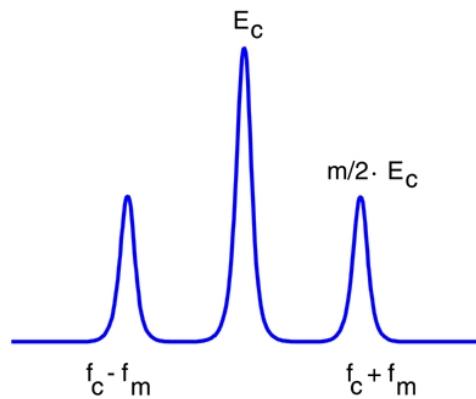
Keystroke

[Preset]

[Frequency][860][MHz]

Select output signal level	[Amplitude][0][dBm]
Enable RF output	[RF On/Off]

Once the signal generator has been configured, set up the spectrum analyzer to display the generated signal, by connecting the RF output of the signal generator to the RF input of the spectrum analyzer and following the instructions below.


<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]
Select a frequency range to display	[Frequency] [Center Freq][860][MHz]
Adjust the analyzers resolution bandwidth	[Span][30][kHz] [BW/Avg][1][kHz]
Use the spectrum analyzer's built-in noise markers to measure the carrier signal's phase noise @ a 10 KHz offset.	[Marker] [Peak Search] [Marker Delta]
Rotate the analyzer's Rotary Pulse Generator (RPG) knob to move the delta marker to a 10 kHz offset from the carrier (860,010,000 Hz).	
Turn on the noise marker function	[Marker Noise On]

Phase Noise @ a 10 KHz Offset _____ dBc/Hz

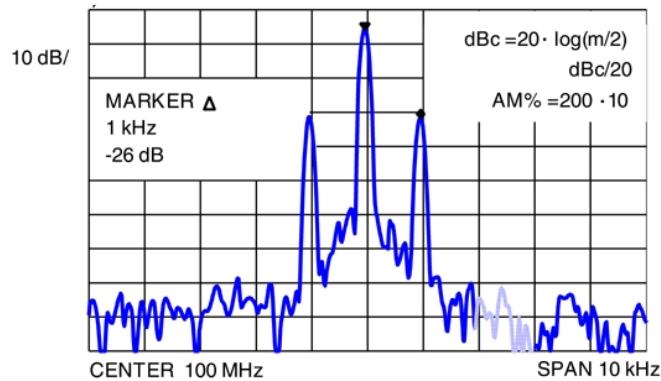
Note: Turn off the noise marker and notice the difference in the delta marker's readout value.

— Introduction to Modulation

Amplitude modulation occurs when a modulating signal, f_{mod} , causes an instantaneous amplitude deviation of the modulated carrier. The amplitude deviation is proportional to the instantaneous amplitude of f_{mod} . The rate of deviation is proportional to the frequency of f_{mod} . The AM modulation index, m , is defined as: $m = 2 \times V_{sideband} \div V_{carrier}$. Percent AM = $100 \times m$. By letting the modulating waveform be represented by $\cos(w_m t)$, we can describe this signal in the frequency domain as three sine waves:

$$v(t) = [1 + m \times \cos(w_m \times t)] \times \cos(w_c \times t) = \cos(w_c \times t) + m/2 \times \cos[(w_c - w_m) \times t] + m/2 \times \cos[(w_c + w_m) \times t]$$

— AM Modulation Index Frequency Domain


$$m = \frac{2 E_{SB}}{E_c} \quad dBc = 20 \log(m/2)$$

%AM	dB
100%	-6dBc
50%	-12dBc
10%	-26dBc
5%	-32dBc
1%	-46dBc

$$AM\% 100\% \times 10^{-(dBc/20)}$$

— Amplitude Modulation [AM] Frequency Domain

For 100% AM, the sidebands are each 1/2 the amplitude of the carrier or -6 dBc; for 10% AM, the sidebands are 1/10 as large as in the 100% AM case or -26 dBc; for 1% AM the sidebands are -46 dBc, and so on. Hence: $AM\% = 200 \times 10^{-(D dB/20)}$

With the residual bandwidth $\ll f_{mod}$, the carrier and sidebands are observed in the swept frequency domain of the spectrum analyzer. *NOTE: f_{mod} is the frequency separation of the sidebands.*

The measurement shown is of a 100 MHz carrier, with sidebands 1 kHz away and -26 dBc.

Hence: $m = 0.1$ (10% AM) and $f_{mod} = 1 \text{ kHz}$

M, carrier frequency, and f_{mod} are easily measured in the swept frequency domain. You can also use the swept frequency domain method to measure AM distortion.

The purpose of this lab is to familiarize the users with the RF signal generator's modulation generation and RF spectrum analyzer's modulation analysis capability. This section of the lab will cover AM modulation and analysis. Configure the signal generator and spectrum analyzer to create and view an AM modulated signal with a $f_{mod} = 10 \text{ kHz}$

<u>Instruction</u>	<u>Keystroke</u>
Return the ESG-D4000A to a known state	[Preset]
Select an output frequency	[Frequency][300][kHz]
Select output signal level	[Amplitude][-10][dBm]
Configure modulation output	[AM][AM Depth][10%]
Set modulation rate and enable modulation	[AM Rate][10 kHz][AM On]
Enable RF output	[RF On/Off]

Once the signal generator has been configured, set up the spectrum analyzer to display the generated signal, by connecting the RF output of the signal generator to the RF input of the spectrum analyzer and following the instructions below.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]

Select a frequency range to display [Frequency][Center Freq][300][kHz]

[Span][50][kHz]

Select the minimum resolution bandwidth [BW/Avg][1 kHz]
available on the signal analyzer

Measure and record the 10 kHz AM sideband [Marker]
level of the 300 kHz carrier. [Peak Search]

Use RPG knob to move delta marker [Marker Delta]
to one of the 10 kHz sidebands and
record the marker value below.

@ 310 kHz Delta dB = _____ dBc

Calculate the %AM associated with the dBc value that you read on the spectrum analyzer using the following equation.

%AM Modulation Index = $m = 2 * 10 \exp(\text{Delta dB}/20) * 100\%$

%AM Modulation Index = $m = _____$

Re-configure modulation output of the [AM][AM Rate][1 kHz]
signal generator so that $f_{mod} = 1 \text{ kHz}$

Remeasure and recalculate the signal's %AM for the new signal $f_{mod} = 1 \text{ kHz}$

@ 301 kHz Delta dB = _____ dBc
%AM Modulation Index = $m = _____$

Why does this calculated value not agree with value that you set on the signal generator?
Hint: The minimum resolution BW on the Agilent ESA-L1500A is 1 kHz.

Re-configure modulation output of the signal generator so that $f_{mod} = 10 \text{ kHz}$ and remeasure
the signal under test's %AM using the spectrum analyzer's built-in %AM function

Re-configure modulation output of the [AM][AM Rate][10 kHz]
signal generator so that $f_{mod} = 10 \text{ kHz}$

Instruction

Return the ESA-L1500A to a known state

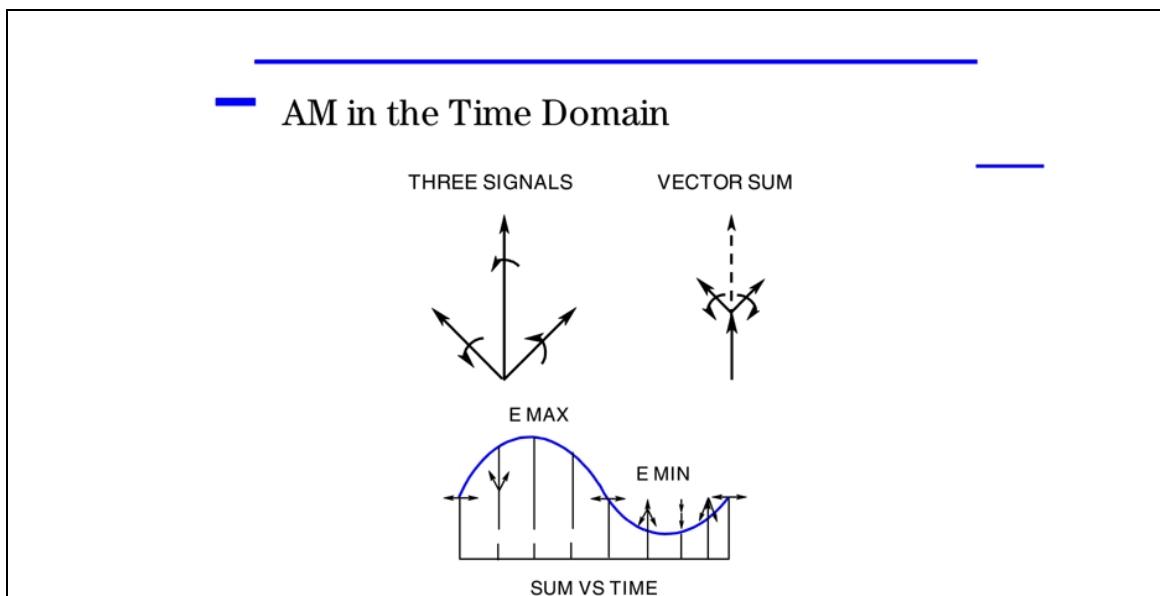
Select a frequency range to display

Select the minimum resolution bandwidth
available on the signal analyzer

Activate the automatic %AM function

%AM Modulation Index = $m = \underline{\hspace{2cm}}$

Keystroke

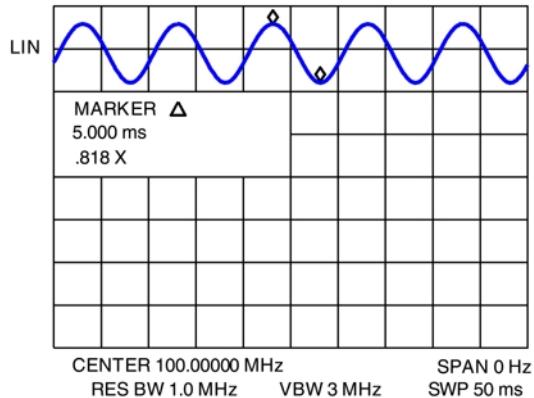

[Preset]

[Frequency][Center Freq][300][kHz]

[Span][50][kHz]

[BW/Avg][1 kHz]

[Measure][%AM On]



The three terms in the equation given at the beginning of this section of the lab can be represented by three rotating vectors. One is the carrier term, spinning at the carrier frequency. The upper sideband is represented by a vector that is spinning at a higher rate than the carrier, and the lower sideband is represented by a vector spinning at a lower rate. The three vectors add vectorially in the time domain to form the single modulated signal, which we see here. To be in the time domain, the resolution bandwidth of our instrument must be wider than the spectral components.

Spectrum Analyzer

Time Domain: M

It was mentioned briefly that although a spectrum analyzer is primarily used to view signals in the frequency domain, it is also possible to use the spectrum analyzer to look at the time domain. This is done with a feature called zero-span. This is useful for determining modulation type or for demodulation. The spectrum analyzer is set for a frequency span of zero (hence the term zero-span) with some nonzero sweep time. The center frequency is set to the carrier frequency and the resolution bandwidth must be set large enough to allow the modulation sidebands to be included in the measurement. The analyzer will plot the amplitude of the signal versus time, within the limitations of its detector and video and RBWs. A spectrum analyzer can be thought of as a frequency selective oscilloscope with a BW equal to the widest RBW.

The previous slide is showing us an amplitude modulated signal using zero-span. The display is somewhat different than that of an oscilloscope: Since the spectrum analyzer does not display negative voltages, we only see the upper half of the time domain representation. Also, the spectrum analyzer uses envelope detectors, which strip off the carrier. Hence, only the baseband modulating signal is seen.

The display shows a D marker 10 ms. Since this is the time between two peaks, the period T is 10 milli-seconds.

Recall: $Period T = 1/f_{mod}$. Hence: f_{mod} is 100 Hz.

AM Mod Index Time Domain

$$m = \frac{E_{max} - E_{min}}{E_{max} + E_{min}}$$

$$\%AM = \frac{1 - E_{min}/E_{max}}{1 + E_{min}/E_{max}} \times 100\%$$

The first formula can be used to calculate m , just like an oscilloscope. However, use the second formula when using the spectrum analyzer's relative markers. Relative markers in linear mode show the ratio. For example, if the relative marker reads "0.1x", this means that the lower signal is "0.1 times" or 10% of voltage of the higher signal.

Configure the signal generator for the measurement of %AM using the 0 span (time domain) method on the spectrum analyzer.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESG-D4000A to a known state	[Preset]
Select an output frequency	[Frequency][100][MHz]
Select output signal level	[Amplitude][-10][dBm]
Configure modulation output	[AM][AM Depth][30%]
Set modulation rate and enable modulation	[AM Rate][100 Hz][AM On]
EnableRF output	[RF On/Off]

Configure the spectrum analyzer to measure %AM using the 0 span (time domain) method.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]
Select a frequency range to display	[Frequency][Center Freq][100][MHz] [Span][0][kHz]
Select a linear amplitude display	[Amplitude][Scale Type Lin]
Select the minimum resolution bandwidth available on the signal analyzer	[BW/Avg][1 kHz]
Set the x-axis (time) resolution of the spectrum analyzer	[Sweep][Sweep Time][150][msec]
Put the analyzer in single sweep mode to freeze a trace in time	[Single Sweep]

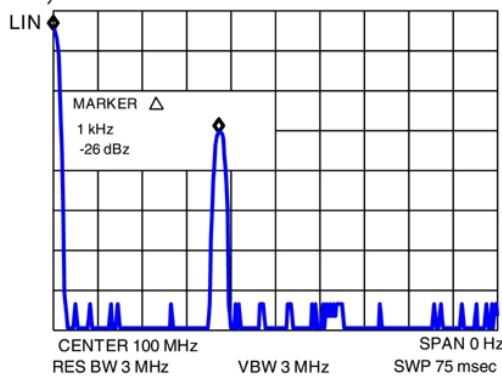
Use the delta marker search functions to find E_{max}/E_{min} value, to calculate the signals %AM.

Note: In linear amplitude mode, the delta marker between E_{max} & E_{min} will automatically read out the ratio E_{max}/E_{min} .

$$\begin{aligned}
 \text{Period } T &= 1/f_{\text{mod}} & = \text{_____} \\
 f_{\text{mod}} & = \text{_____} \\
 E_{max}/E_{min} & = \text{_____} \\
 E_{min}/E_{max} & = \text{_____} \\
 \%AM & = \text{_____}
 \end{aligned}$$

With some spectrum analyzers it is also possible to measure %AM using an FFT function. This function gives an FFT frequency domain display relative to the carrier. The carrier is at the left edge because it is at 0 Hz relative to itself. The baseband modulating signal is to the right of the carrier, offset from the carrier by f_{mod} .

Just like in the swept frequency domain, the markers can be used to measure carrier amplitude, m , and f_{mod} . However, you must use the FFT markers immediately after pressing {FFT MEAS}, otherwise the FFT markers will not work correctly.


In the measurement shown, the delta marker reads 1000 Hz and -26 dBc.

Hence: $f_{mod} = 10$ kHz and $m = 0.1$ (10% AM).

As we have seen, AM depth of modulation measurements using superheterodyne spectrum analyzers can be made in the swept frequency domain, time domain, or FFT frequency domain.

The advantages of making AM measurements in the FFT frequency domain are better amplitude accuracy, better frequency resolution, orders-of-magnitude improvement in speed, and rejection of incidental FM.

FFT Frequency Domain Method

AM Measurement Method Selection Guide for Spectrum Analyzers

Meas	Method	Accuracy	f_{mod}	m
m	Swept Frequency Domain (narrow Res BW)	Log Fidelity	$> (\text{Shape Factor}/2) \text{ Res BW}$ Sinusoidal	$> \approx .002$
m	Time Domain (wide Res BW)	Linearity	$(1/\text{ST}_{\text{max}}) < f_{mod} < (\text{N}/2)/\text{ST min}$ Sinusoidal	$> \approx .01$
m	FFT Frequency Domain (wide Res BW)	± 0.2 dB	$.02 \cdot \text{N}/(2 \cdot \text{ST}_{\text{max}}) < f_{mod} < \text{N}/(2 \cdot \text{ST}_{\text{min}})$ Sinusoidal	$> \approx .002$

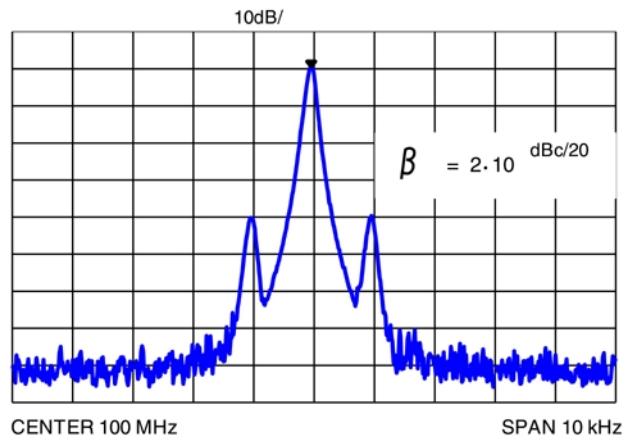
Swept Frequency Domain Method - The swept frequency domain is the method of choice for best absolute and relative frequency accuracy (e.g.; measuring f_{mod}).

Time Domain Method - Only spectrum analyzers without the FFT need to use the time domain method. This method is less accurate and less sensitive to low % AM. However, it is useful for voice or noise modulation.

FFT Frequency Domain Method - Even a low-cost spectrum analyzer can make the most accurate AM measurements using this method. This is the method of choice for economy or mid-performance or high-performance spectrum analyzers for $f_{mod} < 5$ kHz (approximately).

Terminology of Amplitude Modulation

f_{mod}	Frequency of modulation, modulation rate
T	Period of modulation
f_c	Carrier frequency
m	Modulation index, modulation depth
%AM	Percent amplitude modulation, modulation depth


Introduction: FM Modulation Index

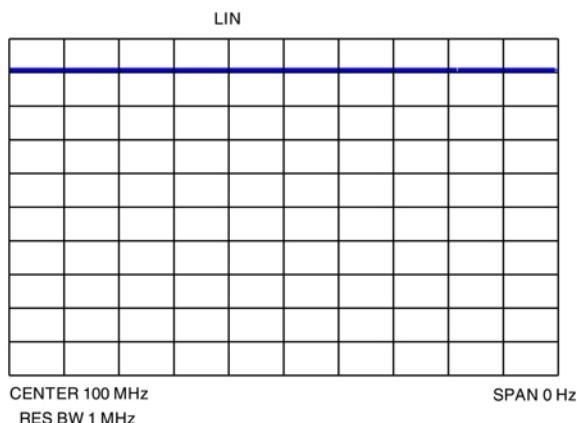
$$\beta = \frac{\Delta f_{peak}}{f_{mod}}$$

What is FM? Frequency modulation occurs when a modulating signal, f_{mod} , causes an instantaneous frequency deviation of the modulated carrier. The peak frequency deviation, Df_{peak} , is proportional to the instantaneous amplitude of f_{mod} . The rate of deviation is proportional to the frequency of f_{mod} .

The FM modulation index, b , is defined as $b = Df_{peak}/f_{mod}$ in radians, and equals the peak phase deviation.

— Narrowband Frequency Modulation [FM]

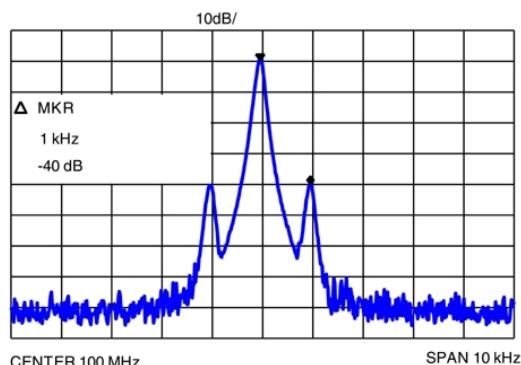
FM is composed of an infinite number of sidebands. However, in the narrowband FM* case, there are only two significant sidebands, whose amplitude with respect to the carrier are:


$$dBc = 20 \log (b/2).$$

Therefore, the modulation index is: $b = 2 \times 10^{(dBc/20)}$

(This is called the "narrowband formula").

Note: f_{mod} is the frequency separation of the sidebands, which may be measured to counter accuracy, and $Df_{peak} = b \times f_{mod}$. Hence: b , Df_{peak} , f_{mod} , and the carrier frequency are easily measured in the narrow band case.


— FM in the Time Domain

When displayed in the swept-tuned frequency domain, narrowband FM looks just like AM. However, if we open the resolution bandwidth, FM becomes a line on the display, since there are no amplitude variations.

Note: "Narrowband" and "wideband" refer to the number of significant sidebands of the signal itself. This has nothing to do with "broadband" or "narrow band" measurements, which depends on the choice of the spectrum analyzer resolution bandwidth.

Narrowband FM

<u>Instruction</u>	<u>Keystroke</u>
Return the ESG-D4000A to a known state	[Preset]
Select an output frequency	[Frequency][100][MHz]
Select output signal level	[Amplitude][-10][dBm]
Configure modulation output	[FM/OM][FM Dev][100][Hz]
Set modulation rate and enable modulation	[FM Rate][10 kHz][FM On]
EnableRF output	[RF On/Off]

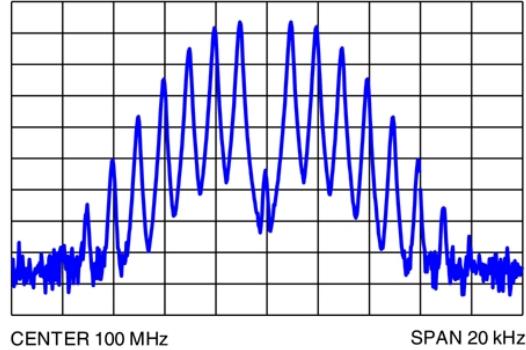
Once the signal generator has been configured, set up the spectrum analyzer to display the generated signal, by connecting the RF output of the signal generator to the RF input of the spectrum analyzer and following the instructions below.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]
Select a frequency range to display	[Frequency][Center Freq][100][MHz] [Span][50][kHz]
Select the minimum resolution bandwidth available on the signal analyser	[BW/Avg][1][kHz]
Measure and record the 1 kHz FM sideband level of the 100 MHz carrier.	[Peak Search] [Marker] [Marker Delta] [Search] [Next Peak]

You should see two sidebands approximately -45 dBc at 10 kHz away from the carrier.

Record the sideband level in dBc _____
Record f_{mod} _____ Hz.

Calculate $b = 2 \times 10^{\frac{dBc/20}{20}}$ = _____ this is the "narrowband formula."


Calculate $Df_{peak} = b \times f_{mod} = Df_{peak} = \text{_____} \times \text{_____} = \text{_____}$

Now increase the resolution bandwidth to 1 MHz and prove to yourself that this is not AM. The signal generator is set for $b = Df_{peak}/f_{mod} = 20 \text{ Hz}/1000 \text{ Hz} = 0.02$.

Note: Dfpeak frequency deviation << fmod. In other words, the spectrum width is much greater than the deviation of the carrier! That's because the sideband spacing determines the rate at which the carrier is deviating. In our measurement, the rate of deviation is much greater than the peak frequency deviation of the carrier.

Vary the FM rate and deviation on the ESG-D4000A signal generator and observe the change in the displayed signal of the spectrum analyzer.

Bessel Null Method

The Bessel function tells us the carrier and sideband amplitudes are a function of m . The carrier component J_0 and the various sidebands J_N go to zero amplitude at specific values of b . For example, the carrier component achieves a "Bessel null" at precisely $b = 2.4048$.

Since the modulating frequency can be set and measured accurately using delta frequency count markers, and since the modulation index b is known accurately, the frequency deviation thus generated is equally accurate.

Instruction

Return the ESG-D4000A to a known state

Keystroke

[Preset]

Select an output frequency

[Frequency][100][MHz]

Select output signal level

[Amplitude][-10][dBm]

Configure modulation output

[FM/OM][FM Dev][25]kHz

Set modulation rate and enable modulation	[FM Rate][10 kHz][FM On]
EnableRF output	[RF On/Off]

Once the signal generator has been configured, set up the spectrum analyzer to display the generated signal, by connecting the RF output of the signal generator to the RF input of the spectrum analyzer and following the instructions below.

<u>Instruction</u>	<u>Keystroke</u>
Return the ESA-L1500A to a known state	[Preset]
Select a frequency range to display	[Frequency]
	[Center Freq][100][MHz]
	[Span][200][kHz]
Select the minimum resolution bandwidth available on the signal analyzer	[BW/Avg][1][kHz]
Measure and record the 10 kHz FM sideband level of the 100 MHz carrier.	[Marker]
Use the next peak right or left function to find the f_{mod} and "nulled" carrier value for the modulated signal under test	[Peak Search]
	[Marker Delta]
	[Next Pk Right] or [Next Pk Left]

How far has the carrier been "nulled" below the first ($b = 2.4048$) sideband = _____

You should see the carrier "nulled" (approximately -40 dBc, or more). Recall that the first carrier null $b = 2.4048$.

$$\text{Calculate } Df_{peak} = b \times f_{mod}$$

$$Df_{peak} = 2.4048 \times \text{_____} = \text{_____}$$

NOTE: If there are more than two significant sidebands, the "Narrowband FM" formula (given earlier) for calculating b does not work.

For more information on wideband FM analysis refer to Hewlett-Packard Company, Spectrum Analysis Basics, Application Note 150 (HP publication number 5952-0292, November 1, 1989)

References:

Hewlett-Packard Company, Spectrum Analysis Basics, Application Note 150 (HP publication number 5952-0292, November 1, 1989)

Hewlett-Packard Company, 8 Hints to Better Spectrum Analyzer Measurements, (HP publication number 5965-6854E, December, 1996)

Hewlett-Packard Company, Amplitude and Frequency Modulation, Application Note 150-1 (HP publication number 5954-9130, January, 1989)

Witte, Robert A., Spectrum and Network Measurements, Prentice Hall, Inc., 1993