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Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

By: Prof. Gabriel M. Rebeiz
The University of Michigan
EECS Dept.
Ann Arbor, Michigan

Purpose
To determine the frequency response of an active second order low-pass filter circuit for
underdamped (Q > 0.5) and overdamped (Q < 0.5) cases, and to see the effect of Q in time
domain using the step-response.

1.0 Low-Pass Filter Implementation:

Equipment:     The whole Agilent rack.

A Sallen-Key non-inverting low-pass filter is shown below:
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 is the input voltage divider, and 1+ R4
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 is the non-inverting op-amp

low-frequency gain when C1 and C2 are open-circuited.  The 1 µF capacitor at the input is a
DC-block capacitor and will act as a short circuit for f > 100 Hz (EECS 210).

For C1 = C2 = C, we have:
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For the case of R4 = R3 and R11 = R12, we have ′K = 2  and:

K = 1, ω0 =
1

C R1 R2

and Q = R1

R2

In reality 0.95 < K < 1.5 due to resistance values inaccuracies (   +  5%).

Low-Q Active Filter:

1. Assemble the circuit as shown above with:

R11 = R12 = 2.4 KΩ         and         R2 = 33 KΩ

C1 = C2 = C = 2.7 nF

This is the low-Q case with Q ~ 0.19, fo ~ 9.3 KHz. (Again, fo can change by    +   10% due to
capacitor values inaccuracies of   +  10%).

As indicated by Problem 5 in the Pre-Lab, the transfer function has effectively 2-poles, one
at f1 ~_  Q fo, and one at f2 ~_   fo/Q.

❏ Draw the filter circuit in your notebook.

2. ❏ Measure the op-amp DC voltages, V(-), V(+) and Vo and make sure that they are all in
the mV levels.  Write them in your notebook.
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Frequency Response   :

3. Connect Vo to scope channel 1 and Vi to channel 2.

a. ❏ Set the function generator to give a sinusoidal voltage of Vppk = 1 V and measure
the frequency response (Vo/Vi) from 50 Hz to 200 KHz (amplitude only).  For the
low-Q case, you should do it at 100, 200, 500, 1000 Hz, etc.  Above 20 KHz, the
output voltage will be very low and you should increase the input voltage to 10 V
ppk in order to measure accurately Vo.

❏ b. M ea sur e the pha se del ay bet ween the in put an d outp ut wavefor m  in the  r egio n
ar o und 8- 10 KHz and deter m i ne exa ctly the fr e quency wher e  it is - 90˚ .  This is ωo ( =  2
π fo) !

❏ c. Measure Vo/Vi at this frequency (|H(ωo)|  = K Q ~-   Q for K ~-   1). This is your Q!

(Remember, that under the Measure 
Time

 menu, you will find a softkey at the bottom of
the screen which measures the   phase   delay between Channel 1 and Channel 2.)

Step Response  :

4. ❏ Set the function generator to give a  square wave   voltage of f = 500 Hz and Vppk = 1
V.  Measure the risetime of the output waveform (10% - 90% of peak value).  Draw the
waveform on your lab notebook.

(Remember that under the Measure 
Time

 menu, you can find a    Risetime    softkey at
the bottom of the screen.)

5. ❏ The risetime is dominated by the first pole at f C R KHz1 2 21 2 1 8= π ~ . .  Therefore
C1 has virtually no effect on this pole.  Remove C1 from the circuit and measure the
risetime again.  What do you notice?

6. ❏ Now, put C1 back into the circuit. Change the input square-wave frequency to 4 KHz
and measure Voppk.  Plot Vi and Vo and label the ppk voltages.  Why does Vo look
like a triangular wave?

 High-Q Active Filter:

1. Change the values of R11 and R12, and R2 to be:

R11 = R12 = 120 KΩ          and           R2 = 1 KΩ

Keep C1 = C2 = C = 2.7 nF.

This is the high Q case with Q R Rideal( ) .= =1 2 7 7 .  However, since C1 is not identical
to C2 and also there are some parasitic capacitances in the circuit, you will find a Q
between 3 and 12.  The resonant frequency is:

f
C R R

KHzo =
1

2
7 6

1 2π
~ .  but could change (  + 10%) due to capacitor values

inaccuracies.

The low frequency gain, K, is still equal to 1 (0.95 < K < 1.05 due to resistance
inaccuracies).

❏ Draw the circuit in your lab notebook.
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Frequency Response   :

2. a. ❏ Set the function generator to a  sinewave   with Vippk = 1 V.  Measure the frequency
response from 50 Hz to 200 KHz.

Be careful, the frequency response changes very quickly around fo!  First

determine fo max V Vo i( )  by a quick frequency scan (using the knob), and then
measure the frequency response taking several more points around fo.  (For
example; the -3 dB, -6 dB, -10 dB points of H(ω) max).

b. ❏ Measure the phase of Vo/Vi around fo and determine the frequency where the
phase delay is -90˚.  This frequency will be very close to where |H (ω)| is
maximum and is the exact ωo.

c. ❏ Measure Vo/Vi at this frequency.  (|H (ωo)| = K Q ~-   Q for K  ~-   1). This is your Q!

3. Set the function generator for a  square wave  of frequency fo (whatever you have
measured, ~ 7.6 KHz)  and Vppk = 1 V.

a. ❏ Measure the output voltage. Plot Vi and Vo and label the ppk voltages. What is the
shape of the output voltage waveform?

b. ❏ Measure Vi and Vo in frequency domain in dB (fo, 3fo, 5fo and 7fo ). Be careful,
choose at least a 100 KHz frequency span so as not to get aliasing on the FFT.

Step Response  :

4. ❏ Set the function generator to a 200 Hz  square wave   with Vppk = 1 V.  Sketch the input
and output voltage in your lab notebook for one period and label the output voltage
when the ripple settles down, (Vf).

a. ❏ For the positive portion of the waveform, measure the exact time of the first peak

(t1) and its value (Vp).  (You can do this using the Measure 
Cursors

 menu.)  The
overshoot value is (Vp - Vf).

fR = 1/∆t

t1

Vp
V

~ 0.5 V

Overshoot

t2 t3

Vf

b. ❏ From the waveform determine the ripple frequency, fR.  (Again, you can do this

quickly under the Measure 
Cursors

 menu).



5

c. ❏ If you have a Q lower than 4-5, measure the values and times of the second, third
and fourth peaks.  You will need this to calculate Q in the post-lab report.  If you
have a high-Q (Q > 4-5), then measure the third, fifth and seventh peaks (value &
time).  This will result in a more accurate determination of Q.

Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

Pre-Lab Assignment

1. Using the Golden Rules (Ideal OP-Amp):
(Ignore the 1 µF DC-block capacitor.  Assume it is a short-circuit at all frequencies.)

a. In the low-pass filter, why is R1 = R11 || R12?  (Disconnect the circuit to the right of
the arrow and determine the Thevenin's equivalent of the source circuit.)

b. Draw the filter circuit at ω << ωo (caps. are open-circuit) and determine V Vo i .

c. Draw the filter circuit at ω >> ωo and determine V Vo i .

d. What is the input impedance of the circuit (seen by Vi) for ω << ωo?

2. a. Check that the resistor/capacitor values given in the experiment result in the quoted
fo, Q, K for the low-Q and high-Q cases.

b. In the low-pass filter, the circuit will   never  work if R12 is not present (and Vs is a pure
ac  source).  Explain why (think of the non-ideal op-amp properties).

3. The frequency response of a first order filter is given by:

V

V s
where RC and f

RC
o
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+
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
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The risetime of a function (tR) is defined as the time from 0.1 Vpk to 0.9 Vpk.

The time response to a step function of amplitude 1 is given by:

V t e eo

t
RC

t( ) = − = −− −
1 1 τ

where τ = ≡RC time constant. 

a. Determine tR as a function of τ  (the
time constant).

b. Express tR as a function of f1.

(This expression is very useful, since once you know the risetime in seconds, you can
quickly determine the corner frequency in Hz (and vice versa).)

4. Calculate Vo/Vo(max) (for a constant Vi) when the filter response (transfer function)   drops 
by: 3 dB (really –3 dB), 6 dB, 10 dB, 15 dB, 20 dB, 30 dB, 40 dB.
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Graphically, this means

Vo/Vomax = (?)

–3 dB

–6 dB

Vo(max)

Vo/Vomax = (?)

5. A low-pass filter transfer function is given by:

Vo

Vs

s( ) = H s( ) = K ωo
2

s2 + ωo Q( )s + ωo
2

s = jω
f o = 10 KHz

and           H ω( ) = K ωo
2

ω0
2 − ω2[ ] 2

+ ωo Q( )ω[ ] 2

         

and    K ≡ low frequency gain

a. Derive |H(ω)|.

b. For K = 1 and using MATLAB, plot    on the same graph   (dB, log f) the filter response
for Q = 0.2, Q = 1 and Q = 10.  The horizontal scale should be from 0.01 fo (100 Hz)
to 100 fo (1 MHz).  The vertical scale should be from +20 dB to -60 dB.  Reminder:
dB = 20 log |H(ω)|.

c. Derive the equation of the phase of H(ω) and plot   on the same graph    the phase for Q
= 0.2, Q = 1 and Q = 10 over the above mentioned frequency range.  What is the
phase of H(ω) as ω→0, ω→∞ and ω = ωo.

d. Prove that at ω ωo H KQ, ( ) =  and the phase of H(ωο) is -90˚.

e. For the special case of Q << 1 (Q = 0.2), the transfer function can be very well
approximated by two poles at ω1 = Qωo and ω2 = ωo/Q.  For Q << 1, ω1 dominates
the response.  For the case of Q = 0.2, plot

H1 s( ) = 1

1+ s

ωo Q





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1+ s

ωo Q







and compare it with the function of part (b) with Q = 0.2 (on the same graph).

f. Prove mathematically that, for Q << 1, H1(s) is nearly equal to H(s).  You can do this
by expanding the denominator of H1(s), determining which factor you must ignore so
that H1(s) = H(s), and proving that for Q << 1, this factor is insignificant.
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Experiment No. 1.
Low-Pass Filters; Step Response vs. Q

 Lab Report Assignment

1. a. Draw the filter circuit and neatly summarize   all your measured data for the low-Q and
high-Q cases (R values, V+, V-, Vo (DC), fo, Q, f1, tR, overshoot, t1, etc. ...,
everything except the frequency response data).

b. Using Matlab, plot the measured transfer function for the low-Q, high-Q filters   on the
same Bode-plot   (f: 50 Hz–200 KHz, dB: +10 or +20 dB–depending on your measured
high-Q- to -60 dB minimum). Label clearly the low frequency gain (K), the '"resonant"
frequency (fo) and the Q of the filter for the low-Q and high-Q cases.

2. Low-Q Filter:

a. From the bode-plot, determine the low frequency pole, f1, (-3 dB pt).  Knowing ωo (or
fo) from the phase measurement and that f1 ~-   Qfo, determine Q.

b. Using the risetime (tR) from the time domain measurements, determine f1 using the
pre-lab problem #3.  Determine Q (knowing ωo).  Does it agree with part (a) above?

c. Knowing the low frequency pole, f1, and for a square-wave of Vi = 1 Vppk and f =
4 KHz, calculate Voppk and compare with measurements of Section 6 of the low-Q
design.

3. High-Q Filter:

a. From the time domain measurements, determine fo from the ripple frequency.
Compare with frequency domain data.

b. From the time domain measurements, determine Q from the overshoot value.
Compare with frequency domain data.

c. From the time domain measurements, determine Q from the ripple peaks.  In one
case, use the first two measured peaks (and times), and in another case, use the first
and last measured peaks (and times).  Compare both Q's with the frequency domain
data.

4. a. For a square-wave of Vpk = 0.5V (Vppk = 1 V) and f = fo (~ 7.6 KHz–use your values),
calculate the fundamental, third, fifth and seventh harmonic levels of the square-wave
(in V and dB)   before    and   after  it passes by the high-Q low-pass filter.  Compare with
frequency-domain measurements for Vi and Vo. (Use Fourier-Series to calculate the
frequency components of the input square-wave).

b. For Vo, what is the value (in V and dB) of the third and fifth harmonic level compared
to the fundamental?  Is this a "clean" sinewave at fo? Calculate the THD (total
harmonic distortion) of the output signal (THD is defined in your EECS 210 lab
manual).
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 Some Problems with the Active Sallen-Key Low-Pass Filter:

1.    Oscillations :

The denominator of the transfer function H s V Vo i( ) = is:
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, the denominator has the form:

s a s ao
2
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The solutions of this quadratic equation will always result in at least one positive pole, and
therefore the system response will "blow" up.  Since this is an active circuit, the filter will
oscillate and generate a somewhat sinusoidal voltage limited by    +   Vcc.  Therefore, always

choose the components such that 
R

R R C R C R C
4

2 3 2 2 1 1 1

1 1< +  and you are guaranteed a

good second-order low-pass filter.  The above is especially true for high-Q filters where R1
>> R2.  In this case, oscillations will   not occur when:

R4

R2 R3 C2

> 1

R2 C1

+ 1

R1 C1

negligible

⇒
R4

R3

>1 .

C1 =C2 =C( )

Therefore, always maintain R4 < R3 for stable high-Q filters.

2.    Uncertainty in Q for high-Q designs :

The Q of a Sallen-Key non-inverting low-pass filter (with C1 = C2 = C) is given by:

Q
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which simplifiers to Q R R= 1 2  for R4 = R3.

However, in a high-Q design, R1 >> R2 and any slight non-equalities in R4 and R3 can
change the value of Q by a large fraction.  Let us consider the example where R1 = 30
KΩ, R2 = 1 KΩ, and:

 Q
R R

=
+ −( )

1

0 183 5 48 1 4 3. .

which simplifies to Q = 5.5 for R4 = R3 exactly.
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However, for R4 = 1.02 R3, we have Q = 13.6, and for R4 = 0.98 R3, we have Q = 3.4.
Therefore, 3.4 < Q < 13.6, for a   +  2% change in the R4/R3 resistor ratio!

This holds true for C1 = C2 = C.  However, C1 /=  C2 due to capacitor inaccuracies and
parasitic capacitances in the circuit.  Therefore, even if one maintains R4 = R3, Q can still vary
between 3 and 14 due to capacitance variations alone.  Therefore, the Sallen-Key filter is
simply not a good design for high-Q filters!

In the above example, one could also ask what happens to Q when R4/R3 = 1.05 (with C1 =
C2 = C).  In this case, Q < 0 and the circuit will oscillate (see above). Therefore, it is always
good to maintain R4    <    R3 and use   +   1% resistors (instead of the standard    +   5% resistors) for
R4 and R3 in Sallen-Key high-Q filters.

For the above reasons, a sensitivity analysis is always done in commercial engineering
applications. The sensitivity analysis tells the engineer how much variation in output
specifications to expect for a small change in component value.  This is especially important in
high-volume manufacturing, where a parts vendor could supply you with a whole run of
components, all at the upper end of their tolerance limit."

Equations you may need for the lab report:

1) The Fourier-Series of a square-wave signal is

given by  V t
V

n
n t

n
o( ) = ( )

=

∞

∑ 4

1 π
ωsin  where V

is the peak voltage (and    not peak-to-peak).

2) Total Harmonic Distortion, THD, is defined as:
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