
1

!NNEX�!

(informative)

)NFORMATIVE�PART�OF�-0%'
��!UDIO�!MD���&0$!-�TEXT

Annex A ... 1

A.1. Parametric audio encoder.. 3

A.1.1 Overview of the encoder tools .. 3

A.1.2 HILN encoder tools... 3

A.1.2.1 HILN parameter extraction... 3

A.1.2.2 HILN parameter encoder .. 7

A.1.2.3 HILN bitrate scalability ... 9

A.1.3 Music/Speech Mixed Encoder tool.. 10

A.1.3.1 Music/Speech classification tool .. 10

A.2. Fine grain scalability tool: BSAC (Bit-Sliced Arithmetic Coding).. 12

A.2.1 Introduction... 12

A.2.2 Bit Slicing of the quantized spectral coefficients.. 12

A.2.3 Probability Table Determinations.. 13

A.2.4 Grouping and interleaving ... 14

A.2.5 Scalefactors... 14

A.2.6 Arithmetic coding ... 15

A.2.6.1 Arithmetic Coding Procedure.. 15

A.2.7 Stereo-related data and PNS data ... 16

A.2.8 Payload transmitted over Elementary Stream .. 17

A.3. Error protection tool... 19

A.3.1 Text format of out-of-band information.. 19

A.3.2 Example of out-of-band information... 20

A.3.2.1 Example for AAC... 20

A.3.2.2 Example for Twin-VQ.. 21

A.3.2.3 Example for CELP... 27

A.3.2.4 Example for HVXC .. 30

2

A.3.3 Example of error concealment .. 32

A.3.3.1 Example for CELP... 33

A.3.3.2 Error concealment for the silence compression tool.. 37

A.3.3.3 Example for HVXC .. 37

A.3.4 Example of EP tool setting and error concealment for HVXC.. 37

A.3.4.1 Definitions ... 37

A.3.4.2 Channel coding ... 38

A.3.4.3 EP tool setting... 44

A.3.4.4 Error concealment .. 45

A.4. Silence compression tool .. 48

A.4.1 VAD module... 48

A.4.1.1 Definitions ... 48

A.4.1.2 Down-sampling for the wideband ... 48

A.4.1.3 Parameter calculation... 48

A.4.1.4 Temporal voice activity decision... 49

A.4.1.5 Frame voice activity decision .. 50

A.4.1.6 Hangover ... 50

A.4.2 DTX module ... 50

A.4.2.1 Definitions ... 51

A.4.2.2 LP analysis .. 51

A.4.2.3 Averaging of the LSP.. 51

A.4.2.4 RMS calculation .. 51

A.4.2.5 Averaging of the RMS... 51

A.4.2.6 Detection of the characteristics change... 52

A.4.2.7 Parameter encoding ... 52

A.4.2.8 Local CNG decoder... 52

A.5. Extension of HVXC variable rate mode... 52

A.5.1 Encoder Description... 52

3

A.1.� Parametric audio encoder

A.1.1� Overview of the encoder tools

The following figure shows a general block diagram of a parametric encoder. First the input signal is separated into
the two parts which are coded by HVXC and by HILN tools. This can be done manually or automatically. Currently
automatic switching between speech and music signals is supported (see Clause Fehler! Verweisquelle konnte
nicht gefunden werden.), allowing the use of HVXC for speech and HILN for music. For both HVXC and HILN
parameter estimation and parameter encoding can be performed. A common bitstream formatter allows operation
either in HVXC only, HILN only or also in combined modes, i.e. switched or mixed mode.

HVXC /
HILN

separation
HILN

parameter
estimation

HVXC
parameter
estimation

HILN
parameter
encoding

HVXC
parameter
encoding

bitstream
formatting

bitstreamaudio signal

Figure A.1.1.1 – General block diagram of the integrated parametric encoder

A.1.2� HILN encoder tools

The basic principle of the „Harmonic and Individual Lines plus Noise“ (HILN) encoder is to analyze the input signal in
order to extract parameters describing the signal. These parameters are coded and transmitted as a bitstream. In
the decoder the output signal is synthesized based on the parameters extracted and transmitted by the encoder.

The encoder consist of two main parts: „Parameter Extraction“ and „Parameter Coding“. In the encoder, the input
signal is divided into consecutive frames and for each frame a set of parameters describing the signal in this frame
is extracted and coded. Due to this parametric description, a wide range of bitrates, sampling rates and frame
lengths are possible. Typically a frame length of 32 ms is used. For input signals with 8 kHz sampling rate typically a
bitrate of 6 kbit/s is used. For signals with greater bandwidth, a higher bitrate is recommended.

The „Parameter Extraction“ and „Parameter Coding“ is described in detail in the following Clauses.

A.1.2.1�HILN parameter extraction

Since different parameter sets and different synthesis techniques can be applied, the input signal of the encoder has
to be split up in an appropriate way. This is performed by the Separation unit. Depending on the most appropriate
synthesis technique, a parameter set is derived for each part of the input signal in the Model Based Parameter
Estimation unit. The two units Separation and Model Based Parameter Estimation can be regarded as the analysis
stage which produces a parametric description of the input signal. The separation of the input signal is enhanced by
feeding back the signals which are generated in the Synthesis unit from all the parameters of previously separated
parts. The Separation and the Model Based Parameter Estimation additionally receive data from a synthesis model
independent Pre-Analysis. Prior to transmission, the parameters are fed through the Quantization and Coding unit,
which is controlled by a Psychoacoustic Model. This Psychoacoustic Model processes the input signal in order to
derive information about the relevancy of synthesis parameters. In addition, the synthesized signal is fed into the
Psychoacoustic Model, which thus is allowed to assist the Model Based Parameter Estimation.

4

psychoacoustic
model

pre-
analysis

separation model based
parameter estimation

synthesis

quantization
and coding

analysis

analysis/synthesis loop

audio
signal

bit-
stream

Figure A.1.2.1 – Block diagram of the HILN encoder

In the parameter extraction, the input signal is separated into three different parts: „harmonic lines“, „individual lines“
and „noise“.

For each of these parts parameters describing the signal are extracted. These are basically:

• harmonic lines: fundamental frequency and amplitudes of the harmonic components

• individual lines: frequency and amplitude of each individual line

• noise: spectral shape of the noise

Additionally parameters for amplitude envelopes and for continuation of spectral lines from one frame to the next
can be determined.

The signal separation and parameter estimation is implemented in three steps: First the fundamental frequency of
the harmonic part of the signal is estimated. Then the parameters of the relevant spectral lines are estimated and
these lines are classified as „individual lines“ or „harmonic lines“ depending on the frequency with respect to the
fundamental frequency. After all relevant spectral lines are extracted, the remaining residual signal is assumed to be
noise-like and its spectral shape is described by a set of parameters.

The harmonic line extraction of the HILN tools could also be utilized in an integrated parametric coder utilizing both
the HVXC speech coding tools as well as the HILN coding tools simultaneously. If the input signal is e.g. a speech
signal mixed with background music, the HILN encoder can be used to extract only those individual spectral lines
that do not belong to the harmonic part of the signal. These individual lines are encoded by the HILN tools and the
remaining signal - consisting of the harmonic signal part and noise - then is encoded by the HVXC parametric
speech codec tools. In the decoder, the audio signal is reconstructed by adding the output of the „individual line“
synthesizer and the HVXC decoder.

A.1.2.1.1� Fundamental frequency estimation

A „cepstrum“-based fundamental frequency estimation technique is employed by the HILN tools. First the input
signal is windowed with a Hanning window of twice the frame length centered around the current frame. For the
windowed signal, the magnitude spectrum is calculated and the logarithm is applied to the magnitude spectrum.
Then the log spectrum is multiplied with the window

w(f) = (1+cos(2*pi*f/fs))/2 0 <=f <= fs/2

and zero-padding is used to virtually double the sampling frequency before the cepstrum is calculated. Finally the
local maxima in the cepstrum are determined and the largest maximum within the permitted „pitch lag“ search range

5

is identified. The fundamental frequency is calculated from the „pitch lag“ (period of the fundamental frequency) of
the largest maximum.

The fundamental frequency determined by this cepstrum-based technique is used as an initial (coarse) estimate in
the following line parameter estimation.

A.1.2.1.2� Harmonic and Individual Line Parameter Estimation

The estimation of harmonic and individual line parameters is based on an „Analysis/Synthesis Loop“ described in
the following Clauses.

In a first step the parameters of all harmonic lines are estimated. This is done by performing the regression-based
high accuracy frequency estimation for all integer multiples of the coarse fundamental frequency as initial estimates.
Based on the accurate frequencies of the harmonic lines, a fine estimate of the fundamental frequency hFreq and
the so-called „stretching“ hStretch is calculated which minimizes the total error between the real harmonic line
frequencies and those calculated according to

hLinefreq[i] = hFreq * (i+1) * (1 + hStretch*(i+1)) i = 0 .. harmNumLine-1

where the total number of harmonic lines is determined by the bandwidth w of the signal and the current
fundamental frequency hFreq:

harmNumLine = floor(w/hFreq)

The harmonic envelope flag is set if using the current amplitude envelope for all harmonic lines results in a lower
residual error than if no envelope is used. If the relative change of the fundamental frequency between the previous
and the current frame is less that 15%, the harmonic continuation flag is set.

In the second step the relevant spectral lines are extracted from the input signal by means of the
„Analysis/Synthesis Loop“. This loop utilizes a psychoacoustic model to extract the spectral lines in order of their
subjective relevance. If the frequency of an extracted spectral line is close to the frequency of a harmonic line as
calculated from hFreq and hStretch, this extracted line is classified as harmonic line. Otherwise it is classified as
individual line. The „Analysis/Synthesis Loop“ is terminated if the requested number of individual lines was extracted
or if the remaining signal components cannot be properly modeled by spectral lines. The ratio between the number
of harmonic lines extracted and the total lines extracted is passed on to the encoder as measure of „relevance“ of
the harmonic lines.

If less than three extracted lines were classified as „harmonic line“, these lines are added to the list of „individual
lines“ and numHarmLine is set to 0. Finally all harmonic lines that were not extracted by the „Analysis/Synthesis
Loop“ are also removed from the residual signal. This residual signal is then passed to the noise parameter
estimation.

A.1.2.1.2.1� Pre-Analysis

The pre-analysis module determines the signal amplitude envelope which is used in the analysis/synthesis loop.

A.1.2.1.2.2� Analysis/Synthesis Based on Single Spectral Lines

The Individual Line encoder is based on the model of single spectral lines, which can be generated with the help of
sine wave generators. The according Model Based Parameter Estimation for the i-th line in the loop consists of the
following steps:

• calculation of the deviation between FFT spectra of input and synthesized signals

• selection of the most relevant FFT line with center frequency fi,m

• high resolution frequency estimation in the surrounding of fi,m

• amplitude and phase estimation, selection of envelope information

• synthesis with the determined parameters

• calculation of the residual error signal by subtraction of the synthesized signal from the input signal

6

psychoacoustic
model

MAX

FFT

frequency, amplitude
and phase estimation

synthesis

Σ

X(N)

()8 K 3 K
I

() ()−
2

- K
I
()

F A
I I I
, ,ϕresidual error E N

I
()

synthesized signal S N
I
()

F
M I,

FFT .

(). 2

.

Figure A.1.2.2 – Analysis/Synthesis Loop based on the synthesis method „single spectral lines“

The FFT line to be processed is determined by calculating the deviation between input spectrum and synthesized
spectrum and searching the maximum ratio of the square of this deviation and the masking threshold derived from
the signal synthesized from the previously determined spectral lines.

Based on the center frequency fi,m of the selected FFT line a frequency estimation is performed in order to obtain a
frequency parameter of higher accuracy than the FFT resolution (Fehler! Verweisquelle konnte nicht gefunden
werden.).

low pass ↓ K arg(.) linear
regression

e j f ni m− 2π ,

∆fi

fi m,

fie ni()

Figure A.1.2.3 – High accuracy frequency estimation

For this frequency estimation, first the spectrum of the residual error signal is shifted in a way that the center
frequency fi,m of the selected FFT line becomes zero. The complex output values of this operation are fed into
lowpass filter and sampling rate reduction, which are realized by applying time-shifted versions of the window
function determined in the Pre-Analysis. The slope of the regression line for the phase values of the obtained
complex samples gives a frequency offset, which is added to fi,m in order to give a high resolution frequency
parameter fi. In the current implementation the time shift of the window function ranges from -0.32 to 0.32 times the
frame length. The time shift step size is 0.08 times the frame length and thus 9 data points are used for the linear
regression.

Based on fi the amplitude and phase of the spectral line are calculated. This is realized by calculating a complex
correlation coefficient of the residual error signal and a complex harmonic signal of frequency fi. The absolute value
of the correlation coefficient gives the amplitude parameter ai and the argument gives the phase parameter ϕi. If the
Pre-Analysis has generated envelope parameters, a second set of parameters ai,e and ϕi,e is generated by correlation
of the residual error signal and a complex harmonic signal of frequency fi multiplied with the according envelope.

In the Separation unit, a new residual error signal is generated by subtracting the signal synthesized from the
parameters fi, ai and ϕi. If the parameters ai,e and ϕi,e are also available, a second signal is synthesized accordingly
and the parameter set leading to the lowest residual error variance is selected.

7

A.1.2.1.2.3� Psychoacoustic model

The psychoacoustic model calculates the masked threshold for the synthesized signal components in the
analysis/synthesis loop.

A.1.2.1.3� Noise Parameter Estimation

The noise parameters are used to model the spectral shape of the residual signal. First the power spectrum of the
Hanning-windowed residual signal is calculated. Then this spectrum is transformed back in the the autocorrelation
function. Based on this autocorrelation function, LPC parameters are calculated using Durbin’s algorithm. These
LPC parameters are then transformed into reflection coefficients which are represented as Log Area Ratios (LAR).
Besides the LAR parameters also the power of the noise signal is calulated.

Additionally a new set of envelope parameters is calculated for the residual signal. Thus also the temporal shape of
the residual signal can be modeled. The ratio of residual signal power to input signal power is calculated and passed
to encoder as a measure of „relevance“ of the noise-like signal component.

A.1.2.2�HILN parameter encoder

The extracted parameters of the harmonic, individual line and noise parts of the signal are quantized and encoded
to generate the bitstream output of the HILN encoder.

The allocation of the bits available in a frame to the parameters for the three parts of the signal is determined by the
harmonic and noise component „relevance“ measures calculated during the parameter estimation.

A.1.2.2.1� Harmonic Line Parameter Quantization

The number of bits available for the harmonic line parameters depends on the „relevance“ measure of the harmonic
signal component. If this measure is low, the number of harmonic lines encoded can be less than the number of
lines extracted. This corresponds to a bandwidth limitation of the harmonic signal.

The fundamental frequency is quantized with 2048 steps on a logarithmic scale ranging from 20 Hz to 4 kHz. The
„stretching“ parameter is quantized with 5 bits on a uniform scale ranging from -0.001 to +0.001.

To describe the spectrum of the harmonic tone, the autocorrelation function of the harmonic signal is calculated.
From this LAR LPC coefficients are derived that approximately model the spectral envelope of the harmonic signal.
This process is similar to the LPC specral modeling used for the noise signal. Besides the LAR parameters also the
power of the harmonic tone is calulated.

For a new harmonic tone, the indices of the quantised fundamental frequency and amplitude are directly written to
the bitstream, while for a continued harmonic tone the index differences to the previous frame are coded with an
entropy code.

A.1.2.2.2� Individual Line Parameter Quantization

In the Quantization and Coding unit, the parameters are processed in the order as they are obtained from the
Analysis/Synthesis Loop, since this order corresponds to the relevancy with respect to the reproduction of the
sound. This unit is able to generate two bitstreams, one basic bitstream which allows the generation of the basic
quality audio signal, and an enhancement bitstream which can be used in applications where a difference signal
between input and decoder output is needed, e.g. for scalability. The basic bitstream mainly contains the frequency
and amplitude parameters, while the enhancement bitstream contains the phase parameters and information for
finer quantization of frequency and envelope parameters.

For each frame of the input signal, a constant number of bits according to the desired bit rate is transmitted. The first
bit in each frame is the envelope bit, which indicates whether envelope parameters are used or not. If this bit is set,
the 3 envelope parameters follow, and for each transmitted line an additional line envelope bit is transmitted, which
indicates, whether a constant amplitude or the envelope is to be used for the synthesis of the corresponding line.

Since the human auditory system is not very sensitive to phase changes, only the frequency and amplitude
information of the spectral lines are coded and transmitted in the basic bitstream to obtain a signal with the basic
audio quality. But in this case, it is necessary to provide information for the decoder which enables it to generate a
signal free of phase discontinuities at frame boundaries. Therefore the first processing stage detects lines which

8

continue from one frame to another. If a line is to be continued from the previous frame, only the frequency and
amplitude changes are quantized and transmitted instead of the absolute frequency and amplitude values. For this
purpose the frequency and amplitude parameters of the i-th line in the current frame m are compared with those of
the k-th line in the previous frame m-1 for all possible combinations of i and k. The line continuation is used, if the
relative frequency change

Q I K
F M F M

F MF

I K

I

(,)
() ()

()
=

− − 1

does not exceed a given threshold qf,max and if the ratio of amplitudes

Q I K
A M A M A M A M

A M A M A M A MA

I K I K

K I I K

(,)
() () () ()

() () () ()
=

− ≥ −
− < −





1 1

1 1

if

if

lies within the interval [1...qa,max]. If there is more than one possibility to continue a line from the previous frame, that
line in the previous frame is selected, for which the following similarity criterion reaches its maximum:

1
Q Q I K

Q

Q Q I K

Q Q I K
F MAX F

F MAX

A A

A A

=
−

⋅
−

−
,

,

,max

,max

(,) (,)

() (,)1

The frequencies and amplitudes of the individual lines are quantized according to a Bark-like frequency scale and a
logaroithmic amplitude scale. For each line of the previous, a continuation bit is transmitted in the bitstream, which
indicates whether the line is continued in the current frame or notFor new lines, the indices for the quantised
frequency and amplitude are encoded using a SubDivisionCode (SDC) as describe below. For all lines continued
from the previous frame, the frequency and amplitude index difference is encoded with an entropy code.

Since the transmission of absolute frequency and amplitude values requires more bits per line than for the relative
values, the number of lines transmitted per frame is varied in order to obtain a constant bit rate for the basic
bitstream.

Since the basic bitstream does not contain phase information, it is not useful to calculate a residual error signal by
subtracting the corresponding decoder output signal from the input signal. In order to enable scalability modes, in
which the residual signal is transmitted in a bitstream of higher bit rate, an additional enhancement bitstream is
generated. It is constructed in the following way:

• if the envelope parameters are transmitted in the basic bitstream, additional bits for finer quantization of the 3
envelope parameters are transmitted

• if a line is starting, i.e. not continued from the previous frame, and its frequency exceeds a given threshold,
additional bits for finer quantization of the absolute frequency are transmitted

• for each line the phase parameter is transmitted after uniform quantization

The number of bits per frame in the enhancement bitstream can vary, this has to be taken into account in the
calculation of available bits for the coding of the residual error.

Since the position of a continued line in the current frame depends on the position of its predecessor in the previous
frame, a bit allocation algorithm is used which ensures that the N lines transmitted in the current frame are always
the N most relevant lines found by the Analysis/Synthesis Loop.

The system delay of the encoder is 1.5 times the frame length. This delay results from the length of the frame itself
plus an additional delay of (0.5) times the frame length caused by the shifted overlapping window used for the
frequency estimation.

SDC-Encoding:

k : number of codewords (0...k-1)
i : value to encode
tab: table containing domain limits

9

void SDCEncode(int k,int i,int *tab)
{

int *pp;
int g,dp,min,max,cwl;
long cw;

cw=cwl=0;
min=0;
max=k-1;
pp=tab+16;
dp=16;

while (min!=max)
{

if (dp) g=(k*(*pp))>>10; else g=(max+min)>>1;
dp>>=1;
cw<<=1;
cwl++;
if (i<=g) { pp-=dp; max=g; } else { cw|=1; pp+=dp; min=g+1; }

}
PutBits(cw,cwl);

}

PutBits() writes the codeword to the bitstream, where the LSBs in cw are the codeword and clw determines number
of bits to be transmitted.

A.1.2.2.3� Noise parameter quantization

The number of noise parameters that are quantized and encoded depends on the „relevance“ measure of the noise
signal component. If it is very low, no noise parameters are transmitted. For higher values of this measure an
adequate number of LAR parameters are quantised and coded. Due to the properties of the reflection coefficients,
the number of LAR parameters transmitted can be decided during bit-allocation in the encoder and no re-calculation
of these parameters is required.

If the noiseEnvFlag is set then also the additional set of noise envelope parameters is quantized and coded.

A.1.2.3�HILN bitrate scalability

Due to the parametric signal representation utilized by the HILN parametric coder, it is well suited for applications
requiring bit rate scalable coding. In such an application, the bit rate received by a decoder can be adapted
dynamically to the properties of the transmission link or chosen according to some other rules. In case of a reduced-
rate bitstream, only the parameters of the perceptually most relevant signal components (individual lines, harmonic
tone, noise) are transmitted. In case of a full-rate bitstream also the parameters of additional signal components
(e.g. individual lines) which are perceptually less relevant than those in the reduced-rate bitstream as well as
additional parameters which refine the description of signal components already present in the reduced-rate
bitstream (e.g. additional partials for the harmonic tone, additional noise parameters) are transmitted.

This bit rate scalability for HILN bitstreams can be implemented using the base and extension layer bitstreams as
described in the normative part of the standard or by a dynamically controlled parameter encoding as described
below.

A.1.2.3.1� HILN Bit Rate Scalability by Dynamically Controlled Parameter Encoding

To implement bit rate scalability by means of dynamically controlled parameter encoding, it is utilized that both the
HILN Parameter Extraction (Subclause Fehler! Verweisquelle konnte nicht gefunden werden.) and the HILN
Parameter Encoder (Subclause Fehler! Verweisquelle konnte nicht gefunden werden.) can be operated
independently. The parameters generated by the Parameter Extraction tool can be fed to multiple Parameter
Encoder tools, each of which generates a bitstream with a different bit rate. This is computationally very
advantageous since HILN encoder complexity is mainly determined by the Parameter Extraction tool. It is also
possible to store the unquantized parameters generated by the Parameter Extraction tool in a file. Then the
Parameter Encoder tool can be used to generate a bitstream with the currently requested bit rate from the
parameters stored in this file.

10

A.1.3� Music/Speech Mixed Encoder tool

In MPEG-4 Audio the parametric coder is utilized for coding natural audio signals at very low bitrates ranging from
2 kbit/s to about 8 kbit/s. The parametric coder provides two sets of tools suited for coding speech and non-speech
audio signals respectively:

• The Harmonic Vector Excitation (HVXC) tools are suited for coding speech signals at 2 kbit/s and 4 kbit/s.

• The Harmonic and Individual Lines plus Noise (HILN) tools are suited for coding non-speech audio signals at
bitrates of about 4 kbit/s and above.

In the HVXC only or HILN only mode, the encoding mode is selected manually during encoding and the selected
mode is used for all of the audio signal being encoded.

In this Clause, an integrated parametric coder which utilizes the HVXC and HILN tools alternatively or
simultaneously is described. This integrated coder automatically selects the coding tools that are suited best for the
actual input signal characteristics. In case of a speech signal the HVXC tools are used and for music the HILN tools
are used. This selection is done based on the decision of an automatic speech/music classification tool. For signals
which are a mixture of speech and music, it is also possible to use the HVXC and HILN tools simultaneously.

A.1.3.1�Music/Speech classification tool

This is a tool for the parametric speech coder coder, which enables automatic music/speech identification for the
parametric speech/audio coder (HVXC and HILN). The tool makes decisions using internal parameters of the
HVXC.

The features of input sequences used for the identification are: behavior of "pitch strength" and "frame energy". In
general, speech has higher "pitch strength" and frequent and higher energy change than music.

This music/speech classification tool can be applied in two ways:

• The first 5 seconds of the signal to be encoded are analyzed by the classification tool and then either HVXC or IL
are selected to encode the signal according to the speech/music decision.

• The classification tool is operated continuously and its current speech/music decision is used to select HVXC or
IL for the current frame. In this application the decision delay of 5 sec has to be taken into account.

A.1.3.1.1� Frame energy

Frame Energy P is computed as:

0 S N
N

=
=

∑ ()2

0

159

where s(n) is the input signal.

In this case, frames with energy levels higher than a pre-determined minimum level are used (ex. > -78 dB). A short-
term average frame energy is defined as

{ }0AV 0 T
T

=
=
∑ / 4

0

3

which is computed from the last four Frame energies.

A difference between frame energy and short term average frame energy is computed as:

[]0D FRM 0 0AV 0AV= − /

Pd[frm] is kept for around 250 frames (5 seconds).

11

A.1.3.1.2� Pitch Strength

In HVXC, maximum autocorrelation of LPC residual (r0r) is computed during pitch detection process. r0r are kept
for around 250 frames.

A.1.3.1.3� Music/Speech decision

Mean and variance of frame energies and r0rs are computed respectively as:

[]0D AV 0D FRM
FRM

() /=
=

∑
0

249

250

[]() 250/)()(
249

0

2∑
=

−=
FRM

AV0DFRM0DVA0D

[]R R AV R R FRM
FRM

0 0 250
0

249

() /=
=

∑

[]()R R VA R R FRM R R AV
FRM

0 0 0 250
2

0

249

() () /= −
=

∑
Speech data has higher variances than music data in the same range of mean value of r0r. The matrix is classified
to three areas.

(1) speech R R VA R R AV0 0153 0 0113() . () .≥ +

(2) unknown 0 07 0 0137 0 0153 0 0113. () . () . () .R R AV R R VA R R AV+ < < +

(3) music 0 07 0 0137 0. () . ()R R AV R R VA+ ≥

If mean and variance are included in the area (1), the data is classified as speech. If they are in the area (3), the
data is classified as music.

If the mean and variance exist in the area (2), the mean and variance of (differential) frame energy Pd are used
additionally. Speech data has larger means and variances of Pd than music data. Speech and music data is
separated into the following two areas.

(1) speech 0D VA 0D AV() . () .≥ − +0 5 0 8

(2) music 0D VA 0D AV() . () .< − +0 5 0 8

Using the above two criteria, speech and music are separated.

A.1.3.1.4� Integrated parametric coder

The integrated parametric coder can operate in the following modes:

PARAmode Description
0 HVXC only
1 HILN only
2 switched HVXC / HILN
3 mixed HVXC / HILN

PARAmodes 0 and 1 represent the fixed HVXC and HILN modes. PARAmode 2 permits automatic switching
between HVXC and HILN depending on the current input signal type. In PARAmode 3 the HVXC and HILN coders
can be used simultaneously and their output signals are added (mixed) in the decoder.

The integrated parametric coder uses a frame length of 40 ms and a sampling rate of 8 kHz and can operate at
2025 bit/s or any higher bitrate. Operation at 4 kbit/s or higher is suggested.

12

A.1.3.1.5� Integrated Parametric encoder

For the „HVXC only“ and „HILN only“ modes the parametric encoder is not modified. The „switched HVXC / HILN“
and „mixed HVXC / HILN“ modes are described below.

A.1.3.1.6� Switched HVXC/HILN mode

Because the speech/music classification tool is based on the HVXC encoder, the HVXC encoder is operated
continuously for every frame. The bitstream frame generated by the HVXC encoder and the input audio signal are
stored in two FIFO buffers to compensate for the 5 sec delay of the speech/music decision. If a frame is classified as
„speech“ then PARAswitchMode is set to 0 and the HVXC bitstream frame available at the bitstream FIFO output is
transmitted. In case of a „music“ decision, then PARAswitchMode is set to 1 and the output of the signal FIFO buffer
is encoded by the HILN encoder and this HILN bitstream frame is transmitted. If HVXC is used for a frame, the HILN
encoder is reset (prevNumLine = 0).

A.1.3.1.7� Mixed HVXC/HILN mode

To operate the parametric codec in „mixed HVXC / HILN“ mode, speech and music components of the input signal
have to be separated. If both components are already available separately (e.g. speech and background music)
encoding is straightforward.

A.2.� Fine grain scalability tool: BSAC (Bit-Sliced Arithmetic Coding)

A.2.1� Introduction

In the BSAC encoder the inputs to the noiseless coding module are the set of 1024 quantized spectral coefficients
and the scalefactor of the scalefactor band. Since the noiseless coding is done inside the quantizer inner loop, it is
part of an iterative process that converges when the total bit count (of which the noiseless coding is the vast
majority) is within some interval surrounding the allocated bit count. This section will describe the encoding process
for a single call to the noiseless coding module.

Noiseless coding is done via the following steps:

• Bit Slicing of the quantized spectral coefficient

• Preliminary Arithmetic coding of the set of qunatized spectum within a coding band using the probability table

• Preliminary Arithmetic coding of the scalefactors, stereo infomation, artihmetic model infomation.

• Probability table determination to achieve lowest bit count

A.2.2� Bit Slicing of the quantized spectral coefficients

As a first step Iof BSAC encoding process, a sequence of the absolute values of quantized spectral coefficients is
mapped into a bit-sliced sequence as shown in the following Figure.

MSB LSB
B0 m B0 m 1 ... B0 0 0th quantized spectral data
B1 m B1 m-1 ... B1 0

B2 m B2 m-1 ... B2 0

13

...
Bk m Bk m-1 ... Bk 0 kth quantized spectral data
where, MSB plane is (m+1) bit and Bk,m indicates the binary value of the mth bit-slice of kth quantized spectral
coefficients

For example, consider a sequence of the absolute values, x[n] as follows :

x[0] = 9, x[1]=0, x[2]=7 and x[3]=11 ...

If MSB plane is 5, bit-slices are formed from a quantized sequence as shown as follows :

MSB LSB

x[0] : 09 0 1 0 0 1

x[1] : 00 0 0 0 0 0

x[2] : 07 0 0 1 1 1

x[3] :11 0 1 0 1 1

⇓ ⇓ ⇓ ⇓ ⇓

A.2.3� Probability Table Determinations

Several probability tables are provided to cover the different statistics of the bit-slices. One probability table is used
for encoding the bit-sliced data of each coding band. The noiseless coding segments the set of 1024 quantized
spectral coefficients into coding bands, such that a single probability table is used to code each coding band (the
method of Arithmetic coding is explained in a later section). For reasons of coding efficiency, the quantized spectral
coefficients are divided into coding bands which contain 32 quantized spectral coefficients for the noiseless coding.
Coding bands are the basic units used for the noiseless coding for BSAC.

The bit-sliced data is decoded with the probability value which is selected among the values of the BSAC probabiliy
table.

The probability value should be defined in order to arithmetic-code the symbols (the sliced bits). Binary probability
table is made up of probability values (p0) of the symbol ‘0’. First of all, sub-table is selected according to the
significance and the coded higher bits of the quantized spectra. The offset for the probability (p0) can be decided
using the sliced bits of successive non-overlapping 4 spectral data in order to select one of the several probability
values in the sub-table. However if the available codeword size is smaller than 14, there is a constraints on the
selected probability value.

Probability table index is determined among the possible tables, such that the number of bits needed to represent
the full set of the bit-sliced data of quantized spectral coefficients within each coding band is minimized. The
possilbe arithmetic models have the number of the allocated bit larger than or equal to that of the bit needed to
represent the PCM data of quantized spectral coefficients within a coding band.

Coding bands often contain only coefficients whose value is zero. For example, if the audio input is band limited to
20 kHz or lower, then the highest coefficients are zero. Such coding bands are coded with probaiblity table 0, where
the allocated bit is 0 and all coefficients are zero.

14

In order to transmit the probability table information used in encoding process, it is included the coding band side
information (cband_si) and coded in the syntax of layer_cband_si(). The probability table index for encoding the bit-
sliced data within each coding band is transmitted starting from the lowest frequency coding band and progressing
to the highest frequency coding band. For all arithmetic model indexes the value is arithmetic-coded. After the model
index is encoded, the encoding of the bit-sliced data shall be started.

A.2.4� Grouping and interleaving

If the window sequence is eight short windows then the set of 1024 coefficients is actually a matrix of 8 by 128
frequency coefficients representing the time-frequency evolution of the signal over the duration of the eight short
windows. Although the sectioning mechanism is flexible enough to efficiently represent the 8 zero sections,
grouping and interleaving provide for greater coding efficiency. As explained earlier, the coefficients associated with
contiguous short windows can be grouped such that they share scalefactors amongst all scalefactor bands within
the group. In addition, the coefficients within a group are interleaved by interchanging the order of scalefactor bands
and windows. To be specific, assume that before interleaving the set of 1024 coefficients c are indexed as

c[g][w][k/4][k%4]

where

g is the index on groups

w is the index on windows within a group

k is the index on coefficients within a window

and the right-most index varies most rapidly.

After interleaving the coefficients are indexed as

c[g][k/4][w][k%4]

This has the advantage of combining all zero sections due to band-limiting within each group.

A.2.5� Scalefactors

The coded spectrum uses one quantizer per scalefactor band. The step sizes of each of these quantizers is
specified as a set of scalefactors and a maximum scalefactor which normalizes these scalefactors. In order to
increase compression, scalefactors associated with scalefactor bands that have only zero-valued coefficients are
ignored in the coding process and therefore do not have to be transmitted. Both the maximum scalefactor and
scalefactors are quantized in 1.5 dB steps.

The BSAC scalable coding scheme includes the noiseless coding in order to further reduce the redundancy of the
scalefactors.

The maximum scalefactor is coded as an 8 bit unsigned integer. The first scalefactor associated with the quantized
spectrum is differentially coded relative to the maximum scalefactor and the arithmetic coded using the differential
scalefactor arithmetic model. The remaining scalefactors are differentially coded relative to the previously encoded
scalefactor and then Arithmetic coded using the differential scalefactor model.

The dynamic range of the maximum scalefactor is sufficient to represent full-scale values from a 24-bit PCM audio
source.

15

A.2.6� Arithmetic coding

BSAC uses the bit-slicing scheme of the quantized spectral coefficients in order to provide the fine grain scalability.
And it encode the bit-sliced data using binary arithmetic coding scheme in order to reduce the average bits
transmitted while suffering no loss of fidelity.

In BSAC scalable coding scheme, a quantized sequence is divided into coding bands. And, a quantized sequence is
mapped into a bit-sliced sequence within a coding band. The noiseless coding of the sliced bits relies on the
probability table of the coding band, the significance and the other contexts.

The significance of the bit-sliced data is the position of the sliced bit to be coded.

The flags, sign_is_coded[] are updated with coding the vectors from MSB to LSB. They are initialized to 0. And they
are set to 1 when the sign of the quantized spectrum is coded.

The probability table for encoding the bit-sliced data within each coding band is included in the bistream element
cband_si_type and transmitted starting from the lowest coding band and progressing to the highest coding band
allocated to each layer.

The length of the available bitstream (available_len[]) is initialized at the beginning of each layer. The estimated
length of the codeword (est_cw_len) to be decoded is calculated from the arithmetic decoding process. After the
arithmetic encoding of a symbol, the length of the available bitstream should be updated by subtracting the
estimated codeword length from it. We can detect whether the remaing bitstream of each layer is available or not by
checking the available_len.

The sign bits associated with non-zero coefficients follow the arithmetic codeword when the bit-value of the
quantized spectral coefficient is 1 for the first time, with a 1 indicating a negative coefficient and a 0 indicating a
positive one. The flag, sign_is_coded[] represents whether the sign bit of the quantized spectrum has been decoded
or not. When the flag, sign_is_coded is 0 and the bit value of quantized spectral coefficient is nonzero, the sign bit of
a sample is binary arithmetic encoded. The flag, sign_is_coded is set to 1 after the sign bit is encoded.

A.2.6.1�Arithmetic Coding Procedure

Arithmetic Coding consists of the following 3 steps :
� Initialization which is performed prior to the coding of the first symbol
� Coding of the symbol themselves.
� Termination which is performed after the decoding of the last symbol
�
A.2.6.1.1� Registers, symbols and constants

Several registers, symbols and constants are defined to describe the arithmetic encoder.

• coding_mode : 1-bit fixed point register which represents the 1-bit scale-up is used or not.
• half: 32-bit fixed point constant equal to 1/2(0x20000000)
• qtr: 32-bit fixed point constant equal to 1/4(0x10000000)
• qtr3: 32-bit fixed point constant equal to 3/4(0x30000000)
• low: 32-bit fixed point register. Contains the lower bound of the interval
• range: 32-bit fixed point register. Contains the range of the interval.
• p0: 16-bit fixed point register. Probability of the ‘0’ symbol.
• p1: 16-bit fixed point register. Probability of the ‘1’ symbol.
• CUM?FREQ : 16-bit fixed point registers. Cummulative Probabilities of the symbols.

A.2.6.1.2� Initialization

The lower bound low is set to 0, the range range to half*2 (0x40000000).

16

A.2.6.1.3� Encoding a symbol

Arithmetic encoding procedure varies on the symbol to be encode. If the symbol is the sliced bit of the spectral data,
the binary arithmetic encoding is used. Otherwise, the general arithmetic encoding is used.

When a symbol is binary arithmetic-encoded, the probability p0 of the ‘0’ symbol is provided according to the context
computed properly and using the probability table. p0 uses a 6-bit fixed-point number representation. Since the
decoder is binary, the probability of the ‘1’ symbol is defined to be 1 minus the probability of the ‘0’ symbol, i.e. p1 =
1-p0.

When a symbol is encoded using arithmetic encoding, the cummulative probability values of multiple symbols are
provided. The probability values are regarded as the arithmetic model. The arithmetic model for encoding a symbol
is transmitted in the bitstream elements. For example, arithmetic models of scalefactor and cband_si are transmitted
in the bitstream elements, base_scf_model, enh_scf_model and cband_si_type. Each value of the arithmetic
model uses a 14-bit fixed-point representation.

A.2.6.1.4� Termination

After the last symbol has been coded in the arithmetic encoder, additional bits need to be “introduced” to guarantee
decodability.

A.2.7� Stereo-related data and PNS data

The BSAC scalable coding scheme includes the noiseless coding which is different from MPEG-4 AAC coding and
further reduce the redundancy of the stereo-related data.
Encoding of the stereo-related data and Perceptual Noise Substitution(pns) data is depended on pns_data_present
and stereo_info which indicates the stereo mask. Since the decoded data is the same value with MPEG-4 AAC, the
MPEG-4 AAC stereo-related data and pns processing follows the decoding of the stereo-related data and pns data.

The detailed encoding process of stereo-related data and pns data is classified as follows :
u 1 channel, no pns data

 If the number of channel is 1 and pns data is not present, we don’t need bit-stream elements related to stereo
or pns.

u 1 channel, pns data
 If the number of channel is 1 and pns data is present, noise flag of the scalefactor bands between
pns_start_sfb to max_sfb is arithmetic encoded. Perceptual noise substitution is done according to the noise
flag.

u 2 channel, ms_mask_present=0 (Independent), No pns data
 If ms_mask_present is 0 and pns data is not present, arithmetic decoding of stereo_info or ms_used is not
needed.

u 2 channel, ms_mask_present=0 (Independent), pns data
 If ms_mask_present is 0 and pns data is present, noise flag for pns is arithmetic encoded. Perceptual noise
substitution of independent mode is done according to the noise flag.

u 2 channel, ms_mask_present=2 (all ms_used), pns data or no pns data
 All ms_used values are ones in this case. So, M/S stereo processing of AAC is done at all scalefactor band.
And naturally there can be no pns processing regardless of pns_data_present flag.

u 2 channel, ms_mask_present=1 (optional ms_used), pns data or no pns data
 1 bit mask of ms_used per band for max_sfb bands is conveyed in this case. ms_used is arithmetic encoded
using the ms_used model. M/S stereo processing of AAC is done or not according to the decoded ms_used.
And there is no pns processing regardless of pns_data_present flag

u 2 channel, ms_mask_present=3 (optional ms_used/intensity/pns), no pns data
 At first, stereo_info is arithmetic encoded using the stereo_info model.
 stereo_info is is two-bit flag per scalefactor band indicating that M/S coding or Intensity coding is being used in
window group g and scalefactor band sfb as follows :
 00 Independent
 01 ms_used
 10 Intensity_in_phase

17

 11 Intensity_out_of_phase
 If ms_mask_present is not 0, M/S stereo or intensity stereo of AAC is done with these data. Since pns data is
not present, we don‘t have to process pns.

u 2 channel, ms_mask_present=3 (optional ms_used/intensity/pns), pns data
stereo_info is arithmetic encoded using the stereo_info model.
If stereo_info is 1 or 2, M/S stereo or intensity stereo processing of AAC is done with these data and there is no
pns processing.
If stereo_info is 3 and scalefactor band is larger than or equal to pns_start_sfb, noise flag for pns is arithmetic
encoded. And then if the both noise flags of two channel are 1, noise substitution mode is arithmetic encoded.
Otherwise, the perceptual noise is substituted only if noise flag is 1.

A.2.8� Payload transmitted over Elementary Stream

Fine grain scalability would create large overhead if one would try to transmit fine step scalability over multiple
elementary streams. So, the server can organize the BSAC data into the payloads in order to reduce overhead and
implement the fine step scalability efficiently in MPEG-4 system. The configuration of the payload can be changed
according to the environment such as the user interaction or the network traffic The organization scheme is as
follows :

l BSAC data of a frame is split into the large-step layers for transmission. The number of the layer and the
length of each layer depend on the application that the content creator is willing to provide to the users. The
length of the large-step layer, layer_length[] can be calculated accoring to the bitrate of the layer to be
transmitted, the sampling frequency and the frame length in sample. The length of the large-step layer is
transmitted to the receiver through the syntax element layer_length in GA Specific Configuration. In the
course of the transmission, this value can be changed at a request of bsac_backchan_stream().And if the
user request the configuration of the payload throgh the back-channel, these values can be changed
according to the syntax elements numOfLayer and Avg_bitrate of bsac_backchan_stream().

l BSAC data of several frames are grouped and transmitted at a time. The layers of the sub-frames are
interleaved into the payload. The number of the grouped frame depends on the available delay of the
application that will be transmitted to the users. The content provider should initialize this number to the
proper value. And if the user request the configuration of the payload throgh the back-channel, this value can
be changed. This number is transmitted to the receiver in the value of the syntax element noOfSubFrame in
GA Specific Configuration. In the course of the transmission, this value can be changed at a request of
bsac_backchan_stream().

In the server, the payload is formed as shown in the following figure.

18

��� ��� ���

PAYLOAD�OF��TH�%3 PAYLOAD�OF��ST�%3

,,�?�0AYLOAD

3PLITING

3ET�OF�,ARGE

,AYERS

"3!#

DATA

)NTERLEAVING

"3!#�DATA�OF��TH�&RAME "3!#�DATA�OF��ST�&RAME "3!#�DATA�OF�.TH�&RAME

,,�?� ��� ,,.?� ,,�? ,,�? ��� ,,. ,,�?- ,,�?- ��� ,,.?

PAYLOAD�OF�-TH�%3���

���

,,�?� ,,�?�,,�? ��� ,,�?- ,,�? ��� ,,�?- ,,.?� ,,. ��� ,,.?���

���

where, ,,I?K is the k-th large-step layer of the i-th sub-frame

 (M+1) is the number of the large-step layer to be transmitted (numOfLayer)

 (N+1) is the number of the sub-frame to be grouped in an AU (numOfSubFrame)

1. The BSAC data of i-th sub-frame is split into several large layers for transmission over ES. as follows :

2. Large layers of M-subsequent frames are interleaved and concatenated to the payloads.

 Some help variables and arrays are needed to describe the generation process of the payload transmitted over ES.
These help variables depend on layer, numOfLayer, numOfSubFrame, layer_length and frame_length and must
be built up for mapping bsac_raw_data_block() of each sub-frame into the payloads. The pseudo code shown below
describes

• how to calculate LayerLength[i][k], the length of the large-step layer which is located on the fine granule audio
data, bsac_raw_data_block() of ith sub-frame.

• how to caluculate LayerOffset[i][k] which indicates the start position of the large-step layer of ith frame which is
located on the payload of the kth ES (bsac_payload())

BSAC data

LLi_0 LLi_1 ��� LLi_M

LayerLength[i][0] LayerLength[i][1] LayerLength[i][M]

LayerOffset[i][0] LayerOffset[i][1] LayerOffset[i][2] LayerOffset[i][M] LayerOffset[i][M+1]

19

• how to calculate LayerStartByte[i][k] which indicates the start position of the large-step layer which is located on
the fine granule audio data, bsac_raw_data_block() of ith sub-frame

for (k = 0; k < numOfLayer; k ++) {
LayerStartByte[0][k] = 0;
for (i = 0; i < numOfSubFrame; i++) {

if (k == (numOfLayer-1)) {
 LayerEndByte[i][k] = frame_length[i];
 } else {
 LayerEndByte[i][k]=LayerStartByte[i][k] + layer_length[k];
 if (frame_length[i] < LayerEndByte[i][k])

 LayerEndByte [i][k] = frame_length[i];
 }

LayerStartByte[i+1][k] = LayerEndByte[i][k];
LayerLength[i][k] = LayerEndByte[i][k] - LayerStartByte[i][k];

}
}
for (k = 0; k < numOfLayer; k ++) {

LayerOffset[0][k] = 0;
for (i = 0; i < numOfSubFrame; i++) {

LayerOffset[i+1][k] = LayerOffset[i][k] + LayerLength[i][k]
}

}
Where, frame_length[i] is the length of ith frame’s bitstream which is obtained from the syntax element frame_length and
layer_length[i] is the average length of the large-step layers in the payload of ith layer ES.

A.3.� Error protection tool

Text file format of out-of-band information, and its example for AAC ,Twin-VQ, CELP, and HVXC. In addition, the
example of error concealment.

A.3.1� Text format of out-of-band information

The ASCII text representation of out-of-band information is as follows.

/* BEGIN */

 printf(“%d\n”, number_of_predefined_set);

 printf(“%d\n”, interleave_type);

 printf(“%d\n”, bit_stuffing);

printf(“%d\n”, number_of_concatenated_frame);

 for(i=0; i<number_of_predefined_set; i++){

 printf(“%d\n”, number_of_class[i]);

 for(j=0; j<number_of_class[i]; j++){

 printf(“%d %d %d %d\n”, length_escape[i][j], rate_escape[i][j], crclen_escape[i][j] , concatenate_flag[i][j]);

20

 if(interleave_type == 2)

 printf(“%d\n”, interleave_switch[i][j]);

 if(length_escape[i][j] == 1) /* ESC */

 printf(“%d\n”, number_of_bits_for_lentgh[i][j]);

 else /* not ESC */

 printf(“%d\n”, class_length[i][j]);

 if(rate_escape[i][j] != 1) /* not ESC */

 printf(“%d\n”, class_rate[i][j]);

 if(crclen_escape[i][j] != 1) /* not ESC */

 printf(“%d\n”, class_crclen[i][j]);

 }

 }

printf(“%d\n”, header_protection);

 if(header_protection == 1){

printf(“%d\n”, header_rate[i][j]);

printf(“%d\n”, header_crclen[i][j]);

 }

printf(“%d\n”, rs_fec_capability);

/* END */

A.3.2� Example of out-of-band information

A.3.2.1�Example for AAC

based on the error sensitivity category assignement described within the normative part, the following error
protection setup could be used, while sensitivity categories are directly mapped to classes. This example shows just
a simple setup using one channel and no extension_payload().

class length interleaving SRCPC puncture rate CRC length

0 6 bit in-band field intra-frame 8/24 6

1 12 bit in-band field intra-frame 8/24 6

2 9 bit in-band field inter-frame 8/8 6

3 9 bit in-band field none 8/8 4

4 until the end inter-frame 8/8 none

21

A.3.2.2�Example for Twin-VQ

This section describes examples of the bit assignment of UEP to the GA scalable profile (TwinVQ object).

 Here two encoding modes, PPC (Periodic Peak Component) - enable mode and disable mode, are described.
Normally, encoder can adaptively select the PPC switch, but we force the switch always ON or always OFF in this
experiment. If PPC is ON, 43 bits are assigned to quantize periodic peak components and these bits should be
protected as side information.

 For each mode we show bit assignment of four different bitrates, 16 kbit/s mono, 32 kbit/s stereo, 8 kbit/s + 8 kbit/s
scaleable mono and 16 kbit/s + 16 kbit/s stereo for each mode.

 In all cases, error correction and detection tools are applied to only 10 % of bits for the side information. Remaining
bits for the index of MDCT coefficients have no protection at all. As a result of these bit allocations, increase of
bitrate comparing with the original source rate is around 10 % in case of PPC switch is ON, and less than 10% in
case of the switch is OFF.

 (A) PPC(Periodic Peak Component) enable version

 16 kbit/s mono

 Class 1: 121 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 2: 839 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

2 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

121 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

839 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 32 kbit/s stereo

22

 Class 1: 238 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 2: 1682 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

2 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

238 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

1682 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 8 kbit/s + 8 kbit/s scalable mono

 Class 1: 121 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 2: 359 bit(fixed),SRCPC code rate 8/8,no CRC

 Class 3: 72 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 4: 408 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

4 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

23

121 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

359 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

72 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

408 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 16 kbit/s + 16 kbit/s scalable stereo

 Class 1: 238 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 2: 722 bit(fixed),SRCPC code rate 8/8,no CRC

 Class 3: 146 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 4: 814 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

4 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

238 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

24

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

722 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

146 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

814 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

(B)PPC disable version

 16 kbit/s mono

 Class 1: 78 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 2: 882 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

2 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

78 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

25

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

882 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 32 kbit/s stereo

 Class 1: 152 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 2: 1768 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

2 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

152 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

1768 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 8 kbit/s + 8 kbit/s scalable mono

 Class 1: 78 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 2: 402 bit(fixed),SRCPC code rate 8/8,no CRC

 Class 3: 72 bit(fixed),SRCPC code rate 8/12, 8 bit CRC

 Class 4: 408 bit(fixed),SRCPC code rate 8/8,no CRC

26

1 /* number of predefined sets */

1 /* interleaving */

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

4 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

78 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

402 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

72 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

8 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

408 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 16 kbit/s + 16 kbit/s scalable stereo

 Class 1: 152 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 2: 808 bit(fixed),SRCPC code rate 8/8,no CRC

 Class 3: 146 bit(fixed),SRCPC code rate 8/12, 10 bit CRC

 Class 4: 814 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* interleaving */

27

0 /* bitstuffing */

1 /* number_of_concatenated_frame */

4 /* number of classes */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

152 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

808 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

146 /* bits used for class length (0 = until the end) */

4 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

10 /* crc length */

0 0 0 0 /* length_esc, srcpc_esc, crc_esc, concatenate_flag */

814 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

A.3.2.3�Example for CELP

The following tables provide an overview of the number of bit that are assigned to each error sensitivity category,
dependent on the configuration.

A.3.2.3.1� MPE-Narrowband Mode

-0%
-ODE SUBFRAMES "IT�&RAME BITRATE %#2� %#2� %#2� %#2� %#2�

0 4 154 3850 2 13 20 21 98

1 4 170 4250 2 13 20 21 114

2 4 186 4650 2 13 20 21 130

3 3 147 4900 2 11 16 18 100

28

4 3 156 5200 2 11 16 18 109

5 3 165 5500 2 11 16 18 118

6 2 114 5700 2 9 12 15 76

7 2 120 6000 2 9 12 15 82

8 2 126 6300 2 9 12 15 88

9 2 132 6600 2 9 12 15 94

10 2 138 6900 2 9 12 15 100

11 2 142 7100 2 9 12 15 104

12 2 146 7300 2 9 12 15 108

13 4 154 7700 2 13 20 21 98

14 4 166 8300 2 13 20 21 110

15 4 174 8700 2 13 20 21 118

16 4 182 9100 2 13 20 21 126

17 4 190 9500 2 13 20 21 134

18 4 198 9900 2 13 20 21 142

19 4 206 10300 2 13 20 21 150

20 4 210 10500 2 13 20 21 154

21 4 214 10700 2 13 20 21 158

22 2 110 11000 2 9 12 15 72

23 2 114 11400 2 9 12 15 76

24 2 118 11800 2 9 12 15 80

25 2 120 12000 2 9 12 15 82

26 2 122 12200 2 9 12 15 84

27 4 186 6200 2 13 20 21 130

28 reserved

29 reserved

30 reserved

31 reserved

table 3.1: Overview of bit assignment for MPE-narrowband

A.3.2.3.2� MPE-Wideband Mode

-0%
-ODE SUBFRAMES "IT�&RAME BITRATE %#2� %#2� %#2� %#2� %#2�

29

0 4 218 10900 17 20 27 25 129

1 4 230 11500 17 20 27 25 141

2 4 242 12100 17 20 27 25 153

3 4 254 12700 17 20 27 25 165

4 4 266 13300 17 20 27 25 177

5 4 278 13900 17 20 27 25 189

6 4 286 14300 17 20 27 25 197

7 reserved

8 8 294 14700 17 32 43 37 165

9 8 318 15900 17 32 43 37 189

10 8 342 17100 17 32 43 37 213

11 8 358 17900 17 32 43 37 229

12 8 374 18700 17 32 43 37 245

13 8 390 19500 17 32 43 37 261

14 8 406 20300 17 32 43 37 277

15 8 422 21100 17 32 43 37 293

16 2 136 13600 17 14 19 19 67

17 2 142 14200 17 14 19 19 73

18 2 148 14800 17 14 19 19 79

19 2 154 15400 17 14 19 19 85

20 2 160 16000 17 14 19 19 91

21 2 166 16600 17 14 19 19 97

22 2 170 17000 17 14 19 19 101

23 reserved

24 4 174 17400 17 20 27 25 85

25 4 186 18600 17 20 27 25 97

26 4 198 19800 17 20 27 25 109

27 4 206 20600 17 20 27 25 117

28 4 214 21400 17 20 27 25 125

29 4 222 22200 17 20 27 25 133

30 4 230 23000 17 20 27 25 141

30

31 4 238 23800 17 20 27 25 149

table 3.2: Overview of bit assignment for MPE-wideband

A.3.2.3.3� RPE-Wideband Mode

20%�-ODE SUBFRAMES "IT�FRAME BITRATE %2#� %2#� %2#� %2#� %2#�

0 6 216 14400 40 24 34 25 93

1 4 160 16000 32 18 26 21 63

2 8 280 18667 48 30 42 29 131

3 10 338 22533 56 36 50 33 163

table 3.3: Characteristic parameters for wideband CELP with RPE

A.3.2.4�Example for HVXC

 2 kbit/s source coder

 Class 1: 44 bit(fixed),SRCPC code rate 8/16, 6 bit CRC

 Class 2: 4 bit(fixed),SRCPC code rate 8/8,1 bit CRC

 Class 3: 4 bit(fixed),SRCPC code rate 8/8,1 bit CRC

 Class 4: 4 bit(fixed),SRCPC code rate 8/8,1 bit CRC

 Class 5: 4 bit(fixed),SRCPC code rate 8/8,1 bit CRC

 Class 6: 20 bit(fixed),SRCPC code rate 8/8,no CRC

1 /* number of predefined sets */

1 /* bit interleaving */

0 /* bitstuffing */

6 /* number of classes */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

44 /* bits used for class length (0 = until the end) */

8 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

6 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

31

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

20 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

 4kbit/s source coder

 Class 1: 66bit(fixed),SRCPC code rate 8/16, 6bit CRC

 Class 2: 44bit(fixed),SRCPC code rate 8/8, 6bit CRC

 Class 3: 4bit(fixed),SRCPC code rate 8/8, 1bit CRC

 Class 4: 4bit(fixed),SRCPC code rate 8/8, 1bit CRC

 Class 5: 4bit(fixed),SRCPC code rate 8/8, 1bit CRC

 Class 6: 4bit(fixed),SRCPC code rate 8/8, 1bit CRC

 Class 7: 34bit(fixed),SRCPC code rate 8/8, no CRC

1 /* number of predefined sets */

1 /* 1 bit interleaving */

0 /* bitstuffing */

7 /* number of classes */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

66 /* bits used for class length (0 = until the end) */

8 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

32

6 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

44 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

6 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

2 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

4 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

1 /* crc length */

0 0 0 /* length_esc, srcpc_esc, crc_esc */

20 /* bits used for class length (0 = until the end) */

0 /* puncture rate for srcpc 0 = 8/8 ... 24 = 32/8 */

0 /* crc length */

A.3.3� Example of error concealment

The error concealment tool is an optional decoder tool to reduce the quality degradation of decoded signals when
the decoder input bitstream is affected by errors, such as bitstream transmission error. This is especially valid in
applying the MPEG-4/Audio tools to radio applications. The bitstream of a frame is compensated. The error
detection and decision method to replace a frame bitstream are not defined in this section and decided based on
each application.

33

A.3.3.1�Example for CELP

A.3.3.1.1� Overview of the error concealment tool

The error concealment tool is used with the MPEG-4 CELP decoder described in ISO/IEC 14496-3. The tool
reduces unpleasant noise when the MPEG-4 CELP decodes the speech from erroneous input frame data. It also
enables the MPEG-4 CELP to decode the speech even if the input frame data is lost.

The tool has two operation modes; a Bit Error (BE) mode and a Frame Erasure (FE) mode. The mode is switched
based on the availability of the frame data at the decoder. When the frame data is available (BE mode), the
decoding is performed using the frame data received in the past and the usable subpart of the current frame data.
When the frame data is not available (FE mode), the decoder generates the speech only from the past frame data.

This tool operates according to a flag (BF_flag), which indicates whether the frame data is complete (BF_flag=0) , or
damaged by corruption and/or lost (BF_flag=1). The flag is usually given by the channel coder or the transmission
system.

This tool operates in the Coding Mode II (Sec. 3.1.2.1 of ISO/IEC 14496-3), which has the narrow band, the
wideband and the band width scalable modes using the Multi-Pulse Excitation at the sampling rates of 8 and 16
kHz.

A.3.3.1.2� Definitions

BE: Bit Error

BWS: BandWidth Scalable

FE: Frame Erasure

LP: Linear Prediction

LSP: Line Spectral Pair

MPE: Multi-Pulse Excitation

NB: Narrow Band

RMS: Root Mean Square (the frame energy)

WB: WideBand

A.3.3.1.3� Helping variables

frame_size: the number of samples in a frame

g_ac: the adaptive codebook gain

g_ec: the MPE gain

lpc_order: the order of LP

signal_mode: the speech mode

signal_mode_pre: the speech mode of the previous frame

A.3.3.1.4� Specifications of the error concealment tool

The error concealment tool operates based on the transition model with six states depicted inFehler! Verweisquelle
konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle
konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle
konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Figure A.3.1Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!

34

Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.Fehler!
Verweisquelle konnte nicht gefunden werden.Fehler! Verweisquelle konnte nicht gefunden werden.. The
state indicates the quality of the transmission channel. The bigger the state number is, the worse the channel quality
is. Each state has different concealment operation. The initial state in decoding is State 0 and the state is transited
based on the BF_flag. Each concealment operation is described in the following sections.

State �

State �

State �

State �

State �

State �

"&?FLAG��

"&?FLAG��

Figure A. 3.3.1 - State transision model for controlling the error concealment

A.3.3.1.4.1� Operations in States 0 and 5

The decoding process is identical to that of the MPEG-4 CELP decoder with the following exceptions regarding the
adaptive codebook and the excitation codebook gains:

In State 0 following State 5, and in State 5:

(1) for the first 80 samples in and after the frame where the BF_flag is changed from 1 to 0, the gains g_ac and g_ec
are calculated from the gains g_ac’ and g_ec’ decoded from the current frame data as follows:

if (g_ac > 1.0) {

g_ec = g_ec’/ g_ac’;

g_ac=1.0;

}

(2) for the following 160 samples after the above 80 samples, the gains are calculated as:

if(g_ac > 1.0){

g_ec=g _ec’* (g_ac’+1.0) /g_ac’/2.0 ;

g_ac=(g_ac’+1.0)/2.0;

},

35

where these operations continue during at most four subframes.

A.3.3.1.4.2� Operations in States 1, 2, 3 and 4

The decoding process is identical to that of the MPEG-4 CELP decoder with the exceptions described in the
following sections.

A.3.3.1.4.2.1� Speech mode

FE mode:

The speech mode (speech_mode) is decoded from the previous frame data.

BE mode:

The speech mode (speech_mode) is decoded from the current frame data for speech _mode_pre=0 or 1.
Otherwise, the mode is decoded from the previous frame data.

A.3.3.1.4.2.2� Multi-Pulse Excitation (MPE)

FE mode:

The MPE is decoded from the randomly generated frame data.

BE mode:

The MPE is decoded from the frame data received in the current frame.

A.3.3.1.4.2.3� RMS

For State 1 through K, the RMS in the last subframe of the previous frame is used after attenuated in the first
subframe of the current frame. In the following subframes, the RMS in the previous subframe is used after
attenuated. The attenuation level

ATT
0 depends on the state as follows;





+
=

K

K

,State

State

��+FOR�����D"

�+���FOR�����D"
0

ATT
,

where + is the smaller number of � and
�

+ , and
�

+ is the maximum integer satisfying ���+FRAME?SIZE
�

≤× .

A.3.3.1.4.2.4� LSP

The LSPs decoded in the previous frame are used. In the BWS mode, the LSP codevectors should be buffered for
the interframe prediction described in Sec. 3.5.6.3.3 of ISO/IEC 14496-3. However, when the frame data is
corrupted or lost, the correct codevector can not be obtained. Therefore, the buffered codevector (blsp[0][]) is
estimated from the LSP (qlsp_pre[]) in the previous frame, the predicted LSP (vec_hat[]) and the prediction
coefficient (cb[0][]) in the current frame as follows:

 for (i = 0; i < lpc_order; i++) {

blsp[0] [i] = (qlsp_pre[i] - vec_hat[i])/cb[0] [i];

}

A.3.3.1.4.2.5� Delay of the adaptive codebook

FE mode:

All the delays of the adaptive codebook are decoded from the delay index received in the last subframe of the
previous frame.

BE mode:

36

(1) When signal_mode_pre=0, the delays are decoded from the current frame data.

(2) When signal_mode_pre=1, if the maximum difference between the delay indices of the adjacent subframes in
the frame are less than 10, the delays are decoded from the delay indices in the current frame. In each subframe
where the difference of the delay indices between the current and the previous subframes is equal to or greater than
10, the delay is decoded from the index of the previous subframe.

(3) When signal_mode_pre= 2 or 3, the delay is decoded from the index in the last subframe of the previous frame.

A.3.3.1.4.2.6� Gains

A.3.3.1.4.2.6.1 Index operation

FE mode:

All the gains have the same value, which is decoded from the gain index received in the last subframe of the
previous frame.

BE mode:

The gains are decoded from the current frame data.

A.3.3.1.4.2.6.2 Adjustment operation

FE mode:

(1) When signal_mode_pre=0, the gains g_ac’ and g_ec’ are decoded from the current frame data. Then the gains
g_ac and g_ec are obtained by multiplying g_ac’ by 0.5 and g_ec’ by X, respectively. X satisfies the following
equation and is calculated at each subframe:

(g_ac’*g_ac’)A+(g_ec’*g_ec’)B=((0.5*g_ac’) *(0.5*g_ac’))A+((X*g_ec') * (X*g_ec’))B

where

A =
ACAC

NORMNORM ×

B =
ECEC

NORMNORM × .

C
NORM and

EC
NORM are the RMS values of the adaptive and the excitation codevectors, respectively.

(2) When signal_mode_pre=1, the gains are decoded from the current frame data.

(3) When signal_mode_pre=2 or 3, for the first 320 samples in/after the frame where the BF_flag is changed from 0
to 1, the gains are calculated as:

g_ac = ������	������� −×

g_ec = ������	���8 −× .

After the above 320 samples,

g_ac = ������	������� −×

g_ec = ������	���8 −× ,

where X =
EC

AC

NORM

NORM
����× .

37

BE mode:

(1) When signal_mode_pre=0 or 1, the gains are calculated using the gains g_ac’ and g_ec’ decoded from the
current frame data and the gains g_ac_pre and g_ec_pre of the previous subframe so that the calculated gains fall
in a normal range and generate no unpleasant noise as follows:

If (g_ac > 1.2589){

g_ec = g_ec’ * 1.2589/g_ac’;

g_ac= 1.2589;

}

If (g_ec > 1.2589*g_ec_pre){

g_ac= g_ac’* 1.2589*g_ec_pre/g_ec’ ;

g_ec = g_ec_pre*1.2589;

]

if (signal_mode=1 & g_ac_pre <1.2589 & g_ac < g_ac_pre*0.7943){

g_ac=g_ac_pre*0.7943;

g_ec=g_ec_pre*0.7943;

}.

(2) When signal_mode_pre=2 or 3, the operation is identical to that for signal_mode_pre=2 or 3 in the FE mode.

A.3.3.2�Error concealment for the silence compression tool

In frames where the bitsstream received at the decoder is corrupted or lost for transmission bit errors, the error
concealment is performed. When the received TX_flag is �, the decoding process is identical to that of the error
concealment for the MPEG-4 CELP. For TX_flag=���� or �, the decoding process for the TX_flag=�, is performed.

A.3.3.3�Example for HVXC

Refer to section 5 in Annex B.

A.3.4� Example of EP tool setting and error concealment for HVXC

This section describes one example of the implementation of EP (Error Protection) tool and error concealment
method for HVXC. Some of perceptually important bits are protected by FEC (forward error correction) scheme and
some are checked by CRC to judge whether or not erroneous bits are included. When CRC error occures, error
concealment is executed to reduce perceptible degradation.

It should be noted that error correction method and EP tool setting, error concealment algorithm described below
are one example, and they should be modified depending on the actual channel conditions.

A.3.4.1�Definitions

--- 2/4kbps common parameters ---

LSP0 LSP index 0 (5 bit)

38

LSP2 LSP index 2 (7 bit)
LSP3 LSP index 3 (5 bit)
LSP4 LSP index 4 (1 bit)
VUV voiced/unvoiced flag (2 bit)
PCH pitch parameter (7 bit)
idS0 spectrum index 0 (4 bit)
idS1 spectrum index 1 (4 bit)
idG spectrum gain index (5 bit)
idSL00 stochastic codebook index 0 (6 bit)
idSL01 stochastic codebook index 1 (6 bit)
idGL00 gain codebook index 0 (4 bit)
idGL01 gain codebook index 1 (4 bit)

 --- only 4kbps parameters ---

LSP5 LSP index 5 (8 bit)
idS0_4k 4k spectrum index 0 (7 bit)
idS1_4k 4k spectrum index 1 (10 bit)
idS2_4k 4k spectrum index 2 (9 bit)
idS3_4k 4k spectrum index 3 (6 bit)
idSL10 4k stochastic codebook index 0 (5 bit)
idSL11 4k stochastic codebook index 1 (5 bit)
idSL12 4k stochastic codebook index 2 (5 bit)
idSL13 4k stochastic codebook index 3 (5 bit)
idGL10 4k gain codebook index 0 (3 bit)
idGL11 4k gain codebook index 1 (3 bit)
idGL12 4k gain codebook index 2 (3 bit)
idGL13 4k gain codebook index 3 (3 bit)

A.3.4.2�Channel coding

A.3.4.2.1� Protected bit selection

According to the sensitivity of bits, encoded bits are classified to several classes. The number of bits for each class
is shown in the table.1(2kbps) and table.2(4kbps). As an example, bit-rate setting of 3.5kbps(for 2kbps) and
6.2kbps(for 4kbps) are shown. In these cases, two source coder frames are processed as one set. Suffix “p” means
parameters of the “previous” frame, and “c” means those of the “current” frame.

For 3.5kbps mode, 6classes are used. CRC check is applied for class I, II, III, IV, and V bits. Cass VI bits are not
checked by CRC.

Table A.2.1 Number of protected/unprotected bits at 3.5kbps(voiced sound)

voiced sound

para-
meters

class I bits class II
bits

class III
bits

class IV
bits

class V
bits

class VI
bits

total

LSP1p/c 5/5 - - - - - 10
LSP2p/c 2/2 - - - - 5/5 14
LSP3p/c 1/1 - - - - 4/4 10
LSP4p/c 1/1 - - - - - 2

39

VUVp/c 2/2 - - - - - 4
PCHp/c 6/6 - - - - 1/1 14
IdGp/c 5/5 - - - - - 10
idS0p - 4 - - - - 4
idS0c - - - 4 - - 4
idS1p - - 4 - - - 4
idS1c - - - - 4 - 4
total 44 4 4 4 4 20 80

Table A.2.2 Number of protected/unprotected bits at 3.5kbps(unvoiced sound)

unvoiced sound

para-
meters

class I bits class II
bits

class III
bits

class IV
bits

Class V
bits

class VI
bits

total

LSP1p/c 5/5 - - - - - 10
LSP2p/c 4/4 - - - - 3/3 14
LSP3p/c 2/2 - - - - 3/3 10
LSP4p/c 1/1 - - - - - 2
VUVp/c 2/2 - - - - - 4
idGL00p/c 4/4 - - - - - 8
idGL01p/c 4/4 - - - - - 8
idSL00p/c - - - - - 6/6 12
idSL01p/c - - - - - 6/6 12
total 44 0 0 0 0 36 80

For 6.2kbps mode, 7 classes are used. CRC check is applied for class I, II, III, IV, V, and VI bits. Class VII bits are
not checked by CRC.

Table A.2.3 Number of protected/unprotected bits at 6.2kbps(voiced sound)

voiced sound
Para-
meters

class I
bits

class II
bits

class III
bits

class IV
bits

class V
bits

class VI
bits

class VII
bits

total

LSP1p/c 5/5 - - - - - - 10
LSP2p/c 4/4 - - - - - 3/3 14
LSP3p/c 1/1 - - - - - 4/4 10
LSP4p/c 1/1 - - - - - - 2
LSP5p/c 1/1 - - - - - 7/7 16
VUVp/c 2/2 - - - - - - 4
PCHp/c 6/6 - - - - - 1/1 14
idGp/c 5/5 - - - - - - 10
idS0p - - 4 - - - - 4
idS0c - - - - 4 - - 4
idS1p - - - 4 - - - 4
idS1c - - - - - 4 - 4
idS0_4kp/c 5/5 - - - - - 2/2 14
idS1_4kp/c 1/1 9/9 - - - - - 20
idS2_4kp/c 1/1 8/8 - - - - - 18
idS3_4kp/c 1/1 5/5 - - - - - 12
Total 66 44 4 4 4 4 34 160

40

Table A.2.4 Number of protected/unprotected bits at 6.2kbps(unvoiced sound)

unvoiced sound
Para-
meters

class I
bits

class II
bits

class III
bits

class IV
bits

class V
bits

class VI
bits

class VII
bits

total

LSP1p/c 5/5 - - - - - - 10
LSP2p/c 4/4 - - - - - 3/3 14
LSP3p/c 1/1 - - - - - 4/4 10
LSP4p/c 1/1 - - - - - - 2
LSP5p/c 1/1 - - - - - 7/7 16
VUVp/c 2/2 - - - - - - 4
idGL00 p/c 4/4 - - - - - - 8
idGL01 p/c 4/4 - - - - - - 8
idSL00p/c - - - - - - 6/6 12
idSL01p/c - - - - - - 6/6 12
idGL10 p/c 3/3 - - - - - - 6
idGL11 p/c 3/3 - - - - - - 6
idGL12 p/c 3/3 - - - - - - 6
idGL13 p/c 2/2 - - - - - 1/1 6
idSL10p/c - - - - - - 5/5 10
idSL11p/c - - - - - - 5/5 10
idSL12p/c - - - - - - 5/5 10
idSL13p/c - - - - - - 5/5 10
total 66 0 0 0 0 0 94 160

The bit order for UEP input is shown in Table A.2.5 and Table A.2.6(for 2kbps) and Table A.2.7 and Table A.2.8(for
4kbps). The bit order is arranged according to the error sensitivity. The column “Bit” denotes the bit index of the
parameter. “0” means LSB.

Table A.2.5 Bit Order for 2kbps(voiced sound)

voiced sound
No. Item Bit No. Item Bit No. Item Bit

Class I Bit 28 idGc 1 54 idS0c 1
0 VUVp 1 29 idGc 0 55 idS0c 0
1 VUVp 0 30 LSP0c 4 Class V Bit
2 LSP4p 0 31 LSP0c 3 56 idS1c 3
3 idGp 4 32 LSP0c 2 57 idS1c 2
4 idGp 3 33 LSP0c 1 58 idS1c 1
5 idGp 2 34 LSP0c 0 59 idS1c 0
6 idGp 1 35 PCHc 6 Class VI Bit
7 idGp 0 36 PCHc 5 60 LSP2p 4
8 LSP1p 4 37 PCHc 4 61 LSP2p 3
9 LSP1p 3 38 PCHc 3 62 LSP2p 2

10 LSP1p 2 39 PCHc 2 63 LSP2p 1
11 LSP1p 1 40 PCHc 1 64 LSP2p 0
12 LSP1p 0 41 LSP2c 6 65 LSP3p 3
13 PCHp 6 42 LSP3c 4 66 LSP3p 2
14 PCHp 5 43 LSP2c 5 67 LSP3p 1

41

15 PCHp 4 Class II Bit 68 LSP3p 0
16 PCHp 3 44 idS0p 3 69 PCHp 0
17 PCHp 2 45 idS0p 2 70 LSP2c 4
18 PCHp 1 46 idS0p 1 71 LSP2c 3
19 LSP2p 6 47 idS0p 0 72 LSP2c 2
20 LSP3p 4 Class III Bit 73 LSP2c 1
21 LSP2p 5 48 idS1p 3 74 LSP2c 0
22 VUVc 1 49 idS1p 2 75 LSP3c 3
23 VUVc 0 50 idS1p 1 76 LSP3c 2
24 LSP4c 0 51 idS1p 0 77 LSP3c 1
25 idGc 4 Class IV Bit 78 LSP3c 0
26 idGc 3 52 idS0c 3 79 PCHc 0
27 idGc 2 53 idS0c 2

Table A.2.6 Bit Order for 2kbps(unvoiced sound)

unvoiced sound
No. Item Bit No. Item Bit No. Item Bit

Class I Bit 28 idGL00c 0 54 LSP2c 0
0 VUVp 1 29 idGL01c 3 55 LSP3c 2
1 VUVp 0 30 idGL01c 2 Class V Bit
2 LSP4p 0 31 idGL01c 1 56 LSP3c 1
3 idGL00p 3 32 idGL01c 0 57 LSP3c 0
4 idGL00p 2 33 LSP0c 4 58 idSL00c 5
5 idGL00p 1 34 LSP0c 3 59 idSL00c 4
6 idGL00p 0 35 LSP0c 2 Class VI Bit
7 idGL01p 3 36 LSP0c 1 60 idSL00p 3
8 idGL01p 2 37 LSP0c 0 61 idSL00p 2
9 idGL01p 1 38 LSP2c 6 62 idSL00p 1

10 idGL01p 0 39 LSP2c 5 63 idSL00p 0
11 LSP1p 4 40 LSP2c 4 64 idSL01p 5
12 LSP1p 3 41 LSP2c 3 65 idSL01p 4
13 LSP1p 2 42 LSP3c 4 66 idSL01p 3
14 LSP1p 1 43 LSP3c 3 67 idSL01p 2
15 LSP1p 0 Class II Bit 68 idSL01p 1
16 LSP2p 6 44 LSP2p 2 69 idSL01p 0
17 LSP2p 5 45 LSP2p 1 70 idSL00c 3
18 LSP2p 4 46 LSP2p 0 71 idSL00c 2
19 LSP2p 3 47 LSP3p 2 72 idSL00c 1
20 LSP3p 4 Class III Bit 73 idSL00c 0
21 LSP3p 3 48 LSP3p 1 74 idSL01c 5
22 VUVc 1 49 LSP3p 0 75 idSL01c 4
23 VUVc 0 50 idSL00p 5 76 idSL01c 3
24 LSP4c 0 51 IdSL00p 4 77 idSL01c 2
25 idGL00c 3 Class IV Bit 78 idSL01c 1
26 idGL00c 2 52 LSP2c 2 79 idSL01c 0
27 idGL00c 1 53 LSP2c 1

Table A.2.7 Bit Order for 4kbps(voiced sound)

voiced sound

42

No. Item Bit No. Item Bit No. Item Bit
Class 1bit 55 LSP2c 3 Class III Bit

0 VUVp 1 56 idS0_4kc 6 110 idS0p 3
1 VUVp 0 57 idS0_4kc 5 111 idS0p 2
2 LSP4p 0 58 idS0_4kc 4 112 idS0p 1
3 idG0p 4 59 idS0_4kc 3 113 idS0p 0
4 idG0p 3 60 idS0_4kc 2 Class IV Bit
5 idG0p 2 61 LSP3c 4 114 idS1p 3
6 idG0p 1 62 LSP5c 7 115 idS1p 2
7 idG0p 0 63 idS1_4kc 9 116 idS1p 1
8 LSP1p 4 64 idS2_4kc 8 117 idS1p 0
9 LSP1p 3 65 idS3_4kc 5 Class V Bit
10 LSP1p 2 Class II Bit 118 idS0c 3
11 LSP1p 1 66 idS1_4kp 8 119 idS0c 2
12 LSP1p 0 67 idS1_4kp 7 120 idS0c 1
13 PCHp 6 68 idS1_4kp 6 121 idS0c 0
14 PCHp 5 69 idS1_4kp 5 Class VI Bit
15 PCHp 4 70 idS1_4kp 4 122 idS1c 3
16 PCHp 3 71 idS1_4kp 3 123 idS1c 2
17 PCHp 2 72 idS1_4kp 2 124 idS1c 1
18 PCHp 1 73 idS1_4kp 1 125 idS1c 0
19 LSP2p 6 74 idS1_4kp 0 Class VII Bit
20 LSP2p 5 75 idS2_4kp 7 126 LSP2p 2
21 LSP2p 4 76 idS2_4kp 6 127 LSP2p 1
22 LSP2p 3 77 idS2_4kp 5 128 LSP2p 0
23 idS0_4kp 6 78 idS2_4kp 4 129 LSP3p 3
24 idS0_4kp 5 79 idS2_4kp 3 130 LSP3p 2
25 idS0_4kp 4 80 idS2_4kp 2 131 LSP3p 1
26 idS0_4kp 3 81 idS2_4kp 1 132 LSP3p 0
27 idS0_4kp 2 82 idS2_4kp 0 133 LSP5p 6
28 LSP3p 4 83 idS3_4kp 4 134 LSP5p 5
29 LSP5p 7 84 idS3_4kp 3 135 LSP5p 4
30 idS1_4kp 9 85 idS3_4kp 2 136 LSP5p 3
31 idS2_4kp 8 86 idS3_4kp 1 137 LSP5p 2
32 idS3_4kp 5 87 idS3_4kp 0 138 LSP5p 1
33 VUVc 1 88 idS1_4kc 8 139 LSP5p 0
34 VUVc 0 89 idS1_4kc 7 140 PCHp 0
35 LSP4c 0 90 idS1_4kc 6 141 idS0_4kp 1
36 idG0c 4 91 idS1_4kc 5 142 idS0_4kp 0
37 idG0c 3 92 idS1_4kc 4 143 LSP2c 2
38 idG0c 2 93 idS1_4kc 3 144 LSP2c 1
39 idG0c 1 94 idS1_4kc 2 145 LSP2c 0
40 idG0c 0 95 idS1_4kc 1 146 LSP3c 3
41 LSP1c 4 96 idS1_4kc 0 147 LSP3c 2
42 LSP1c 3 97 idS2_4kc 7 148 LSP3c 1
43 LSP1c 2 98 idS2_4kc 6 149 LSP3c 0
44 LSP1c 1 99 idS2_4kc 5 150 LSP5c 6
45 LSP1c 0 100 idS2_4kc 4 151 LSP5c 5
46 PCHc 6 101 idS2_4kc 3 152 LSP5c 4
47 PCHc 5 102 idS2_4kc 2 153 LSP5c 3
48 PCHc 4 103 idS2_4kc 1 154 LSP5c 2

43

49 PCHc 3 104 idS2_4kc 0 155 LSP5c 1
50 PCHc 2 105 idS3_4kc 4 156 LSP5c 0
51 PCHc 1 106 idS3_4kc 3 157 PCHc 0
52 LSP2c 6 107 idS3_4kc 2 158 idS0_4kc 1
53 LSP2c 5 108 idS3_4kc 1 159 idS0_4kc 0
54 LSP2c 4 109 idS3_4kc 0

Table A.2.8 Bit Order for 4kbps(unvoiced sound)

Unvoiced sound
No. Item Bit No. Item Bit No. Item Bit

Class 1bit 55 idGL10c 2 Class III Bit
0 VUVp 1 56 idGL10c 1 110 idSL01p 4
1 VUVp 0 57 idGL10c 0 111 idSL01p 3
2 LSP4p 0 58 idGL11c 2 112 idSL01p 2
3 idGL00p 3 59 idGL11c 1 113 idSL01p 1
4 idGL00p 2 60 idGL11c 0 Class IV Bit
5 idGL00p 1 61 idGL12c 2 114 idSL01p 0
6 idGL00p 0 62 idGL12c 1 115 idSL10p 4
7 idGL01p 3 63 idGL12c 0 116 idSL10p 3
8 idGL01p 2 64 idGL13c 2 117 idSL01p 2
9 idGL01p 1 65 idGL13c 1 Class V Bit
10 idGL01p 0 Class II Bit 118 idSL01c 4
11 LSP1p 4 66 idGL13p 0 119 idSL01c 3
12 LSP1p 3 67 LSP2p 2 120 idSL01c 2
13 LSP1p 2 68 LSP2p 1 121 idSL01c 1
14 LSP1p 1 69 LSP2p 0 Class VI Bit
15 LSP1p 0 70 LSP3p 3 122 idSL01c 0
16 LSP2p 6 71 LSP3p 2 123 idSL10c 4
17 LSP2p 5 72 LSP3p 1 124 idSL10c 3
18 LSP2p 4 73 LSP3p 0 125 idSL10c 2
19 LSP2p 3 74 LSP5p 6 Class VII Bit
20 LSP3p 4 75 LSP5p 5 126 idSL10p 1
21 LSP5p 7 76 LSP5p 4 127 idSL10p 0
22 idGL10p 2 77 LSP5p 3 128 idSL11p 4
23 idGL10p 1 78 LSP5p 2 129 idSL11p 3
24 idGL10p 0 79 LSP5p 1 130 idSL11p 2
25 idGL11p 2 80 LSP5p 0 131 idSL11p 1
26 idGL11p 1 81 idSL00p 5 132 idSL11p 0
27 idGL11p 0 82 idSL00p 4 133 idSL12p 4
28 idGL12p 2 83 idSL00p 3 134 idSL12p 3
29 idGL12p 1 84 idSL00p 2 135 idSL12p 2
30 idGL12p 0 85 idSL00p 1 136 idSL12p 1
31 idGL13p 2 86 idSL00p 0 137 idSL12p 0
32 idGL13p 1 87 idSL01p 5 138 idSL13p 4
33 VUVc 1 88 idGL13c 0 139 idSL13p 3
34 VUVc 0 89 LSP2c 2 140 idSL13p 2
35 LSP4c 0 90 LSP2c 1 141 idSL13p 1
36 idGL00c 3 91 LSP2c 0 142 idSL13p 0
37 idGL00c 2 92 LSP3c 3 143 idSL10c 1
38 idGL00c 1 93 LSP3c 2 144 idSL10c 0

44

39 idGL00c 0 94 LSP3c 1 145 idSL11c 4
40 idGL01c 3 95 LSP3c 0 146 idSL11c 3
41 idGL01c 2 96 LSP5c 6 147 idSL11c 2
42 idGL01c 1 97 LSP5c 5 148 idSL11c 1
43 idGL01c 0 98 LSP5c 4 149 idSL11c 0
44 LSP0c 4 99 LSP5c 3 150 idSL12c 4
45 LSP1c 3 100 LSP5c 2 151 idSL12c 3
46 LSP1c 2 101 LSP5c 1 152 idSL12c 2
47 LSP1c 1 102 LSP5c 0 153 idSL12c 1
48 LSP1c 0 103 idSL00c 5 154 idSL12c 0
49 LSP2c 6 104 idSL00c 4 155 idSL13c 4
50 LSP2c 5 105 idSL00c 3 156 idSL13c 3
51 LSP2c 4 106 idSL00c 2 157 idSL13c 2
52 LSP2c 3 107 idSL00c 1 158 idSL13c 1
53 LSP3c 4 108 idSL00c 0 159 idSL13c 0
54 LSP5c 7 109 idSL01c 5

A.3.4.3�EP tool setting

A.3.4.3.1� Bit assignment

The table below shows an example bit assignment for the use of the EP tool. In this table, bit assignments for both
of the 2kbps and 4kbps source coder is described.

2kbps source coder 4kbps Source Coder

Class I
Source coder bits 44 66
CRC parity 6 6
Code Rate 8/16 8/16
Class I total 100 144

Class II
Source coder bits 4 44
CRC parity 1 6
Code Rate 8/8 8/8
Class II total 5 50

Class III
Source coder bits 4 4
CRC parity 1 1
Code Rate 8/8 8/8
Class III total 5 5

Class IV
Source coder bits 4 4
CRC parity 1 1
Code Rate 8/8 8/8
Class IV total 5 5

Class V
Source coder bits 4 4
CRC parity 1 1
Code Rate 8/8 8/8
Class V total 5 5

45

Class VI
Source coder bits 20 4
CRC parity 0 1
Code Rate 8/8 8/8
Class VI total 20 5

Class VII
Source coder bits 34
CRC parity 0
Code Rate 8/8
Class VII total 34
Total Bit of All Classes 140 248
Bit rate 3.5 kbps 6.2 kbps

Class I:

CRC covers all the Class I bits, and Class I bits including CRC are protected by convolutional coding.

Class II-V(2kbps), II-VI(4kbps):

At least one CRC bits cover the source coder bits of these classes.

Class VI(2kbps), VII(4kbps) :

The source coder bits are not checked by CRC nor protected by any error correction scheme.

A.3.4.4�Error concealment

When CRC error is detected, error concealment processing (bad frame masking) is carried out. An example of
concealment method is described below.

A frame masking state of the current frame is updated based on the decoded CRC result of Class I. The state
transition diagram is shown in A.2.4.4.1.5. The initial state is state=0. The arrow with a letter “1” denotes the
transition for a bad frame, and that with a letter “0” a good frame.

A.3.4.4.1� Parameter replacemet

According to the state value, the following parameter replacement is done. In error free condition, state value
becomes 0, and received source coder bits are used without any concealment processing.

A.3.4.4.1.1� LSP parameters

At state=1..6, LSP parameters are replaced with those of previous ones.

When state=7, If LSP4=0 (LSP quantization mode without inter-frame prediction), then LSP parameters are
calculated from all LSP indexes received in the current frame. If LSP4=1 (LSP quantization mode with inter-frame
coding), then LSP parameters are calculated with the following method.

46

In this mode, LSP parameters from LSP1 index are interpolated with the previous LSPs.

)()1()()(0 N,30PN,30PN,30
THPREVBASE −+⋅= for n=1..10 (1)

)(N,30
BASE

 is LSP parameters of the base layer,)(N,30
PREV

 is the previous LSPs,)(0 N,30
TH

 is the decoded

LSPs from the current LSP0 index, and P is the factor of interpolation. P is changed according to the number of

previous CRC error frames of Class I bits as shown in Table.1. LSP indexes LSP2, LSP3 and LSP5 are not used
and)(N,30 is used as current LSP parameters.

Table A.2.10 p factor

frame p
0 0.7
1 0.6
2 0.5
3 0.4
4 0.3
5 0.2
6 0.1
7 0.0

A.3.4.4.1.2� Mute variable

According to the “state” value, a variable “mute” is set to control output level of speech.
The “mute” value below is used.
In state=7, the average of 1.0 and “mute” value of the previous frame(= 0.5 (1.0 + previous “mute value”)) is used,
but when this value is more than 0.8, “mute” value is replaced with 0.8.

state mute
0 1.000
1 0.800
2 0.700
3 0.500
4 0.250
5 0.125
6 0.000
7 Average/0.800

A.3.4.4.1.3� Replacement and gain control of “voiced” parameters

In state=1..6, spectrum parameter idS0, idS1, spectrum gain parameter idG, spectrum parameter for 4kbps codec
idS0_4k .. idS3_4k are replaced with corresponding parameters of the previous frame. Also, to control volume of
output speech, harmonic magnitude parameters of LPC residual signal “ []1270K!M ” is gain controlled as shown

in Eq.(1). In the equation, () []!M I
ORG

 is computed from the recieved spectrum parameters.

47

[] []I!MMUTEI!M
ORG)(∗= for i=0..127 (1)

If previous frame is unvoiced and current state is state=7, Eq.(1) is replaced with Eq.(2).

[] []I!MMUTEI!M
ORG)(6.0 ∗∗= for i=0..127 (2)

As described before, idS0 and idS1 are individually protected by 1 bit CRC. In state=0 or 7, when CRC errors of
these classes are detected at the same time, the quantized harmonic magnitudes with fixed dimension

]44..1[
QNT

!M are gain suppressed as shown in Eq.(3).

][][][)(I!MISI!M
ORGQNTQNT

∗= for i=1..44 (3)

][IS is the factor for the gain suppression.

I 1 2 3 4 5 6 7..44
][IS 0.10 0.25 0.40 0.55 0.70 0.85 1.00

At 4kbps, idS2_4k, idS3_4k, and idS4_4k are checked by CRC as Class II bits. When CRC error is detected, the
spectrum parameter of the enhancement layer is not used.

A.3.4.4.1.4� Replacement and gain control of “unvoiced” parameter0.

In state=1..6, stochastic codebook gain parameter idGL00, idGL01, stochastic codebook gain parameter for 4kbps
codec idGL10..idGL13 are replaced with those of the previous frame’s.

Stochastic codebook shape parameter idSL00, idSL01,and stochastic codebook shape parameter for 4kbps codec
are generated from randomly generated index values.

Also, to control volume of output speech, LPC residual signal []RES 0 159K is gain controlled as shown in Eq.(4). In

the equation, () []RES I
ORG

 is computed from stochastic codebook parameters.

[] [] ()RES I MUTE RES I I
ORG

= ∗ ≤ ≤() 0 159 (4)

A.3.4.4.1.5� Frame Masking State Transitions

� � � � � � �

�

� � � � � � � �

� � � � � �

� �

48

Figure A. 2. 1 Frame Masking State Transitions

A.4.� Silence compression tool

A.4.1� VAD module

The VAD module makes a decision whether a frame is a non-active-voice frame or an active-voice frame based on
how much the characteristics of the input signal change. The characteristics are represented by four parameters;
the full-band and the low-band energies, LSPs and the zero-crossing rate of the frame of the input signal. A
temporal decision is made in every 80 samples and the final frame decision is made based on the temporal
decisions with a hangover constraint. For the wideband mode, the characteristics parameters are calculated from
the input speech down-sampled from 16 kHz to 8 kHz.

$OWN

3AMPLING

00?)NPUT3IGNAL;=

,0
!NALYSIS 0ARAMETER

#ALCULATION
&RAME
$ECISION

4EMPORAL
$ECISION�

7"

."

7"�."

6!$?FLAG

Figure A. 4.1.1 - VAD module

A.4.1.1�Definitions

Input

PP_InputSignal[] This array contains the pre-processed speech signal. The dimension is
frame_size.

Output

VAD_flag This field contains the VAD flag (see Table 11.2).

The following are help elements used in the VAD module:

lpc_order: the order of LP

sbfrm_size: the number of samples in a subframe

frame_size: the number of samples in a frame

n_subframe: the number of subframes in a frame

A.4.1.2�Down-sampling for the wideband

A signal s_vad[] used in the VAD module is generated by preprocessing the input signal in the same manner as that
described in subclause 3.B.4 of ISO/IEC 14496-3. When the sampling rate is 16 kHz, the input signal is down-
sampled to 8 kHz after the preprocessing.

A.4.1.3�Parameter calculation

LSPs of the input signal, lsp[] are calculated from the LPCs lpc_coefficients[], which is given by the MPEG-4 CELP
weighting module described in subclause 3.B.8 of ISO/IEC 14496-3. A full-band energy P, a low-band energy

L
0 between 0 and 1 kHz, and a zero crossing rate Z are calculated as follows:

49

2;�=0����LOG
��

2HH4

��L
����LOG0

[] []��=S?VAD;ISIGNS?VAD;I=SIGN
��
�

:
��

�I

∑
=

−−= .

where h is an impulse response vector of the FIR filter with a cutoff frequency of 1 kHz. R[0] is the first
autocorrelation coefficient, R is a Toeplitz autocorrelation matrix with the autocorrelation coefficients in each
diagonal. These parameters are calculated every 10 msec. Their averages are updated as follows:

0A0�A0�)1(−+

LLL
0B0�B0�)1(−+

:C:�C:�)1(−+

][)1(][][I,SPDISP,�DISP,� −+ , i=1,…lpc_order

where a=0.995, b=0.995, c=0.998 and d=0.75. The following differential parameters are evaluated to make a
temporal decision whether the input signal is characterized as an active-voice or a non-active-voice every 80
samples:

000�� −∆

LLL
00�0� −∆

:::�� −∆

[]∑
=

−∆
ORDERLPC

I

I,SPISP,,SP��
_

1

2
][][, i=1,…lpc_order.

A.4.1.4�Temporal voice activity decision

If any of the following inequalities is satisfied, the temporal voice activity flag, vad_flag_sub[i] for

i=0,…,
=���;SAMPLES

AMPLES=�FRM?SIZE;S
 , is set to 1.

if(

 ,SP�∆ > 0.0009 or

 ,SP�∆ > 0.00175 * :�∆ + 0.00085 or

 ,SP�∆ > -0.00455 * :�∆ + 0.00116 or

 0�∆ < -0.47 or

 0�∆ < -2.5 * :�∆ - 0.5 or

 0�∆ < 2.0 * :�∆ - 0.6 or

 0�∆ < 2.5 * :�∆ - 0.7 or

50

 0�∆ < -2.91 * :�∆ - 0.482 or

 0�∆ < 880.0 * ,SP�∆ - 1.22 or

L
0�∆ < 1400.0 * ,SP�∆ - 1.55 or

L
0�∆ > 0.929 * 0�∆ + 0.114 or

L
0�∆ < -1.5 * 0�∆ - 0.9 or

L
0�∆ < 0.714 * 0�∆ - 0.214

)

{

vad_flag_sub[i] = 1;

}else{

vad_flag_sub[i] = 0;

}

A.4.1.5�Frame voice activity decision

A frame voice activity flag , vad_flag is determined based on the temporal flags vad_flag_sub[], which are made in
the corresponding frame as follows:

vad_flag = vad_flag_sub[0] ∪ vad_flag_sub[1] ∪ … ∪ vad_flag_sub[L-1],

where “ ∪ ” stands for logical OR.

A.4.1.6�Hangover

A hangover is applied to the final VAD decision VAD_flag after switching from an active-voice frame to a non-active-
voice frame:



 =−

=
OTHERWISEVAD?FLAG�

�	�VAD?FLAGPERIODVOICEACITIVETHEAFTERMSEC��FIRST��
6!$?FLAG

When the active-voice period (vad_flag=1) is shorter than 80 msec, VAD_flag is always equal to vad_flag.

A.4.2� DTX module

Figure A. 4.2.1 shows a structure of the DTX module. The DTX detects frames in which the input characteristics
changes during the non-active-voice frames. In the first frame during each non-active-voice period and in the frame
where the change is detected, the DTX module extracts the parameters; the frame energy and the LSPs of the input
speech, and encodes these parameters. There are three DTX modes; DTX_flag=0. 1 and 2 depending on what
information is transmitted. When the change of the LSPs is detected (DTX_flag=1), the encoded LSP and RMS
parameters and the TX_flag are transmitted as a HR-SID information. Only when the change of the RMS (frame
energy) is detected (DTX_flag=2), only encoded RMS parameter and the TX_flag are transmitted as a LR-SID
information. Otherwise, only the TX_flag is transmitted.

51

,0
!NALYSIS

$48?FLAG

,OCAL�#.'
$ECODER

2-3
#ALCULATION

,0#�TO�,30
#ONVERSION

!VERAGE
0ROCESSING

2-3
1UANTIZER

!VERAGE
0ROCESSING

,30
1UANTIZER

#HANGE
$ETECTOR

$48?FLAG

00?)NPUT3IGNAL;=
3)$

INFORMATION

LSP?AV

XNORM?AV

Figure A. 4.2.1 - DTX module

A.4.2.1�Definitions

Input

PP_InputSignal[] This array contains the pre-processed speech signal. The dimension is
frame_size.

TX_flag This field contains the transmission mode (see Table 11.3.2).

Output

VAD_flag This field contains the VAD flag (see Table 11.2).

The following are help elements used in the DTX module:

lpc_order: the order of LP

frame_size: the number of samples in a frame

n_subframe: the number of subframes in a frame

A.4.2.2�LP analysis

The same LP analysis and LPC-to-LSP conversion as those described in subclause 3.B.5 of ISO/IEC 14496-3are
used. This gives unquantized LSPs lsp[][].

A.4.2.3�Averaging of the LSP

An average LSP lsp_av[] is calculated from the unquantized LSPs lsp[][] as follows:

∑
−

=

=
1

0

]][[)/1(][_
,

J

IJLSP,IAVLSP , i=0,...,lpc_order-1.

where lsp[j][] are unquantized LSPs in the j-th most recent frame, which is calculated from the unquantized LPCs
lpc_coefficients[] described in subclause 3.B.6.1.2 of ISO/IEC 14496-3. L is the number of the frames in 80 msec.

A.4.2.4�RMS calculation

An RMS of the input signal is calculated in an identical manner to that described in subclause 3.B.9 of ISO/IEC
14496-3. This calculation gives unquantized RMS xnorm[] in each subframe.

A.4.2.5�Averaging of the RMS

An average RMS of the input signal, xnorm_av[] is computed from the unquantized RMS xnorm[] as follows:

52

∑
−

=

=
1

0

][)/1(_
-

J

JXNORM-AVXNORM

where M is the number of subframes in 80 msec. xnorm_av_end is xnorm_av[n_subframe-1], where n_subframe is
the number of subframes in a frame.

A.4.2.6�Detection of the characteristics change

The detection of the characteristics change is made based on the variations of the frame energy and the spectrum
computed from the input signal as follows:

DTX_flag = 0

if(D"$ENDXNORMSIDXNORM
XNORM

>− _log20_log20 1010)DTX_flag=2

if([]
LSP

ORDERLPC

I

$IAVLSPISIDLSP >−∑
=

2_

1

][_][_) DTX_flag=1,

where LSPs are normalized to a range from 0 to 1. A threshold
XNORM

$ is switched according to xnorm_sid as shown

inTable A.4.1. A threshold
LSP$ is changed according to the sampling rate; 0.002 for 8 kHz and 0.0015 for 16 kHz.

lsp_av_sid and xnorm_sid are lsp_av and xnorm_av_end of the last SID frame, respectively. There is a minimum
period, where the detection is not made. The length of the period is normally 20 msec, but it is 0 msec at the first 40
msec of the non-active-voice period.

Table A.4.1: Relation between
XNORM

$ and xnorm_sid

XNORM?SID��LOG
��

$

A.4.2.7�Parameter encoding

The average LSP lsp_av[] is encoded in the same process as that described in subclause 3.B.6 of ISO/IEC 14496-3
with exceptions described in subclause 2.5.2.1.1 (LSP decoder). Encoding of the average RMS xnorm_av[] is
identical to that described in subclause 3.B.9 of ISO/IEC 14496-3 with exceptions that theµ -law parameters are

independent of the signal mode and set as rms_max=7932 and mu_law=1024.

A.4.2.8�Local CNG decoder

Local CNG decoding is performed to update buffers for the LP synthesis filter. The processing is identical to the
decoding process in the decoder.

A.5.� Extension of HVXC variable rate mode

A.5.1� Encoder Description

Basically any kind of background noise/unvoiced speech decision algorithm could be used. The algorithm we used
is described as an example. The change of the signal level and the spectral envelope are used to detect background
noise interval from unvoiced frames. During the noise interval, it is assumed that the signal level and the shape of
the spectral envelope are stable. The log squared magnitude response at low frequency range of the spectral
envelope is computed from LPC cepstrum coefficients. The log squared magnitude response of the current frame is

53

compared with the average of the log magnitude response over several past frames. If the difference is small, it is
assumed that the signal is stable. When these parameters show the signal condition is stable enough, the frame is
classified as “background noise interval”. If the signal characteristic is changed in certain range, it is assumed that
the background noise characteristic is changed, and noise update frame is transmitted. If the signal characteristic is
changed more than pre-defined range, then signal is assumed to be unvoiced speech.

idVUV is a parameter that has the result of V/UV decision and defined as;

 idVUV

0 Unvoiced speech

1 Background noise interval

2 Voiced speech 1

3 Voiced speech 2

=










To indicate whether or not the frame marked “idVUV=1” is noise update frame, a parameter “UpdateFlag” is
introduced. UpdateFlag is used only when idVUV=1.



= frame update noise 1

frame update noise not 0UpdateFlag

rms (from energy computation)

Log squared magnutude response

UV/BGNUV/BGN
Judgement

Average & VQLSP, CelpGain LSP, Celp Gain index

UpdateFlag

Figure 5.1.1 Additional Blockdiagram for Encoder

