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Chapter 1

Introduction

An inductor is a passive electronic component, which stores magnetic energy [1]. The
most simple realization of it consists of a wire loop, but there are inductors having some
thousands of turns. The winding of the component may surround solenoidal, toroidal and
any other various shaped cores made of ferromagnetic or dielectric materials. Inductors
can be purchased in many various sizes depending on the sphere of operation.

In the case of a theoretical inductor, the relationship between the time-varying voltage
uL of the component and the time-varying current iL passing through is described by
the following differential equation [2]:

uL(t) = L
diL(t)

dt
. (1.1)

The term inductance denoted by L was coined by Oliver Heaviside in February, 1886.
In honour of Joseph Henry, the unit of inductance has been given the name henry [H].

1 H= 1Wb
A

. In SI base units, the dimensions of the weber are kgm2

s2 A
. In derived units,

they are volt-seconds (Vs). The ratio of the magnetic flux Φ to the current iL is called
the self-inductance, which is usually referred to as the inductance of the component. In
general, the expression of the self-inductance is [3, 4]

L = N
Φ

iL
, (1.2)

where N is the number of turns.
An ideal inductor has inductance, but it has not got resistance and capacitance and

it does not dissipate energy, however it can not be manufactured. The real inductor
has series resistance caused by the resistance of the winding wire, which is usually made
of copper and it has some capacitance due to the distributed capacitance between the
turns of the wire, moreover it dissipates energy in the resistance of the wire. Magnetic
core inductors may dissipate energy in the core due to hysteresis, too. This is the reason
why the inductor is the least ideal passive electronic component and it is one of the most
difficult one to model.

Electronic component manufacturers spend much time and money to develop their
inductors and to improve their attributes such as the value of the inductance, the
impedance, the quality factor, the dimensions of the components, etc. Nowadays, in
the development stage the most prevalent method is still based on the analytical and on
the experimental results. Manufacturers construct many trial components and than they
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examine the effects of the modifications. To the modifications they invoke the works of
radio amateurs who worked in the beginning of the last century such as Nagaoka, Med-
hurst, Lundin, Wheeler, etc [5–8]. After all, CAD (Computer Aided Design) is more and
more popular in research, developing and manufacturing new components, because of its
speed, simplicity and practicability.

The aim of my research is to help the EPCOS AG in examining, developing and
designing inductors by using the finite element method.

1.1 The Scope of my Work

The scope of my degree work is to simulate SMT inductors by using the finite element
method, to draw the inference of the simulations and to develop some attributes to
improve the components.

In my personal point of view the most important goal of my study is to understand
the interior working of inductors, which depends on several physical phenomena, to
understand the effect of these phenomena to the attributes of the component and to
realize how to modify the important attributes of the inductors through modifying some
specialities.

In engineering point of view the aim of the research is to build up a finite element
model to simulate inductors accurately, which model have to predict both of the impor-
tant attributes of inductors, such as inductance, impedance, resistance, quality factor,
in the whole range of the frequency. After that we can be in possession of the knowledge
with which better inductors can be designed.

To realize the above ambitions, first of all a finite element model is built up, which is
able to simulate inductors with various sizes, geometries and materials. During this work
the vector finite element model and has been used, where potential formulations based
on the magnetic vector potential A and the electric scalar potential V have been applied.
A method has been worked out to set the results of the simulation to the measured data
of the modeled inductor, towards the exact predicting of the attributes.

To increase the quality factor of the examined inductor, several modifications in
the coil of the component have been tried out in simulation and in manufacturing. To
check the correctness of the model several trial components have been manufactured
and the measurements of these components have been done in the laboratory of the
manufacturer, in Szombathely, Hungary, moreover the measured and the simulated data
have been compared.

Finally, a recommendation about the further improvement of the examined inductor
is sent to the manufacturer.

In an earlier challenge a three dimensional finite element model was worked out to
simulate the variation of the inductance as a function of a manufacturing failure and the
orientation of the eddy currents inside the component. The building up and the results
of this simulation will be also presented briefly in this thesis.

The organization of my work is the following.
Chapter 2 contains a brief overview of some results known from the literature. The

basic important attributes of inductors, some results of the works of radio amateurs at
the beginning of the 20th century, a way to modeling inductors analytically and some
information about the finite element method can be found there.

The following chapters contain the summary of my research activity.

2
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In chapter 3, the theoretical background of the realized simulations has been de-
scribed. The starting point is Maxwell’s equation system, from which the used potential
formulations can be deduced. The finite element method is based on the weak formu-
lation of the potential formulations, so this chapter presents the deduction of the weak
formulation applying mathematical rules and methods.

Chapter 4 presents the simulation of inductors in the COMSOL Multiphysics software
package. The overviews of the problems, the building up of the finite element models,
the simulations, the computational results and the comparison of the measured and the
simulated data can be found there step by step.

Last, the conclusions of my work with future works can be found in chapter 5. The
main references of my research are also given at the end of this paper.

To write this document the LATEX word processor have been used.
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members of the Laboratory of Electromagnetic Fields and last but not least, I would like
to thank my family and my friends for the daily assistance and patience.

3



Chapter 2

Literature Overview

2.1 Important Attributes of Inductors

During the design of inductors, there are several attributes, which are needed to consider
according to the field of application.

In the case of inductors the most important attribute is the inductance, which has
been determined in chapter 1. However, the presented formula is not useful to simulate
and to measure real inductors, because they have resistance – represents the resistance
of the coil – in series with the inductance. In parallel the inductance and the resistance
the real inductor has capacitance – which represent the distributed capacitance between
the turns. This is the simplest model of an inductor, which can be seen in Fig. 2.1.

Fig. 2.1. The simplest three element model of a real inductor

The inductance of a real inductor can be determined from the equivalent impedance
Z̄L of it. The equivalent impedance is the extension of the Ohm’s law in the case of AC
circuits, in other words, it means the complex amplitude of sinusoidal voltage

ˆ̄U = Ûej(ωt+ϕU ) (2.1)

divided by the complex amplitude of sinusoidal current

ˆ̄I = Îej(ωt+ϕI) (2.2)
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passing through it, where ω is the angular frequency, and ω = 2πf , where f is the
frequency, moreover Û is the peak value of the voltage, Î is the peak value of the
current, t is the time and ϕU is the phase of the voltage and ϕI is the phase of the
current. Dimensionally, impedance is the same as resistance, so the SI unit of it is [Ω],

Z̄L = ZLejθ =
ˆ̄U

ˆ̄I
, (2.3)

where Z̄L is the complex impedance and θ = ϕU − ϕI . The above expression results in
a complex number, so the equivalent impedance of a component or a circuit is not only
depends on the amplitudes of the voltage and current, but it also depends on the phases.
It can also be described by the following formula, as well:

Z̄L = R + jX, (2.4)

where the real part of the impedance is the resistance R, and the imaginary part X is
called reactance. The reactance of an inductor and a capacitor can be described by

XL = 2πfL (2.5)

and

XC =
1

2πfC
. (2.6)

The determination of the equivalent series inductance Ls of an inductor is coming from
(2.4). During measurements and simulations the following expression has been used to
determine the equivalent inductance of the components:

Ls =
Im{Z̄L}

2πf
. (2.7)

It seems that Ls contains the inductive and the capacitive parts of the reactance, too,
but the effect of the capacitance become significant only at high frequencies, around the
SRF and above (self resonant frequency) denoted by f0.

SRF is the frequency where the inductive reactance and the capacitive reactance are
equal in magnitude causing electrical energy to oscillate between the magnetic field of
the inductive part and the electric field of the capacitive part of the component. At
resonance, the series impedance of the capacitance and the inductance is minimal, i.e.
it is equal to zero, and the parallel impedance of the components is maximal. Since the
inductive reactance and the capacitive reactance are of equal magnitude, ωL = 1

ωC
can

be written, so [2, 9, 10]

ω0 =
1√
LC

, (2.8)

which is also called Thomson equation, where is ω0 = 2πf0, and f0 is the self-resonance
frequency.

In the case of RF inductors one of the most important attributes is the quality
factor Q. In physics and engineering, the quality factor, or Q-factor is a dimensionless
parameter that compares the time constant for decay of an oscillating physical system’s
amplitude to its oscillation period. Equivalently, it compares the frequency at which a
system oscillates to the rate at which it dissipates its energy [2,10]. A higher Q indicates
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a lower rate of energy dissipation relative to the oscillation frequency, so the oscillations
die out slower. For example, in electronics, high quality factor desires in a good tuned
circuit or resonator. Generally, Q is defined by [10]

Q = ω
ES

PL

, (2.9)

where ES is the stored energy and PL is the power loss. Because PL = WC

t
, where WC is

the energy dissipated per cycle, (2.9) can be reformed, which results in

Q = 2π
ES

WC

. (2.10)

For a complex impedance, such as an inductor, the Q-factor is the ratio of the reactance
to the resistance, i.e.

Q =
|Im{Z̄}|
Re{Z̄} . (2.11)

It can also be calculated by knowing only the power factor PF

Q =

√
1− PF 2

PF
=

√
1

PF 2
− 1, (2.12)

where PF is the ratio of the real power to the apparent power. The quality factor can
be calculated, by using the following formula, too,

Q =
|sinφ|
|cosφ| = |tanφ|, (2.13)

where φ is the phase anlge of the complex impedance.

2.2 Works of Radio Amateurs

At the beginning of the 20th century the wireless communication became a world-wide
hobby and entertainment. People who use various types of radio communication equip-
ments to communicate with other ones for public service, recreation and self-training
are called radio amateurs. The term amateur is not a reflection on the skills of the par-
ticipants, who are often quite advanced. Rather, amateur indicates that amateur radio
communications are not allowed to be made for commercial or money-making purposes.

Several radio amateurs were interested in developing radios and their components.
Many papers was published about inductors, antennas and all kinds of wireless appli-
cations and its behaviors [4–7]. In the case of inductors we can read several articles
about the calculation of high frequency resistance, self-capacitance, self- and mutual in-
ductance, and studies about the skin effect, the closely and widely spaced coils and so
on [7, 8].

The one of the first and the most important papers is written by Nagaoka, which title
is The Inductance Coefficients of Solenoids [5]. The most relevant aim of his research
was to find a standard formula to the accurate calculation of the self-inductance and the
mutual inductance of solenoidal shaped inductors. In the case of my degree work, only
the part of the calculation of the self-inductance is important, so only this part of his
work will be shown in this paper.

6
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The reason of his research was, that several formula have been deduced before to cal-
culate the self-inductance of solenoids by different physicists. They determined different
forms according to the length of the solenoid was short or long. Most of them werw
quite complicated and not suitable for engineers or physicists. Nagaoka deduced a new
universal formula to calculate the self-inductance of a solenoid easily by tabulating a
certain coefficient L, which is nowadays marked with K and named Nagaoka coefficient
or Nagaoka constant [5]. Basically, the self-inductance of an infinite long solenoid is
given by [5]

L =
µ0N

2A

l
, (2.14)

where µ0 = 4π 10−7 H
m

, which is the permeability of free space, N is the number of turns,
A is the cross-section area of the coil and l is the length of the coil. The inductance of a
single layer solenoid with any length can be calculated by using the following formula,

L =
µ0N

2A

l
K, (2.15)

where K is the Nagaoka constant, which is the function of diameter per length [5]. He
created a lot of tables to calculate K; the most obvious one gives the value of K from
the constant Diameter

Length
. A part of Nagaoka’s table can be seen in Fig. 2.2.

The necessity of Nagaoka coefficient is explicable by the non-uniformity of the mag-
netic field inside the inductor. In 1911, Edward B. Rosa and Frederick W. Grover sum-
marized all of the expressions and tables on calculation the mutual- and self-inductances
determined by Maxwell, Nagaoka, Havelock, Rayleigh, Lorenz, etc. in the book Formulas
and Tables for the Calculation of Mutual and Self-induction [8].

Afterwards, people wanted to recognize the behavior of inductors more and more
precisely. In the middle of the 20th century some papers have been written about the
resistance, the self-capacitance, the self resonance frequency, the skin effect and the
proximity effect by physicists and engineers, such as Butterworth and Medhurst [7].
They described the behavior of the variation of self-capacitance, and via it, the variation
of the SRF as a function of the diameter of the coil. For example, they discovered
that if the diameter of the wire is increasing, the self-capacitance of the inductor is
also increasing, but the inductance of the component is decreasing; and if the distance
between the adjacent wire centers is increasing, the self-capacitance and the inductance of
the inductor are decreasing [7]. They explained why the resistance of an inductor, which
has several turns, is modified in the context of the frequency, the wire diameter and the
distance between the adjacent wires. In the case of an isolated wire, the exciting current is
distributed uniformly throughout the material at low frequencies. At high frequencies the
current is flowing in a thin layer close to the surface. This is the skin effect [11]. In coiled-
wire inductors, the skin effect is modified not only by the conductivity of the material
σ, but by an interaction with the external magnetic field. This phenomenon is known as
the proximity effect [11]. The proximity effect is the reason of that the resistance of an
inductor with ”closely-spaced” turns is greater than in the case of ”widely-spaced” coils,
because the flowing current in a wire is more and more crowded out by the magnetic
field of an adjacent wire [7,12]. An example for the proximity effect can be seen in Fig.
2.3. The figure shows the total current density in the coil simulated by FEM.

7
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Fig. 2.2. A table to determine the value of K [5]

2.3 Analytical Modeling of Inductors

Because of the increasing competition in the electronic industry, manufacturers need
to produce better and better products and need to provide results to the customers
about the working of their components. A useful solution to these problems, towards
the recognition of the interior behavior of the components and the presentation of the
working of them to the customers, is the modeling [10,13,14].

8
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Fig. 2.3. The proximity effect in a coil

Of the three basic passive components, inductor is the most difficult one to model,
because it is the most complex. We can highlight two specific parts of its complexity: the
core and the conducting path. The conducting path is usually made of copper, either in
wire form or as a thin layer of metal. By the reason of the skin effect at radio frequency,
the resistance of this path will increase with the square root of frequency [10]. For
isolated copper conductors, the skin depth at various frequencies is simple to calculate,
with the following formula:

δ =
1√

πfµσ
, (2.16)

where δ the distance where the amplitude of the current flowing in a plane decreases by
a factor e−1. Because of the proximity effect, the skin depth becomes more complicated
when turns in a winding are close to each other [12]. The core loss is another matter [10].
In the case of inductors with air core, ceramic or other nonmagnetic core, there is no, or
minimal core loss. On the other hand, for iron or ferrite cores, the loss will be at least
proportional to frequency [10].

In the recent past, engineers constructed several models to describe and to simulate
the working of inductors. With the given knowledge, nowadays both of the parameters of
inductors, such as impedance, inductance, quality factor and skin effect can be simulated
by a sort of model.

In the paper RF-inductor modeling for the 21st century [10], Leslie Green shows a
new implemented theoretical model, which can predict more correctly the behavior of
an inductor at high frequencies, too. The starting point of his study is the well-known
three-element model, which can be seen in Fig. 2.1. In the case of this model L represents
the DC value of the inductance, and the capacitance can be calculated by the following
expression,

C =
1

ω2L
, (2.17)

which comes from the Thomson’s formula (2.8). The resistance in the model is not the
DC resistance of the inductor but, rather, some different value that more accurately
simulates the component around the operating frequency. Green points out that, this
model predicts correctly the characteristics of the inductance and the impedance in a
wide range of the frequency, however it does not correctly predict the position of the
peak of Q. Towards the exact modeling, two more parameter resistances were added to
the basic model. By this model it is possible to set the peak value and the peak position
of the quality factor. With the new mathematical model the attributes of an inductor
can be modeled correctly [10]. The impedance of the model can be calculated by the

9
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following expression [10]:

Z =
1

1

RS( f
SRF

)η+j2πfL
+ 1

RHF + 1
j2πfC

, (2.18)

where RS is the series loss resistance, η is a parameter between 0.5 and 1 and RHF

modifies the frequency position of the maximum Q point. The determination of L and
C happens in the same way than in the case of the old three element model. The
quality factor can be calculated by the (2.11). The measured and the predicted quality
factor after the setting of the parameters of the model can be seen in Fig. 2.4. The
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Fig. 2.4. The measured and the predicted quality factor by Green’s model

setting the attributes of the examined inductor resulted the following values of the model
components: L = 180 nH, C = 85 fF, RHF = 15 Ω, η = 0.54, RS = 6.5 mΩ, SRF = 1030
MHz.

The results of presented works in the past two sections have been used to under-
stand the internal working of inductors including the variation of the inductance, the
impedance, the quality factor as a function of the frequency; and to check the correctness
of the constructed finite element models, which will be shown below, in the next session.

2.4 The Finite Element Method

Sometimes it is necessary to solve more complex problems than, which can be difficult
to work out in analytical way, such as the inductance of a nonlinear solenoid or the
capacitance between two conductors with any kind of shape. In many cases, there are
complex geometries in which difficult partial differential equations have to be solved. For
example, the calculation the effect of the eddy current losses and the hysteresis losses in
a power inductor having drum shaped core made of soft magnetic ferrit, is not an easy
task analytically. The solving of this problem will be shown in chapter 4.

The finite element method (FEM) is a numerical technique for finding approximate
solutions of partial differential equations (PDE). The steps of the buliding up of a finite

10
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element simulation can be seen in Fig. 2.5 [15, 16, 18, 20–22]. The first step of a finite
element simulation is the specification phase, when the geometry model of the real life
problem have to plan in a CAD environment. Then the partial differential equation
system and the boundary conditions have to be found out, which describe the working
of the examined phenomena.

Fig. 2.5. The steps of simulation by FEM

The next step is the preprocessing task. Here the values of different parameters, such
as the material properties, i.e. the constitutive relations, the excitation signal and the
others have to be specified. The geometry can be simplified according to symmetries or
axial symmetries.

The finite element method, as its name shows, based on the solution of finite numbers
of units, which assembly leads to the result of the total problem. To divide the geometry
into smaller elements, the geometry must be discretized by a FEM mesh [15, 21]. A
finite element can be triangle or quadrangle in 2D, which can be seen in Fig. 2.6,
and tetrahedron or hexahedron in 3D, which can be seen in Fig. 2.7. The triangle
element has 3 nodes and 3 edges, the quadrangle element has 4 nodes and 4 edges. A
tetrahedral element has 4 vertices and 6 edges and a hexahedral element has 8 nodes
and 12 edges [15, 21]. In the case of nodal elements, the unknown potentials have to be
solved at the vertices of the finite elements, but the potentials can be solved at the edges
of the elements when we are using vector finite elements [].

There are some important rules, how to generate a mesh [15]. Neither overlapping

11
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Fig. 2.6. 2D finite elements

Fig. 2.7. 3D finite elements

nor holes are allowed in the generated finite element mesh. A two dimensional and a
three dimensional FEM mesh can be seen in Fig. 2.8 and in Fig. 2.9 generated by
the COMSOL Multiphysics software package [24]. The first one shows the 2D mesh of
an SMT (Surface Mount Technology) inductor divided by triangular elements. The 3D
FEM mesh shows a shielded version of an SMT power inductor divided by thetraedral
finite elements; the mesh in air is not shown here.

Fig. 2.8. 2D mesh of an inductor

12
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Fig. 2.9. 3D mesh of a power SMT inductor

The next step after discretizing of the geometry is solving the problem. The equations
of the FEM model are based on the weak form of the potential formulation, which can
be deduced from the basis equations, i.e. from the Maxwell’s equations in the electrical
engineering practice [15]. The equations must be set up on the level of one finite element.
Assembling of these equations through the FEM mesh means the setting up of the
global equation system of the problem, which solution leads to the approximation of the
introduced potential. The equation system of the examined phenomena can be linear
or nonlinear, depending on the medium to be analyzed. After the setting up of this
global system of equations, it must be solved by a solver. If the constitutive equations
are nonlinear the computation may contain iteration, for example in the case when the
simulation of ferromagnetic materials with nonlinear characteristics must be executed.
Iteration means that the system of equations must be set up and must be solved step
by step until convergence is reached. The solution must be worked out at every discrete
time step if the problem is time dependent [16].

The outcome of the computations provides the approximation of the potential values
in the vertices or in the edges of the FEM mesh. Any electromagnetic field quantity,
such as magnetic field intensity, magnetic flux density, etc. or various attributes, such
as inductance, capacitance, energy, force can be calculated by using potentials. In the
postprocessing stage there is a chance to modify the geometry, the material parameters
or the FEM mesh to get more accurate results. In Fig. 2.10 a 2D result of an SMT
inductor can be seen at radio frequency. The surface plot and the arrows represent
the magnetic flux density inside the component, which is modified by the skin- and
the proximity effects. The magnetic flux density is also shown inside the open and the
shielded version of an SMT power inductor in Fig. 2.11.
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Fig. 2.10. Magnetic flux density inside an SMT inductor

Fig. 2.11. Magnetic flux density inside an SMT power inductor
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Chapter 3

Theoretical Background

3.1 The Maxwell’s Equations

3.1.1 The integral form and the differential form

Every electromagnetic phenomena can be characterized by a partial differential equation
system, which also known as Maxwell’s equations [25]. This equation system defines
relationship between electromagnetic field quantities, such as electric field intensity E,
magnetic field intensity H , electric flux density D, magnetic flux density B and the
source densities, such as electric current density J and the electric charge density ρ.

The numerical analysis or the computer aided design (CAD) of an arrangement, which
requires electromagnetic field calculation can be executed according to the Maxwell’s
equations, which are the following [25]:

∮

l

H · dl =

∫

Γ

(
J +

∂D

∂t

)
· dΓ, (3.1)

∮

l

E · dl = −
∫

Γ

∂B

∂t
· dΓ, (3.2)

∮

Γ

B · dΓ = 0, (3.3)

∮

Γ

D · dΓ =

∫

Ω

ρ dΓ. (3.4)

However, the above equation system, which known as the integral form of Maxwell’s
equations, is expressive and it is the classical form of the them. When building up of
potential formulations of electromagnetic field problems, it is easier to use the differential
form of this collection of equations. The differential form of the Maxwell’s equations are
the following [20]:

∇×H = J +
∂D

∂t
, (3.5)

∇×E = −∂B

∂t
, (3.6)

∇ ·B = 0, (3.7)

∇ ·D = ρ. (3.8)
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The first Maxwell’s equation (3.1) or (3.5) is commonly called Ampere’s law. This
equation represents that the current density J , which means the current flowing in coils
– the summation of the source current density and the eddy currents inside a conducting
material – and the displacement currents ∂D

∂t
, which is generated by a time-varying

electric field, generate a magnetic field intensity H . The classical form of it says that
the line integral of the magnetic field intensity vector along any closed loop l is equal
to the summation of currents, which are determined by the surface integral of current
densities flowing across the area Γ bounded by the line l. Fig. 3.1 shows a visualization
of the Ampere’s law.

Fig. 3.1. Ampere’s law

The second equation (3.2) or (3.6) is named Faraday’s law. This equation describes
that the time-varying magnetic field generates electric field. In time-dependent case
the electric and the magnetic fields, i.e the first and the second Maxwell’s equations
are coupled. The time variation of the magnetic field effects electric field with reverse
orientation in the studied region, and then the generated electric field generates eddy
current inside the conducting material, which modifies the source magnetic fields. The
integral form of the equation shows that the line integral of the electric field intensity
vector along any closed loop l is equal to the surface integral of the time variation of the
magnetic flux density vector across the area Γ bounded by the line l, as it can be seen
in Fig. 3.2.

The third Maxwell’s equation (3.3) or (3.7) is called the magnetic Gauss’ law, which
represents that the magnetic field is divergence-free. In other words the magnetic flux
lines close upon themselves. The classical form shows that the surface integral of the
magnetic flux density vector is equal to zero on a closed surface Γ, or in other words the
flux lines are closed.

The electric Gauss’ law (3.4) or (3.8) mean that the source of the electric field is the
electric charge, moreover the electric flux lines start and close upon the charge. The
integral form of the electric Gauss’ law says that the surface integral of the electric flux
density on a closed surface is equal to the volume integral of the charge density, and Γ
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Fig. 3.2. Faraday’s law

bounds Ω.
The macroscopic properties, i.e the characteristics of the examined materials can be

defined by the so-called constitutive relations [15,16,25]:

B = µ0(H + M), (3.9)

D = ε0εrE + P , (3.10)

J = σ(E + Ei), (3.11)

where M is the magnetization, P is the polarization, Ei is the impressed electric field,
µ0 is the permeability of vacuum, ε0 is the permittivity of vacuum, εr is the relative
permittivity and σ is the conductivity of the studied material. In air εr is equal to one,
in magnetically linear material M is equal to zero, and B = µ0µrH . In electrically
linear material P is equal to zero.

3.1.2 The classification of Maxwell’s equations

The Maxwell’s equations can be classified to several forms [15]. In my thesis, three
different potential formulations have been used, which are listed here.

In the simplest case the time variation of the source current is neglected, so the
time independent current density J0 via the direct excitation current generates time
independent magnetic field intensity H and magnetic flux density B. The equations are
the following:

∇×H = J0, (3.12)

∇ ·B = 0, (3.13)

and the constitutive relations. Taking the divergence of (3.12), the solenoidal property
of the source current density can be got, i.e.

∇ · J0 = 0. (3.14)

The electric and the magnetic fields are coupled in time-varying case. The time
dependent current density generates a time dependent magnetic field, which generates
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electric field in the vicinity of the medium. The generated electric field effects eddy
current in the conducting material, which modifies the source magnetic field intensity.
If |J | >> |∂D

∂t
| the displacement currents can be neglected. The equations of an eddy

current field are the following:
∇×H = J , (3.15)

∇×E = −∂B

∂t
, (3.16)

∇ ·B = 0, (3.17)

J = σE, (3.18)

and the appropriate constitutive relations must be added. Taking the divergence of the
equation (3.15), the solenoidal property of the eddy current density can be obtained, i.e.

∇ · J = 0. (3.19)

At high frequencies the effect of the displacement currents cannot be neglected. In
these cases the full form of the Maxwell’s equations must be used.

3.1.3 Interface and boundary conditions

It is important to note, that if there are two materials Ω1 and Ω2 in the studied re-
gion, which are different in permeability, permittivity and conductivity, then interface
conditions must be fulfilled on the boundary Γ. Fig. 3.3 shows material attributes and
electromagnetic field quantities in the different materials. The normal unit vector n is
equal to the outer normal unit vector of the medium.

Fig. 3.3. Demonstration of the electromagnetic field quantities along an interface bound-
ary

In the case of static magnetic field problems and in eddy current field problems the
open boundary can be modeled by a sphere with a radius r →∞. The energy crossing
the area of this boundary is equal to zero, because the variation of energy of electric and
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magnetic field is taking place inside the bounding sphere. This condition can only be
fulfilled if

lim
r→∞

r2(E ×H) · n = 0, (3.20)

i.e
lim
r→∞

r|E| = 0, and lim
r→∞

r|H| = 0. (3.21)

This means that the electric and the magnetic fields must vanish at infinity.
In other words during the solution of Maxwell’s equations, the interface and the

boundary conditions must be considered along the interface of the materials and the
boundary surfaces of the problem region.

Electric and magnetic field intensity

The interface conditions prescribe continuity for the tangential component of the electric
field intensity,

n× (E2 −E1) = 0. (3.22)

If there is no current density on the interface, the tangential component of the magnetic
field intensity is continuous,

n× (H2 −H1) = 0. (3.23)

If Γ denotes the bounding sphere of domain Ω1, i.e. E2 = 0 and H2 = 0, moreover
E = E1 and H = H1, then the boundary conditions can be written as

−n×E = 0, or E × n = 0, (3.24)

and
−n×H = 0, or H × n = 0. (3.25)

Electric and magnetic flux density

On the interface of different dielectric materials the normal component of the electric
flux density is continuous only if there is no surface charge,

n · (D2 −D1) = 0. (3.26)

On the interface of different magnetic materials, the normal component of the mag-
netic flux density must be continuous,

n · (B2 −B1) = 0. (3.27)

The normal component of the conducting current must be continuous in the case of
eddy current field,

n · (J2 − J1) = 0, (3.28)

or generally

n · (J2 − J1 + n ·
(

∂D2

∂t
− ∂D1

∂t

)
= 0, (3.29)

is valid on the interface.
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If Γ denotes the bounding sphere of domain Ω1, i.e. D2 = 0, B2 = 0, J2 = 0 and
∂D2/∂t = 0, moreover D = D1, B = B1 and J = J1 then the boundary conditions
can be formulated as

−n ·D = 0, or D · n = 0, (3.30)

and
−n ·B = 0, or B · n = 0, (3.31)

and
−n · J = 0, or J · n = 0, (3.32)

or generally,

−n · J − n · ∂D

∂t
= 0, or J · n +

∂D

∂t
· n = 0. (3.33)

Absorbing boundary condition

In some cases, particulary at high frequencies it is important that the electromagnetic
waves should not reflect from the artificial far boundary. Here, the so-called absorbing
boundary condition can be used, which can be written as

1

µr2

n× (∇×E)− jk0

η
n× (n×E) = 0, (3.34)

or
1

εr2

n× (∇×H)− jk0ηn× (n×H) = 0, (3.35)

where η =
√

µr1/εr1 is the normalized intrinsic impedance of medium 1, which equal to
one in air, k0 = ω

√
ε0µ0, εr2 = 1 and µr2 = 1. Substituting η, k0 and µr2 into (3.34)

results in
n× (∇×E)− jω

√
ε0µ0 · n× (n×E) = 0, (3.36)

where ∇ × E = −jωµ0H . After simplification, the absorbing boundary condition can
be written as √

µ0

ε0

n×H + n× (n×E) = 0. (3.37)

It is important to note that the above boundary condition can only be used in the case
of sinusoidal excitation.

3.2 Potential Formulations

To solve an electromagnetic field problem, the partial differential equation system of
the studied phenomenon must be simplified to a potential formulation. In the case of
the presented static field, eddy current field and wave propagation field problem, three
different potential formulations have been used. This section shows the determination
of these potential formulations.
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3.2.1 Static magnetic field

In static case, the basis equations are (3.12) and(3.13) and the linearized constitutive
relations. First of all, the magnetic vector potential A must be defined as [15,17,18]

B = ∇×A, (3.38)

which satisfies the magnetic Gauss’ law (3.13), because of the mathematical identity
∇ · ∇ ×A ≡ 0. Substituting this equation into the first Maxwell’s equation (3.12) and
using the linear constitutive equation H = νB, the next partial differential equation
can be got [15,17,18]:

∇× (ν∇×A) = J0, in Ω0 ∪ Ωm, (3.39)

where ν is the reluctance, where ν = 1
µ
. The structure of a static magnetic field problem

can be seen in Fig. 3.4, where ΓB is the artificial far boundary, ΓH is the symmetry
plane, Ω0 is the air, Ωm is the magnetic material and J0 is the current density.

Fig. 3.4. Structure of a static magnetic field

Here it is important to note that if the static magnetic field problem is solved, the
uniqueness of the magnetic vector potential must be ensured, which can be selected
zero [15],

∇ ·A = 0, (3.40)

which is usually called Coulomb gauge [15]. Substituting (3.40) into the equation of
the static case and applying several mathematical transformations leads to the following
equation, which is the gauged form of the A-formulation [15].

∇× (ν∇×A)−∇(ν∇ ·A) = J0, in Ω0 ∪ Ωm. (3.41)

The deduction of the term −∇(ν∇ ·A), which implies Coulomb gauge implicity is
out of the scope of this work, it can be found in the literature [15]. Substituting the
magnetic vector potential to the boundary condition (3.25) and by the reason of (3.31)
leads to the following conditions [15]:

(ν∇×A)× n = 0, on ΓH , (3.42)
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n×A = 0, on ΓB. (3.43)

The following boundary conditions can be determined according to the Coulomb gauge
[15],

A · n = 0, on ΓH , (3.44)

ν∇ ·A = 0, on ΓB. (3.45)

The above equations can be used in the case of nodal elements.
If vector finite elements are used, first of all, the impressed current vector potential

T0 must be defined [15]. Because the equation ∇ · J0 = 0 must be fulfilled, the rotation
of the impressed current vector potential is equal to the current density, i.e.

∇× T0 = J0, (3.46)

which term is important because of the consistency of the equation system. The following
functional can be built up to determine the source term [15]:

F{T0} =

∫

Ω

|∇ × T0 − J0|2dΩ0 ∪ Ωm, (3.47)

which has to be minimized. The following equation is equivalent to the above one [15]:

∇×∇× T0 = ∇× J0, in Ω0 ∪ Ωm, (3.48)

and the boundary conditions are

T0 × n = 0, on ΓH , (3.49)

T0 · n = 0, on ΓB. (3.50)

Applying the above results the ungauged form of the A-formulation can be got,

∇× (ν∇×A) = ∇× T0, in Ω0 ∪ Ωm, (3.51)

(ν∇×A)× n = 0, on ΓH , (3.52)

n×A = 0, on ΓB. (3.53)

Here ∇ · A = 0 can be satisfied by the use of vector finite elements, which has the
divergence-free property.

3.2.2 Eddy current field

Eddy current field is defined by the equations (3.15)-(3.18). To solve eddy current field
problems the A,V -formulation has been used with vector and nodal elements [19].

In the conducting region Ωc, the magnetic vector potential A and the electric scalar
potential V have been used, but only the magnetic vector potential A has been used is
the nonconducting region Ωn. Consequently, two equations are needed. In Fig. 3.5 the
structure of an eddy current field problem can be seen, where ΓHc and ΓE bound the
conducting region and ΓHn and ΓB bound the nonconducting region.
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Fig. 3.5. Structure of an eddy current field

First of all, the electric scalar potential must be defined. Substituting (3.38) into
Faraday’s law (3.16) results the next expression:

∇×E = − ∂

∂t
∇×A = −∇× ∂A

∂t
⇒ ∇×

(
E +

∂A

∂t

)
= 0, (3.54)

because derivation by space and derivation by time can be replaced. The term E + ∂A
∂t

can be derived from the electric scalar potential V , because ∇×∇v = 0 for any scalar
function v. The expression is the following:

E +
∂A

∂t
= −∇V, (3.55)

finally, the electric field intensity can be determined by

E = −∂A

∂t
−∇V. (3.56)

Substituting (3.38) and (3.56) into (3.15) and using the linear form of the constitutive
relations (3.9) and (3.18), lead to the first expression of the A,V -formulation, which does
not satisfy the Coulomb gauge. From the divergence-free property of the induced current
density, the second relation can be deduced.

Here, the static magnetic and eddy current fields are coupled. The source current
density of the coupled static magnetic field can be defined by the equation (3.51).

The equations and the boundary conditions of the ungauged A,V -A-formulation are
the following [15]:

∇× (ν∇×A) + σ
∂A

∂t
+ σ∇V = 0, in Ωc, (3.57)

−∇ ·
(

σ
∂A

∂t
+ σ∇V

)
= 0 in Ωc, (3.58)
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Zoltán Pólik, BSc thesis 2008

Fig. 3.6. Structure of a wave propagation problem

∇× (ν∇×A) = ∇× T0, in Ωn, (3.59)

(ν0∇×A)× n = 0, on ΓHc , (3.60)

−
(

σ
∂A

∂t
+ σ∇V

)
· n = 0 on ΓHc , (3.61)

(ν∇×A)× n = 0, on ΓHn , (3.62)

n×A = 0, on ΓE, (3.63)

V = V0, on ΓE, (3.64)

n×A = 0, on ΓB, (3.65)

nc ×A + nn ×A = 0, on Γnc, (3.66)

(ν∇×A)× nc + (ν∇×A)× nn = 0, on Γnc, (3.67)

−
(

σ
∂A

∂t
+ σ∇V

)
· n = 0, on Γnc. (3.68)

3.2.3 Wave propagation field

A wave propagation field can be computed quite similar to the eddy current field. Wave
propagation problems were solved by the A,V -A formulation, too, but the effect of the
displacement currents to the equation system has been added. The equations of the
wave propagation field problem is only shown in the case of sinusoidal excitation. The
difference between eddy current field problems and wave propagation field problems is
in the induced current density, which is the following:

J = σE +
∂D

∂t
. (3.69)
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In Fig. 3.6 the structure of a wave propagation field problem can be seen, where a
dielectric material is bounded by ΓE, ΓHD and ΓnD, and Γa is the artificial far boundary.
ΓcD is the boundary between the conducting material and the dielectric material. The
equations are the following:

∇× (ν∇×A)− ω2εA = 0, in Ωn. (3.70)

∇× (ν∇×A) + jωσA = J0, in Ωc. (3.71)

∇× (ν∇×A)− ω2εA = 0, in ΩD. (3.72)

ν∇×A = 0, on ΓHn , (3.73)

n×A = 0, on ΓB, (3.74)

nD ×A + nn ×A = 0, on ΓnD, (3.75)

(ν∇×A)× nD + (ν∇×A)× nn = 0, on ΓnD, (3.76)

nc ×A + nD ×A = 0, on ΓcD, (3.77)

(ν∇×A)× nc + (ν∇×A)× nD = 0, on ΓcD, (3.78)

n×A = 0, on ΓE, (3.79)

ν∇×A = 0, on ΓHD
, (3.80)

(ν∇×A)× nD + (ν∇×A)× nn = 0, on ΓnD, (3.81)

where (3.75) and (3.77) satisfy automatically. The absorbing boundary condition have
been used on the artificial far boundary Γa. Substituting H = ν0∇×A and E = −jωA
into (3.37) results in

−ν0n×∇×A + jω

√
ε0

µ0

n× (n×A) = 0, on Γa. (3.82)

3.3 The Weak Formulation

The finite element simulation is based on the solution of the weak form of the presented
potential formulations [21–23]. The weak form of a partial differential equation can be
obtained by using the weighted residual method [15]. This is a family of methods for
solving partial differential equations. In this section the determination of the weak form
of the above potential formulations will be presented.

The weak form of a potential formulation can be built up by using the partial differen-
tial equations and the boundary conditions of the example [15]. The potential function
A is approximated by a function Ã, i.e. A ∼= Ã, moreover T0

∼= T̃0 and V ∼= Ṽ .
The weighted residual method is based on the inner product of the partial differential
equation and a weighting function W [15].
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3.3.1 Static magnetic field

The weak form of the A-formulation, which satisfies the Coulomb gauge can be built
up by using the equation (3.41) and the Neumann type boundary conditions (3.42) and
(3.45). The equation is the following [15]:

∫

Ω

Wk · [∇× (ν∇× Ã)−∇(ν∇ · Ã)]dΩ +

∫

ΓH

Wk · [(ν∇× Ã)× n]dΓ

+

∫

ΓB

ν∇ · Ã(Wk · n)dΓ =

∫

Ω

Wk · J0 dΩ,

(3.83)

where
n×Wk = 0, on ΓB, (3.84)

and
Wk · n = 0, on ΓH , (3.85)

moreover k = 1, . . . , J , where J is the element number of an entire function set Wk.
With the notation ∂Ω = ΓH ∪ ΓB, and by using the mathematical identity

∇ · (ϕv) = v · ∇ϕ + ϕ∇ · v, (3.86)

and
∇ · (u× v) = v · ∇ × u− u · ∇ × v, (3.87)

where ϕ = ν∇Ã, v = Wk and u = ν∇× Ã the equation (3.83) can be reformulated to
the following equation [15]:

∫

Ω

[ν(∇×Wk) · (∇× Ã) + ν∇ ·Wk∇ · Ã]dΩ

+

∫

ΓH∪ΓB

[(ν∇× Ã)×Wk] · n dΓ−
∫

ΓH∪ΓB

ν∇ · Ã(Wk · n)dΓ

+

∫

ΓH

Wk · [(ν∇× Ã)× n]dΓ +

∫

ΓB

ν∇ · Ã(Wk · n)dΓ

=

∫

Ω

Wk · J0 dΩ.

(3.88)

The first and the third boundary integrals can be eliminated on ΓH , because the first
one can be written as

[(ν∇× Ã)×Wk] · n = [n× (ν∇× Ã)] ·Wk

= −Wk · [(ν∇× Ã)× n].
(3.89)

The rest part of the first boundary integral in ΓB is equal to zero, because there the
Dirichlet boundary condition(3.84) must be satisfied, and

[(ν∇× Ã)×Wk] · n = [Wk × n] · (ν∇× Ã) = −[n×Wk] · (ν∇× Ã). (3.90)

The second and the fourth boundary integrals are vanishing on ΓB, moreover on ΓH the
Dirichlet boundary condition Wk ·n = 0 must be used, so the second boundary integral
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can be eliminated, too. Finally, the weak form of the A-formulation, which satisfies the
Coulomb gauge is the following [15]:

∫

Ω

[ν(∇×Wk) · (∇×Wk) + ν∇ ·Wk∇ · Ã]dΩ =

∫

Ω

Wk · J0 dΩ, (3.91)

where k = 1, . . . , J . This formulation have been used in the case of nodal finite elements.
Analogous by this way, the weak form of the ungauged A-formulation can be de-

scribed by using the equation (3.51) and the boundary condition (3.52) [15],
∫

Ω

Wk · [∇× (ν∇× Ã)]dΩ+

∫

ΓH

Wk · [(ν∇× Ã)×n]dΓ =

∫

Ω

Wk · (∇×T0)dΩ, (3.92)

where k = 1, . . . , J and

n×Wk = 0, on ΓB. (3.93)

After the reformulations, the equation results in,
∫

Ω

ν(∇×Wk) · (∇× Ã)dΩ

+

∫

ΓH∪ΓB

[(ν∇× Ã)×Wk] · ndΓ +

∫

ΓH

Wk · [(ν∇× Ã)× n]dΓ

=

∫

Ω

(∇×Wk) · T̃0 dΩ +

∫

ΓH∪ΓB

(T̃0 ×Wk) · n dΓ.

(3.94)

The boundary integrals can be eliminated in the same way, which presented in relations
(3.89) and (3.90). The boundary term on the right hand side can be eliminated, too,
because it can be rewritten as

(T̃0 ×Wk) · n = (Wk × n) · T̃0 = −(n×Wk) · T̃0, (3.95)

where the second term is zero on ΓH according to (3.49) and the last one is zero on ΓB

according to (3.50). Consequently, the weak form of the ungauged A-formulation is [15]
∫

Ω

[ν(∇×Wk) · (∇×Wk)]dΩ =

∫

Ω

(∇×Wk) · T0 dΩ. (3.96)

where k = 1, . . . , J . This formulation have been used in the case of vector finite elements.

3.3.2 Eddy current field

The weak formulation of the ungauged A,V -A-formulation can be got from the equations
(3.57), (3.59) and the boundary conditions (3.60), (3.62) and (3.67). The electric scalar
potential V should be replaced by the function v defined by

v(t) =

∫ t

−∞
V (τ)dτ, (3.97)

from which

V (t) =
∂v(t)

∂t
. (3.98)
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Function v can be approximated by ṽ, i.e. v ∼= ṽ. In the case of coupled static and eddy
current fields, the impressed current vector potential has the property that

∇× T0 =

{
J0, in Ωn,
0, in Ωc.

(3.99)

The first form of the weak formulation is the following [15]:

∫

Ωc

Wk · [∇× (ν∇× Ã)]dΩ +

∫

Ωc

Wk ·
(

σ
∂Ã

∂t
+ σ∇∂ṽ

∂t

)
dΩ

+

∫

Ωn

Wk · [∇× (ν∇× Ã)]dΩ +

∫

ΓHc∪ΓHn

Wk · [(ν∇× Ã)× n]dΓ

+

∫

Γnc

Wk · [(ν∇× Ã)× nc + (ν∇× Ã)× nn]dΓ

=

∫

Ωc∪Ωn

Wk · (∇× T̃0)dΩ,

(3.100)

where n×Wk = 0 on ΓE ∪ ΓB, and k = 1, . . . , J . The reformulation of this expression
by using the identity ∇ · (u × u) = v · ∇ × u − u · ∇ × v, with the notation v = Wk

and u = ν∇ × Ã, or on the right side v = Wk and u = T̃0 and the simplification of
the obtained expression leads to the first equation of the weak form of the ungauged
A,V -A-formulation

∫

Ωc

ν(∇×Wk) · (∇× Ã)dΩ +

∫

Ωc

Wk ·
(

σ
∂Ã

∂t
+ σ∇∂ṽ

∂t

)
dΩ

+

∫

Ωn

ν(∇×Wk) · (∇× Ã)dΩ =

∫

Ωc∪Ωn

(∇×Wk) · T̃0dΩ.

(3.101)

The second equation can be got from the partial differential equation (3.58), with the
boundary condition (3.61) and the interface condition (3.68). The conditions are multi-
plied by -1,

−
∫

Ωc

Nk∇ ·
(

σ
∂Ã

∂t
+ σ∇∂ṽ

∂t

)
dΩ +

∫

ΓHc∪Γnc

Nk

(
σ

∂Ã

∂t
+ σ∇∂ṽ

∂t

)
· ndΓ = 0, (3.102)

moreover Nk = 0 on ΓE, and k = 1, . . . , I, where Nk is a weighting function and I
is the number of the nodes in the whole mesh. After mathematical reformulations the
boundary integral terms are vanishing on ΓHc and Γnc. The second equation of the weak
form of the ungauged A,V -A-formulation can be written as

∫

Ωc

∇Nk ·
(

σ
∂Ã

∂t
+ σ∇∂ṽ

∂t

)
dΩ = 0, (3.103)

where k = 1, . . . , J and k = 1, . . . , I.
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3.3.3 Wave propagation field

Applying the weighted residual method to the partial differential equations (3.70), (3.71),
(3.72) and the Neumann type boundary conditions (3.73), (3.76), (3.78) and (3.80)-(3.82
similar to the eddy current fields, leads to the weak form of the ungauged A,V -A-
formulation in wave propagation case,

∫

Ωn

Wk · [∇× (ν∇× Ã)− ω2εÃ]dΩ +

∫

Ωc

Wk · [∇× (ν∇× Ã) + jωσÃ]dΩ

+

∫

ΩD

Wk · [∇× (ν∇× Ã)− ω2εÃ]dΩ +

∫

ΓHn

Wk · [(ν∇× Ã)× n]dΓ

+

∫

ΓnD

Wk · [(ν∇× Ã)× nD + (ν∇× Ã)× nn]dΓ

+

∫

ΓnD

Wk · [(ν∇× Ã)× nD + (ν∇× Ã)× nn]dΓ

+

∫

ΓcD

Wk · [(ν∇× Ã)× nc + (ν∇× Ã)× nD]dΓ +

∫

ΓHD

Wk · [(ν∇× Ã)× n]dΓ

+

∫

Γa

Wk · [−ν0n×∇× Ã + jω

√
ε0

µ0

n× (n×A)]dΓ = 0.

(3.104)

Using the mathematical identity ∇ · (u × v) = v · ∇ × u − u · ∇ × v and the Gauss’
theorem the equation can be reformulated as

∫

Ωn∪ΩD

ν(∇×Wk) · (∇× Ã)dΩ +

∫

ΓHn∪Γa∪ΓB∪ΓnD

[(ν∇× Ã)×Wk]n dΓ

−
∫

Ωn∪ΩD

Wkω2εÃ dΩ +

∫

Ωc

ν∇×Wk∇× Ã dΩ

+

∫

ΩcD

[(ν∇× Ã)×Wk]n dΓ +

∫

Ωc

WkjωσÃ dΩ

+

∫

ΓE∪ΓHD∪ΓnD∪ΓcD

[(ν∇× Ã)×Wk]n dΓ +

∫

ΓHn

Wk · [(ν∇× Ã)× n]dΓ

+

∫

ΓnD

Wk · [(ν∇× Ã)× nD + (ν∇× Ã)× nn]dΓ

+

∫

ΓnD

Wk · [(ν∇× Ã)× nD + (ν∇× Ã)× nn]dΓ

+

∫

ΓcD

Wk · [(ν∇× Ã)× nc + (ν∇× Ã)× nD]dΓ +

∫

ΓHD

Wk · [(ν∇× Ã)× n]dΓ

+

∫

Γa

Wk · [−ν0n×∇× Ã + jω

√
ε0

µ0

n× (n×A)]dΓ = 0,

(3.105)

where all of the boundary integrals have its own pair, moreover n×W = 0 on ΓB and
on ΓE.

After mathematical simplifications the weak form of the ungauged A,V -A-formulation
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can be got with the absorbing boundary condition in wave propagation case,

∫

Ωn∪ΩD

[ν(∇×Wk) · (∇× Ã)− ω2εÃ]dΩ

+

∫

Ωc

[ν(∇×Wk) · (∇× Ã) + jωσÃWk]dΩ

+

∫

Γa

jω

√
ε0

µ0

WkÃ dΓ = 0.

(3.106)

where k = 1, . . . , J .
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Chapter 4

Simulation of Inductors in
COMSOL Multiphysics

4.1 Problem 1: Increasing the Quality factor

4.1.1 Overview of the problem

EPCOS AG develops, manufactures and markets electronic components, modules and
systems, focusing on fast-growing leading-edge technology markets: in information tech-
nology (IT) and telecommunications, but also in automotive, industrial and consumer
electronics. To satisfy the private demand of some customers EPCOS needs to design
new components and modify the actual parameters of several types of inductors. The
company has a developing team to find out the best geometry, material, and manufactur-
ing process of inductors. Many researches are under way about improving the attributes
of their components, such as the inductance, quality factor, maximum current, sensi-
tivity and so on, through applying new materials and new geometries, which are also
developing there [26].

One of the actual developments is the increasing of the quality factor of an RF SMT
inductor. The reason of the work is that high quality factor is important in several cases,
for example in oscillators, and because of that some of the customers want to use this
inductor with super high quality factor (SHQ). The specification SHQ means in this
case that the value of the quality factor must be at least 60 between 85 MHz and 110
MHz. In the present, this value is about 30 in this range as it can be seen in Fig. 4.1,
which shows the actual quality factor as a function of the frequency. It seems that the
achievable value of it is quite far from the present value, so the first step is to increase
the quality factor if it is possible. This way is the modification of the winding without
the modification of the geometry of the core and the used materials. The core of the
inductor is a standard one, so it cannot be modified. Several winding type – closely-
and widely spaced coils, and various diameters of winding wire – have been prepared,
measured and simulated to found the best arrangement of the coils on the core.

The mentioned type of inductor is marked SIMID 0805-F, where 0805 means an in-
ternational standard about the size of SMT (Surface Mount Technology) components
not only inductors. Accordingly, the object of the project is an SMT inductor, which is
usually working in the range of the radio frequency. The dimensions of the component
are 1.24±0.04 mm × 1.22±0.04 mm × 2.03±0.04 mm. The component has a cubic coil
on ferrite or ceramic core, depending on the aplication field of it. The winding wire is
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Fig. 4.1. Present value of Q

welded to the thick film coating on its terminations, which is made of silver, palladium
and platinum or in an other case it is made of wolfram, nickel and gold. It has a flat
top made of epoxy for vacuum pickup. The major features of the inductor are the high
resonant frequency, which is between 300 MHz and 9 GHz depending on the type of the
component and the close inductance tolerance. This type of inductor is used in resonant
circuits, antenna amplifiers, mobile phones, Digital Enhanced Cordless Telecommunica-
tions (DECT) systems, car access systems, tire pressure monitoring systems (TPMS),
wireless communication systems and global positioning systems (GPS). The microscopic
photo of the component can be seen in Fig. 4.2.

Fig. 4.2. The microscopic photo of the inductor

It is important to note that different applications need different values of inductance,
resistance, maximum current and quality factor. The most of the parameters can be
changed easily by the modification of the winding wire or the material of the core, but
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the modification of one parameter causes variation in the other parameters as well. For
example, if the inductance of the component is modified via the modification of the
winding, i.e. the number of turns is increased or the distance between adjacent coils are
decreased, the resistance of the inductor is increasing, the quality factor is decreasing and
the SRF is also decreasing both in the two cases. But the reason of the variation of the
attributes are different in the mentioned two examples. In the first case, the resistance
is increasing in the effect of the more coils, because more coil means higher resistance,
the quality factor is decreasing according to the expression of the quality factor, and
the SRF is decreasing through the higher capacitance between the coils. In the second
case, the resistance is increasing by the reason of the higher proximity effect between the
coils, which get closer to each other, the Q-factor is decreasing because of the increasing
of the resistance, finally, the SRF is decreasing through the high capacitance between
the closer coils. It seems that it is not an easy task to improve parameters without
the deterioration of other ones. In Fig. 4.3 and in Fig. 4.4, the family of this type of
inductors can be seen, where the mentioned variations in the SRF, the resistance and
the Q-factor are noticeable. It is important to note that between 2.7 nH and 820 nH
inductors are manufactured with ceramic core and over 1 µH they are made with ferrite
core. The reason of this is that the higher value of the inductance is only achievable
with higher permeability of the core. However ferrite core has disadvantages, such as
the eddy current losses and the hysteresis losses, so the quality factor of a ceramic core
inductor can be higher.

The examined inductor was chosen from the 0805 family. Our plan is to improve one
component, and in the possession of the results, the improvement can be extended to the
whole family of this type of inductors. The chosen component is the one, which has 180
nH of inductance. It has 14 turns in one layer winding on a ceramic core. The used type
of the ceramics named Rubalit 710, which is made of aluminum-oxide in 99.6 percent.
The surface of the Rubalit 710 can be seen in Fig. 4.5. The relative permittivity εr of
this material is 10. This type of ceramic designed to resist high mechanical, thermal and
electrical loads and between this circumstances to provide long reliability. High strength
and thermal conductivity are the characterizing features of these substrate materials.
Ceramics are popular and well-tried materials in electronics, because of its minimal
losses and low thermal conductivity, too, as it can be seen in Fig. 4.6. Fig. 4.7 shows
the comparison of three ceramic made of aluminum-oxide. The coil of the examined
inductor is made of enameled copper wire with 50 µm diameter. During the simulation
the conductivity of the copper wire (σ = 5.7 · 107 S

m
) and the relative permittivity of the

enamel insulation (εr = 5) of it are needed to consider.

4.1.2 The challenges

The research is divided into two parts. The first is the simulation way, where a finite
element model was built up in the COMSOL Multiphysics software package [24,29,30] to
simulate the interior working of an inductor, moreover to examine the winding geometries
of the coil and to find out the best arrangement of it considering the quality factor
and the nominal value of the inductance. The second way was the manufacturing and
the measuring of the trial components, which was made in virtue of the finite element
models. To check the correctness of the obtained numerical results experimental tests
were executed.
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Fig. 4.3. Attributes of the 0805 family I [26]
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Fig. 4.4. Attributes of the 0805 family II [26]

Fig. 4.5. The surface of Rubalit 710 [28]

The trial components were measured by an Agilent E4991A RF impedance and ma-
terial analyzer which can be seen in Fig. 4.8. This type of analyzer provides a total
solution for making easy, fast and accurate measurements of SMT devices and dielectric
or magnetic materials from 1 MHz to 3 GHz. It has a user friendly Windows-style user
interface and built in VBA (Visual Basic for Applications) programming function. It
can communicate with other devices via LAN interface. It has several test fixtures to
easily fix the small components or different materials to the instrument [27]. During the
measurements of the trial components the Agilent 16197A SMD test fixture have been
used which can be seen in Fig. 4.9. The manufacturing and the measuring of the trial
components were made in the Hungarian part of EPCOS AG, Szombathely, Hungary.

To simulate the above problem, the COMSOL Multiphysics software package [24]
have been used. The COMSOL Multiphysics is a finite element analysis and solver
software package for various physics and engineering applications, especially coupled
phenomena, or multiphysics. It also offers an extensive and well-managed interface to
MATLAB [32] and its toolboxes for a large variety of programming, preprocessing and
postprocessing possibilities. There is a similar built in interface, which is called COM-
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Fig. 4.6. The thermal conductivity of Al2O3 [28]

SOL Script [24]. The packages are running at several platforms, such as Windows,
Mac/OS, Linux, Unix. In addition to the user-friendly simulation, which is based on the
description of the physical phenomena, COMSOL Multiphysics also allows for entering
coupled systems of partial differential equations (PDE). The PDE’s can be entered di-
rectly or using the weak form. It has many modules, such as AC/DC Module, Acoustics
Module, CAD Import Module, Chemical Engineering Module, Earth Science Module,
Heat Transfer Module, Material Library, MEMS Module, RF Module and Structural
Mechanics Module. The AC/DC Module is suitable to simulate electrical components
and devices that depend on electrostatics, magnetostatics and electromagnetic quasi-
statics applications, so this is the best part to simulate inductors, capacitors, motors
and drives, and every electromagnetic phenomena.

The aim of the finite element simulation of the presented inductor and the examined
problem is to built up a correct model to visualize the interior working of the component
and predict the important attributes of it, such as the inductance, the impedance, the
quality factor and the self-resonant frequency. The additional goal is to find out that it
is possible to find a way to increase the quality factor through the modification of the
winding, or not.

4.1.3 The two dimensional model

During the building up the model, the first problem was the complexity of the component.
The largest problem was the cubical coil of the inductor, because in the COMSOL
Multiphysics the flowing current in the coil can be described by a mathematical formula,
which for example can be determined from the equation of the circle in the case of a
helical coil.

That is the reason why the specialties of the core and the cubic coil were neglected
and an axial symmetry model was created. In the engineering point of view the aims
of a model are the efficiency, the speed and the simplicity, so the three dimensional
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Fig. 4.7. Indexes and parameters for ceramic substrates [28]

axial symmetry model was simplified to a two dimensional axial symmetry model. The
COMSOL Multiphysics can handle 2D axial symmetry models, that is why this two
models are equivalent. The procedure of the simplification can be seen in Fig. 4.10.
During the 2D simulation two models were implemented. In the first case the excitation
was a known voltage and in the second case excitation current was applied.
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Fig. 4.8. Agilent E4991A RF impedance and material analyzer

Fig. 4.9. Agilent 16197A SMD Test Fixture

Fig. 4.10. The procedure of the simplification

4.1.4 The two dimensional simulation

Drawing the problem

The first step in the simulation is the drawing of the problem. COMSOL has a CAD
part, which contains the basic drawing procedures, such as drawing dot, line, curve,
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circle, rectangle, mirroring, scaling, chamfering, creating union and subsection, revolving,
extruding, and so on [24]. It is quite good solution for creating two dimensional models,
but sometimes it is not enough in the case of more difficult three dimensional problems.
In these situations the CAD import module can be used, with which the models made
with other CAD softwares, for example AutoCAD, Solid Works, etc. can be imported
to the COMSOL Multiphysics.

To draw the above two dimensional model, first of all in the New model window the
2D axial symmetry space dimension must be chosen. Then, as the core of the inductor
a rectangle can be created with the corners 0 ; 1.015·10−3 m, 6.2·10−4 m; -1.015·10−3 m.
The next step is drawing the coil. The diameter of the winding wire is 50 µm, and it has
an enamel insulation. The average thickness of the wire with the insulation is 57.5 µm.
So, the 14 turns can be drawn from 14 circles with the center coordinate 6.4875·10−4,
because the end of the ledge of the core is at 6.2·10−4 m plus 57.5/2 · 10−6 m, where the
value of the coordinate means the distance from the axial symmetry axis. The insulation
can be drawn from circles with the same center points, but the diameter of them are
57.5 µm. At last making the difference between the coil and the drawn circle is needed.
The distance between the turns is the same as the manufactured inductor, it is 30 µm.
The last step is the drawing of the bounding area, which is filled with air in this case.
Let us draw a circle with the center point 0 ; 0 m, and cut half part of it. The drawn
geometry can be seen in Fig. 4.11.

Fig. 4.11. The two dimensional geometry of the inductor in COMSOL Multiphysics

Preprocessing

The next task is the preprocessing, where the constants and some expressions must be set
up. The constants can be set up at the Options/Constants.... menu Here, the number of
turns N , the conductivity σ marked sigma, the resistivity % of the copper wire marked
ro, the radius of the coil r0, the radius of the wire rc, the cross section of the wire A, the
DC resistance of the model analytically Rdc, the parameter value of the capacitance C
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Fig. 4.12. The constants of and the scalar expressions of the model

and the resistance R0, are entered. The necessity of C and R0 will be shown later Fig.
4.12 shows the constants panel with the above constants.

The excitation voltage or the excitation current can be set up in the menu Op-
tions/Expressions/Global Expressions..., the value of the voltage is 1 V, and the value
of the current is 1 A.

In the Options/Integration Coupling Variables/Subdomain Variables... menu the ex-
pressions can be set, which contain integrals. For example, during the simulation several
quantities can be got from the impedance, i.e. the ratio of the excitation voltage across
the inductor to the current through the component. In the first case of the 2D simula-
tion, when the excitation is voltage, the current through the coil must be calculated by
using the following integral in the surface of the coil Γcoil:

Itot =

∫

Γcoil

Jϕ dΓ, (4.1)

where Jϕ is the ϕ-oriented total current density, which is equal to the sum of the potential
current, which is generated by the potential different between the ends of the coil, the
eddy currents and the displacement currents.

In the other case, when the current is known, the voltage across the component must
be calculated, which can be done by using the following formula [30]:

V0 = 2πr

∫
Γcoil

(−Eϕ + Jϕ/σ)dΓ

S
, (4.2)

where Eϕ is the ϕ-oriented electric field intensity, σ is the conductivity of the wire and
S is the cross section of the winding wire.

At the Options/Expressions/Scalar Expressions... the needed scalar expressions can
be set up, which are in this case the expression of the impedance Z, the quality factor Q,
the inductance from the impedance L and from the magnetic energy Lw, the resistance
R, the modified total current density Iv, and the impedance of the model Z0 only.
omegaemqa is the angular frequency of the excitation and Wm is the magnetic energy.
The necessity of Iv and Z0 will be shown later. The used scalar expressions of the model
can be seen in Fig. 4.12, too.
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Fig. 4.13. The setting up of the material properties

Physics

To simulate a physical phenomenon the equations, which describe the studied problem
must be known. In COMSOL Multiphysics there are three different ways to determine
the needed equations. The first one is the entering of the weak form of the potential
formulation, the second one is typing the partial differential equations. The last one is
the using of the COMSOL built-in formulations. During the 2D simulation the built-in
Azimuthal Induction Currents, Vector Potential formulation has been used, which can be
deduced from the equations (3.70)-(3.72), with the notation that in 2D the electric scalar
potential V is equal to zero [15] and the impressed current vector potential must not be
used. Moreover it is important to note that the potential current can be determined by

Jp = σ
Vloop

2πr
, (4.3)

where Vloop is the voltage across a closed loop, σ is the conductivity of the wire, and r
is the mean radius of the coil. Considering this facts and substituting jω instead of ∂

∂t

and adding the definition of the potential current to the equation, lead to the following
expression:

(jωσ + ω2ε)A +∇× (ν∇×A) = J0 + σ
Vloop

2πr
. (4.4)

After the determination of the equation system at the Physics/Subdomain Settings...
menu the physical properties of the materials, such as the relative permeability, the
relative permittivity and the conductivity, moreover the form of the constitutive relations
and the excitation voltage or current can be set up as it can be seen in Fig. 4.13.

Then the boundary conditions must be set up at the Physics/Boundary Settings...
menu. In this example two boundary conditions have been used. The first one r = 0
is applied on the axial symmetry axis. The second one is applied on the artificial far
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boundary, i.e. the ledge of the air, which is represented by the outer circle. Here the so-
called impedance boundary condition has been used, which can be described by [20,24,30]

√
µ

ε− jσω
n×H + Eϕ = −Esϕ, (4.5)

where in this case Esϕ = 0, because there is no surface electric field, and σ = 0, because
the conductivity of the air is equal to zero. Considering this notations the form of the
equation (3.37) can be got, which is the so-called absorbing boundary condition. The
setting panel of the boundary conditions can be seen in Fig. 4.14.

Fig. 4.14. Setting up of the boundary conditions

Meshing and solving the problem

The next step of the simulation procedure is the meshing, where the geometry of the
problem is divided into finite elements. In COMSOL Multiphysics the mesh generator
has many settings from the shape of the elements to the sizes of the elements. In 2D
triangular and tetrahedral elements, moreover several mesh element size can be chosen
and the mesh parameters can be set up. In Fig. 4.15 the finite element mesh of the 2D
axial symmetry model can be seen, which contains 34108 triangular elements.

Finally, the problem must be solved. At the Solver/Solver Parameters... menu many
settings can be set up. Because of the excitation of the above problem is an alternating
voltage, the time-harmonic analysis type has been chosen in the upper left corner of the
panel. The solution must be calculated for a range of frequencies, i.e. in several value of
the frequency, so the parametric solver type has been used. The name of the parameter
has been set to freq. The parameter values contain the data of the frequency range and
the steps in the frequency.

One more task must be done, which is the typing of the parameter freq into the field
for nu−emqa in the Physics/Salar Variables... window. The problem can be solved by a
direct solver, such as UMFPACK or SPOOLES, because the number of the unknowns is
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Fig. 4.15. The finite element mesh of the 2D axial symmetry model

not too high, in this case it is 68375. The window of the solver parameters can be seen in
Fig. 4.16. In the line parameter values logspace(0,10,20) means that the problem will
be solved in 20 points in the frequency between 100 Hz and 1010 Hz. The distribution
of the points are logarithmic.

Optimizing the model

The solution of the above problem provides the results of the unknown quantities via
the computed potentials and the calculated integrals and expressions. This is the first
chance to check the results and to execute modifications about the model. After the
early simulations serious problems were discovered. There are too many finite elements,
59952 in the mesh, which cause 120085 unknowns in the simulation, which made the
simulation very slow. The solution time of the problem is 406 secons with a compter
having two AMD processor cores and 4 GB ram. The decreasing of the number of mesh
elements was necessary. An idea was that the enamel insulation of the winding wire
could be neglected, which size is not in the same order of magnitude of the whole model,
then the number of the mesh elements could be decreased. To prove the possibility of
this modification, two models, with and without the insulation on the winding wire,
were compared. The results show that the insulation of the wire can be neglected. Fig.
4.17 shows that the inductance of the inductor simulated with and without insulation
are practically the same. After the simplification the solution time decreased to 230
seconds.

An other problem was that the completed model, which is a simplified one, some at-
tributes cannot be simulated, such as the resistance of terminations and the capacitance
between the terminations. Because the winding wire is welded to the terminations there
are more resistance is appeared, which must be considered. Furthermore, the termina-
tions have large surface, where the charges can crowded, which causes the additional
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Fig. 4.16. The setting of the solver parameters

Fig. 4.17. The comparison of the inductance of the inductor simulated with and without
insulation on the wire

capacitance.
In the simulation the less resistance and the less capacitance cause higher self-resonant

frequency and higher maximum value of the quality factor than the measured one. To
compensate these effects, a logical electric network was created, wherein a capacitor and
a resistor are in parallel with the simulated inductor to consider the higher capacitance
and the higher resistance. In Fig. 4.18 the applied logical electric network can be seen.
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Fig. 4.18. The applied logical network to consider the resistance and the capacitance on
the terminations

Our experiences show that the optimal value of the capacitance is 0.09 pF and the value
of the resistance is 40 kΩ in the case of this type of inductor. The capacitance is marked
C and the resistance is marked R0 in Fig. 4.12. The network was built into the finite
element model via the modification of the current passing through the component. The
modified current is marked Iv in the model. The total current passing through the
electric network can be determined by the following formula, henceforth it is used to
calculate the impedance and other attributes.

Iv = Itot + V0jωC +
V0

R0

. (4.6)

It is important to note that the components of the network are only parameters, they
have not got physical meaning, they just fit the simulated results to the measured data.

Results of the simulation, postprocessing

After building up the finite element model, the computed DC resistance and DC induc-
tance have been compared with analytic calculations and measurement data to check the
correctness of the model at low frequencies. The resistance can be got from the following
expression :

RDC = N%
2r0π

A
, (4.7)

where r0 = 0.62 mm, N = 14 and A = r2
cπ = 1.9635 10−9 m2, where rc is the radius of

the wire. Substituting these data to the expression results in 0.463088 Ω. The measured
result of the DC resistance is 0.47 Ω. The computed DC resistance can be determined
from the real part of the impedance, i.e. RDC = Re{ZDC}, where ZDC is the value of
the impedance in direct current case. The computed DC resistance results in 0.485 Ω.

The nominal value of the low frequency inductance is 180 nH of this type of inductor.
In a specific case the measured inductance is 183 nH. The computed value of it is 185
nH, which can be determined from the equation

L =
Im{Z̄}

2πf
. (4.8)
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The analytical expression (2.15) was got from Nagaoka [5]. In this exact case the length
of the coil is 1.1 mm and the mean radius of it is 0.62 mm. From Nagaoka’s coefficient
table K = 0.6618 with these dimensions. Substituting this value of K and the actual
values of A, N and l to the equation (2.15) leads to the DC inductance of the inductor,
which is 178.9 nH. The obtained values are quite close to each other, so it is noticeable,
that the created finite element model is working properly at low frequencies.

The comparison of the measured and the computed inductance between 10 MHz and
3 GHz can be seen in Fig. 4.20, and the measured and the computed quality factor
can be seen in Fig. 4.19. It can be seen that the results are practically the same, so
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Fig. 4.19. The measured and the computed quality factor

the finite element model is working properly at the whole range of the frequency. The
difference between the measured and the computed quality factor is probably caused by
the neglecting of the specialities of the core.

At this point, the examination of the modification of the winding was started to find
the best geometry of the coil considering the quality factor. Several inductor models,
with larger and smaller diameter of the wire, with closely- and widely-spaced coil, and
with one and two layered coil was drawn to CAD, the modeling interface of the COM-
SOL Multiphysics. In Fig. 4.21 finite element meshes of inductors can be seen with
three different windings. During the examination finite element models were created
and simulated, and trial components were manufactured and measured with the same
windings to compare the results.

There are some criteria, which must be fulfilled during designing this type of inductor.
First of all, the nominal value of the inductance of the examined component is 180 nH.
This value must be kept during the modification. Furthermore, the width of the winding
cell, i.e. the space between the terminations, where the coil can be wound, is 1130 µm,
so the coil must be fit to there. Because of the manufacturing process, there must be
left at least about 10-15 µm space between the turns. If the distance between the turns
is smaller, there can be cross-windings in the coil, which worsens the parameters of the
inductor. In Fig. 4.22 a cross-winding can be seen on a trial component.

Our experiences show some interesting phenomena, which are observable in the mea-
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Fig. 4.20. The measured and the computed inductance

surements and the simulations, too. In the first case, the distance between the turns was
increased. In the effect of this modification, the value of the inductance was decreased,
the SRF was increased through the decreasing the capacitance between the coils, and
the maximum value of the quality factor moved to higher frequency, but the value of
it was not increased. The decreasing of the distance between the turns effects opposite
results. Using a wire with larger diameter causes lower value of the inductance and a
wire with smaller diameter effects the opposite result. These phenomena are not too
easy to comprehend, but they can be deduced from the works of radio amateurs [4,7,12].

The concrete experiments are the following. It is trivial from the (2.11) that the
quality factor will increase if the imaginary part of the impedance increase or the real
part of the impedance decreases. Because the nominal value of the inductance must be
kept, the solution of the increasing of the Q-factor is the decreasing of the resistance.

The easiest way to decrease the resistance is the using a wire with larger diameter
in the coil. So a trial component was manufactured and a finite element model was
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Fig. 4.21. Finite element meshes of three different windings

Fig. 4.22. A cross-winding on a trial component

implemented with 60 µm diameter of the winding wire. The results in the simulation
showed that the quality factor increase some percents in this case. Unfortunately, in the
practice there are some problems. First of all, the measurements show that in the reality
the Q is increased slightly than the simulation shows and only at lower frequencies in the
studied range. At higher frequencies Q became smaller than in the case of the original
wire, but it could not be a problem, because the quality factor has to increase at lower
frequencies. Furthermore, because of the manufacturing process the distance between
the turns must be increased to eliminate the cross-windings, so the using a wire with
larger diameter and the increasing the distance between the turns caused that the value
of the inductance is fallen to 170 nH. Because of the width of the winding cell, more
turns to compensate the decreasing of the inductance cannot be used. Consequently, it
is impossible to increase the quality factor by using thicker wire in the coil.

Then a wire with less diameter, it is 40 µm, was tried. By using thinner wire the
value of the inductance is increasing, so it can be enough to wind less turns to the core.
Thus, there are more space to ”play game” with the wire. During the simulations and the
experiments it is cleared that the inductance is not increasing significantly to leave one or
more turns. Therefore, 14 turns must also be used in this case. It is executable to spread
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the coil on the core, i.e. to increase the distance between the turns, to examine the effect
of it. Our experiences show that the SRF is moved to higher frequency, through the less
stray capacitance between the turns, and via it the maximum value of the Q-factor is
also moved to higher frequency, moreover the maximum value of it is increased slightly.
The rise of the quality factor is faster at lower frequencies, but unfortunately it starts
to low values. Between 85 and 110 MHz the Q of this trial component is lower than the
Q of the present manufactured one. Consequently, the using of thinner wire in the coil
is not the solution of the problem. The comparison of the measured and the computed
inductance as a function of the frequency and the quality factor of the function of the
frequency of the manufactured component and a trial one can be seen in Fig. 4.23 and
in Fig. 4.24.
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Fig. 4.23. The comparison of the inductance of the manufactured and a trial component

Another attempt was the manufacturing the inductor with ferrite core. Because of
the high relative permeability the nominal value of the inductance can be achieved with
less turns, which effects the decreasing of the resistance of the coil. The examinations
show that it is true, but the quality factor is not increased, moreover it is decreased
significantly. The reason of this is the eddy currents and the hysteresis inside the ferrite
core, which causes eddy current loss and hysteresis loss. These losses result the lower
quality factor of a ferrite cored component. Consequently, manufacturing inductors with
ferrite core is not the solution of the problem of the Q-factor.

Finally, we can say that thank to the experiences of the engineers, the presently
manufactured component is the best solution of the problem of the quality factor. So,
the answer to the first question is that by the modification of the winding the quality
factor cannot be increased significantly. But the question is hanging at poise: Is it
possible to increase the quality factor, or not? The answer is yes, by the modification of
the geometry and by using new materials. The first one is contains several opportunities,
moreover it is out of the scope of this work.
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Fig. 4.24. The comparison of the quality factor of the manufactured and a trial compo-
nent

New materials in the manufacturing

Ferrites using in the present in inductors are soft magnetic materials made of iron (Fe),
Nickel (Ni), Zinc (Zn) or Manganese (Mn). Ferrite cores usually have high relative
permeability and have close coercive field as it can be seen in Fig. 4.25. It is important
to note that the area of the coercive field is proportional to the hysteresis loss of the
magnetic material, i.e. which material has closer coercive field, that have less hysteresis
loss, so soft magnetic materials are quite good in inductors.

But nowadays there are several researches about making materials better and better.
One of these research is about the superparamagnetism. When the size of the particles is
reduced below the single domain limit – it is about 15-20 mm for iron oxide –, they exhibit
superparamagnetism at room temperature, which means that the magnetic material has
high relative permeability, but the area of its coercive field is equal to zero, i.e. it has
not got hysteresis loss. The B − H characteristics of a superparamagnetic material is
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Fig. 4.25. Hysteresis loop of a ferrite core, f = 10 kHz, T1 = 25 ◦C, T2 = 100 ◦C [26]

an anhysteretic curve. The variation of the coercive field is depend on the size of the
particle, as it can be seen in Fig. 4.26. If materials like this could be used in inductors

Fig. 4.26. Superparamagnetism

for cores, the quality factor of the component could be increased significantly, because
the nominal value of the inductance could be reached with less turns, which means less
resistance without losses [31, 33].

Another utopistic way to increase Q of an inductor even more is the discovery of
the superconductivity at room temperature and normal pressure, but it also could be a
great leap forward if a material could be found, which has higher conductivity than the
copper or the silver [35].
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4.2 Problem 2: Variation of the Inductance and the

Eddy Currents

4.2.1 Overview of the problem

In this section the finite element modeling of an SMT power inductor in the static and
in the time dependent cases will be shown. The object of the project is an SMT power
inductor named 6x6, manufactured by the EPCOS AG.

There are two different types of this component, a shielded one, which has a ferrite
shield on the ferrite core, and an open one. The dimensions of the shielded component
are 6.3×6.3×3 mm, and the dimensions of the open component are 6×6×3 mm. It has
a cylindrical coil from enameled copper wire, which is welded to the terminations. The
most important features of the inductor are the wide temperature range tolerance, high
current tolerance and the low DC resistance. This type of inductor is usually used to filter
supply voltages, coupling, decoupling, in DC/DC converters, in automotive electronics
and in industrial electronics. The shielded and the open versions of the inductance can
be seen in Fig. 4.27 in microscopic photos.

The aim of these simulations is to determine the variation of the inductance as a func-
tion of a manufacturing failure and the orientation of the eddy currents inside the core.
The failure is two kind of shifts, when the shield of the component is shifted according
to the core vertically or horizontally, because of the imprecision of the manufacturing
process. The manufacturer has several experimental experiences about this problem, but
it is difficult to find a measuring process to measure the behavior of the variation of the
inductance as a function of the shifts. In this case the results can be extrapolated to the
whole family of the inductors, so here a specific type of inductor need not to be chosen.

4.2.2 Examination of the effect of the shifts

To model the manufactured components the COMSOL Multiphysics software package
has been used again. The three dimensional CAD model of the component was drawn in
Pro Engineer by the EPCOS, which was imported to the finite element software. Then
the implemented model was modified according to the shifts, which has two types.

In the first case, the axis of the core and the axis of the shield are shifted, but in the
second case, the shield is shifted in vertical direction on the core. The inductance of the
component was computed in 10 positions of the shield horizontally and in 25 positions
vertically. Fig. 4.28 shows the microscopic photo and the finite element mesh of the
horizontal shift. In Fig. 4.29 the finite element mesh of the vertical shift can be seen.
The setting up of the finite element model was done similarly as it was presented in the
past section.

To simulate the above problem, the weak form of the gauged A-formulation has been
used. In COMSOL Multiphysics there is an opportunity to enter the weak form of partial
differential equations. This panel can be found in Physics/Equation System/Subdomain
Settings... window in the weak tab, which can be seen in Fig. 4.30, which shows the
Euler form of the weak formulation. The solution of the weak form with the Conjugate
gradients [36] solver and with the Algebraic multigrid [36] preconditioner provides the
approximation of the potentials in demand, from which both of the quantities of the
studied electromagnetic field and can be determined. The value of the inductance can
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Fig. 4.27. The microscopic photo of the inductor

be calculated by the following formula [37]:

L =
1

I2

∫

Ω

ν|∇ ×A|2 dΩ, (4.9)

where I is the excitation current and A is the magnetic vector potential. The expres-
sion can be solved by the built-in integration tool, in the Postprocessing/Subdomain
Inetgration... menu.

The solution of problem in the both of positions of the shield results the characteristics
of the inductance as a function of the shifts. Fig. 4.31 shows the variation of the
inductance in the horizontal shift case, and the variation of the inductance in the vertical
shift case can be seen in Fig. 4.32. The obtained characteristics can be approximated
by polynomial curves. The results of the horizontal shift was described by a cubic curve,
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Fig. 4.28. The microscopic photo and the FEM mesh of the horizontal shift

Fig. 4.29. The FEM mesh of the vertical shift

Fig. 4.30. The window where the weak formulation can be entered
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Fig. 4.31. The effect of the horizontal shift to the inductance

which can be described by

L(x) = 1.3e−9 x3 − 8.6e−9 x2 + 3.6e−8 x + 1.4e−6. (4.10)

The characteristics of inductance in the case of the positive vertical shift, as it Fig. 4.29
shows, can be approximated by a linear curve, which is the following,

L(x) = −9.7e−9 x + 1.5e−6. (4.11)

In the case of the negative vertical shift, the results can be approximated by a quadratic
curve,

L(x) = −4.6e−10 x2 + 8.4e−9 x + 1.4e−6. (4.12)

Consequently, it can be appointed that in the case of the horizontal shift, the results
show that the value of the inductance is increasing while the air gap between the core and
the shield is decreasing, because of increasing the flux. In the other case, the inductance
is increasing while the core is getting closer and closer to the middle of the shield in
vertical direction, else it is decreasing.

4.2.3 Eddy currents inside the core

To determine eddy currents flowing in the core of the inductor, it has been examined
as a time dependent magnetic field problem. To solve the problem the weak form of
the ungauged A, V −A formulation have been used. The entering of the equations to
the COMSOL Multiphysics software can be seen in Fig. 4.33. Because of the numbers
of unknowns in the model a direct solver cannot be used, so an iterative one must be
applied, which was the GMRES [36]. Eddy currents flowing in the open and the shielded
component can be seen in Fig. 4.34. In the open component, blue arrows – marked with
J – represents the source current density flowing through the coil of the component.

In Fig. 4.35 the magnetic flux density can be seen in 10 time steps across the core.
It seems that by the effect of the eddy currents the flux in the core of the inductor is

55



Zoltán Pólik, BSc thesis 2008

0 0.06 0.12 0.18 0.22
1.34

1.36

1.38

1.4

1.42

1.44

1.46
x 10

−6

Distance [mm]

In
du

ct
an

ce
 [H

]

 

 

Simulated data      

   linear

−0 −0.08 −0.16 −0.24 −0.3
1.45

1.46

1.47

1.48

1.49

1.5
x 10

−6

Distance [mm]

In
du

ct
an

ce
 [H

]

 

 

Simulated data          
   quadratic

Fig. 4.32. The effect of the vertical shift to the inductance

Fig. 4.33. The entering of the weak form of the ungauged A, V −A formulation

decreasing. That causes lower inductance. Moreover eddy currents cause heating in the
core, so a part of the invested energy is formed to thermal energy, which decrease the
quality factor.

There is only one solution to decrease the effects of the eddy current loss. This way is
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Fig. 4.34. The entering of the weak form of the ungauged A, V −A formulation

Fig. 4.35. The magnetic flux density modified by eddy currents

to applying new materials for core. For example, nanoparticles with superparamagnetic
behavior, presented above, could be applied successfully in the case of this inductor as
well.
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Chapter 5

Conclusions and Future Work

The paper presents an actual problem of research engineers working with inductors and
electronic components. To solve several problems beyond the examination of the quality
factor, a finite element model has been developed by using the COMSOL Multiphysics
software package.

The weak form of the potential formulations to solve the presented problems has
been implemented from the Maxwell’s equations. The so-called absorbing boundary
condition has been determined and has been applied to eliminate the effect of the reflected
electromagnetic waves at the artifical far boundary.

The simulation of the simplified manufactured inductor has been done. To consider
the capacitance and the resistance of the terminals, an electric network has been imple-
mented and the values of the parameters have been set to fit the computed results to the
measurements. The built up finite element model has been tested. The measurements of
the project have been executed in the hungarian factory of EPCOS AG, the results have
been described and analyzed. The measured and the analyzed data have been compared
with the results of the simulations. Consequently we can say, that by using the present
materials and the present manufacturing technology, the quality factor can not be in-
creased significantly, as our experiences show. The increasing of the quality factor can
be only realized by applying new materials and new geometries in the manufacturing.

In an other example the variation of the inductance as a function of a manufacturing
failure and the orientation of the eddy currents inside the core have been simulated.

The future aim of the project is to simulate the effect of the modification of the
geometry of the core to the quality factor, to find out the best geometry considering the
quality factor, to simulate the inductor with new material characteristics. In practice we
would like to manufacture inductors with improved properties, and if it is possible, we
would like to achieve the qualification super high Q in the case of 0805.
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[17] O. B́ıró and K. Preis. On the use of the magnetic vector potential in the finite
element analysis of three-dimensional eddy currents. IEEE Trans. on Magn., 25:3145-
3159, 1989.
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[19] O. B́ıró. Edge element formulations of eddy current problems. Comput. Meth. Appl.
Mech. Engrg., 169:391-405, 1999.

[20] J. Jin. The Finite Element Method in Electromagnetics. John Wiley and Sons, New
York, 2002.

[21] D. W. Pepper and J. C. Heinrich. The Finite Element Method. Taylor and Francis
Group, New York, 2006.

[22] W. B. J. Zimmerman. Multiphysics Modelling with Finite Element Method. World
Scientific Publishing Co., 2006.
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