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Abstract: The appropriate combination of the 
graphical user interface and functions of 
COMSOL Multiphysics and Matlab can be used 
efficiently to solve nonlinear problems in 
electromagnetics. The model of the problem to 
be solved and the weak formulations of the 
potential formulations obtained from Maxwell’s 
equations can be implemented in the Physics 
menu of COMSOL Multiphysics, however the 
solver and the nonlinear hysteresis characteristics 
of the materials can be realized in the frame of 
Matlab. This procedure is shown in this paper 
through presenting three workshop problems. 
 
Keywords: Nonlinear static magnetic field, 
Fixed point method, Newton-Raphson technique. 
 
1. Introduction 
 

Efficient implementation of nonlinear 
characteristics in electromagnetic field 
simulation environments is still an open question 
today. Problems including nonlinear 
characteristics can only be solved by iterative 
techniques, when a linearized problem is solved 
at every iteration step. The most widely used 
procedure in computational electromagnetism is 
the Finite Element Method (FEM). The 
unknowns are associated to the nodes or edges of 
the mesh. The number of unknowns can be very 
large, that is why a computationally efficient 
nonlinear solver must be worked out [1,2,3].  

The nonlinear model has to simulate the 
hysteretic behavior as accurately as possible. At 
the same time it should be realized by a fast 
algorithm from the computational point of view, 
since the model is requested many times during 
the iteration. The model should handle 
nonphysical values of the magnetic field, too 
(e.g. in the vicinity of singularities).  

The nonlinear characteristics can be handled 
by the polarization technique, when the magnetic 
field intensity or the magnetic flux density is 
split into a linear and a nonlinear part. The 
nonlinear part is depending on the constitutive 
relationship, and it is determined iteratively.  

The most usual techniques are the fixed point 
method and the Newton-Raphson method. The 

fixed point algorithm can result in an 
unconditionally convergent method, which is, 
however very slow. The Newton-Raphson 
method is known as a fast iteration scheme, 
especially when the iterated solution is close to 
the true one. The behavior of its convergence is 
sometimes very strange. 

 
2. Governing Equations 

 
Maxwell’s equations of the static magnetic 

field problems are as follows (Figure 1) [1,2,3]: 

m, Ω∪Ω=⋅∇=×∇ 0in        0   , BJΗ , (1) 

where H, B and J are the magnetic field 
intensity, the magnetic flux density and the 
source current density of the excitation coil, 
which is supposed to be known here. The 
constitutive relation between the magnetic field 
intensity and the magnetic flux density in the air 
region Ω0 is BH 0ν= , where 00 1 µν =  is the 

inverse of permeability of vacuum. The 
nonlinear constitutive relationship is represented 
by a nonlinear model in Ωm. According to the 
polarization technique, the magnetic flux density 
and the magnetic field intensity are split into two 
parts as 

or   ,RHB += µ  min      Ω+= IBH ν . (2) 

Here µ , and ν  are permeability-like, and 

reluctivity-like quantities, moreover R and I are 
the nonlinear terms depending on the input-
output state of the applied hysteresis model.  
 The problem region is surrounded by the 
boundary BH Γ∪Γ . On HΓ , the tangential 

component of H, on BΓ , the normal component 

of B is set to zero, respectively, i.e. 
,, HΓ=× on  0nH and ., BΓ=⋅ on  0nB  

 
Figure 1. Scheme of static magnetic field problems.



2.1 The Magnetic Vector Potential 
 

From 0=⋅∇ B  in (1), the magnetic vector 
potential A can be introduced as 

AB ×∇= . (3) 
Substituting this relation back to (1) via (2), the 
nonlinear partial differential equation 

[ ] IJA ×∇−=×∇×∇ ν  (4) 
can be obtained, and the boundary conditions of 
the problem can be formulated as 

[ ] ,0nIA =×+×∇ν  and 0An =×  (5) 

on HΓ , and on BΓ , respectively. The divergence 

of the magnetic vector potential can be selected 
according to Coulomb gauge, i.e. 0=⋅∇ A . 
After some manipulations, Coulomb gauge can 
be enforced as 

[ ] [ ] IJAA ×∇−=⋅∇∇−×∇×∇ νν . (6) 
This results in two more conditions beyond 

(5), ,, HΓ=⋅ on      0nA  and ., BΓ=⋅∇ on      0 Aν  

In this case A is approximated by nodal FEM. 
The partial differential equation (4) with 

boundary conditions in (5) can be used when 
approximating A by vector FEM. In this case, J 
is approximated by the impressed current vector 
potential T, since TJ ×∇= , i.e. (4) has to be 
changed as 

[ ] ITA ×∇−×∇=×∇×∇ ν . (7) 
 
2.2 The Reduced Magnetic Scalar Potential 
 

The source current density J is approximated 
by using the impressed current vector potential 
T, and from the first Maxwell’s equation 

Φ∇−= TH  (8) 
can be obtained, where Φ is called the reduced 
magnetic scalar potential. Substituting it back to 
(1) and to (2) results in the following nonlinear 
partial differential equation: 

( ) ( ) RT ⋅∇−⋅−∇=Φ∇⋅∇− µµ . (9) 

On the boundary HΓ , 0=Φ  can be used, and  

( ) b−=⋅+⋅Φ∇− nRnTµ  must be prescribed 

on the rest BΓ . 
Here T is approximated by edge finite 

elements, and Φ by nodal ones. 
 
2.3 The impressed vector potential 
 

This vector potential can be calculated by 
edge FEM and the following equation: 

JT ×∇=×∇×∇  (10) 
with the boundary conditions ,, HΓ=× on  0nT  

and ., BΓ=⋅ on  0nT  

3. Methods  
 

The weak formulation of the nonlinear partial 
differential equations (6), (7) or (9) with the 
appropriate boundary conditions can be obtained 
by using the weighted residual method and some 
mathematical manipulations on them. The weak 
equations are not presented here, but they can be 
found in the references [1,2]. Here only the 
COMSOL implementation of the weak equations 
is presented. The weak form representation in the 
framework of COMSOL Multiphysics is very 
powerful and well applicable, all the weak 
equations can be implemented easily. 

The potentials represented by nodal elements 
(i.e. Φ and the three components of nodal A) 
have to be realized by the emes (AC/DC 
Module -Statics - Electrostatics )  
application mode, and the potentials represented 
by edge elements (i.e. T and vector A) have to be 
formulated by the emqa (AC/DC Module-
Statics-Magnetostatics ) application 
mode, where the dependent variable psi  is not 
used, but it should not be cleared, only the 
gauging has to set off. The other variables, like 
µ , ν , I (Ix, Iy, Iz), R (Rx, Ry, Rz) are usually 

represented by emes application mode through 
the Multiphysics/Model Navigator  
window. This means that some different physics 
modes represent one problem. One application 
mode represents one variable, which is not 
necessarily valid in the whole region, e.g. Rx, Ry, 
and Rz are valid only in the domain of nonlinear 
magnetic materials. Every physics mode must be 
checked through the Physics/Subdomain 
Settings  window, where the checkbox 
Active in this domain  must be checked 
in or out. The equation system form  
must set to weak in the window 
Physics/Model Settings , because the 
weak formulations of the partial differential 
equations of section 2 are implemented. In this 
case, the Physics/ Equation System/ 
Subdomain Settings  and Physics/ 
Equation System/ Boundary 
Settings  are used to insert weak equations 
and boundary conditions.  

Constants, like the source current density, 
vacuum permeability, and so on can be defined 
in the window Options/Constants . The 
three orthogonal components of source current, 
i.e. Jx, Jy, and Jz can be defined in 
Options/Expressions/ Subdomain 
Expressions . 



3.1. The Fixed Point Method 
 

In the case of nodal representation of A, two 
different vector potentials are used. One in the 
ferromagnetic region (A1x , A1y, A1z), and one 
in the air region (A2x, A2y , A2z). It results in 
six emes application modes. The tangential 
component of them has to set to be continuous 
along iron/air interfaces. The other variables 
have to implement by using emes modes as 
well. 

The following expressions must be typed 
when applying the magnetic vector potential: 
nu0* 
((A2zy-A2yz)*(A2zy_test-
A2yz_test) 
+(A2xz-A2zx)*(A2xz_test-
A2zx_test) 
+(A2yx-A2xy)*(A2yx_test-
A2xy_test)) 
+nu0*(A2xx+A2yy+A2zz) 
*(A2xx_test+A2yy_test+A2zz_test) 
-Jx*A2x_test 
-Jy*A2y_test 
-Jz*A2z_test , 
and 
nu1* 
((A1zy-A1yz)*(A1zy_test-
A1yz_test) 
+(A1xz-A1zx)*(A1xz_test-
A1zx_test) 
+(A1yx-A1xy)*(A1yx_test-
A1xy_test)) 
+nu1*(A1xx+A1yy+A1zz) 
*(A1xx_test+A1yy_test+A1zz_test) 
+I1x*(A1zy_test-A1yz_test) 
+I1y*(A1xz_test-A1zx_test) 
+I1z*(A1yx_test-A1xy_test) , 
where nu1 , I1x , I1y , and I1z  are the fixed 
point coefficient in (2) and the nonlinear residual 
term. The terms according to the weak 
formulation can be seen by comparing these 
equations and the weak formulation.  

The three components of the magnetic flux 
density can be calculated by Azy-Ayz , Axz-
Azx , Ayx-Axy  according to the three 
components of the curl operator. The variables 
Jx , Jy , and Jz  are valid only in the region of 
coil.  

The condition 0=⋅ nA  can be derived by 
the equation 
-Ax*nx_emes-Ay*ny_emes 
-Az*nz_emes 
as constraint, and the same argument must be set 
in the test()  function of the constrf  tab.  

The following three lines have to put as 
constraint if 0An =×  is prescribed: 
-(ny_emes4*A2z-nz_emes4*A2y) 
-(nz_emes4*A2x-nx_emes4*A2z) 
-(nx_emes4*A2y-ny_emes4*A2x) , 
if  emes4 denotes the application of A2x . 

Along the interface between air and iron, 
An ×  must be set to be continuous by the 

following three constraints: 
-((ny_emes4*A2z-nz_emes4*A2y)-
(ny_emes4*A1z-nz_emes4*A1y)) 
-((nz_emes4*A2x-nx_emes4*A2z)-
(nz_emes4*A1x-nx_emes4*A1z)) 
-((nx_emes4*A2y-ny_emes4*A2x)-
(nx_emes4*A1y-ny_emes4*A1x)) . 

In case of vector representation of the 
magnetic vector potential, the following equation 
must be inserted in the weak tab of the 
Equation system  window: 
nu1* 
((Azy-Ayz)*(Azy_test-Ayz_test) 
+(Axz-Azx)*(Axz_test-Azx_test) 
+(Ayx-Axy)*(Ayx_test-Axy_test)) 
-C*Tx*(Azy_test-Ayz_test) 
-C*Ty*(Axz_test-Azx_test) 
-C*Tz*(Ayx_test-Axy_test) 
+I1x*(Azy_test-Ayz_test) 
+I1y*(Axz_test-Azx_test) 
+I1z*(Ayx_test-Axy_test) . 
This is valid in the nonlinear region. In air nu0  
must be used, and the last three terms are 
deleted. The constant C should be used, because 
the current vector potential is usually calculated 
by using the value of source current 1A. 

The following three simple lines have to put 
as constraint if 0An =×  is prescribed: -tAx , -
tAy , -tAz . 

The following expressions must be typed 
when applying the reduced magnetic scalar 
potential denoted by FI : 
mu0*(FIx_test*FIx 
+FIy_test*FIy 
+FIz_test*FIz) 
-mu0*C*(FIx_test*Tx 
+FIy_test*Ty 
+FIz_test*Tz) , 
and 
mu1*(FIx_test*FIx+FIy_test*FIy 
+FIz_test*FIz) 
-mu1*C*(FIx_test*Tx 
+FIy_test*Ty 
+FIz_test*Tz) 
-(FIx_test*R1x 
+FIy_test*R1y 
+FIz_test*R1z) 



in the air region and in the domain filled with 
nonlinear material, respectively. Here mu0 is 
defined as constant, Tx , Ty , and Tz  are the three 
components of the emqa module according to 
the impressed current vector potential, and C is 
constant, because T0 has been calculated by 
using the current 1A. The variable mu1 can be 
constant, which is the fixed point coefficient in 
(2), finally R1x, R1y, and R1z are the three 
components of the nonlinear residual term. The 
Dirichlet boundary condition on HΓ  can be 

realized by -FI  and test(-FI)  on the 
constr  and constrf  tabs of the Boundary 
Settings  window. The three components of 
the magnetic field intensity can be calculated by 
Tx-FIx , Ty-FIy , and Tz-FIz .  

It is noted that, R and I should be eliminated 
in the case of linear magnetostatics. 
 
3.2. The Newton-Raphson Method 

 
The weak formulations of the Newton-

Raphson method can be implemented by 
appending some terms to the equations of the 
fixed point technique. 

The weak equation of the magnetic vector 
potential represented by nodal elements is as 
follows: 
nu1* 
((A1zy-A1yz)*(dA1zy_test-
dA1yz_test) 
+(A1xz-A1zx)*(dA1xz_test-
dA1zx_test) 
+(A1yx-A1xy)*(dA1yx_test-
dA1xy_test))+ 
(nud1x*(dA1zy-dA1yz) 
*(dA1zy_test-dA1yz_test) 
+nud1y*(dA1xz-dA1zx) 
*(dA1xz_test-dA1zx_test) 
+nud1z*(dA1yx-dA1xy) 
*(dA1yx_test-dA1xy_test)) 
+nu1*(A1xx+A1yy+A1zz)*(dA1xx_tes
t+dA1yy_test+dA1zz_test) 
+nu1*(dA1xx+dA1yy+dA1zz)*(dA1xx_
test+dA1yy_test+dA1zz_test) 
+I1x*(dA1zy_test-dA1yz_test) 
+I1y*(dA1xz_test-dA1zx_test) 
+I1z*(dA1yx_test-dA1xy_test) . 
Here dAx , dAy, and dAz  are the three 
components of ∆A, which is the unknown of the 
equation, and A is the magnetic vector potential 
in the previous nonlinear step, i.e. A is updated 
by A+∆A. The variables nud1x , nud1y , and 
nud1z  are the three components of the 
differential reluctivity, which are changing in 

every iteration step. The equation according to 
the air region can be obtained by eliminating the 
terms according to nonlinearity. 

The weak equation of the magnetic vector 
potential represented by edge elements is the 
following in the nonlinear region: 
nu1* 
((Azy-Ayz)*(dAzy_test-dAyz_test) 
+(Axz-Azx)*(dAxz_test-dAzx_test) 
+(Ayx-Axy)*(dAyx_test-dAxy_test) 
) 
-C*Tx*(dAzy_test-dAyz_test) 
-C*Ty*(dAxz_test-dAzx_test) 
-C*Tz*(dAyx_test-dAxy_test) 
+(nud1x*(dAzy-dAyz)*(dAzy_test-
dAyz_test) 
+nud1y*(dAxz-dAzx)*(dAxz_test-
dAzx_test) 
+nud1z*(dAyx-dAxy)*(dAyx_test-
dAxy_test)) 
+I1x*(dAzy_test-dAyz_test) 
+I1y*(dAxz_test-dAzx_test) 
+I1z*(dAyx_test-dAxy_test) , 
and it can be formulated as 
mu1* 
(dFIx_test*FIx 
+dFIy_test*FIy 
+dFIz_test*FIz)+ 
(mud1x*dFIx_test*dFIx 
+mud1y*dFIy_test*dFIy 
+mud1z*dFIz_test*dFIz) 
-mu1*C* 
(dFIx_test*Tx 
+dFIy_test*Ty 
+dFIz_test*Tz)- 
(dFIx_test*R1x 
+dFIy_test*R1y 
+dFIz_test*R1z) 
when the reduced magnetic scalar potential is 
used. 

Homogeneous Dirichlet boundary conditions 
have to be used for dA, and for dFI  on the 
boundary segments, where Dirichlet boundary 
conditions are specified for A and for FI . 

 
3.3. Matlab routine 

 
After implementing the weak equations and 

boundary conditions, the arrangement must be 
discretized by a finite element mesh. After it, the 
problem must be saved as an m file for further 
use in Matlab. 

Only some terms of the fem.shape  
variable must be modified by changing shlag  
by shgp , e.g. shgp(3,4,''mu1'') , where 3 
means that the problem is three dimensional, and 



4 is the Gaussian quadrature with four points. It 
should be as twice as the order of the 
approximation function. In this case 
shlag(2,''FI'')  and 
shcurl(2,{''Tx'',''Ty'',''Tz''}) 
have been used. This means that, nonlinear 
models are supposed in every Gaussian point of 
a finite element.  

If meshextend  has not run at the end of 
the m file, then the following command has to 
run: 
fem.xmesh=meshextend(fem); 

The Newton-Raphson algorithm 
implemented in Matlab is as follows: 

 
while (error>EPS),  
    step = step + 1;  
     
    % 1.) dFI  
    fem.sol = femstatic(fem, ...  
       'u',fem.sol, ...  
       'solcomp',{'dFI'}, ...  
       ’outcomp',{... }, ...  
       'linsolver','gmres', ...  
       'prefun','amg');  
        
    % 2.) alpha  
    alpha = 1;  
    if lepes > 1,       
        alpha = alfa_opt();  
    end;  
     
    % 3.) FI update -> fem.sol.u  
    SOL         = fem.sol.u;  
    SOL(rng_FI) = SOL(rng_FI) +    
           alfa * SOL(rng_dFI);  
    fem.sol     = femsol(SOL);  
     
    % 4.) H,B,R,mud -> fem.sol.u  
    fem = Nonlinear_step();  
     
    % 5.) Test, error  
    FUN_0 = Energy(fem);  
    error = abs(FUN_0);  
    ERROR(step) = error;  
    ALFA(step)  = alfa;  
end; 
 
Here, outcomp contains all the variables have 
been inserted. The used solver is the gmres  
algorithm with amg preconditioner in these 
cases. The output of the solver is dFI  or dA. The 
parameter alpha  must be determined by the 
function alfa_opt  if the value of dFI  or dA is 

too large, then FI  or A is updated in the variable 
fem.sol.u , which contains all the defined 
variables, and the range rng_FI  selects only the 
appropriate values from this column vector, and 
rng_FI = find(asseminit(fem, 
Init',{'FI',1}, Out','U')) . The 
function Nonlinear_step  contains the 
nonlinearity, which determines the magnetic flux 
density from the magnetic field intensity, or the 
magnetic field intensity from the magnetic flux 
density, as well as the differential permeability 
or the differential reluctivity in the case of 
Newton-Raphson method. The function Energy  
calculates the energy stored in the whole domain, 
which is minimized during the iteration. The 
nonlinear iteration is repeated until the error  is 
small enough. 
 
4. Numerical Model and Results 
 

The nonlinearity, and its derivative, which is 
the permeability can be seen in Figure 2. The 
nonlinearity has been approached by piecewise 
linear approximation. 

 

  
Figure 2. The nonlinear characteristics  

and the permeability. 
 

4.1 TEAM 10  
 

The problem can be seen in Figure 3. Steel 
plates  have  been   placed   around   a   racetrack  

 



  

 
Figure 3. Problem TEAM 10 and the mesh. 

 

shaped coil. Only the eigth of the problem can be 
analyzed, because of symmetry. 

Two types of mesh have been tried out and 
analyzed. The first one consists of 8413 
tetrahedra, the second one has been built up by 
44828 finite elements. The first mesh results in 
12850, 57278, and 43539 unknowns for Φ, 
vector A, and nodal A formulations, respectively. 
The second discretization results in 63807, 
293814, and 218100 unknowns for the same 
formulations. The distribution of magnetic flux 
density vectors inside the plates can be seen in 
Figure 4. Figure 5 shows the magnetic flux 
density along a line placed inside the plates. The 
three formulations give practically the same 
results. It is noted that, the nodal A formulation 
is more sensitive to the density of the finite 
element mesh. 

  
Figure 4. Magnetic flux is driven by the steels. 

 
Figure 5. Magnetic flux by the potential formulations. 

4.2 TEAM 13 
 

This problem is a modified version of 
TEAM10. The U-shaped yokes have been 
translated as it can be seen in Figure 6. The 
magnetic flux density vectors are also plotted.  

 

 
Figure 6. Problem TEAM 13, and the magnetic flux 

inside the central plate. 
 

Figure 7 and Figure 8 show some 
comparisons between the results simulated by 
the three presented potential formulations. The 
magnetic flux density simulated by the reduced 
magnetic scalar potential is a little larger than the 
results obtained from the magnetic vector 
potential formulations, moreover the nodal 
vector potential formulation is more sensitive to 
the density of the mesh, as it was experienced in 
the last example, too. Comparison between 
measured and simulated data shows that the 
vector A formulation is the closest to the 
measured data. 

 
Figure 7. Comparison of the magnetic flux density. 



 
Figure 8. Comparison of the magnetic flux density 

under the horizontal plate. 
 

4.3 TEAM 24 
 

This is a modified version of the problem 
TEAM24 (Figure 9). The source current of the 
coils is constant, i.e. a static magnetic field 
problem has been analyzed, and the 
characteristics of the stator and the rotor is given 
by Figure 2. 

The number of finite elements is 39060, 
which results in 55825 and 256530 unknowns 
for the Φ-formulation and for the edge element 
based A-formulation, respectively. The magnetic 
flux is mainly driven by the stator and the rotor 
steels as it can be seen in Figure 9, and a 
comparison between simulated results is shown 
in Figure 10. 

   

 
Figure 9. Problem TEAM 24 and the magnetic flux 

density inside the rotor and stator. 
 

 
Figure 10. Magnetic flux density along the path 
presented in Figure 9. 
 
5. Conclusions 
 

The proposed combination of the polarization 
technique and the Newton-Raphson method 
results in a much faster solver than the fixed 
point method, especially in the case of vector 
element representation of A. In the case of nodal 
formulation, under relaxation is almost always 
necessary, especially when the characteristics are 
very sharp, and the problem contains 
singularities.  
 The aim of further research is to implement 
the other potential formulations of the static 
magnetic field problems, and of the eddy current 
field problems, moreover an applicable 
hysteresis model based on Preisach’s theory. The 
method must be tested on other problems as 
well. 
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