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Chapter 1

Introduction

The ideas of levitating a body hover without any contact by using magnetic forces is
an old dream of mankind. As early as 1842, the British minister and nature philospher,
Samuel Earnshaw (1805 - 1888), examined this question and stated a fundamental propo-
sition known as Earnshow’s theorem. The essence of this theorem is that it is impossible
for an object to be suspended in a stable equilibrium purely by means magnetic or
electrostatic forces [1–3].

First technical applications of a levitation by magnetic field were proposed in 1937,
when Kemper applied for a patent for a hovering suspension, while Beams and Holmes
were working on electromagnetic suspension. This experiment was the predecessor of the
later magnetically levitated vehicles. The most familier levitation vehicle nowadays is the
MAGLEV (derived from magnetic levitation), which uses the electromagnetic principle,
is suspended without any contact by several magnets from the iron track [1, 2, 4].

Later, in the sixties a principle of magnetic bearings was used in space technology
for the magnetic suspension of momentum-wheels to control the attitude of satellites.
First industrial applications appeared in the late seventies mainly for turbines and for
high-speed machine tools. Because of the magnetic bearing offer a novel way to solve
classical problems of rotor dynamics by suspending a spinning rotor with no contact,
wear and lubrication, and controlling its dynamic behaviour [1].

There are several types of total and partial magnetic levitation systems [2]:

• Permanent magnets (only partial stability);

• Diamagnetic materials (e.g. bismuth) in a magnetic field;

• Electromagnets with feedback control;

• Electromagnets with dynamic currents;

• Eddy currents - alternating current (AC) devices;

• Eddy currents - moving conductors;

• Superconductors and permanent magnets;

• Superconductors and superconducting magnets;

• Hybrid - for example, permanent magnets with feedback controlled electromagnets
of controlled magnets with superconductors.
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Magnetic levitation requires two necessary subsystems [2]:

• a primary system for generating the magnetic field and;

• a system for shaping or trapping the magnetic flux.

In the case of electromagnetic levitation, electric currents in a wire wound produce the
primery magnetic field while the ferromagnetic coil holder and the ferromagnetic based
core produce a magnetic circuit. In the case of eddy current levitation with moving
magnet over a conductor, the source of the field can be permanent magnet or a normal
or superconducting wire wound. The relative motion of the magnet and conductor
provides the field-shaping system due to the induced eddy currents in the conductor.
Finally, in the case of a passive superconducting levitator, a permanent magnet serves
as the primary magnatic field source while the bulk or thin film superconductor provides
the magnetic field shaping due to the induced currents [1, 2].

1.1 The Magnetic Bearing

Mechatronics is an interdisciplinary area of engineering sciences based on the classi-
cal fields of mechanical and electrical engineering and on computer science. With its
interconnection of mechanical and electronic components and with a large amount of
software being part of the system, the electromagnetic bearing represents a typical prod-
uct of mechatronics. The magnetic bearing system picks up signals from its environment,
process them on an intelligent way and react, for example, with force or motion. Meth-
ods for connecting the various area of knowledge, mechanical, electrical engineering and
computer science are provided by the basic engineering sciences, system theory, control
techniques and information processing [1].

After more than thirty years of industrial utilization of magnetic bearing it has be-
come evident that the active magnetic bearings (AMB) are clearly favored over passive
magnetic bearings (PMB). The term active implies that the bearing forces are actively
controlled by means of electromagnets, a suitable feedback control loop and other el-
ement such as sensors and power amplifier. Here, only the active magnetic bearing is
introduced.

Some advantages of the magnetic bearings are the follows: The AMBs will not suffer
from any mechanical wear or give rise to any related contamination. The absence of
aerodynamic drag losses and the low energy consumption of the bearing is a welcome
feature for flywheels for energy storage. The high precision that can be attained and
the high rotating speed with relative high load capacity. Furthermore, it is possible
to simplify the machine contruction, as there are no bearing fluids by seals. Other
important features that have been corroborated by practical experience are the inherent
means for self control and diagnosis, the very low maintenance costs, and the low energy
consumption [1, 2].

The various advanteges of the magnetic bearing have led to applications mainly in
the five follows area [1]:

• Vacuum and cleanroom systems;

• Machine tools;

2



Dániel Marcsa, M.Sc. Thesis 2010

• Medical devices;

• Turbo-machinery;

• Superconducting bearings.

1.1.1 The Magnetic Bearing as a Controlled Suspension

Fig. 1.1 shows the simplest example of a magnetic bearing control loop through com-
prising all the necessary components of a standard active magnetic bearing system. In
the following, these elements and functionalities are briefly described [1, 2].

The rotor is to be levitated freely at a prescribed distance x0 from the bearing elec-
tromagnets. A contact-less position sensor (most often an eddy current or inductive
type sensor) steadily measures the deviation between desired position x0 and actual ro-
tor position x and feeds this information into a controller (nowadays digital controllers
are widely used). The primary goal of the controller is to maintain the rotor position
at its desired value. For this not only an equilibrium of the envolved force, here just
the magnetic force fm and the rotor weight mg must be established, but also as a most
important quality of the control, a stabilization of the control loop must be achived. Fi-
nally, the controller sends out a positioning command signal to a power amplifier which
transforms this signal into an electric current in the coil of the bearing electromagnet

Fig. 1.1: The basic magnetic bearing conrtol loop and its elements.
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and a magnetic field in the iron core of the magnet, thus generating the desired magnetic
force fm [1, 2].

The setup of Fig. 1.1 describes a one degree of freedom single-channel rigid body
system, which corresponds to a strong simplification of a real magnetic bearing. Rota-
tions and tranverse motions of the rotor cannot be controlled by a single electromagnet
and require a more complex arrangement of several electromagnets and a multi-channel
control. Nevertheless, the basic properties of a magnetic bearing control loop can be
easily investigated using this simple bearing example.

1.2 Y-Shaped Radial Magnetic Bearing

High speed and high accuracy are the main tasks for rotating machines in our days. In
this regard, active magnetic bearing (AMB) is an important element since it can provide
noncontact suspension. However, the opportunity of its industrial application has not
been completely explored yet. One of the main reasons is its high cost. The sensors and
power amplifiers account for a major portion of the cost. The number of required power
amplifier is closely related to the number of magnetic poles in the AMB.

A more feasible way to lower the costs is to reduce the number of magnetic poles.
The minimum pole number for an AMB is three. The three-pole AMB has several
advantages, for example the use of only two amplifiers is possible and reducing the pole
number can leave more space for heat dissipation, coil winding and sensor installation.
All of these advantages can lead to lower the costs for the three-pole AMB.

However, the major disadvantages of the three-pole magnetic bearing is its strong
nonlinearity due to magnatic flux coupling. It was very difficult to design and implement
controllers for such a strong nonlinear system before. With the progress of nonlinear con-
trol theory and the increase on computing and sampling speed in PC/DSP-based (Per-
sonal Computer / Digital Signal Processing) control technologies, nonlinear controllers
have become feasible today.

1.2.1 The Problem Definition

This work will be present the design and numerical simulation of a radial magnetic
bearing. This bearing is a Y-shaped three-pole magnetic bearing fed by two amplifiers.
This type of magnetic bearing can be seen in Fig. 1.2. The future task is to built up the
prototype of this magnetic bearing.

This work consists of two main parts. One of these parts is the numerical geometry
optimization. The other part is the numerical simulation of the magnetic bearing.

The magnetic bearing is optimized supposing a two-dimensional problem. The as-
sumption of the two-dimensionality is usually valid if the axial length of the analyzed
body is far greater than the dimensions in the cross-section plane. In the radial mag-
netic bearing, this is usually not the case. However, when the rotor is rotating, the
eddy currents push the magnetic flux out of the solid shaft and the magnetic flux flows
only through the laminated structure of the rotor. This results in a static magnetic
field problem. Furthermore, the effect of the end-region fields has been neglected in the
two-dimensional case [5].

In the simulation part, the optimized bearing geometry is simulated in 2D and 3D.
The main goal of these simulations are the effect of end-region field to the bearing force.

4
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Fig. 1.2: The arrangement of Y-shaped magnetic bearing fed by two amplifiers.

Fig. 1.3: The three-dimensional geometry of radial magnetic bearing.

The end-region field of the bearing has been studied by the 3D simulation and compare
with the 2D results.

The arrangement of the three-pole radial magnetic bearing problem in two-dimensio-
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nal case is shown in Fig. 1.2. The poles of the Y-shaped magnetic bearing Pole#1,
Pole#2, Pole#3 are lag each other in phase by 120◦. In the simulations, only the upper
two windings has been excited by the second generator current I2. This situation is
when the rotor is in the centre of bearing, not needed the control currents. The source
current density is maintained constant at | ~J0| = 5, 1 · 106 A/m2. The stator, the rotor
and the poles are laminated, because the losses are reduced and eliminate the effect of
eddy currents. The shaft is a solid iron, which is surrounding the laminated rotor.

The three-dimensional arrangement of the radial magnetic bearing is shown in Fig.
1.3. This figure shows very well the windings are longer than the core length. Mainly,
the overhanging part of the windings generate the end-region field, which has an effect
the inside field of the bearing.

The scope of my master thesis is to present the numerical optimization and simulation
of the Y-shaped radial magnetic bearing by one of the most usable electromagnetic field
computation technique, the finite element method (FEM).

In engineering point of view, the aim of the research is to build up a finite element
technique based optimization procedure to design the a radial magnetic bearing, and
to validated the two-dimensional optimisation results through the comparison of two-
dimensional and three-dimensional finite element simulations. Furthermore, to check
the correctness of the two-dimensional results of the short axial lenght AMB simulation
with linear and nonlinear material.

The organization of my master thesis is the following.
In chapter 2 and 3, the theoretical background of the realized simulations has been

described. The starting point is Maxwell’s equations, from which the used potential
formulation can be deduced. The finite element method is based on the weak formula-
tion of the potential formulation, so the chapter 3 presents the deduction of the weak
formulation applying mathematical rules and theorems.

Chapter 4 deals with the used nonlinear equation solvers and the polarization method.
These solvers are necessary in the nonlinear finite element simulations. The solvers are
the Newton-Raphson technique and the fixed point method. In this chapter, I intro-
duce the basics of these numerical techniques, and its main steps in the finite element
simulation.

In chapter 5, I describe the main steps of finite element method, the preprocessing,
the computation and the portsprocessing. I shortly present the two- and three dimen-
sional finite elements, and the used solvers. In the postprocessing section I present the
computation of the important quantities of magnetic bearing, i.e. the flux linkage and
the electromagnetic force.

Chapter 6 contains the basics of the application of optimization methods, and the
combination of these with numerical technique. In this chapter will be presents the used
optimization techniques, the well known brute-force seach and the Nelder-Mead simplex
search algorithm. Finally, the results of the optimisation and the comparison of the used
methods.

In chapter 7, the analytic computation of the force has been presented. I describe
the simplifications and the deduction of the matrix equations of the force components.

Last, the comparison of the computed quentities can be found in chapter 8, and the
conclusions with future works are presented in chapter 9. The main references of my
research are also given at the end of my diploma.
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Chapter 2

Equations of the Static Magnetic

Field

The magnetic bearing is assumed to be a static magnetic field problem. The assumption
of the problem is valid if the purpose of the lamination in the stator and in the rotor is
eliminate the effect of eddy currents. The solid shaft of the rotor should be modeled as
a solid iron. However, when the rotor is rotating, no magnetic flux penetrates through
the solid shaft. Thus, when analyzing the bearing for the actual operation point, the
shaft can be modeled as air.

The Maxwell’s equations of the static magnetic field problems are presented in this
chapter. The simplification of the problem, the symmetry planes, and the boundary
conditions of the problem are also presented in this chapter.

2.1 Maxwell’s Equation

In the static magnetic field problems, the magnetic field has no interaction with the
electric field, because the field quantities are independent on the time variation (i.e.
∂/∂t = 0). However, the current i flowing in coils generate magnetic field around the
coils.

The studied static magnetic field problem is separated into two parts, the magnetic
material region (e.g. stator) Ωm, and the nonmagnetic domain (e.g. air) Ω0. The
scheme of the analyzed two-dimensional static magnetic field problem can be seen in
Fig. 2.1. The domains and regions are the same in the three-dimensional problem, only
the boundaries have some differences.

To the formulation of the problem, the differential equations are the following [6–16]:

∇× ~H = ~J0, in Ω0 ∪ Ωm, (2.1)

∇ · ~B = 0, in Ω0 ∪ Ωm, (2.2)

∇ · ~J0 = 0, in Ω0, (2.3)

where ~H is the magnetic field intensity, ~B is the magnetic flux density and ~J0 is a source
current density.

The source current density is deteremined from the known i coil current by the
following relation:

| ~J0| =
Nw i

Sc

, (2.4)

7
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Fig. 2.1: The structure of the two-dimensional static magnetic field problem.

where Nw is the number of turns of winding and Sc is the cross section area of coil. The
directions of the ~J0 source current density are signed in the Fig. 2.1.

The constitutive relationship can be used in its inverse form because of the used
potential formulation. The inverse constitutive relations can be written as

~H =







ν0
~B, in air, Ω0,

ν0νr
~B, in magnetically linear material, Ωm,

B−1{ ~B} = νo
~B + ~I, in magnetically nonlinear material, Ωm,

(2.5)

where ν0 = 1/µ0 is the reluctivity of vacuum and νr is the relative reluctivity. The value

of the relative reluctivity is νr = 1/µr = 1/3000 = 3.33 · 10−4 m/H. The B−1{ ~B} is
a hysteresis operator, which simulates the nonlinear material, in this problem this is a
simple nonlinear curve. The νo is the properly chosen constant, the ideal reluctivity (the

”o” character in the subscript means the optimal). The ~I is the residual nonlinearity,
which depends on the input - output of the used nonlinear curve without hysteresis. The
~I residual is a magnetic field intensity like quantity.

2.2 The Regions and Boundaries

Maxwell’s equations are valid in the problem region Ω = Ωm ∪ Ω0. The problem region
Ω is bounded by ∂Ω. The ∂Ω is separated into two disjunct parts ΓH and ΓB, i.e.
∂Ω = ΓH ∪ ΓB [6, 10, 16].

The regions and boundaries of the two- and three-dimensional problem can be seen
in Fig. 2.2(a). and in Fig. 2.2(b).

8
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(a) The two-dimensional case. (b) The three-dimensional case.

Fig. 2.2: The regions and boundaries of the simulated magnetic bearing.

ΓH in Fig. 2.2 denotes where the tangential component of the magnetic field intensity
is given by a known surface current density ~K. In this problem ΓH is a symmetry plane,
in this case ~K=~0. The boundary ΓB is usually the closing boundary or a symmetry
plane of the problem region, where the normal component of the magnetic flux density
is vanishing. The tangential component of the magnetic field intensity and the normal
component of the magnetic flux density must be continuous on the interface between the
two subregions, Ωm and Ω0. However, in this problem the continuity on this boundary
condition is satisfied by the used potential formulation. This is why the Γm0 isn’t denoted
in the Fig. 2.2.

The boundary conditions of the symmetry plane of the three dimensional problem is
presented in Fig. 2.2(b).

In the three-dimensional simulation has not been used the outer boundary of the
problem geometry as a closing boundary as against the two-dimensional case. The
closing boundary of the three-dimensional problem is not shows in Fig. 2.2(b). The
radii of this closing boundary is basically three times larger than the diameter of the
geometry of AMB, but it is possibly better to use five - ten times radii. The boundary
condition of the three-dimensional closing boundary is ΓB, like in the two-dimensional
problem (Fig. 2.2(a)).

These boundary conditions can be formulated as [6, 10, 16]:

~H × ~nH = ~0, on ΓH , (2.6)

and
~B · ~nB = 0, on ΓB, (2.7)

where ~nH és ~nB are the outer normal unit vector according to the boundary of the
regions.

9



Chapter 3

Potential Formulation

There are several potential formulations applicable to calculate the electromagnetic field
quantities, fundamentally scalar and vector potentials can be used [6, 9–13, 16, 18, 19].
The aim of potential formulations is to reduce the solution of Maxwell’s equations to the
solution of different type of partial differential equations.

The investigated magnetic bearing problem is considered a static magnetic field prob-
lem. The static magnetic field is defined by Maxwell’s equations (2.1), (2.2), (2.3),
constitutive relations in (2.5), moreover the boundary conditions (2.6) and (2.7).

The static magnetic field can be described by the magnetic vector potential ~A and
the reduced magnetic scalar potential Φ [6, 9–13,16, 18, 19].

This section deals with the used potential formulation of magnetic bearing problem,
the partial differential equations of ~A - formulation. Furthermore, the weak formulation
of the differential equations by the weighted residual method [20].

3.1 Formulation with Magnetic Vector Potential, the
~A - Formulation

The magnetic vector potential is defined by [6–19]:

~B = ∇× ~A, (3.1)

which satisfies (2.2) exactly, because of the identity ∇·∇×~v ≡ 0 for any vector function
~v = ~v(~r). Substituting the definition (3.1) into the first Maxwell’s equation (2.1) and
using the constitutive relation from (2.5), it leads to the partial differential equations
[6, 9–13,16, 18, 19]:

∇× (ν∇× ~A) = ~J0, in Ω0 ∪ Ωm, in linear case, (3.2)

and
∇× (νo∇× ~A) = ~J0 −∇× ~I, in Ω0 ∪ Ωm, in nonlinear case. (3.3)

To ensure the uniqueness of the magnetic vector potential, the divergence of it can be
selected according to Coulomb gauge [6, 10, 16, 19], i.e.

∇ · ~A = 0. (3.4)

10
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Gauging is satisfied automatically in 2D, but unfortunately it is not true in 3D. The
origin of numerical problems is the lack of uniqueness of the magnetic vector potential
in three dimensions [10, 18].

Thereinafter presents the uniqueness of the vector potential in two-dimensional prob-
lem, and a numerical technique which is not sensitive to Coulomb gauge in three-
dimensional case.

Two-dimensional case

In 2D problems Coulomb gauge ∇ · ~A=0 is satisfied automatically, if the source cur-
rent density has only z component, the magnetic field intensity vector and the magnetic
flux density vector have x and y components [6, 10, 16], i.e.

~J0 = J0(x, y)~ez, (3.5)

~H = Hx(x, y)~ex + Hy(x, y)~ey, (3.6)

~B = Bx(x, y)~ex + By(x, y)~ey. (3.7)

The magnetic vector potential has only z component,

~A = Az(x, y)~ez, (3.8)

because (Ax = 0, Ay = 0 and Az = Az(x, y))

~B = ∇× ~A =

∣

∣

∣

∣

∣

∣

~ex ~ey ~ez
∂
∂x

∂
∂y

0

0 0 Az

∣

∣

∣

∣

∣

∣

= ~ex

∂Az

∂y
−~ey

∂Az

∂x
, (3.9)

i.e. Bx(x, y) = ∂Az/∂y and By(x, y) = −∂Az/∂x. The divergence of this one component
vector potential is equal to zero, because

∇ · ~A =
∂Az(x, y)

∂z
= 0. (3.10)

Three-dimensional case

In three-dimensional problems, the uniqueness of the vector potential is not so evident.
One possibility, it can be prescribed by applying a numerical technique which is not sen-
sitive to Coulomb gauge. When using edge element approximation in the finite element
approximation and taking care about the representation of source current density [6].

One of many possibilities the representation of ~J0 source current density is the ~T0

impressed current vector potential [6, 10, 16, 19, 22]:

~J0 = ∇× ~T0, (3.11)

which satisfies ∇ · ~J0 = 0, furthermore the divergence of ~T0 is selected zero, which
satisfies the Coulomb gauge. It must be noted that, ~T0 is calculated on free space, i.e.

11
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µ = µ0 must be set everywhere in the problem region. The used technique, the following
functional can be built up, to find out the source term ~T0 [6]:

F{ ~T0} =

∫

Ω

| ∇ × ~T0 − ~J0 |2 dΩ. (3.12)

This relationship is equivalent the partial differential equation of free space, which can
be formulated as [6]

∇×∇× ~T0 = ∇× ~J0, in Ω0 ∪ Ωm, (3.13)

and the boundary conditions of on the ΓB and on the ΓH boundary

~T0 · ~nB = 0, on ΓB, (3.14)

~T0 × ~nH = ~0, on ΓH . (3.15)

It can be solved by a numerical field calculation procedure, which is not sensitive to
Coulomb gauge. Finally ~T0 can be regarded as known, because this quantity is calculated
before the numerical simulation.

After these, let us define the boundary conditions of the ~A-formulations, which are
same in the two and three dimensions.

On the ΓH boundary, the tangential component of the magnetic field intensity vector
can be set by the relation [6, 10, 18, 19]

~H × ~nH = ~0 ⇒ (ν∇× ~A) × ~nH = ~0, on ΓH , in linear case, (3.16)

and
(νo∇× ~A + ~I) × ~nH = ~0, on ΓH , in nonlinear case. (3.17)

The normal component of the magnetic flux density can be set as [6, 10, 16, 18, 19]

~B · ~nB = 0 ⇒ (∇× ~A) · ~nB = 0, on ΓB. (3.18)

The left-hand side of the last formulation can be chosen as [10, 18]:

(∇× ~A) · ~nB = ∇ · ( ~A × ~nB) = 0, (3.19)

finally
∇ · (~nB × ~A) = 0, (3.20)

i.e.
~nB × ~A = ~0, on ΓB. (3.21)

Finally, the partial differential equations and the boundary conditions of the pre-
sented two-dimensional static magnetic field problem, which solution satisfies Coulomb
gauge can be formulated as [6, 9–13,16–19]:

∇× (ν∇× ~A) = ~J0, in Ω0 ∪ Ωm, in linear case, (3.22)

∇× (νo∇× ~A) = ~J0, in Ω0 ∪ Ωm, in nonlinear case, (3.23)

and the partial differential equations of the three-dimensional static magnetic field prob-
lem [6, 10, 18, 19]:

∇× (ν∇× ~A) = ∇× ~T0, in Ω0 ∪ Ωm, in linear case, (3.24)
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∇× (νo∇× ~A) = ∇× ~T0 −∇× ~I, in Ω0 ∪ Ωm, in nonlinear case. (3.25)

The Neumann type ((3.26) and (3.27)) and Dirichlet type ((3.28)) boundary conditions
of the static magnetic field problem [6, 9–13,17–19]:

(ν∇× ~A) × ~nH = ~0, on ΓH , in linear case, (3.26)

(νo∇× ~A + ~I) × ~nH = ~0, on ΓH , in nonlinear case, (3.27)

~nB × ~A = 0, on ΓB. (3.28)

When using nodal elements in the 3D finite element approximation needed some
extra term for the implicit enforcement of Coulomb gauge. This method results in the
gauged version of the ~A - formulation. The vector element based formulation (which has

been used in this work), the ungauged ~A - formulation is newer than the gauged ~A -
formulation.

3.2 Weak Formulation of the ~A - Formulation

The finite element method is associated with variational methods [21] or residual methods
[6–14,18,20]. The residual methods are established directly from the physical equations.
It is a respectable advantage comparing with the different methods since it is relatively
easier to understand and to apply. This is the main reason why nowadays most of the
FEM analysis is perfomed by using the residual method. The Galerkin’s method is a
particular form of residual method and it is widely used in electromagnetism. The finite
element method is based on the Galerkin’s method of the weighted residual method
[6–14,18].

The weighted residual method [20] can be applied to minimize the residual of a partial
differential equation. The best approximation for the potentials can be obtained when
the integral of the residual of the partial differential equation multiplied by a weighting
function over the problem domain is equal to zero. The weighting function can be
arbitrary, but in Galerkin’s method, the weighting functions are selected to be the same
as those used for expansion of the approximate solution.

3.2.1 The Weak Formulation with Galerkin’s Method

The weak formulation of the weighted residual method can be obtained when applying
the rule of integration by parts to decrease the order of the differential operator in the
inner product. The finite element method can be derived from this group of the weighted
residual method. In the case of finite element method, the weighting function and the
basis function of the approximating function are the same.

The finite element method uses the the weak formulation with Galerkin’s method
when the basis functions of the approximating function and the weighting function are the
same. Here, the weak formulations of the potential formulations according to Galerkin’s
method are presented, which are appropriate in the finite element method. In the fol-
lowing ~W = ~W (~r) denotes the vector weighting function as well as the basis functions
of approximating function and N = N(~r) denotes the scalar weighting function as well
as the basis functions of approximating function [6–14,18,20, 21].
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Vector potentials ~A = ~A(~r) are approximated by an expansion in terms of J elements

of an entire function set ~Wj in 3D and Nj in 2D. Shape functions Nj and ~Wj are the
elements of an entire function set, which can be defined in many ways. The definition of
these elements are presented in Chapter 5.

In the following ~Aκ, ~T κ
0 will denote the approximated unknown potential functions

and ~Iκ will denote the approximated residual term.
The weak formulations of ~A - formulations is based on the partial differential equation

(3.25) and on the Neumann-type interface conditon (3.27):

∫

Ω

~Wk ·
[

∇× (νo∇× ~Aκ)
]

dΩ

+

∫

ΓH

~Wk ·
[(

νo∇× ~Aκ + ~Iκ
)

× ~nH

]

dΓ

=

∫

Ω

~Wk ·
(

∇× ~T κ
0

)

dΩ −
∫

Ω

~Wk ·
(

∇× ~Iκ
)

dΩ

(3.29)

ahol k = 1, . . . , J.
The second order derivative in the first integral can be reduced to first order one by

using the next mathematical identity:

∇ · (~a ×~b) = ~b · ∇ × ~a − ~a · ∇ ×~b, (3.30)

with the notation ~a = ~Wk and ~b = νo∇× ~Aκ. The right-hand side can also be simplified
by applying the same identity with the notation ~a = ~Wk and ~b = ~T κ

0 or ~b = ~Iκ. After
using Gauss’ theorem the following equation can be obtained:

∫

Ω

ν(∇× ~Wk) · (∇× ~Aκ) dΩ +

∫

ΓH∪ΓB

[(

νo∇× ~Aκ
)

× ~Wk

]

· ~nH dΓ

+

∫

ΓH

~Wk ·
[(

νo∇× ~Aκ + ~Iκ
)

× ~nH

]

dΓ

=

∫

Ω

(∇× ~Wk) · ~T κ
0 dΩ +

∫

ΓH∪ΓB

(

~T κ
0 × ~Wk

)

· ~nH dΓ

−
∫

Ω

(∇× ~Wk) · ~Iκ dΩ −
∫

ΓH∪ΓB

(

~Iκ × ~Wk

)

· ~nH dΓ.

(3.31)

The first surface integral can be reformulated according to

[(

νo∇× ~Aκ
)

× ~Wk

]

·~nH =
[

~nH ×
(

νo∇× ~Aκ
)]

· ~Wk = − ~Wk ·
[(

νo∇× ~Aκ
)

×~nH

]

. (3.32)

The second and last integral on the right-hand side can be rearranged by using the
identity:

−
(

~Iκ × ~Wk

)

· ~nH = −
(

~nH × ~Iκ
)

· ~Wk = ~Wk ·
(

~Iκ × ~nH

)

, (3.33)
(

~T κ
0 × ~Wk

)

· ~nH =
(

~nH × ~T κ
0

)

· ~Wk =
(

~Wk × ~nH

)

· ~T κ
0 = −

(

~nH × ~Wk

)

· ~T κ
0 , (3.34)
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after these, the equation is the following:

∫

Ω

ν(∇× ~Wk) · (∇× ~Aκ) dΩ −
∫

ΓH∪ΓB

~Wk ·
[(

νo∇× ~Aκ
)

× ~nH

]

dΓ

+

∫

ΓH

~Wk ·
[(

νo∇× ~Aκ + ~Iκ
)

× ~nH

]

dΓ

=

∫

Ω

(∇× ~Wk) · ~T κ
0 dΩ +

∫

ΓH∪ΓB

(

~T κ
0 × ~Wk

)

· ~nH dΓ

−
∫

Ω

(∇× ~Wk) · ~Iκ dΩ +

∫

ΓH∪ΓB

~Wk ·
(

~Iκ × ~nH

)

dΓ.

(3.35)

It is easy to see that the first and the last surface integral are vanishing on ΓH , because
the second surface integral. The rest terms on ΓB is reformulate,

~Wk ·
[(

νo∇× ~Aκ
)

× ~nH

]

=
(

νo∇× ~Aκ
)

·
(

~nH × ~Wk

)

, (3.36)

and
~Wk ·

(

~Iκ × ~nH

)

= ~Iκ ·
(

~nH × ~Wk

)

, (3.37)

and the Dirichlet boundary condition (3.28) must be satisfied, i.e. ~nH × ~Wk = ~0. The
third surface integral is reformulate:

(

~T κ
0 × ~Wk

)

· ~nH =
(

~nH × ~T κ
0

)

· ~Wk =
(

~Wk × ~nH

)

· ~T κ
0 = −

(

~nH × ~Wk

)

· ~T κ
0 , (3.38)

where the second term is vanishing on ΓH because of the Dirichlet boundary condition
3.15 so ~Wk · ~nH = 0, and it is evident that the last term is vanishing on ΓB.

Finally, the weak formulation of the ~A - formulation, which msut be realized by a
numerical technique, which is not sensitive to Coulomb gauge is as follows:

∫

Ω

ν(∇× ~Wk) · (∇× ~Aκ) dΩ =

∫

Ω

(∇× ~Wk) · ~T κ
0 dΩ

−
∫

Ω

(∇× ~Wk) · ~Iκ dΩ,

(3.39)

where k = 1, . . . , J. In the laminated parts ν = νo and in the air region ν = ν0.
In the two-dimensional case the weighting function and the basis functions of approx-

imating function of the ~A magnetic vector potential is the N = N(~r) scalar weighting
function, because magnetic vector potential has only one component (z), thus the vector
potential is a scalar in 2D.
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Chapter 4

Nonlinear Equation Solvers

The prediction of the magnetic behaviour is an important role in the working condi-
tion in many electromagnetic devices (e.g. transformers, motors, etc.). The hysteresis
of magnetic materials influencing not only the distribution of the magnetic field inten-
sity, but also the related electromagnetic quentities, like electromagnetic force. Hence,
the prediction of the electromagnetic behaviour is an important tool for the design of
electrical apparatus.

In this problem, a single-valued nonlinear curve has been used, instead of the hys-
teresis loop. The half of the used single-valued nonlinear curve can be seen in Fig.
4.1.

The used potential formulation, and the weak formulations of ~A - formulation are
presented in the last chapter. The used numerical method is the Finite Element Method
(FEM) [6, 9–14, 16–19, 22, 26–38], which has been used to solve a partial differential
equations. However, the implementation of the hysteresis characteristic into the FEM
procedure, the partial differential equations are generally nonlinear because of the non-
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Fig. 4.1: The magnetization curve of the laminated parts.
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linear characterisric of ferromagnetic material. In this case necessary to used a numerical
technique for handling the nonlinearity.

There are two main groups of methods to handle nonlinear characteristics of ferro-
magnetic materials in electromagnetic field computation and a technique to solve the
resulting system of nonlinear equations. One of these groups is the successive approxi-
mation based method and the others techniques are based on Newton’s method. From
these groups, the fixed point technique [6,16,23–25,29,31–38] and the Newton-Raphson
method [9, 12, 13, 23–28,30, 31] have been used in this work.

The used nonlinear solvers are presented in this chapter. The Newton-Raphson
method has been used in the two-dimensional case, and the fixed point technique has
been used in three-dimensional case.

First, the Newton-Raphson method has been used in the three-dimensional problem,
too. However, it has a problem with the convergence. This is why the fixed point method
has been used in three-dimensinal case. The convergence of the Newton-Raphson method
is one of the basic research themes of the Laboratory of Electromagnetic Field.

4.1 Newton-Raphson Method

The Newton-Raphson method is a popular algorithm for finding the roots of the equa-
tions [9, 12, 13, 23–28,30, 31].

The nonlinear equation is the following form [23–25]

f(x) = 0, (4.1)

where f(x) function is uniqueness and continuous in the a < x < b finite or infintite
interval. Every c value, where f(x) function equal zero, i.e. f(c) = 0, the roots of (4.1)
equation, i.e. the zero of f(x) function.

Fig. 4.2: The geometrical construction of Newton-Raphson method.
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Suppose that the iteration step k − 1 has resulted in an incorrect solution xn−1 for
which f(xn−1) 6= 0. This is why used a correction at the iteration step k by the ∆xn

term:
xn = xn−1 + ∆xn, (4.2)

and assuming that the f(xn) ≈ 0. The function f(xn) can be expanded in Taylor’s series
near xn−1:

f(xn) = f(xn−1 + ∆xn) = f(xn−1) +
df(xn−1)

dxn−1

∆xn + · · · = 0. (4.3)

The high order derivatives of the above Taylor’s series are neglected, keeping only the
linear terms (constant and first derivative term) and reformulation gives the following
result:

−df(xn−1)

dxn−1

∆xn = f(xn−1). (4.4)

The meaning of this equation can be seen in Fig. 4.2. At the starting point x0 determines
the f(x0) function value and the line tangent to the curve at the point (x0,f(x0)). Define
x1 to be the point of intersection of the line tangent and the x-axis. The point of
intersection x1 determines the function value f(x1) and the line tangent to the curve at
the point (x1,f(x1)), and the new point of intersection x2. These steps are repeated until
found the zero of f(x), the f(c) point.

Reformulate the above equation and substitute in the equation (4.2), gives the well
known formula of the Newton-Raphson method [23–25]:

xn = xn−1 −
f(xn−1)

df(xn−1)

dxn−1

. (4.5)

The system of nonlinear equations with several variables is the follows:

f(xn) = 0, (n = 1, 2, . . . ), (4.6)

and the multidimensional expansion in Taylor’s series near xn−1 is:

f(xn) = f(xn−1 + ∆xn) = f(xn−1) + J|xn−1
∆xn + · · · = 0, (4.7)

where J is a Jacobian matrix,

J =
∂f(xn−1)

∂xn−1

. (4.8)

The general form of system of equations of nonlinear finite element method is the
follows [12, 13, 29]:

S(A)A = u, (4.9)

where A = [A1 . . . An]T the vector of unknown vector potentials, S is a system matrix
[6, 12, 13],

S = Sij =

∫

Ω

ν(∇Ni) · (∇Nj)dΩ, (i, j = 1, . . . , n), (4.10)
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where Ni and Nj is a shape functions of nodal elements and n is the number of nodes.
The u is a vector with entries [6, 12, 13]

u = ui =

∫

Ω

~J0 · (∇Ni)dΩ, (i = 1, . . . , n). (4.11)

Reformulate the (4.9) equation results the system of residuum equations,

r(A) = S(A)A− u = 0, (4.12)

which has been handled like the (4.6) equation.
The residual term is gives like at the (4.4) equations, which can be written as:

∆An = J−1

|An−1
r(An−1). (4.13)

The equation (4.13) has to be used, the solution of An is the following:

An = An−1 + ∆An = An−1 + J−1

|An−1
r(An−1). (4.14)

However, the Jacobian matrix J never explicitly inverted in practical computing,
becasue very difficult and lengthy. The nonlinear problem is thus converted to successive
linear problems. At the step n of iteration, matrix J is evaluated using the nodal values
An−1 obtained at the preceding step.

The Jacobian matrix J of the static magnetic field problem is obtained by differen-
tiating the residual vector in 4.12 [12, 13],

J =
∂r(A)

∂A
= S(A) +

∂S(A)

∂A
A. (4.15)

The Jacobian matrix from the above equations after some mathematical transformation
is given by [12, 13]:

Jij = Sij + 2

∫

Ω

∂ν(B2)

∂B2

[

∇Ni

( 3
∑

l=1

~Bl

)

][

∇Nj

( 3
∑

m=1

~Bm

)

]

dΩ. (4.16)

The inverse of J Jacobian matrix is more practical from the above system of linear
equations.

The steps of one Newton-Raphson iteration, which can be shows Fig. 4.3 are:

• The initial condition of the method, when ~A = ~0, ~B = ~0 and ν(B2) = 0;

• Assembling the system matrix S and Jacobian matrix J from the equation (4.16);

• Determine the residual term ∆An from the equation (4.13) by the gradient method
[23, 25];

• Compute the vector An, which contain the unknown potentials, from the equation
(4.14);

• Calculate the Bx and By the components of magnetic flux density based on equation

(3.1), determine the components of magnetic field intensity ~H and reluctivity νr

from the nonlinear curve (Fig. 4.4). The MATLAB interp1 [39] function has been
used to determine the νr;
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Fig. 4.3: Flowchart of the Newton-Raphson method.

• The iteration is repeated from the second step until the error is small enough. The
value of the imposed error is ε = 10−6. The error is computed from the vector
norm of ∆An, ||∆An||2 < ε.

The convergence of the Newton-Raphson method is quadratic close to the solution
of the nonlinear equations, this is why less than ten iteration are required for adequate
precision. The nonlinear curve is monotonously increasing and its first derivative is con-
tinuous and monotonously decreasing, this is the minimal condition of the convergence
of this method. These conditions are satisfied as you can see in Fig. 4.4.

4.2 The Polarization Method

The polarization method is shortly presented in this section, one can find more about
this method in the publications: [6, 16, 26–29,31–38]. This method is widely used in the
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Fig. 4.4: The νr relative reluctivity as a function of the B2 square magnetic flux density.

nonlinear electromagnetic field problems.
According to the polarization method, the magnetic flux density can be split into

two parts as [6]
~B = B{ ~H} = µo

~H + β, (4.17)

Fig. 4.5: The gaphical form of the polarization method.
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where µo
~H is a linear term, because µo is supposed to be constant and nonlinearity

is hidden in the second term β. The β nonlinear term is a magnetic flux density like
quantity.

Multiply the relation (4.17) by νo = 1/µo, which results the equation νo
~B = ~H−νoβ.

The second, nonlinear term −νoβ is denoted by ~I results the follows νo
~B = ~H + ~I.

Reformulate of this relation gives the following [6, 26, 27,29, 31, 34, 37]

~H = νo
~B + ~I (4.18)

constitutive relation. The denotation of this equation can be seen in Fig. (4.5).
Than mentioned in the chapter 2, the νo reluctivity is the properly chosen constant,

the optimal value of reluctivity. The value of νo reluctivity [6, 33, 34, 37, 38]

νo =
νmax + νmin

2
(4.19)

where νmax and νmin are the maximum and minimum slope of the inverse nonlinear
curve. It is evident that µmax and µmin are the maximum and minimum slope of the
nonlinear curve (Fig. 4.1), where νmax=1/µmin and νmin=1/µmax.

4.3 Fixed Point Method

The fixed point method (or another name successive approximation) with polarization
method has been used to solve the nonlinear partial differential equations of three-
dimensional probelem [6, 23–25,29, 31–38].

The convergence of the fixed point technique is stable and robust, however much
slower than the convergence of the Newton-Raphson method.

The fixed point method is based on the following form of nonlinear equation, which
has been equivalent the equation (4.1) [6, 16, 23–25]

x = h(x), (4.20)

which is usually called the fixed point from of nonlinear equation. The system of non-
linear equations can be represented by the vector valued function x=h(x).

In Fig. 4.6 the operation of the fixed point iterations is illustrated. In the figure, the
fixed point equation x=h(x) is approximated by a simple function y=h(x)=x. The point
denoted by c, where c=h(c), is called fixed point, which is the solution of the nonlinear
equation and it is the intersection point of the functions y=x and y=h(x). The iteration
can be started by any arbitrary point, for instance x0, where y0=h(x0) can be calculated
by using the function h(x). Value y0 is the input of the second step of iteration, i.e.
x1=y0=h(x0). This results in y1=f(x1) and x2=y1=h(x1). This iteration scheme can be
generalized as

xn = yn−1 = h(xn−1), (n = 1, 2, . . . ). (4.21)

The fixed point iteration is convergent, if the distance |xn − xn−1| is decreasing by
increasing the index n. The condition

|xn − xn−1| < ε, (4.22)

can be used to stop the iteration, where ε is a small positive real number.
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Fig. 4.6: The geometrical construction of fixed point method.

The fixed point scheme must satisfy some criteria for the convergence. The conditions
of stable convergence of the fixed point iteration [6, 16, 23–25]:
The function h(x) of equation (4.20) is differentiable on the set of I, which is the input
(argument) of the function h, and differentiable on the set of O, which is the output
(value) of the function h and O is the subset of I, i.e. O ⊂ I. Furthermore, exist constant
q < 1, which |h′

(x)| ≤ q for every x ∈ I. In this case, the series (4.21) composed by
starting x0 ∈ I point converged to the fixed point of the equation (4.20) in the set I.

The presented fixed point method is the following in the finite element method for
the simulated problem. The argument of the ~x is the ~B magnetic flux density and the
functions is the B−1{·} hysteresis operator. In this problem, the polarization method
combined the fixed point scheme has been used to the approximation of the solution of
the nonlinear equations.

The initial condition of the fixed point technique are as follows: ~B = ~0, ~I = ~0 and
~H = ~0. This is the demagnetized state of the magnetic material. Starting from this
point, the magnetic flux density ~B and the residual term ~I can be determined using the
iterative procedure, and by the hysteresis curve determine the ~H magnetic field intensity.

In Fig. 4.7 the steps of fixed point scheme are shown, which as follows:

• Generate and solve the system of linear equations, SA = u, and determine the
value of ~T0 for all finite elements;

• Over again generate and solve the actual system of linear equations, SA = u. The
constant system matrix S is not changing during the iteration process, it is enough
to calculate it once. The vector A contains the nodal value of unknown potential;

• Determine the components of magnetic flux density (Bx, By, Bz) of all finite ele-
ments by the equation (3.1);

• The components of magnetic field intensity of all finite elements can be obtained by
the nonlinear curve in the Gaussian points. The MATLAB interp1 [39] function
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Fig. 4.7: Flowchart of the fixed point technique.

has been used to determine the components of ~H from the nonlinear curve (Fig.
4.1);

• Determine the components of the nonlinear residual term ~I in every finite element
in the nonlinear region by the Ip = Hp − νoBp relations, where p = x, y, z;

• Determine the error of the computation. The difference of the components of
magnetic field intensity in the last two iteration steps is calculated in each finite
elements and its vector norm is the error ε, ||Hp,n−Hp,n−1||2 < ε, where p = x, y, z;

• The iteration is repeated from the second step until the error is small enough The
value of the imposed error is ε = 10−6, like in the Newton-Raphson method;

The value of the νo optimal reluctivity is constant from the equation (4.19) throught
every iteration.
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Chapter 5

The Finite Element Method

The basis of numerical techniques is to reduce the partial differential equations by us-
ing scalar and vector potentials to algebraic ones. These algebraic equations can be
solved by numerical methods e.g. (3.39) [6–14, 16–18, 21]. This reduction can be done
by discretizing the partial differential equations in time if necessary and in space. The
potential functions, the approximation method and the generated mesh distinguish the
numerical field solvers.

The Finite Element Method (FEM) is the most popular and the most flexible numer-
ical technique to determine the approximate solution of the partial differential equations
in engineering. For example, commercially available FEM software package is COMSOL
Multiphysics [40] and the public domain program FEMM (Finite Elemenet Method Mag-
netics) [41] for 2D fields which have been used in this work.

The COMSOL Multiphysics FEM software has the advantage that the weak formu-
lation of a problem can be inserted easily and it is not necessary to implement mesh
generators, solvers and postprocessors. These properties are very useful from the point
of view of research, because the time consuming programming task can be eliminated.

5.1 Fundamentals of FEM

This section summarizes the FEM as a computer-aided design (CAD) technique in en-
gineering sciences to obtain the electromagnetic field quantities in the case of static
magnetic field problems. Here, I show the main steps of simulation with FEM. The
main steps of simulation with FEM are illustrated in Fig. 5.1.

5.1.1 Preprocessing

A. Model Specification

Firstly, in the model specification phase, the model of the problem, which simulation
requires electromagnetic field calculations must be set up, i.e. the scientists of engineers
have to find out the partial differential equations, which must be solved with prescribed
boundary and continuity conditions. We have to find out, whether it is a nonmagnetic
reagion, where the linear static magnetic field equations has been used, and which one is a
magnetically nonlinear media region where has been used the nonlinear field equations,
and how the characteristics of the materials look like. After selecting potentials, the
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Fig. 5.1: Steps of simulation by finite element method.

weak formulation of these partial differential equations must be worked out as well.
It is depending on the problem, of course, but the chosen mathematical model of the
arrangement should be adequate to calculate electromagnetic field quantities in the given
accuracy. The geometry of the problem must be defined by a CAD software tool.

The next step is the preprocessing task. Here, the values of different parameters have
been given, such as the material properties, i.e. the relative permeability or reluctivity,
the excitation signal like source current desnity ~J0. The geometry can be simplified
according to symmetries or axial symmetries. In this work the symmetry plane has been
used. The 2D problem is enough to simulate the half of the bearing, and in the 3D
problem is enough to simulate the forth of the arrangement because of symmetry plane.

This step is shown in Fig. 5.2. In this figure shows the three-dimensional radial
magnetic bearing in the frame of COMSOL Multiphysics. Inside the geometry the mag-
netic flux density vectors can be seen. Right hand side of the geometry, the Subdomain

Settings and the Free Mesh Parameters windows can be seen. In these windows the
weak form of partial differential equations, the size of the mesh elements or mesh density
can be set. The upper menu window show the important tool of postprocessing the Plot
Parameters window, where the simulated data and electromagnetic quentities obtained
from the potentials can also be simulated and plotted easily.
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Fig. 5.2: The model specification in COMSOL Multiphysics.

B. 2D Finite Element Mesh

In the preprocessing task the geometry of the problem must be discretized by a finite
element mesh. The fundamental idea of FEM is to divide the problem region to be
analyzed into smaller finite elements with given shape. A finite element can be triangles
or quadrangles in two dimensions.

Fig. 5.3 and Fig. 5.4 shows the tipical two-dimensional finite elements. In the figures
denotes the normal numbers is the nodals, and the bold italic number is a edges. A linear
triangular element (Fig. 5.3(a)) has three nodes 1, 2 and 3, here numbered anticlockwise
and it has three edges. A quadratic triangular element (Fig. 5.4(a)) has six nodes and
nine edges. The linear quadrangle element (Fig. 5.3(b)) has four nodes and four edges
and the quadratic case has eight nodes and ten edges [6, 9–12].

(a) First-order triangular element. (b) First-order quadrangle element.

Fig. 5.3: Linear (first order) finite elements in the two-dimensional x - y plane.
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(a) Second-order triangular element. (b) Second-order quadrangle element.

Fig. 5.4: Quadratic (second-order) finite elements in the two-dimensional x - y plane.

(a) FEM mesh by COMSOL. (b) FEM mesh by FEMM.

Fig. 5.5: The triangular disrcetization of the 2D magnetic bearing geometry.

FEM mesh, as illustration, generated by COMSOL multiphisics can be seen in Fig.
5.5(a). Fig 5.5(b) is illustrated the triangular FEM mesh generated by FEMM. Fig. 5.6.
and Fig. 5.5. the enlarged regions of the magnetic bearing are shown. The arrangement
of magnetic bearing has been discretized by a triangular elements as it is shown in Fig.
5.6. Fig. 5.6(b) shows the used five-layer mesh in the air gap, which has necessary for
the better force calculation.

All the simulations have been studied using the same mesh in COMSOL Multiphysics,
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(a) Enlarged region of the magnetic bearing. (b) The generated five-layer mesh in the air
gap.

Fig. 5.6: Enlargement of the discretization.

which consists of 15829 second-order triangular elements as it can be seen on the left
hand side of Fig. 5.6. Fig. 5.6 shows the half of the used mesh in the FEMM for the
calculation which consists of 17387 second order triangular elements. The number of
unknowns is 31930 and 34290 at COMSOL and FEMM respectively.

C. 3D Finite Element Mesh

A finite element can be tetrahedron or hexahedron in three dimensions.
Fig. 5.7 shows the tipical three-dimensional finite elements. A linear tetrahedron

element(Fig. 5.7(a)) has four nodes and six edges. A linear hexahedron element (Fig.
5.4(a)) has eight nodes and twelve edges. In this work the quadratic form of tetrahedron
elements has been used, which has ten nodes and twenty-four edges. Fig. 5.8 shows the
discretization of the three-dimensional radial bearing geometry by quadratic tetrahedron
elements.

(a) First-order tetrahedron ele-
ment.

(b) First-order hexahedra ele-
ment.

Fig. 5.7: Linear (first-order) finite elemenets in three dimensions.
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Fig. 5.8: The three-dimensional discretization of the bearing geometry.

Fig. 5.9: The generated two-layer mesh in the air gap.

The used two-layer mesh in the air gap in three dimensions can be seen in Fig. 5.9.
In the three-dimensional case the two-layer mesh is enough, because the calculated force
using two- and three-layer mesh is nearly the same. However, the number of unknown
is very high, if the three-layer mesh has been used in the air gap.

All the simulations have been studied using the same mesh in three dimensions. The
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three-dimensional mesh consist of 86339 second-order tetrahedron elements, and the
number of unknowns is 563528.

5.1.2 Shape Functions

The presented potential functions can be scalar valued, e.g. the 2D magnetic vector
potential, or vector valued, e.g. the 3D magnetic vector potential ~A, or the impressed
current vector potential ~T0.

The scalar potential functions can be approximated by the so-called nodal shape
functions N = N(~r) and the vector potential functions can be approximated by either

nodal or so-called vector shape functions, also called edge shape functions ~W = ~W (~r).
Generally, a shape function is a simple continuous polynomial function defined in a

finite element and it is depending on the type of the used finite element.
Each shape function is defined in the entire problem region, and a scalar shape

function corresponds to just one nodal point and each vector shape function corresponds
to just one edge. Each scalar shape function is nonzero over just those finite elements
that contain its nodal point and equals to zero over all other elements and each vector
shape function in nonzero over just those finite elements that contain its edge and equals
to zero over all other elements. Furthermore, the scalar shape function has a value unity
at its nodal point and zero at all the other nodal points, and the line integral of a vector
shape function is equal to one along its edge and the line integral of it is equal to zero
along the other edges. Moreover the shape functions are linearly independent, i.e. no
shape function equals a linear combination of the other shape functions.

The accuracy of solution obtained by FEM can be increased in three ways. The first
one is called h-FEM, it is increasing the number of finite elements, i.e. decreasing the
element size. The second way is calles p-FEM, it is to increase the degree of polynomials
building up a shape function. The third way is called hp-FEM, it is the mixture of the
previous methods.

You can find more about the shape functions the next publications [6, 9–13,18]

The 2D magnetic vector potential ~A and source current density ~J0 has been approx-
imated by second order nodal shape function, and the 3D vector potentials, like ~A, ~T0

have been approximated by second order edge shape function in this study.

5.1.3 Finite Element Simulation

The next step in FEM simulations is solving the problem. The FEM equations, based
on the weak formulations [6,10–13,16], must be set up in the level of one finite element,
then these equations must be assembled through the FEM mesh. Assembling means
that the global system of equations is built up, which solution is the approximation of
the introduced potential. The obtained global system of algebraic equations is linear,
depending on the medium to be analyzed. Then this global system of equations must
be solved by a solver. The computation may contain iteration, if the constitutive rela-
tions are nonlinear. This is the situation when simulating ferromagnetic materials with
nonlinear characteristics. Iteration means that the system of equations must be set up
and must be solved step by step until convergence is reached.

If the constitutive relations are nonlinear, the numerical computations were per-
formed using computer programs developed under MATLAB environment using the
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Fig. 5.10: One part of the script of the fixed point technique.

COMSOL script language. Fig. 5.10 shows one part of the nonlinear iteration script of
the fixed point technique.

A. Solvers

Generally, computation programs take into account the symmetry of the global matrix,
and storing only the half of this matrix in the memory, because the system matrix S is
symmetrical.

In the two-dimensional linear ~A - potential formulation, the vector potential function
~A has been approximated by nodal shape function, i.e. the problem based on nodal finite
elements have been solved by the direct solver UMFPACK (Unsymmetric MultiFrontal
PACKage) solver [40, 42]. The nonlinear problem has been solved by the direct solver
SPOOLES (SParse Object Oriented Linear Equations Solver) [40, 43].

In the three-dimensional ~A - potential formulation, the current density ~J0 of winding
has been represented by the impressed current vector potential ~T0 approximated by edge
shape functions. The edge shape functions have been approximated by vector elements,
and the iterative solver GMRES (Generalized Minimum Residual Method) solver [40,44]
with SSOR (Symmetric Successive Over-Relaxation) preconditioner [40, 45] has been
applied. In Fig. 5.11 the normalized impressed current vector potential in the whole
problem and in the magnetic bearing can be seen. In the three-dimensional case, the
approximated vector potential function ~A has been solved by the direct solver SPOOLES
(SParse Object Oriented Linear Equations Solver) with linear and nonlinear ~B - ~H
relationship. This solver used, because of the UMFPACK has been used much more
memory than the SPOOLES, and as mentioned above, the number of unknowns in 3D,
is more than 2D.
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(a) The normalized ~T0 in the whole
problem.

(b) The normalized ~T0 in the radial magnetic
bearing.

Fig. 5.11: Representation of the impressed current vector potential ~T0.

The FEMM software has been used the Succesive Approximation [9, 41] in linear
case. In nonlinear case, the Conjugate Gradient [23, 41] with Newton-Raphson method
has been used.

5.1.4 Postprocessing

The result of computations is the approximated potential values in the FEM mesh. Any
electromagnetic field quantity (e.g. magnetic field intensity, magnetic flux density, etc.)
can be calculated by using the potentials at the postprocessing stage. Loss, inductance,
energy, force and other quantities can also be calculated. The postprocessing gives a
chance to modify the geometry, the material parameters or the FEM mesh to get more
accurate result.

In the ~A - formulation the magnetic flux density ~B is the primer quantity. The primer
quantity coupled with e.g. constitutive relations gives the other quantities.

This section deals with the determination of the flux linkage and the electromagnetic
force of the radial magnetic bearing in 2D and 3D.

A. Flux Linkage

The flux linkage Ψ is more useable in electrical machines (e.g. induction motor) than
the flux Φ.

The definition of flux Φ: the surface integral of the perpendicular component of flux
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Fig. 5.12: The computation of flux linkage of magnetic bearing.

lines throught an arbitrary area is the flux [7–9,12, 15]:

Φ =

∫

S

~B · d~S, (5.1)

namely the flux is given if the induction vector is integrated over the surface.
If the winding comprises Nw turns, and Φ flux lines link with each turn, the product

NwΦ is called flux linkage [7–9, 12, 15, 46], i.e.

Ψ = Nw Φ = Nw

∫

S

~B · d~S, (5.2)

where Nw the number of turns of winding. After using the Stokes’ theorem, the following
equation can be obtained:

Ψ = Nw

∫

S

~B · d~S = Nw

∫

S

(∇× ~A) · d~S = Nw

∮

l

~A · d~l, (5.3)

i.e. a line integral around the contour ~l of the surface ~S. This is shown in Fig. 5.12.
However, the contribution of the ends to the integral zero, and the vector potential is
constant in the axial direction. Thus, we have in 2D [12] :

Φ12 = L (A1 − A2) ⇒ Ψ = Nw L (A1 − A2), (5.4)
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where L is the axial lenght of the bearing, which equals the equivalent core lenght of the
bearing. The A1 and A2 denote the average values of the magnetic vector potential for
the particular coil-end.

In the three-dimensional problem the equation (5.2) has been used the flux linkage
computation.

B. Electromagnetic Force

A precise analysis of a radial magnetic bearing requires the study of the interaction
between mechanical and electrical quantities. The electromagnetic force plays a funda-
mental role in the corresponding energy conversation.

There are different methods, based in several formulations, to evaulate the force.
One of these method the Maxwell’s stress tensor method [9, 12, 17, 35, 47–49]. This is
commonly used in the calculation of forces and torques in the numerical analysis of
electrical devices.

The electromagnetic force is obtained as a surface integral, but in two-dimensional
case the surface integral is reduced to a line integral along the air gap.

For the practical application of Maxwell’s stress tensor, suppose that the magnetic
field intensity ~H is known on the surface S enclosing the rotor. It is also required that
this body is located in air or within a material with permeability µ = µ0. Fig. 5.13
shows the magnetic bearing, where Γ is a line along the air gap, ~n is a unit vector. In
3D the Γ line is the S surface. The right hand side of Fig. 5.13 shows the force effect of
an arbitrary elementary surface.

In the linear, isotropic material the matrix form of the Maxwell’s stress tensor is the
following [7, 8, 12, 15]

¯̄Tm = ~H ◦ ~B − 1

2
( ~H ~B)1 =

∣

∣

∣

∣

∣

∣

µH2
x − 1

2
µH2 µHxHy µHxHz

µHyHx µH2
y − 1

2
µH2 µHyHz

µHzHx µHzHy µH2
z − 1

2
µH2

∣

∣

∣

∣

∣

∣

, (5.5)

where ¯̄Tm is a Maxwell’s stress tensor, ~H ◦ ~B is a dyadic multiplication of the two vectors
~H and ~B, while 1 is a unit dyad (third-order identity matrix). From the formula (5.5),
the force on the arbitrary oriented surface is the following:

~σ = ¯̄Tm · ~n = µ0( ~H · ~n) ~H − 2µ0H
2~n, (5.6)

Fig. 5.13: The rotor under magnetic field surrounded by the surface Γ and the vector
diagram of ~σ stress tensor.
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where ~σ is the force, ~H is the magnetic field intensity, H = | ~H| is the length of the
magnetic field intensity vector and ~n is the unit normal vector of the arbitrary oriented
surface (see in Fig. 5.13).

Substituting the relation ~H = 1/µ0
~B into the equation (5.6) results in

~σ =
1

µ0

( ~B · ~n) ~B − 1

2µ0

B2~n, (5.7)

where ~B is the magnetic flux density and B = | ~B| is the length of the magnetic flux
density vector.

In the three-dimensional model the electromagnetic force is obtained as a surface
integral over the surface in the airgap, around the rotor as [9, 12, 35, 47, 48]:

~F =

∮

S

~σ dS =

∮

S

[

1

µ0

( ~B · ~n) ~B − 1

2µ0

B2~n

]

dS. (5.8)

In the two-dimensional case the surface integral is reduced to a line integral along
the air gap. In Fig. 5.13 shows this line as Γ. The formula of electromagnetic force in
two dimensions is [9, 12, 17, 47, 48]:

~F = L

∫

Γ

~σ dΓ = L

∫

Γ

[

1

µ0

( ~B · ~n) ~B − 1

2µ0

B2~n

]

dΓ, (5.9)

where L is the axial length (the equivalent core lenght of the bearing). The axial length
is L = 49.21 mm.
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Chapter 6

Numerical Optimization

Design of the radial magnetic bearing with the electromagnetic force over a given geom-
etry parameters range is an example of an optimization problem. Rather than finding
a single solution, optimization implies finding many solutions then selecting the best
one. Optimization is an inherently slow, difficult procedure, but it is extremely useful
when well done. The difficult problem of optimizing an electromagnetics design has only
recently received extensive attention.

Usually the problem has a lot of local minima and only one global minima or local
maxima and global maximum, it is depends to the problem. The optimization methods
usually have been found a local minimum, and rarely the first global minimum. This is
why very difficult to find the global minimum and very slowly the optimization procedure.

Different type optimization methods and its modifications has been used in the en-
gineering sciences. Basicly, the genetic algorithm and its modifications have been used
in geometry optimization technique in the machine design [4, 51, 52], however, there are
a lot of another optimization techniques for the geometry design. One of these meth-
ods is the Nelder-Mead simplex search method (downhill simplex method or amoeba
method) [53–59], which is a commonly used nonlinear optimization technique.

In this work the well known brute-force search and the above mentioned Nelder-Mead
method have been used combining it with the finite element method for the geometry
optimization of magnetic bearing.

Brute-force search is also useful as a basic method when benchmarking other algo-
rithms, than now. The brute-force or exhaustive search combined with finite element
analysis one of the simplest numerical way of the numerical geometry design. This
problem-solving technique that consists of systematically enumerating all possible can-
didates for the solution and checking whether each candidate satisfies the statement of
the problem. This method is simple to implement, and always found the solution. How-
ever, its computational cost is grow very quickly as the size of the problem increases,
thus very slow.

First, in the next section the Nelder-Mead method presented, and after this the short
description of the finite element based optimization for the magnetic bearing problem.
In the end of this chapter the results of optimizations are presented and compared.
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6.1 Nelder-Mead Simplex Search Algorithm

A Nelder-Mead simplex optimization algorithm is used in order to optimize the objective
function. The simplex algorithm does not need a derivative, only a numerical evaluation
of the objective function is required [53–59]. However, the convergence of the Nelder-
Mead method is extremely sensitive to the selected starting point [55].

Its starting point is a simplex of dimension n + 1 where n is the dimension of the
problem. A simplex is a Euclidean geometric spatial element having the minimum
number of boundary points, such as a line segment in one-dimensional space, a tri-
angle in two-dimensional space or a tetrahedron in three-dimensional space. The algo-
rithm can be implemented in n variables (n-dimensional), where simplex is a hypercube
with n + 1 vertex points. At every point the objective function is evaluated such as:
f(x1) < f(x2) < · · · < f(xn+1). The point where f(xi) is the highest numerical value
(worst vertex) of all three points is perpendicularly mirrored against the opposite plain
segment. This called a reflection. The reflection can be accompanied with an expansion
to take large steps or with a contraction to shrink the simplex where an optimization
valley floor is reached. The optmization procedure continues until the termination cri-
teria are met. The termination criterion is usually the maximum number of reflections
with contractions or a tolerance for optimization variables [54, 56, 57].

In the next, the effect of the different operations of Nelder-Mead method are pre-
sented for a two-dimensional function based on [54, 57] as you can see Fig. 6.1.

The Initial Trinagle

Let be f(x, y) the two-dimensional function that is to be minimize. Let gives the three
vertices of a trinagle such as: B = (x1, y1), G = (x2, y2), W = (x3, y3), where B is the
best vertex, G is a good vertex, W is a worst vertex.

① Midpoint of the Good Side: The construction process uses the midpoint of the line
segment joining B and G. It is found by averaging the coordinates:

M =
B + G

2
=

(

x1 + x2

2
,
y1 + y2

2

)

. (6.1)

② Reflection: The function decreases when move along the side of the trinagle from
W to B, and from W to G. Hence it is feasible that f(x, y) takes on smaller values
at points that lie away from W on the opposite side on the line between B and
G. Let choose the test point R (Reflection). To determine R, we first find the
midpoint M. The draw the line segment from W to M and call its length d. This
last segment is extended a distance d throught M to locate the point R (see Fig.
6.1(a)). The vector formula of reflection:

R = M + (M− W) = 2M− W. (6.2)

③ Expansion: If the function value of R is smaller than the function value at W,
then we have moved in the correct direction toward the minimum. Perhaps the
minimum just a bit farther than the point R. So we extended the line segment
through M and R to the point E (Expansion) (see Fig. 6.1(b)). This form an
expanded triangle BGE. The point E is found by moving an additional distance
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d along the line joining M and R. If the function value at E is less than the
function value at R, then E is a better vertex point than R. The vector formula
of expansion:

E = R + (R −M) = 2R− M. (6.3)

④ Contraction: If the R and W vertex points are the same, another point must be
tested. Perhaps the function is smaller at M, but cannot replace W with M,
because it must have a trinagle. Consider the two midpoint C1 and C2 of the line
segments WM and MR respectively. The point with the smaller function value is
called C (Contraction), and the new trinagle is BGC (see Fig. 6.1(c)). If C=C1,
this is the inside contraction, if C=C2 is the outside contraction.

⑤ Shrink: If the function value at C is not less than the value at W, the points G

and W must be shrunk toward B (see Fig. 6.1(d)). The point G is replaced with
M, and W is replaced with S, which is the midpoint of the line segment joining B

with W.

A computation efficient algorithm should perform function evaluation only it needed.

(a) Reflection. (b) Expansion.

(c) Contraction. (d) Shrink.

Fig. 6.1: Main operations of Nelder-Mead algorithm for a two-dimensional problem.
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In each step, a new vertex is found, which replaces W. The basic of used MATLAB
program code of Nelder-Mead simplex method for a bi-dimensional function can be
found in [54]

6.2 The FEM-Based Numerical Optimization

In this problem the n number of variables is five, i.e. the simplex is a hypercube with six
vertex. The variables are the geometry parameters of magnetic bearing, the stator inner
radius rc, the stator yoke sy, the rotor yoke ry, the leg width w and the axial length L.
This can be seen in Fig. 6.2.

The design of the radial magnetic bearing should satify the required performances and
design contraints. The values which Table 6.1 presents are determined by an analytical
approach and several empirically determined geometrical parameters. The numerical
implementation of the equations and the relations of the analytical approach are very
easy. The analytical approach is not present in this work, because not enough space
and not of this main theme of this thesis. The analytical approach is based on the next
publications, [4, 50, 60–62].

The assumptions that give rise to the error of analytical obtained results, but ana-
lytical results are very useful as initial design condition for the numerical optimization
of the magnetic bearing geometry. The initial conditions of the numerical optimization
methods shown in Table 6.1 have been used. The maximal bearing force ~Fmax is reached,
when the currents I2 = 10A , I1 = 0.

The FEM-based numerical optimizations described in the following steps:

• The geometry of the bearing is described parametrically and the initial parameter
values. The bearing geometry parameters are: the stator inner radius rc and stator

Fig. 6.2: The optimized paramater of the magnetic bearing.
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Table 6.1: Required Performances and Design Contrains.

Parameters Value

Maximal bearing force ~Fmax [N] 780

Root mean square load force ~FRMS [N] 250
Nominal air gap g0 [mm] 0.5

Maximal stator radius rs,max [mm] 75
Shaft radius rs [mm] 7.5
Bias current I0 [A] 5

yoke sy the rotor yoke ry, the leg width w (all shown in Fig. 6.2) and the bearing
axial length L.

• The new parameter values are determined by the optimization method. The rotor
position is at the bearing centre (x = 0, y = 0). The electromagnets are supplied
in such a way that the RMS (root mean square) force is reached, i.e. by currents
I2 = 5A , I1 = 0.

• The bearing geometry, the material, the source current density and the boundary
condition are defined. The procedure continues with Step 2 if the parameters of
the bearing are outside the geometrical constraints.

• First, the FEM mesh is generated. Then the nonlinear solution of the magnetic
vector potential by the 2D FEM computation is obtained using UMFPACK (Un-
symmetric MultiFrontal PACKage) solver and Newton-Raphson method.

• The electromagnetic force is calculated by Maxwell’s stress tensor method, (5.9).

• The value of the objective function is minimized in the optimization procedure.
The optimization proceeds with Step 2 until the termination criteria is reached or
found the best geometrical parameter values.

These steps have been used the brute-force search and the Nelder-Mead method
combined by finite element method in the numerical geometry design of radial AMB.
These steps shows the geometry optimization with nonlinear materials, but in the linear
case only the forth step is difference. In linear case the solution of the magnetic vector
potential by the 2D FEM computation is obtained using UMFPACK.

6.3 Optimization Results

Table 6.2 presents a comparison between geometry parameter values of the analytical,
the brute-force (BF) search and the Nelder-Mead (NM) method. All design parameters
are rounded off to one hundredth of a millimetre. The initial values are obtained from
the analytical computation.

In linear case, the axial length is smaller when applying the brute-force search, and at
the same time, the stator radius, stator yoke and leg width is smaller in the case of NM
technique. The computation time of the Nelder-Mead method is far smaller, 3570 sec
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Table 6.2: Data of the Optimized Design Parameters.

Parameters Initial value Linear Nonlinear
BF NM BF NM

Stator radius rs [mm] 82.0 75.0 72.04 75.00 71.09
Stator yoke sy [mm] 24.0 23.0 20.40 23.00 17.81
Rotor yoke ry [mm] 30.5 24.5 24.50 24.50 25.73
Leg width w [mm] 26.0 25.0 21.80 23.10 21.26

Axial length L [mm] 52.0 40.0 46.10 51.65 49.21

Maximal bearing force ~Fmax [N] 780 830 806 783 780.3

than brute-force search computation time, 491820 sec. The Nelder-Mead method after
81 iterations found the solution, while the brute-force method has been repeated 138932
times, i.e. 44 and 3.54 second one itereration of the Nelder-Mead and the brute-force
search method, respectively.

In nonlinear case, the rotor yoke is smaller when applying the brute-force search, and
at the same time, the stator radius, stator yoke, leg width and axial length is smaller
in the case of NM technique. Furthermore, the computation time of the Nelder-Mead
method is far smaller, 14207 sec than brute-force search computation time, 240086 sec.
The Nelder-Mead method after 209 iterations found the solution, while the brute-force
method has been repeated 47190 times. One iteration of the NM method is nearly 68
second, and of the brute-force seatch is 5.08 second.

In linear and nonlinear case, the time of one iteration of NM method is larger, than
brute-force search, however the number of iterations of NM method is less than the
number of iterations of other method, namely the total computation time of NM method
is much smaller, than BF search.

(a) Linear brute-force search. (b) Linear Nelder-Mead algorithm.

Fig. 6.3: Field plot of the result of the optimization methods in linear case.
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(a) Nonlinear brute-force search. (b) Nonlinear Nelder-Mead algorithm.

Fig. 6.4: Field plot of the result of the optimization methods in nonlinear case.

The results of the brute-force search method and Nelder-Mead optimization algo-
rithm are illustrated in Fig. 6.3 and Fig. 6.4, respectively. These figures show the
computed equipotential lines of the magnetic vector potential and surface distribution
of the magnetic flux density in the radial magnetic bearing.

The further FEM simulations and analyses the forth magnetic bearing geometry has
been used (see in Fig. 6.4(b)), which has been optimized by the Nelder-Mead algorithm
with nonlinear media. On the whole, the geometry parameters of this bearing geometry
is the best, because three geometry parameters is the smallest at this bearing, than the
initial values, for example the rs outer radius.
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Chapter 7

Analytic Analysis of the Force

Faraday imagined that the effect of each magnet on the other could be represented
by lines of magnetic force (i.e. magnetic field line) and that the attractive force was
equivalent tension force along these lines. Thus one replaces the force acting between
the bodies by stresses acting in the field between them. The total force on the surface
given by the integration of these stresses over the S surface [1, 2, 61]:

~F ≈
∫

S

| ~B|2
2µ0

d~S, (7.1)

where ~B is the magnetic flux density and | ~B| is the length of the magnetic flux density
vector.

This approximation is fine if the rotor material is highly permeable. The source of
error comes from that component of the magnetic field which is not orthogonal to the
surface of the ferromagnetic body.

The analytic calculation of these force is based on the lumped model of force. In the
assumption, the S surface can be broken into a small parts, and ~B is constant in each
of these parts [1, 2, 61],

~F ≈ 1

2µ0

a
∑

i=1

B2
i

~Si, (7.2)

where ~Si is the outer normal vector of the ith small part with magnitude equal to its
area.

The analysis of force is generally performed using a fairly simple one-dimensional
representation of the magnetic structure of the bearing. This approach is referred to
as magnetic circuit analysis. Analogue to electrical circuit analysis [63], the approach
simulates the iron elements as essentially waveguides from the magnetic fields established
by the windings of magnetic bearing.

As such, this analysis tends to miss some effect, especially that part of the magnetic
field which lies outside of the iron of the magnetic bearing. It also assumes field unifor-
mity within large elements of the bearing. By making the assumptions that give rise to
these errors, the analysis becomes very simple and quick, making it suitable for analytic
evaluation and rapid design iteration. However, the predictions made with a magnetic
circuit analysis have to be checked using a more detailed approach like finite element
analysis [1, 61].
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7.1 Lumped Model of Force

The analytical analysis of the force is based on the loop and node method [50, 61]. The
first step is identified the nl independent flux loops and independent flux conservation
nodes nn. The number of independent equations is nl + nn = ne. This is shown in Fig.
7.1.

Fig. 7.1: Independent loops and nodes of Y-shaped magnetic bearing.

The number of independent loops is nl=4 (denoted by line in Fig 7.1). The four
independent loop equations are the following [50]:

−B2

g2

µ0

− B2

l2
µ0µr

+ B5

l5
µ0µr

+ B3

g3

µ0

+ B3

l3
µ0µr

+ B8

l8
µ0µr

= Nw2I2 − Nw3I3, (7.3)

−B3

g3

µ0

− B3

l3
µ0µr

+ B6

l6
µ0µr

+ B1

g1

µ0

+ B1

l1
µ0µr

+ B9

l9
µ0µr

= Nw3I3 − Nw1I1, (7.4)

B4

l4
µ0µr

+ B5

l6
µ0µr

+ B6

l6
µ0µr

= 0, (7.5)

B7

l7
µ0µr

+ B8

l8
µ0µr

+ B9

l9
µ0µr

= 0, (7.6)

where Bi is the unknown magnetic flux desnity value, gj are the air gaps, li is the flux
flow length of the iron part, Nwj is the number of turns of winding and Ij is the current
(i = 1, . . . , 9, j = 1, 2, 3).

The determinantion of the nine unknowns magnetic flux Bi (i = 1, . . . , 9) into the
system of equations consist of nine equations. This is why the five independent flux

45



Dániel Marcsa, M.Sc. Thesis 2010

conservation nodes are needed. The independent flux conservation nodes denoted by
point in Fig. 7.1. The node equations are the following [50]:

−B1S1 − B7S7 + B9S9 = 0, (7.7)

−B2S2 − B8S8 + B7S7 = 0, (7.8)

−B3S3 − B9S9 + B8S8 = 0, (7.9)

−B6S6 + B4S4 + B1S1 = 0, (7.10)

−B4S4 + B2S2 + B5S5 = 0, (7.11)

where Si is a surface patch, where the magnetic flux density assumed to be constant, e.g.
S1 = L · w1, where L is the axial length and w1 is the width of Pole # 1 (i = 1, . . . , 9).

Summerize the loop and node equations in the form of R impedance and N linkage
matrices [50, 61]:

R =
1

µ0































0 −g2 − l2
µr

g3 + l3
µr

0 l5
µr

0 0 l8
µr

0

g1 + l1
µr

0 −g3 − l3
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0 0 l6
µr

0 0 l9
µr

0 0 0 l4
µr

l5
µr

l6
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0 0 0

0 0 0 0 0 0 l7
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l8
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l9
µr
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0 −S2 0 0 0 0 S7 −S8 0
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S1 0 0 S4 0 −S6 0 0 0
0 S2 0 −S4 S5 0 0 0 0
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0





























From the R impedance matrix emphasized the 1/µ0, because the division by µ0 does
not change the value of node equations.

The unknowns magnetic fluxes gives the following matrix equation [50, 61]:

B = R−1N I , (7.14)

where B is the column vector of unknown magnetic fluxes, I is the column vector of
currents and R−1 is the inverse of R impedance matrix.

After these, the Ax and Ay force summation matrices must be constructed. Fig. 7.2
shows the forces generated by the electromagnets of bearing. The force F 2 and force F 3
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Fig. 7.2: The force vectors and its components of magnetic bearing.

must be decomposed into the x and y components. These components are very easy to
determine by the sine and cosine function.

The x directed force can be generated by the second and the third pole. These forces
are taken in the properly place in the Ax matrix, like the Fx2 force take in the second
column of the second row:

Ax =
1

2µ0





























0 0 0 0 0 0 0 0 0
0 −S2 cos(30◦) 0 0 0 0 0 0 0
0 0 S3 cos(30◦) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























The Ay matrix contain the y components of the force:

Ay =
1

2µ0





























−S1 0 0 0 0 0 0 0 0
0 S2 sin(30◦) 0 0 0 0 0 0 0
0 0 S3 sin(30◦) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





























The 1/2µ0 term is needed because of the equation (7.2). The matrix equations of the x
and y components of the force are the following [50, 61]:
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fx = BTAxB , (7.17)

fy = BTAyB , (7.18)

where BT is the transposed of the B matrix. Furtermore, here fx and fy are the scalar
value.

The next step is establish the relationship between the air gaps and the rotor posi-
tions. The relationships are the follows [50, 61]:

g1 = g0 + y, (7.19)

g2 = g0 + cos(30◦)x − sin(30◦)y, (7.20)

g3 = g0 − cos(30◦)x− sin(30◦)y, (7.21)

where g0 is a nominal air gap, x and y is the excursion of the rotor in the x, y direction.
Lets take some simplification the above defined matrices. That the areas are equal

at the poles S1 = S2 = S3 = SI , at the rotor S4 = S5 = S6 = SII and at the stator
S7 = S8 = S9 = SIII . Further, the coils all have the same number of turns Nw1 =
Nw2 = Nw3 = Nw. Finally, that the iron length in the back iron is same at the poles
l1 = l2 = l3 = lI , at the rotor l4 = l5 = l6 = lII and at the stator l7 = l8 = l9 = lIII .
However, these equalities is not unconditionally in the magteic bearing. For example,
the turns of windings are not same or the area of poles are different.

Forasmuch, the number of turns are the same, hence the Nw emphasize from the N
linkage matrix:

N = Nw
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−1 0 1
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0 0 0
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The Ax and Ay force summation matrices are possible simplifying. The SI term
and the reults of the sine and cosine function (cos(30◦) =

√
3/2 and sin(30◦) = 1/2)

emphasize from the matrices:

Ax =
SI

√
3

4µ0
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Ay =
SI

4µ0
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The I current vectors is define as the follows:

I = CÎ = C





iex
iey
ib





where Ib is the bias current, iex is the control current of x direction and iey is the conrtol
current of y direction, respectively. The C current selection materix is the following [50]:

C =





0 1 0
cos(30◦) − sin(30◦) 1
− cos(30◦) − sin(30◦) −1





which is unequivocally results from the Ax and Ay matrix.
The matrix equations of the forces substitute the equation (7.14) into the equation

(7.17) and into the equation (7.18) are the followings [50, 61]:

fx = I TN T R−TAx R−1N I , (7.27)

fy = I TN TR−TAy R−1N I . (7.28)

From these equations the forces can be easily determined. If according the geometry
parameters of radial bearing, because the forces are the only unknowns in these relations.

The equations which are presented in this chapter are very easy and fast to im-
plemented in a computer procedure or script like into MATLAB function [39]. The
implemented script is very useful in the geometry optimisation of the magnetic bear-
ing. However, the simplifications of the equations necessary check the result by a more
detailed approach like finite element analysis.
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Chapter 8

Solution of the Problem

The above sections show the used potential formulation, and its weak formulation, the
used nonlinear equation solvers and the computation of the secondary quantities, like
flux linkage and electromagnetic force in two and three dimensions.

After the problem solution, the results evaluation, visualization, e.g. the postpro-
cessing follow. In this chapter the results of simulations have been comapared with each
other. First, the linear, after the nonlinear results are introduced. For the comparison of
the two- and three-dimensional results, the value of magnetic flux density along the line
inside the simulated magnetic bearing. The computed flux linkage and electromagnetic
force are represent the function of current and of the displacement of the rotor. The flux
linkage and electromagnetic force, which are computed by the 2D finite element software,
FEMM as a two-dimensional reference solution have been compared, too. Further, the
numerically computed electromagnetic force has been compared by an analytical one.

The main principles of the analytical force computation, which based on the loop
and node method are presented in chapter 7. Further information about this method
can be found in [50, 61].

The results have been compared only the linear region of the single-valued nonlinear
curve (see in Fig. 4.1), e.g. I2,max = 5A. The simulations in the linear range is enough,
because the magnetic bearing is mainly operated in this range. In the saturation part of
nonlinear curve is not too advantageous used the AMB, because the losses of bearing is
increased, and the bearing load force is saturated.

Furthermore, studied the difference of the two- and three-dimensional results, because
of the end-region field effect of this short axial length magnetic bearing. If the 2D and
3D results will show a good agreement, its enough the two-dimensional simulation of
this bearing, and the 2D optimisation is correct.

8.1 Results of the Linear Simulations

In this section the linear simulation results are presented, as well as the computing
quantities of the radial magnetic bearing by some field plot and figures to compare the
different results.

First, the primary quantity is studied, e.g. the magnetic flux desity ~B. After the
primary quantity, the computed flux linkage has been compared. The flux linkage results
by the FEMM has been used as a reference, because this quantity has been computed
automatically. Finally, one of the most important quantity of magnetic bearings, the
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electromagnetic force have been compared. The numerical computed force is compared
with the analytical computed force.

(a) The line, where shows the
magnetic flux density.
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(b) The value of the magnetic flux density.

Fig. 8.1: The magnetic flux density inside the magnetic bearing.

(a) Two-dimensional linear case. (b) Three-dimensional linear case.

Fig. 8.2: The surface plot and vectors of magnetic flux density inside the magnetic
bearing with linear material.
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The line, where shows the value of magnetic flux density can be seen in Fig. 8.1(a).
The primary quantity is compared along this line, because in this case, its shows the
value of magnetic flux density inside the rotor, the pole and the stator. Fig. 8.1(b)
shows the magnetic flux density along the line inside the radial bearing. The value of
magnetic flux density nearly same in the figure in 2D and 3D case.

The magnetic flux density distribution and magnetic flux density vectors inside the
magnetic bearing can be seen in Fig. 8.2. In this case, the exitation of the windings is the
bias current, i.e. I2=5A. The scale of figures are not same in 2D and 3D, because the flux
density is higher in 2D. The main reason of it can be that the third dimension is neglected.
In this simulation the length of the third dimension (z-axis) has been considered infinite.
This infinite z-length has been resulted the variant behavior of magnetic flux in the
corner of connection of pole and stator. If the maximum of the scale of Fig. 8.2(a) is
set 2.126 T, then the flux distribution is same in the two cases. This shows the Fig. 8.3.
The distribution and vectors of magnetic field intensity ~H are same, because in this case
has been linear relation between ~B and ~H, (µr=3000).

The reults of computed flux linkage are presented the next figures. Fig. 8.4 shows
the flux linkage in linear computations. In this case, the rotor is in the center position of
the bearing, i.e. the air gap is nominal, g0= 0.5 mm. In this figure the two finite element
approaches (2D and FEMM) are practically the same. The difference between the 3D
finite element and the two 2D finite element results is increasing with the increase of

(a) Two-dimensional linear case. (b) Three-dimensional linear case.

Fig. 8.3: The surface plot of magnetic flux density inside the magnetic bearing at same
maximum value of the scale.
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Fig. 8.4: The flux linkage - current characteristic at nominal air gap.

current of winding. Nevertheless, the maximum of the difference between 2D and 3D
results is less than 5% at I2=5A. Thus, adequatly good the two-dimensional results for
this quantity.

In the further figures, Fig. 8.5, Fig. 8.6 and Fig. 8.7 the flux linkage the function
of the displacement of the rotor and of the variation of windings’ current shows. The
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Fig. 8.5: The flux linkage the function of the y-directed displacement of the rotor and of
the variation of the current in two-dimensional case.
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Fig. 8.6: The flux linkage the function of the y-directed displacement of the rotor and of
the variation of the current in three-dimensional case.
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Fig. 8.7: The flux linkage the function of the y-directed displacement of the rotor and of
the variation of the current by the FEMM.

displacement of the rotor is the y-direction displacement. In these figures shows same
results as an above mentioned. The computed flux linkage is a little bit higher in three

54



Dániel Marcsa, M.Sc. Thesis 2010

0 1 2 3 4 5
0

60

120

180

240

300

Current [A]

F
or

ce
 [N

]

 

 

2D
3D
FEMM
Analytic

Fig. 8.8: The electromagnetic force - current characteristic at nominal air gap.

dimensions, than in two dimensions, and the 2D and FEMM results seems to be equal at
all currents and rotor positions. The maximum of difference is less than 5%. The main
reason of the difference of the 2D and 3D results can be that in the 3D case the whole
winding simulated, whereas in 2D case the windings are infinite, and the end windings
has been neglected. However, the results of flux linkage shows good agreement between
2D and 3D FEM computations.

After flux linkage, the next is the presentation and comparison of the results of the
computed electromagnetic force. The electromagnetic force the function of the current
can be seen in Fig. 8.8. In this figure, the forces have reference to the rotor center
position. This figure shows the three numerical computation results and in additon to the
analytical results, too. The two-dimensional (2D) and the FEMM results are the same,
because the black circles which are presented the FEMM results are perfectly accomodate
to the blue line, the results of the two-dimensional computation. The electromagnetic
force of 3D computation is a quiet larger than at the flux linkage. However, the difference
of the 2D and 3D results at this quantity is not higher than 5% at the used current range
of the simulations. Furthermore, the difference between the curve of analytic results
and of FEM results is much higher, and the difference is decreased when the current
becomes higher. The maximum of the difference is less than 15%. Thus, the analytical
computation is perfect and suitable for the evaluation of the electromagnetic force of the
bearing and quick design iteration. However, than the figure is shows, necessary a more
accurate computation for the magnetic field intensity or the electromagnetic force, like
finite element analysis after the analytical computations.

Fig. 8.9, Fig. 8.10, Fig. 8.11, Fig. 8.12 show the flux linkage the function of
the y-directed displacement of the rotor and of the variation of current of windings.
The results in Fig. 8.9 and Fig. 8.11 are practically same, because the difference of
the two-dimensional finite element computations is less than 1%. The difference of
three-dimensional and two-dimensional computations is less than 5%, which difference is
acceptable in the case of numerical calculation methods. However, the correctness of the

55



Dániel Marcsa, M.Sc. Thesis 2010

analytical results in this case is worse. The reason of this the motion of the rotor, because
the analytical matrix equations are can not be correctly described the physical meaning
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Fig. 8.9: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current in two-dimensional case.
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Fig. 8.10: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of current in three-dimensional case.
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of the motion. The maximal difference of the analytical and the 3D finite element results
is 28.3%.
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Fig. 8.11: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current by the FEMM.
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Fig. 8.12: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current by the analytic computation.
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The difference of the computed quatities of the two-dimensional and three-dimensional
finite element analyses is less than 5% with linear ~B - ~H relationship. Thus, its enough
the 2D FEM computation for the magnetic bearing analysis in the linear case.

8.2 Results of the Nonlinear Simulations

In this section the results of the nonlinear computations have been presented and com-
pared. However, ere the primary and secondary quantities have been presented, the
nonlinear equation solvers, the Newton-Raphson method and the fixed point technique
have been compared. The comparison is focused on the number of iterations, the con-
vergence and the computation time of the nonlinear equation solvers.

Table 8.1 presents the computation time consumption and the number of iterations
of the used nonlinear equation solvers. The values which presents the table shows that
one case when the rotor is fixed in the bearing centre. The comparison of the time
consumption is not feasible. In the table, at I2=0A current the computation time of
one fixed point iteration is nearly hundred times bigger than the time of one iteration of
Newton-Raphson method. This great difference in the time is follow from the number of
unknowns. The fixed point technique is solved a more larger equation system, because
of the number of unknowns is higher in the three-dimansional case (see in section 5.1.1.).

Furthermore, the impressed current vector potential ~T0 has been computed when the
edge element based ~A - formulation with fixed point technique is applied, and this add
about 25s in every computation turn. However, it is possible to conclude the speed and
the computation time from the number of iteration. If the time of one iteration is the
same in the two methods, the Newton-Raphson technique is faster, because of the less
iteration number.

The number of iterations of the techniques is comparable. The number of iterations

Table 8.1: The computation time and the number of iterations of the nonlinear equation
solvers.

Newton-Raphson Fixed point
method technique

Current Number of Time Number of Time
[A] iterations [s] iterations [s]
0.0 1 0.900 1 114.27
0.5 2 1.625 14 1649.696
1.0 2 1.589 14 1625.487
1.5 2 1.741 14 1630.848
2.0 3 2.245 14 1640.902
2.5 5 3.653 14 1649.973
3.0 6 4.761 14 1664.150
3.5 7 5.123 14 1653.296
4.0 8 6.192 14 1633.527
4.5 9 6.696 19 2203.341
5.0 9 6.830 65 7595.440
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Fig. 8.13: The relative tolerance the function of the number of iterations at I2=5A
current.

of Newton-Raphson method is progressively increased with increasing with the current.
As against of it, the number of iterations of fixed point method almost 14, only the first
and the last two numbers of iterations are different. At the last two, mainly at the last
current value I2=5A, the number of iterations is shows why Newton-Raphson technique
is used. If necessary a fast nonlinear equation solver, this method usually few iterations
are required for adequate precision. Whereas, the fixed point method is slower, lot of
iterations are needed for the adequate precision, however the convergence is more stable
than in the case of Newton-Rapshon method.

The relative tolerance the function of the number of iterations can be seen in Fig.
8.13, at the simulation where the current is I2=5A. The computation formulas of the
relative tolerance are presented in the used nonlinear equation solver methods in the
chapter 4. This figure also shows the convergent of fixed point technique, and it is much
slower than the other method. The fixed point method after 65 iterations achieved the
predefined error (ε=10−6), it is due to the error is slower decreased at a single iteration.
The relative tolerant curve of Newton-Raphson method shows the quadratic convergence
i.e. the quadratically decreased the error.

The left hand side in the figure of the Fig 8.14 shows the line, where studied the
value of magnetic flux density inside the magnetic bearing. The value of magnetic flux
density along the line in Fig. 8.14(b) shows a better agreement than in linear case (see
in Fig. 8.1(b)). This good agreement can be seen the next figure, the Fig. 8.15 as well.

The magnetic flux density distribution and magnetic flux density vectors inside the
magnetic bearing can be seen in Fig. 8.15 at the simulation with I2=5A. The above
mentioned good agreement shows this field plot figures, because the magnetic flux density
distribution of the two figures (8.15(a) and 8.15(b)) are perfectly same. This is verified
in the scale of the figures, where the maxima are nearly same, Bmax ≈1.42T. The length
of the magnetic flux vectors are almost same in the same parts of the magnetic bearing.

After the primary quantity ~B, the next is the presentation and comparison of the
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Fig. 8.14: The magnetic flux density inside the magnetic bearing.

(a) Two-dimensional nonlinear case. (b) Three-dimensional nonlinear case.

Fig. 8.15: The surface plot and vectors of magnetic flux density inside the magnetic
bearing with nonlinear material.

secondary quantities again, the flux linkage and the electromagnetic force of the radial
magnetic bearing.

The computed flux linkage Ψ by the three different nonlinear finite element ap-
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Fig. 8.16: The flux linkage - current characteristic at nominal air gap.
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Fig. 8.17: The flux linkage the function of the y-directed displacement of the rotor and
of the variation of the current in two-dimensional case.

proaches can be seen in Fig. 8.16. The results of this figure shows when the rotor
is fixed in the centre of the bearing. In this figure, the results are close to each other.
The results of the two- (2D) and the three-dimensional (3D) simulations the maximum
of the difference is less than 2%. The results of the FEMM software are located between
the two others. This quantity is shown in a good agreement, likewise at the magnetic
flux density vectors and distribution.
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Fig. 8.18: The flux linkage the function of the y-directed displacement of the rotor and
of the variation of the current in three-dimensional case.
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Fig. 8.19: The flux linkage the function of the y-directed displacement of the rotor and
of the variation of the current by the FEMM.

Fig. 8.17, Fig. 8.18 and Fig. 8.19 show the variation of the flux linkage the function
of the y-directed displacement of the rotor and of the variation of current of windings.
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These figures seem to be nearly the same in the different rotor positions and currents.
These show the maximum of the flux linkage, at the 0.5mm displacement and at the
5A winding current, because the maximums are 0.198Wb and 0.199Wb in 2D and 3D,
respectively. The difference of these results is less than 2%.

The last quantity of this chapter is the electromagnetic force obtained by the non-
linear simulations. The numerically computed electromagnetic force versus the function
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Fig. 8.20: The electromagnetic force - current characteristic at nominal air gap.
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Fig. 8.21: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current in two-dimensional case.
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Fig. 8.22: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current in three-dimensional case.
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Fig. 8.23: The electromagnetic force the function of the y-directed displacement of the
rotor and of the variation of the current by the FEMM.

of the current can be seen in Fig. 8.20. These results have reference to the fixed rotor
position in the center, than in the linear case. The obtained results are practically the
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same. The other presented quantities which are due to the nonlinear simulations this
good agreement show. The difference is less than 2% when comparing this quantity.

Let’s note here that the analytically computed electromagnetic force is closer to
the force obtained from the nonlinear simulations than from the linear simulations, as
than it can be seen in Fig. 8.8. However, it is coincidence at this problem. One of
the simplifiations of the analytical computation is the negligation of the nonlinearity of
material, because the magnetic bearing is operating in the linear range of the nonlinear
curve of the material. Thus, linear results are given from the analytical computation.

The further figures (Fig. 8.21, Fig. 8.22 and Fig. 8.23) shows the variation of the
electromagnetic force the function of the y-directed displacement of the rotor and of the
variation of current of windings. The agreement of the results at the difference rotor
positions and winding currents are almost same like in the Fig. 8.20. The maximum of
the difference of the results is less than 2%, which can be seen in Fig. 8.21, Fig. 8.22 and
Fig. 8.23. The three different nonlinear simulations gives a same electromagnetic force.
Thus, its enough to use the 2D FEM computation for the magnetic bearing analysis not
only in the linear case, but in the nonlinear case, too.
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Chapter 9

Conclusions and future works

Conclusions

In this master thesis, the computer-aided design and the numerical analysis of a Y-
shaped radial magnetic bearing was presented. The one of aims of this work is the
implementation of a two-dimensional numerical design of a three-pole radial magnetic
bearing. After a numerical design, the second aim of this work is the verification of the
designed bearing. Its enough the two-dimensonal simulation of this short axial lenght
magnetic bearing with the negligation of the end-region field effect. The importance of
this thesis is the implementation of the fast and easy application tool for the computer-
aided magnetic bearing design and analysis.

In this work, the weak form of the ~A - potential formulation to solve the presented
problems has been implemented from the basic physical equations of the magnetic bear-
ing, the Maxwell’s equations of the static magnetic field problem. I introduced the main
steps of the finite element method, the computation of the flux linkage and the electro-
magnetic force in two- and three-dimensional cases. Further, the finite element analysis
has been implemented to solve the problem with linear and nonlinear material. Because
of the nonlinearity, the used nonlinear equation solvers, the Newton-Raphson method
and the fixed point technique have been shortly presented. Finally, the used optimization
method, the Nelder-Mead simplex search algorithm and the steps of the finite element
based optimization method have been presented.

The best bearing geometry has been chosen from the results of optimization, and
has been accomplished the numerical analysis of the chosen magnetic bearing. The
simulation procedures have been compared by computed quantities. These simulation
procedures are the two-dimensional and the three-dimensional magnetic field computa-
tion with linear and nonlinear materials. Further of these, the two-dimensional linear and
nonlinear finite element computations have been implemented by the free finite element
software, FEMM, as a reference numerical computation. The compared quantities are
the above mentioned flux linkage Ψ and electromagnetic force ~F . The electromagnetic
force has been computed by analytical computation, too.

In chapter 8, the results have been presented, and these results shows its enough the
two-dimensional finite element design and simulation for the short axial length magnetic
bearing. The maximum of the difference of the computed quantities is 5% and 2% in the
linear and in the nonlinear case, respectively. Thus, the two-dimensional finite element
method has been given properly good results.
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Future works

I am going to continuing this work, and redesign this bearing by genetic algorithm, be-
cause basically the Nelder-Mead (NM) method has been found the local minima, whereas
the genetic algorithm (GA) should been find the global minimum [64]. The results of
GA and of NM method will be compared.

The main future research work is to build up the prototype of the numerical designed
Y-shaped radial bearing fed by two amplifier. Because of the high nonlinearity, the design
of a nonlinear controllers for this three-pole bearing to the properly operation is a future
task. The one of the nonlinear controllers is based on the classical control theory like
PID contoller, and the other one is based on the modern soft computing theory like fuzzy
system, neural network, genetic algorithm or these combination [6, 65, 66].

I would like to continue my studies in the doctoral school. The above mentioned
future works and plans are my Ph.D. theses.

To write this document the LATEX word processor (http://www.miktex.org/) have
been used.
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[30] P. Sergeant, L. Dupré. Implementation of Hysteresis Material Characteristics in Fi-
nite Element Computations. Proceedings of the COMSOL Users Conference, Greno-
ble, 2007.

[31] O. Bottauscio, M. Chiampi, C. Ragusa. Transient Analysis of Hysteretic Field Prob-
lems Using Fixed Point Technique. IEEE Transactions on Magnetics, 39:11791182,
2003.

[32] F. I. Hantila. A Method of Solving Stationary Magnetic Field in Non-Linear Media.
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