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Marcsa Dániel

automatizálási szakirányos hallgató részére
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List of notation

~A magnetic vector potential
~B magnetic flux density [T]

Br radial component of magnetix flux density [T]
~E electric field intensity [V/m]
~F Maxwell’s stress tensor
~H magnetic field intensity [A/m]

HΘ azimuthal component of magnetic field intensity [A/m]
~J eddy current density [A/m2]
~J0 source current density [A/m2]

N scalar weighting function

Pd power dissipation [W/m]
~T e electromagnetic torque [Nm]
~T current vector potential
~T0 impressed current vector potential

V electric scalar potential

Vi induced voltage [V/m/turn]
~W vector weighting function

Φ reduced magnetic scalar potential

µ0 permeability of vacuum [Vs/Am = H/m]

µ permeability [Vs/Am = H/m]

ν reluctivity [Am/Vs]

σ conductivity [S/m]

ρ resistivity [Ωm]

ωs synchronous speed [rad/s]

ωr angular velocity of the rotor [rad/s]

Abbreviations

BEM Boundary Element Method

FDM Finite Differential Method

FEM Finite Element Method

FVM Finite Volume Method

ICS International Compumag Society

TEAM Testing Electromagnetic Analysis Methods
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Chapter 1

Introduction

1.1 The induction motor

Alternating current, or AC motors provide much of the motive force for industry. AC

motors come in a variety of styles and power ratings. Alternating current motors are

typically designed for use with specified input voltage signals. These motors may be

classed as low, medium and high voltage. Low voltage motors typically consume between

about 240V and 600V. Medium voltage motors consume voltages from about 400V up

to about 15kV. High voltage motors consume voltage over 15kV [1, 2].

Alternating current motors used in industrial applications are typically synchronous

motors having a starting winding and a running winding. The starting winding includes

a starting capacitor or other capacitive component in series with the winding to shift

the phase of the voltage and the current applied to the starting winding with respect to

the voltage and the current applied to the running winding [1, 2].

AC motors are used in a variety of applications, including vehicle applications such

as traction control. Traction motors are large electrical motors having the typical motor

housing, stator and rotor assembly. Shaft is attached to the rotor, which extends through

the housing. Fixed attached to a pinion end of the shaft is a motor pinion which in turn

engages a bull or axle gear for rotating the axle. The motors used in vehicle applications

are typically controlled such that the motor phase currents are sinusoidal. These motors

are generally permanent magnet motors designed to have a sinusoidally-shaped back

electromagnetic field waveform. An induction motor is used as an motor. The terminal

voltage of the induction motor includes a transient voltage represented by the product of

the differentiation term of a primary current and the leakage inductance of the induction

motor [1, 2].

A wide variety of induction motors are available and are currently in use throughout

a range of industrial applications. Induction motors typically include a rotor that rotates

in response to a rotating magnetic flux generated by the alternating current in a stator

associated with the rotor. A rotational speed differential between the rotor and the
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rotating flux induces a current through a rotor cage. A rotor cage consists of a single

aluminum casting having several conductive bars that run axially through the rotor and

are joined at each end by two conductive end rings. Current induced in the bars generates

a magnetic flux that opposes that of the stator, thus providing the rotor with rotational

torque. The stator and the rotor may be mechanically and electrically configured in a

variety of manners depending upon a number of factors, including: the application, the

power available to drive the motor, and so forth [1, 2].

The induction motors are divided again into an inner rotor type induction motor

and an outer rotor type induction motor in accordance with relative positions of rotors

and stators. The inner rotor type induction motor is generally applied to a washing

machine or something like that, and includes the rotor inside the stator. The ability to

accurately determine the speed of a rotating rotor with respect to a stationary stator

within an induction motor is vitally important to the every day operations of induction

motors [1–3].

A flat induction motor is a motor which has a disk-shaped stator and rotor placed

coaxially around a rotating shaft with their surfaces opposing each other. Normally, each

the stator core and the rotor core have a spiral winding structure made of a magnetic

steel strip. A plurality of open slots are formed in the winding structures from the outer

edge toward the rotating shaft at equal intervals, leaving part of the magnetic steel strips.

Single phase induction motors are normally provided with a cage type rotor and a coiled

stator having two windings, one being for the running coil and the other for the starting

coil [1–3].

Single phase induction motors are widely used, due to their simplicity, strength and

high performance. They are used in household appliances, such as refrigerators, freezers,

air conditioners, hermetic compressors, washing machines, pumps, fans, as well as in

some industrial applications [1–3].

Linear induction motors are widely used in a number of industries and present certain

advantages over rotary motors, particularly where propulsion along a predetermined path

or guideway is required [1–3].

1.2 The TEAM Problem No. 30a

The TEAM (Testing Electromagnetic Analysis Methods) series of workshops originated

in 1985 as a means of comparing eddy current codes, but it later expanded to include

other aspects of computational electromagnetics including static and high frequency ap-

plications. The basic idea behind these workshops is a series of problems, each geared

towards some aspect of computational electromagnetics. Although TEAM has a gov-

erning board, problem adoption is done in a forum open to all participants in TEAM

activities. Once a problem is adopted, it is published and it is available to anyone in-
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terested in using the problem, its results and any results that may be generated by

participants. The problem definition contains comparison results, tables or plots that

the user may compare to, and references to the sources of the problem and available pub-

lished results. The benchmark problem of TEAM Workshops can be found the homepage

of International Compumag Society (ICS) [4].

The one of purposes of the problems in TEAM is to test both formulations (that is,

the mathematical models) used to build the program and the applications themselves.

Although the stated goal is the testing of analysis methods through comparison of results,

they also verify software correctness and, more importantly, program accuracy. The other

purpose is to detect formulations and procedure characteristics, which must be modified

and improved. Often these characteristics are not necessarily errors but have, perhaps,

slow convergence, inefficient algorithms or methods of presentation, for example. The

further purposes of the problems in TEAM to encourage unbiased testing with multiple

formulations and multiple functions by as many different application as is practical, to

share experience gained in solving various problems or in the development of programs,

and to create a repository of solved problems, which can then be used by developers to

verify new programs, and extensions and modifications of existing programs.

1.2.1 The problem definition

In this work the Problem No. 30a of TEAM Workshops (Induction motor analyses [4])

has been used. This problem consists of two induction motors, in which the eddy currents

in the rotor are induced by the time harmonic current in the stator windings, and by

the rotation of the rotor. Here, the problem is a linear eddy current field problem. The

induction motors are invented motors, this problem has been used the comparison of

the different numerical methods, the different formulations, and the originally presented

analitically one.

The arrangement of the three-phase exposed winding induction motor problem is

shown in Fig. 1.1. The phase groups of the three-phase exposed winding motors A, B,

and C are lag each other in phase by 120◦. The rotor angular velocity is ranging from

0 to 1200 rad/s. It is roughly three times faster than the angular velocity of the stator

field is ωs = 2πf = 377 rad/s because the winding is excited at f = 60 Hz.

The arrangement of the single-phase induction motor problem is shown in Fig. 1.2.

The range of computation of the single-phase induction motor for rotor angular velocities

is from 0 to 358 rad/s (0.95% of the peak field speed) The synchronous speed of motor

is ωs = 2πf = 377 rad/s, because the winding is excited at f = 60 Hz.

The windings of both motors are not embedded in slots. The source current density

is maintained constant at 310 A/cm2. In Fig. 1.1, and in Fig. 1.2 σ is the conductivity,

µr is the relative permeablity. Here, the relativ permeability µr = 30 has been used.

The stator steel is laminated and its conductivity has been selected as σ = 0. The rotor
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Fig. 1.1. The arrangement of the analyzed three-phase induction motor.

Fig. 1.2. The arrangement of the analyzed single-phase induction motor.

is made of rotor steel and rotor aluminum, i.e. the rotor steel is surrounded by the

rotor aluminum. The conductivity of rotor steel is σRS = 1.6 · 106 S/m and of the rotor

aluminum is σRAl = 3.72 · 107 S/m. The rotation of rotor is counterclockwise.

The used methods are applied to compute the fundamental quantities both of the

two induction motors. These are the electromagnetic torque, the induced voltage in the

phase coil A, and it is computed as if the stator winding was comprised of a single turn,
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Fig. 1.3. The directions of polar coordinate system.

and average power dissipation, which due the eddy current loss in the whole rotor and in

the rotor steel. The eddy current loss of rotor is computed as a sum of the eddy current

loss of rotor steel and rotor aluminum. All quantities are computed on a per unit depth

(1m) basis.

At the three-phase induction motor, the radial B field and the Θ-directed H field at

ωr = 200 rad/s anglar velocity have also been simulated. These quantities computed in

the phase coil A along the x-axis in ten different point. In Fig. 1.3 shows the radial- and

the Θ-direction. The polar coordinate r is the radial coordinate and Θ is the angular

coordinate, it is often called the polar angle.

1.3 Numerical methods

In the design of engineering structures, numerical simulations play an increasingly impor-

tant role. The differential equations that describe the physical phenomena can be solved

analytically for a very limited class of problems only and even there only for simple ge-

ometries. More complex tasks require numerical approaches. Numerical analysis is also

concerned with computing (in an approximate way) the solution of differential equations,

both ordinary differential equations and partial differential equations. Partial differential

equations are solved by discretizing the equation first, this means bringing it into a finite-

dimensional subspace. This can be done by the finite differential method (FDM) [5, 6],

the finite volume method (FVM) [7], the boundary element method (BEM) [8], or the

finite element method (FEM) [5, 9–15]. The theoretical justification of these methods

often involves theorems from functional analysis. These techniques reduces the problem

to the solution of an algebraic equation.
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In the finite difference method [5,6] the differential quotients have been approximated

by difference quotients. So each derivative is approximated by a difference quotient. The

differential equation will thus be transformed into a difference equation. The difference

equations can then be written in matrix form. The matrix will be modified to suit some

physical properties and in a last step the equations will be solved.

The finite volume method [7] is a numerical method for solving partial differential

equations that calculates the values of the conserved variables averaged across a volume.

One advantage of the finite volume method over the finite difference method is that it

does not require a structured mesh, although a structured mesh can be used. The finite

volume method can solve problems on irregular geometries too. Furthermore, one more

advantage of the finite volume method over the finite element method is that it can

conserve the variables on a coarse mesh easily. This is an important characteristic e.g.

for fluid problems.

However, the influence of finite differetial method and finite volume method in solid

physics is rather limited today, so that boundary element method mainly competes with

finite element method in a common field, where both of these numerical methods have

specific advantages.

The boundary element method [8] is a numerical computational method for solving

linear partial differential equations which have been formulated as in boundary integral

forms. In BEM only the boundary of the problem has been discretized. It can be

applied in many areas of engineering and science including fluid mechanics, acoustics,

electromagnetics.

The numerical analysis of electromagnetic field problems with the aid of the finite

element method [5,9–15] has been one of the main directions of research in computational

electromagnetics. This is the most widely used technique to approximate the solution

of the partial differential equations. The basis of this extensively studied method is the

weak formulation of partial differential equations.

In this work one of the above mentioned numerical methods, the finite element

method (FEM) has been used. This numerical method, and the main steps of simu-

lation with FEM have been presented particularly later.
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Chapter 2

Equations of the Electromagnetic

Field

2.1 The Maxwell’s Equations

The Maxwell’s eqautions of the eddy current field problems are presented in this chapter.

The induction motor is treated as an eddy current field problem. In eddy current field

problems, the electric and the magnetic fields are coupled, because the field quantities

are depending on the time variation (i.e. ∂/∂t 6= 0), however the displacement current

density can be neglected |J | � |∂D/∂t|, i.e. the differential equations of low frequency

fields hold.

The studied eddy current field problem is separated into two parts; the conductor

region (iron parts) Ωc is surrounded by the nonmagnetic and non-conducting domain

(e.g. air) Ωn. The Maxwell’s equations in the eddy current free region Ωn model a static

magnetic field, while in the eddy current region Ωc, the magnetodynamic Maxwell’s

equations are valid. The scheme of the analyzed eddy current field problem can be seen

in Fig. 2.1.

To the formulation of the problem, the differential equations are the following [9–20]:

∇× ~H = ~J0, in Ωn, (2.1)

∇ · ~B = 0, in Ωn, (2.2)

∇× ~H = ~J, in Ωc, (2.3)

∇× ~E = −
∂ ~B

∂t
, in Ωc, (2.4)

∇ · ~B = 0, in Ωc, (2.5)

∇ · ~J = 0, in Ωc, (2.6)

8
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Fig. 2.1. The structure of the eddy current field problem.

where ~H is the magnetic field intensity, ~B is the magnetic flux density, ~E is the electric

field intensity, ~J is the eddy current density, and ~J0 is the source current density.

2.2 The constitutive relations

The constutive relations are as follows,

~B =

{

µ0
~H, in air, Ωn,

µ0µr
~H, in magnetically linear material, Ωc,

(2.7)

and
~J = σ ~E, in Ωc. (2.8)

The constitutive realtionship (2.7) can be used in its inverse form as well i.e.,

~H =

{

ν0
~B, in air, Ωn,

ν0νr
~B, in magnetically linear material, Ωc.

(2.9)

The inverse form of relation (2.8) is introduced as

~E = ρ ~J, in Ωc. (2.10)

9
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Here µ is the permeability, ν is the reluctivity, σ is the conductivity and ρ is the resistivity

of the material, moreover ν = 1/µ and ρ = 1/σ. The value of these data are given in

the last chapter.

2.3 The regions and boundaries

The two regions Ωc and Ωn are coupled at the corresponding interface denoted by Γnc.

The boundary of the eddy current free region is ΓB, i.e. ΓB denotes that the normal

component of the magnetic flux density is vanishing, or it is assumed to be known by a

term b.

Basically, ΓE is the boundary of eddy current region where the tangential component

of the electric field intensity is vanishing, but in this problem this boundary is not

present, because the eddy current free region Ωn is surrounding the eddy current region

Ωc. Furthermore, the boundary of eddy current region ΓHc and the boundary of eddy

current free region ΓHn represent the symmetry plane, where the tangential component

of the magnetic field intensity is zero. In this study, these (ΓHc, ΓHn) boundaries are

not present, because this is only a 2D problem, and the number of unknowns is not too

high.

Along the interface between the two disjunct regions Γnc, the tangential component

of magnetic field intensity and the normal component of the magnetic flux density are

continuous, moreover the normal component of the induced eddy currents is equal to

zero.

These conditions can be formulated as

~B · ~n = −b or ~B · ~n = 0, on ΓB, (2.11)

where ~n is the outer normal unit vector of the region, moreover

~Hc × ~nc + ~Hn × ~nn = ~0, on Γnc, (2.12)

and
~Bc · ~nc + ~Bn · ~nn = 0, on Γnc, (2.13)

and
~J · ~nc = 0, on Γnc, (2.14)

where ~nn, ~nc, ~Hn, ~Hc, ~Bn and ~Bc are the outer normal unit vector of the region filled

with air and with conducting material, moreover the magnetic field intensity and the

magnetic flux density vectors in the appropriate region on the boundary, respectively

and it is evident that ~nn = -~nc along Γnc.

Here ΓB is the boundary of the investigated region (here b = 0), and Γnc is the

10
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Fig. 2.2. The eddy current region is surrounded by nonconducting region.

interface between the conducting and the non-conducting region, as it is presented in

Fig, 2.2.

11



Chapter 3

Potential Formulations

In the investigated eddy current field problem, the conductors, carrying the eddy currents

are at least partially surrounded by a non-conducting medium, which is free of eddy

currents.

The solutions of the Maxwell’s equations are usually handled by potentials. Funda-

mentally, these are scalar and vector potentials [5, 6, 9–28].

3.1 Static Magnetic Fields

The TEAM 30a definition of static magnetic field can be found in section 2.1. The static

magnetic field is definied by Maxwell’s equations (2.1), (2.2), constitutive relations in

(2.7), or in (2.9), moroeover the bonundary condition (2.11).

The static magnetic field can be decribed by the magnetic vector potential ~A, and

by the reduced magnetic scalar potential Φ [9–18,23, 24, 28].

3.1.1 Formulation with magnetic vector potential,

the ~A - formulation

The magnetic vector potential is defined by [9–18,20, 23]

~B = ∇× ~A, (3.1)

which satisfies (2.2) exactly, because of the identity ∇·∇×~v ≡ 0 for any vector function

~v = ~v(~r). Substituting the definition (3.1) into the first Maxwell’s equation (2.1) and

using the constitutive relation from (2.9), it leads to the partial differential equation

[9–15,23]

∇× (ν∇× ~A) = ~J0, in Ωn. (3.2)

12
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To ensure the uniqueness of the magnetic vector potential, the divergence of it can be

selected according to Coulomb gauge [9, 11, 21, 23], i.e.

∇ · ~A = 0. (3.3)

Gauging is satisfied automatically in 2D, but unfortunately it is not true in 3D. The

origin of numerical problems is the lack of uniqueness of the magnetic vector potential

in three dimensional.

In 2D problems Coulomb gauge ∇· ~A=0 is satisfied automatically, if the source current

density has only z component, the magnetic field intensity vector and the magnetic flux

density vector have x and y components, i.e.

~J0 = J0(x, y)~ez, (3.4)

~H = Hx(x, y)~ex + Hy(x, y)~ey, (3.5)

~B = Bx(x, y)~ex + By(x, y)~ey. (3.6)

The magnetic vector potential has only z component,

~A = Az(z)~ez, (3.7)

because (Ax = 0, Ay = 0 and Az = Az(z))

~B = ∇× ~A =

∣

∣

∣

∣

∣

∣

∣

~ex ~ey ~ez

∂
∂x

∂
∂y

0

0 0 Az

∣

∣

∣

∣

∣

∣

∣

= ~ex

∂Az

∂y
− ~ey

∂Az

∂x
, (3.8)

i.e. Bx(x, y) = ∂Az/∂y and By(x, y) = −∂Az/∂x. The divergence of this one component

vector potential is equal to zero, because

∇ · ~A =
∂Az(x, y)

∂z
= 0. (3.9)

The normal component of the magnetic flux density can be set as [9, 11, 21, 23]

~B · ~n = −b ⇒ (∇× ~A) · ~n = −b, on ΓB. (3.10)

The left hand side of the last formulation can be rewritten as

(∇× ~A) · ~n = ∇ · ( ~A × ~n) = −b, (3.11)

finally

∇ · (~n × ~A) = b, (3.12)

13
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i.e.

~n × ~A = ~α, on ΓB, (3.13)

where ∇ · ~α = b. This is a Dirichlet type boundary condition. The selection of ~α is not

evident [9, 11], but in many practical cases b=0, so

~n × ~A = ~0, on ΓB (3.14)

can be selected.

Finally, the partial differential equation and the boundary condition of the presented

two dimensional static magnetic field problem, which solution satisfies Coulomb gauge

can be formulated as

∇× (ν∇× ~A) = ~J0, in Ωn, (3.15)

~n × ~A = 0, on ΓB. (3.16)

3.1.2 Formulation with reduced magnetic scalar potential,

the Φ - formulation

The magnetic field intensity vector in the eddy current free region Ωn can be decomposed

into two parts as [9, 11, 24, 28]
~H = ~T0 + ~Hm. (3.17)

The curl of the so called impressed current vector potential ~T0 is equal to the source

current density ~J0, and ∇× ~Hm is equal to zero, i.e. [9, 11, 24]

∇× ~T0 = ~J0, (3.18)

∇× ~Hm = 0. (3.19)

The divergence of ~T0 can be selected according to Coulomb gauge [9], i.e.

∇ · ~T0 = 0, (3.20)

which selection can be useful when creating the function ~T0.

In a FEM procedure, ~T0 can be approximated by the vector finite elements, while

Φ can be represented by nodal finite elements. There are many possibilities for the

construction of the term ~T0 from the source current density ~J0 [9].

Here the minimizing a functional combined with an appropriate numerical technique

is formulated, which has been used. In this technique, the source corrent density ~J0 has

been represented by the curl of impressed current vector potential ~T0, which satisfies

(2.6) exactly, furthermore the divergence of ~T0 is selected to be equal zero. It must be

noted that, ~T0 is calculated in free space, i.e. µ = µ0 must be set everywhere in the

14
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problem region. The partial differential equation defined in free space

∇× ~T0 = ~J0, in Ω, (3.21)

and the boundary conditions are

~T0 · ~n = 0, on ΓB. (3.22)

It can be solved by a numerical field calculation procedure, which is not sensitive to

Coulomb gauge [9,11,21,23]. Finally ~T0 can be regarded as known, because this quantity

is calculated before the numerical simulation.

The second step of Φ-formulation is the determination of the nonrotational part of

the magnetic field intensity ~Hm in (3.17). It can be given as the negative gradient of a

reduced magnetic scalar potential Φ,

~Hm = −∇Φ, (3.23)

because of the identity ∇ × (∇ϕ) ≡ ~0, for any scalar function ϕ = ϕ(~r). By this

formulation the magnetic field intensity can be written as [9, 11]

~H = ~T0 −∇Φ, (3.24)

which satisfies (2.1) in Ωn. The magnetic scalar potential Φ is usually called the re-

duced magnetic scalar potential, because the source term is fundamentally hidden in ~T0.

Applying the constitutive relation in (2.7) results in the magnetic flux density

~B = µ(~T0 −∇Φ). (3.25)

The divergence of magnetic flux density is equal to zero according to (2.2). Finally the

linear partial differential equation of the problem has the form

∇ · (µ∇Φ) = ∇ · (µ~T0), in Ωn, (3.26)

which is a generalized Laplace-Poisson equation.

On the part ΓB, setting the normal component of the magnetic flux density results

in a Neumann type boundary condition,

~B · ~n = 0 ⇒ (µ~T0 − µ∇Φ) · ~n = 0, on ΓB, (3.27)

since ~B = µ(~T0 −∇Φ).

The partial differential equation and the boundary condition of a static magnetic
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field problem can be obtained [9, 11, 28]

∇ · (µ∇Φ) = ∇ · (µ~T0), in Ωn, (3.28)

µ(~T0 −∇Φ) · ~n = 0, on ΓB, (3.29)

where (3.29) formulates a homogeneous Neumann type boundary condition.

3.2 Eddy Current Fields

The TEAM 30a problem definition of the eddy current field can be found in section 2.1.

The eddy current field is definied by Maxwell’s equations (2.3), (2.4), (2.5), constitutive

relations in (2.7) and (2.8), or the inverse relations in (2.9) and (2.10).

The eddy current field can be decribed by two potential functions, either a magnetic

vector potential ~A or a current vector potantial ~T . The magnetic vector potential ~A can

be coupled with an electric scalar potential, denoted by V. The current vector potential
~T can be coupled with a reduced magnetic scalar potential Φ [6,9–15,21, 22, 25–38].

In the eddy current field, the field quantities are depending on the time variation

(∂/∂t 6= 0). The eddy current field formulations are not only have used in the time

domain, but these formulations are used in the frequency domain, too [6,9,10,12–15,21,

25, 29–31,37, 38].

In frequency domain the derivation by time ∂/∂t is transformed to a multiplication

by jω [9, 10, 13, 16, 17, 19, 29, 37].

3.2.1 The magnetic vector potential and the electric scalar po-

tential,

the ~A,V - formulation

The divergence-free magnetic flux density vector can be described by the curl of the

magnetic vector potential ~A, since ∇ · ∇ × ~u ≡ 0, for any vector function ~u = ~u(~r), or

~u = ~u(~r, t), i.e. [6, 9–15,21, 22, 25, 29–33,35, 37, 38]

~B = ∇× ~A. (3.30)

This automatically enforces the satisfaction of the magnetic Gauss’ law (2.5). Substi-

tuting expression (3.30) into Faraday’s law (2.4) results in

∇× ~E = −
∂

∂t
∇× ~A = −∇×

∂ ~A

∂t
⇒ ∇×

(

~E +
∂ ~A

∂t

)

= ~0, (3.31)
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because rotation (i.e. derivation by space) and derivation by time can be replaced. The

curl-less vector field ~E +∂ ~A/∂t can be derived from the so-called electric scalar potential

V (∇×∇ϕ ≡ ~0, for any scalar functions ϕ = ϕ(~r), or ϕ = ϕ(~r, t)) [6,9,11–15,21,22,25],

~E +
∂ ~A

∂t
= −∇V, (3.32)

and the electric field intensity vector can be described by two potentials as [6, 9, 11–15,

21, 22, 25]

~E = −
∂ ~A

∂t
−∇V. (3.33)

Basically, the induction motor is a two-dimensional problem, and this results in the

two dimensional case that the electric scalar potential can be selected as V = 0 in the
~A, V - potential formulation [9, 11].

The electric field intensity in the two dimensional case is the following:

~E = −
∂ ~A

∂t
. (3.34)

Substituting the relations (3.30) and (3.34) into (2.3), and using the constitutive

relation in (2.8) and (2.9) leads to the partial differential equation

∇× (ν∇× ~A) + σ
∂ ~A

∂t
= ~0, in Ωc. (3.35)

There is one unknown function ( ~A), that is why only one equations must be formu-

lated.

Finally, here is the partial differential equation of the ~A,V - formulation in two

dimensional case [6, 9–15,22, 29, 32, 33, 35, 37, 38],

∇× (ν∇× ~A) + σ
∂ ~A

∂t
= ~0, in Ωc. (3.36)

The solution of the problem defined by the above equation is not unique in three dimen-

sional case, because the divergence of the magnetic vector potential has not specified

yet. The Coulomb gauge should be used in this formulation in three dimensios.

Fortunately, in two dimensional case the Coulomb gauge is satisfied automatically

(see in Section 3.1.1).

In the frequency domain, the electric field intensity ~E in two dimensional case is the

following:

~E = −jω ~A. (3.37)

In the frequency domain only the second term of (3.36) has been changed. The partial
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differetial equation of two dimensional problem in the frequency domain are the following

[6, 9, 10, 12–15,21, 25, 29–31,37, 38] :

∇× (ν∇× ~A) + σjω ~A = ~0, in Ωc. (3.38)

3.2.2 The current vector potential and the reduced magnetic

scalar potential,

the ~T , Φ - formulation

The solenoidal property of the induced eddy current density (2.6) results in the possi-

bility of applying the current vector potential ~T to represent the eddy current field in

conducting materials,

∇ · ~J = 0 ⇒ ~J = ∇× ~T , (3.39)

because of the mathematical identity ∇ · ∇ × ~v ≡ 0 for any vector function ~v = ~v(~r) or

~v = ~v(~r, t) [9, 11, 21, 22, 26–28,34, 36–38].

Substituting this relation back to the first Maxwells equation (2.3), i.e.

∇× ~H = ∇× ~T ⇒ ∇× ( ~H − ~T ) = ~0, (3.40)

results in the reduced magnetic scalar potential Φ as

~H − ~T = −∇Φ ⇒ ~H = ~T −∇Φ, (3.41)

because ∇×∇ϕ ≡ ~0 for any scalar function ϕ = ϕ(~r) or ϕ = ϕ(~r, t) The first Maxwell’s

equation (2.3) has been satisfied exactly by this formulation.

Applying the impressed current vector potential ~T0 to represent the known source

current density ~J0 placed in the eddy current free region takes it easier the coupling of

the present formulation with the reduced magnetic scalar potential in the eddy current

free region, i.e. appending ~T0 to (3.41) is advantageous [9, 11, 21, 22, 26–28,34, 36–38],

~H = ~T0 + ~T −∇Φ, (3.42)

because ∇× ~T0 = ~0 in eddy current region Ωc.

Substituting ~J = ∇× ~T to (2.10), the electric field intensity can be expressed by the

current vector potential as
~E = ρ∇× ~T . (3.43)

Substituting this expression and the constitutive relation (2.7) into Faraday’s law (2.4)
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leads to the partial differential equation,

∇× (ρ∇× ~T ) + µ
∂ ~T

∂t
− µ∇

∂Φ

∂t
= −µ

∂ ~T0

∂t
, in Ωc. (3.44)

The magnetic Gauss’ law (2.2) can be rewritten in the form

∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc. (3.45)

The solution of these partial differential equations results in two unknowns (~T and Φ)

of the ~T , Φ - formulation.

Finally, here is the collection of partial differential equations of the ~T , Φ - formulation

[9, 11, 21, 22, 28, 36, 37]:

∇× (ρ∇× ~T ) + µ
∂ ~T

∂t
− µ∇

∂Φ

∂t
= −µ

∂ ~T0

∂t
, in Ωc, (3.46)

∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc. (3.47)

In the frequency domain only the (3.46) has been modified.

The partial differetial equations of two dimensional problem in the frequency domain

are the following [9, 21, 22, 37, 38]

∇× (ρ∇× ~T ) + jωµ~T − jωµ∇Φ = −jωµ~T0, in Ωc, (3.48)

∇ · (µ~T − µ∇Φ) = −µ~T0, in Ωc. (3.49)

3.3 Coupling static magnetic field and eddy current

field formulations

In most eddy current field problems, the conductors carrying the eddy currents are at

least partially surrounded by a nonconducting medium (e.g. air, laminated steel), where

a static magnetic field is present (Fig. 2.1). The static magnetic field is induced both

by the eddy currents and by the source current of coils. That is why the potential

formulations of the static magnetic field and of the eddy current field must be coupled.

The static magnetic field in Ωn can be described by a magnetic vector potential, or

by a reduced magnetic scalar potential. In the first case, applying the magnetic vector

potential ~A is a more general way. Application of the reduced magnetic scalar potential

Φ is simpler to use, however currents of coils must be represented by an impressed current

vector potential ~T0, which must be realized by vector finite element approximation.

The eddy current field in Ωc can be represented by a vector potential coupled with a

scalar potential. The magnetic vector potential ~A can be coupled with the electric scalar
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potential V and the current vector potential ~T can be coupled with the reduced magnetic

scalar potential Φ. However, the induction motor is a two-dimensional problem, and this

results in the two dimensional case that the electric scalar potential can be selected as

V = 0 in the ~A, V − ~A - potential formulation.

3.3.1 The ~A, V − ~A - formulation

The magnetic vector potential ~A is used in this formulation throughout the region Ωn∪Ωc

and the electric scalar potential V only in Ωc. Here, the equations (3.15), (3.36) and

boundary condition (3.16) have to be used to prepare the formulation, but the set of

these equations have to be appended the interface Γnc between the two subregions Ωn

and Ωc.

The magnetic vector potential is continuous, meaning that the tangential and the

normal component of the magnetic vector potential are continuous on Γnc. The continuity

of the tangential component of the magnetic vector potential immediately enforces the

continuity of the normal component of the magnetic flux density from (2.13),

(∇× ~A) ·~nc+(∇× ~A) ·~nn = ∇·( ~A×~nc)+∇·( ~A×~nn) = ∇·( ~A×~nc + ~A×~nn) = 0. (3.50)

The continuity of the tangential component of the magnetic field intensity vector must

be prescribed by an additional Neumann type interface condition on Γnc from (2.12),

(ν∇× ~A) × ~nc + (ν∇× ~A) × ~nn = ~0. (3.51)

It is obvious that the normal component of the eddy current density must vanish on Γnc.

The summarized partial differential equations and the boundary conditions are as

follows [9, 11],

∇× (ν∇× ~A) + σ
∂ ~A

∂t
= ~0, in Ωc, (3.52)

∇× (ν∇× ~A) = ~J0, in Ωn, (3.53)

~n × ~A = ~0, on ΓB, (3.54)

~nc × ~A + ~nn × ~A = ~0, on Γnc, (3.55)

(ν∇× ~A) × ~nc + (ν∇× ~A) × ~nn = ~0, on Γnc. (3.56)

The equations of ~A, V − ~A - formulation in the frequency domain are described by

the same equations, only the equation (3.52) of conductive region has been changed.

The partial differential equations and boundary conditions of the ~A, V − ~A - formu-

lation in the frequency domain can be written as

∇× (ν∇× ~A) + jωσ ~A = ~0, in Ωc, (3.57)
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∇× (ν∇× ~A) = ~J0, in Ωn, (3.58)

~n × ~A = ~0, on ΓB, (3.59)

~nc × ~A + ~nn × ~A = ~0, on Γnc, (3.60)

(ν∇× ~A) × ~nc + (ν∇× ~A) × ~nn = ~0, on Γnc. (3.61)

3.3.2 The ~T , Φ − Φ - formulation

The reduced magnetic scalar potential Φ is used in this formulation throughout the region

Ωn ∪Ωc and the current vector potential ~T only in Ωc. Here, the equations (3.28), (3.46)

and (3.47), and boundary condition (3.29) have to be used to prepare the formulation,

but the set of these equations have to be appended the interface Γnc between the two

subregions Ωn and Ωc.

The magnetic field intensity vector is derived as ~H = ~T0−∇Φ in Ωn and it is written

as ~H = ~T0 + ~T −∇Φ in Ωc. The tangential component of the magnetic field intensity can

be set to be continuous on Γnc by a continuous magnetic scalar potential and by setting

the tangential component of the current vector potential equal to zero by the boundary

condition ~T ×~n = ~0 on Γnc, moreover the tangential component of the impressed current

vector potential ~T0 × ~n is continuous since it is represented by tangentially continuous

vector shape functions. Vanishing the normal component of eddy current density on Γnc

satisfies automatically,

~J = ∇× ~T ⇒ ~J · ~n = (∇× ~T ) · ~n = ∇ · (~T × ~n) = 0, (3.62)

because ~T × ~n = ~0 on Γnc.

The continuity of the normal component of magnetic flux density must be specified

a Neumann type interface condition (see (3.69)).

The summarized equations of this formulation are as follows [9, 11],

∇× (ρ∇× ~T ) + µ
∂ ~T

∂t
− µ∇

∂Φ

∂t
= −µ

∂ ~T0

∂t
, in Ωc, (3.63)

∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc, (3.64)

−∇ · (µ∇Φ) = −∇ · (µ~T0), in Ωn, (3.65)

(µ~T0 −∇Φ) · ~n = 0, on ΓB, (3.66)

Φ is continuous on Γnc, (3.67)

~T × ~nc = ~0, on Γnc, (3.68)

(µ~T0 + µ~T − µ∇Φ) · ~nc + (µ~T0 − µ∇Φ) · ~nn = 0, on Γnc. (3.69)
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The reduced magnetic scalar potential is a continuous scalar variable in the entire region

Ωc ∪ Ωn and on the interface Γnc, and 3.67 is satisfied automatically.

The equations of the ~T , Φ − Φ - formulation in the frequency domain are described

by the same equations, only one of the equation (3.63) of conductive region has been

changed.

The partial differential equations and boundary conditions of the ~T , Φ − Φ - formu-

lation in the frequency domain can be written as

∇× (ρ∇× ~T ) + jωµ~T − jωµ∇Φ = −jωµ~T0, in Ωc, (3.70)

∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc, (3.71)

−∇ · (µ∇Φ) = −∇ · (µ~T0), in Ωn, (3.72)

(µ~T0 −∇Φ) · ~n = 0, on ΓB, (3.73)

Φ is continuous on Γnc, (3.74)

~T × ~nc = ~0, on Γnc, (3.75)

(µ~T0 + µ~T − µ∇Φ) · ~nc + (µ~T0 − µ∇Φ) · ~nn = 0, on Γnc. (3.76)

3.4 Coupled formulations with motion voltage term

Assuming that the analysed model has a moving part, it is necessary to take into account

the movement. This can be perfomed by using the motion voltage term ~v × ~B [10, 13,

29–38], where ~v is the angular velocity, and ~B is the magnetic flux density. However,

this method is suitable only when the moving part is invariable along the movement

direction. In this case with the spatial discretization of the field equations, the matrices

created by finite element method are unsymmetrical [10, 32, 35].

3.4.1 Mathematical formulation of movement

In some special case, it is possible to find a coordinate system in which the material

propreties are not directly affected by the motion of the moving parts. If there is such a

coordinate system, this results in a false solution of field equations. Transformation of

equations for the field quantities is needed [10, 29, 32, 33, 37, 38].

In induction machines consider a rotor moving in one direction with velocity ~v relative

to a reference frame ~O(x, y) and a local reference frame ~O′(x′, y′), which is moving with

the rotor [29, 33].

The displacement currents are negligible, because of the low frequencies used in the

electrical machines, and the Maxwell’s equations can be written in the fixed reference

frame as [29, 33, 37, 38]:
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Fig. 3.1. The structure of the eddy current field problem with moving part.

∇× ~H = ~J, in Ωc ∪ Ωn, (3.77)

∇× ~E = −
∂ ~B

∂t
, in Ωc, (3.78)

∇ · ~B = 0, in Ωc ∪ Ωn, (3.79)

~J =

{

~J0, in Ωn,

σ ~E, in Ωc.
(3.80)

Electromagnetic phenomena are described by the same Maxwell’s equations in the

fixed, and in the moving reference frames. In the moving reference frame the vectors
~H ′, ~B′ and ~J ′ are unchanged in the fixed and in the moving reference frames. Only the

electric field intensity vector ~E is modified, because of adding the motion voltage term

~v × ~B to ~E [29, 33, 37, 38]. In the moving reference frame the vectors are

~H ′ = ~H, (3.81)

~E ′ = ~E + ~v × ~B, (3.82)

~B′ = ~B, (3.83)

~J ′ = ~J, (3.84)
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where the quantities observed from the coordinate system ~O′(x′, y′) are marked by apos-

thropes.

Subtituting the equation (3.82) into (3.80) gives the next relation in Ωc:

~J = σ ~E ′ = σ( ~E + ~v × ~B), (3.85)

because the motion of the conductor region of the induced induction motor eddy currents,

and the eddy currents are depending on the velocity. The (3.85) has been used the
~A, V − ~A - formulation, and gives the well-known eqution, which presents the next

section.

At the ~T , Φ − Φ - potential formulation an other way gives the basic equation with

motion voltage term [34,36–38]. In the moving reference frame the (3.78) is the following

∇× ~E ′ = −
∂ ~B′

∂t
, (3.86)

and in this equation the magnetic flux ~B′ is unchanged (see in (3.83)), only the electric

field intensity ~E ′ is modified (see in (3.82)).

Substitute the equation (3.82) into (3.86) gives the next relation:

∇× ~E ′ = −
∂ ~B′

∂t
⇒ ∇× ( ~E + ~v × ~B) = −

∂ ~B

∂t
. (3.87)

The (3.87) has been used the ~T , Φ − Φ - formulation, and gives the partial differential

equation of this formulation with motion.

3.4.2 The ~A, V − ~A - formulation with the motion voltage term

This potential formulation coupled with moving velocity ~v seems to be the most widely

used formulation of electrical machines analysis [10, 29–33,35, 37, 38].

Substituting (3.34) into the (3.85) gives the next equation:

~J = σ(−
∂ ~A

∂t
+ ~v × ~B). (3.88)

In two dimensional case using the ~A, V − ~A - formulation, the motion voltage term

is the following. The velocity has only x and y components, i.e.

~v = v(x, y, t), (3.89)

and the magnetic flux density has the same components, and this results in that the
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motion voltage term in two dimensional case has only z component, i.e.

~v × ~B =

∣

∣

∣

∣

∣

∣

∣

~ex ~ey ~ez

vx vy 0

Bx By 0

∣

∣

∣

∣

∣

∣

∣

= ~ez(vxBy − vyBx). (3.90)

Combining (3.90) with (3.8) results in the motion voltage term is the following form:

~v × ~B = ~v ×∇× ~A =

∣

∣

∣

∣

∣

∣

∣

~ex ~ey ~ez

vx vy 0
∂Az

∂y
−∂Az

∂x
0

∣

∣

∣

∣

∣

∣

∣

= ~ez(−vx

∂Az

∂x
− vy

∂Az

∂y
). (3.91)

Substituting equation (3.88) into (2.3) and using relation ~B = ∇ × ~A result in the
~A, V − ~A - formulation with motion in the conductive region Ωc in the time domain,

∇× (ν∇× ~A) + σ
(∂ ~A

∂t
− ~v ×∇× ~A

)

= ~0, in Ωc, . (3.92)

The summarized equations are the following in time domain,

∇× (ν∇× ~A) + σ
(∂ ~A

∂t
− ~v ×∇× ~A

)

= ~0, in Ωc, (3.93)

∇× (ν∇× ~A) = ~J0, in Ωn, (3.94)

~n × ~A = ~0, on ΓB, (3.95)

~nc × ~A + ~nn × ~A = ~0, on Γnc, (3.96)

(ν∇× ~A) × ~nc + (ν∇× ~A) × ~nn = ~0, on Γnc. (3.97)

The summarized equations of the ~A, V − ~A- formulation using a moving velocity in

the frequency domain is given by

∇× (ν∇× ~A) + σ(jω ~A − ~v ×∇× ~A) = ~0, in Ωc, (3.98)

∇× (ν∇× ~A) = ~J0, in Ωn, (3.99)

~n × ~A = ~0, on ΓB, (3.100)

~nc × ~A + ~nn × ~A = ~0, on Γnc, (3.101)

(ν∇× ~A) × ~nc + (ν∇× ~A) × ~nn = ~0, on Γnc. (3.102)
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3.4.3 The ~T , Φ− Φ - formulation with the motion voltage term

Basically this potential formulation has not been used in the simulation of induction

machines, but some papers in the literature can be found from the other part of FEM

analysis [34, 36–38].

Substitute equation (3.86) into (3.78) gives the next relation:

∇× ( ~E + ~v × ~B) = −
∂ ~B

∂t
. (3.103)

At this formulation in two dimensional case the motion voltage term is the following.

The velocity has been two component in two dimensional case, see (3.89). Substituting

the relations (3.42) into the motion voltage term ~v× ~B and using the constitutive relation

in (2.7) gives the following

~v × ~B = ~v × µ ~H = ~v × µ(~T0 + ~T −∇Φ). (3.104)

Substitute the relation (3.104) and (3.42) and the constitutive relation in (2.7) into the

(3.103) results in the following partial differential equation,

∇× (ρ∇× ~T + ~v × µ(~T0 + ~T −∇Φ)) = −µ
∂ ~T0

∂t
− µ

∂ ~T

∂t
+ µ

∂∇Φ

∂t
. (3.105)

Summarized the equations of the ~T , Φ − Φ - formulation with motion voltage term

in the time domain are the following:

∇× (ρ∇× ~T + ~v × µ(~T0 + ~T −∇Φ)) + µ
∂ ~T

∂t
− µ

∂∇Φ

∂t
= −µ

∂ ~T0

∂t
, in Ωc, (3.106)

∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc, (3.107)

−∇ · (µ∇Φ) = −∇ · (µ~T0), in Ωn, (3.108)

(µ~T0 −∇Φ) · ~n = 0, on ΓB, (3.109)

Φ is continuous on Γnc, (3.110)

~T × ~nc = ~0, on Γnc, (3.111)

(µ~T0 + µ~T − µ∇Φ) · ~nc + (µ~T0 − µ∇Φ) · ~nn = 0, on Γnc. (3.112)

The summarized equations of this formulations in the frequency domain are the

following:

∇× (ρ∇× ~T + ~v × µ(~T0 + ~T −∇Φ)) + jωµ~T − jωµ∇Φ = −jωµ~T0, in Ωc, (3.113)
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∇ · (µ~T − µ∇Φ) = −∇ · (µ~T0), in Ωc, (3.114)

−∇ · (µ∇Φ) = −∇ · (µ~T0), in Ωn, (3.115)

(µ~T0 −∇Φ) · ~n = 0, on ΓB, (3.116)

Φ is continuous on Γnc, (3.117)

~T × ~nc = ~0, on Γnc, (3.118)

(µ~T0 + µ~T − µ∇Φ) · ~nc + (µ~T0 − µ∇Φ) · ~nn = 0, on Γnc. (3.119)
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Chapter 4

Weak formulation of eddy current

problem

The finite element method is associated with variational methods [25] or residual methods

[5,6,9,11–17]. The residual methods are established directly from the physical equations.

It is a respectable advantage comparing with the different methods since is relatively

easier to understand and to apply. This is the main reason why nowadays most of the

FEM analysis is perfomed by using the residual method. The Galerkin’s method is a

particular form of residual method and it is widely used in electromagnetism. The finite

element method is based on the Galerkin’s method of the weighted residual method

[5, 6, 9, 11–18,22, 25].

The weighted residual method [6] can be applied to minimize the residual of a partial

differential equation. The best approximation for the potentials can be obtained when

the integral of the residual of the partial differential equation multiplied by a weighting

function over the problem domain is equal to zero. The weighting function can be

arbitrary, but in Galerkin’s method, the weighting functions are selected to be the same as

those used for expansion of the approximate solution. Furthermore, the weak formulation

of eddy current field formulations is presented in this chapter.

4.1 The weak formulation with Galerkin’s method

The weak formulation of the weighted residual method can be obtained when applying

the rule of integration by parts to decrease the order of the differential operator in the

inner product. The finite element method can be derived from this group of the weighted

residual method. In the case of finite element method, the weighting function and the

basis function of the approximating function are the same.

The finite element method use the the weak formulation with Galerkins method when

the basis functions of the approximating function and the weighting function are the

same. Here, the weak formulations of the potential formulations according to Galerkin’s
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method are presented, which are appropriate in the finite element method. In the fol-

lowing ~W = ~W (~r) denotes the vector weighting function as well as the basis functions

of approximating function and N = N(~r) denotes the scalar weighting function as well

as the basis functions of approximating function [5, 6, 9, 11–15,22].

Scalar potentials Φ = Φ(~r), or Φ = Φ(~r, t) are approximated by an expansion in terms

of I elements of an entire function set Ni. Vector potentials ~A = ~A(~r), or ~A = ~A(~r, t)

are approximated by an expansion in terms of J elements of an entire function set ~Wj .

Shape functions Ni and ~Wj are the elements of an entire function set, which can be

defined in many ways. The definition of these elements are presented in chapter 5.

In the following ~Aκ, ~T κ
0
, ~T κ, Φκ will denote the approximated unknown potential

functions.

4.1.1 The weak formulations of ~A, V − ~A - formulation

with motion voltage term

In three dimensional case, there are two unknown potentials in this formulation, the

magnetic vector potential ~A in the whole problem region Ωc ∪ Ωn and the electric

scalar potential V defined only in the eddy current region Ωc, consequently two partial

differential equations are needed.

In two dimensional case, than this induction machine problems, it is only one un-

known potential in this formulation, the magnetic vector potential ~A in the whole prob-

lem region Ωc ∪ Ωn, consequently only one equation is needed.

The weak formulation is based on the partial differential equations (3.93) and (3.94)

and on the interface condition (3.97),

∫

Ωc∪Ωn

~Wk · [∇× (ν∇× ~Aκ)] dΩ

+

∫

Ωc

σ ~Wk ·

(

∂ ~Aκ

∂t
− ~v ×∇× ~Aκ

)

dΩ

+

∫

Γnc

~Wk · [(ν∇× ~Aκ) × ~nc + (ν∇× ~Aκ) × ~nn] dΓ

=

∫

Ωn

~Wk · ~Jκ
0 dΩ,

(4.1)

where k = 1, . . . , I.

The second order derivative in the first and in the third integrals can be reduced to

first order one by using the mathematical identity

∇ · (~a ×~b) = ~b · ∇ × ~a − ~a · ∇ ×~b, (4.2)
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with the notation ~a = ν∇× ~Aκ and ~b = ~Wk, finally

∫

Ωc∪Ωn

ν(∇× ~Wk) · (∇× ~Aκ) dΩ

+

∫

Ωc

~Wk · σ

(

∂ ~Aκ

∂t
− ~v ×∇× ~Aκ

)

dΩ

+

∫

Γnc

[(ν∇× ~Aκ × ~Wk)] · ~n dΓ +

∫

ΓB∪Γnc

[(ν∇× ~Aκ × ~Wk)] · ~n dΓ

+

∫

Γnc

~Wk · [(ν∇× ~Aκ) × ~nc + (ν∇× ~Aκ) × ~nn] dΓ

=

∫

Ωn

~Wk · ~Jκ
0

dΩ

(4.3)

can be obtain. The first and the second boundary integral terms are vanishing on the

boundary part Γnc, respectively, because of the third integral term after using the identity

[(ν∇× ~Aκ) × ~Wk] · ~n = [~n × (ν∇× ~Aκ)] · ~Wk = − ~Wk · [(ν∇× ~Aκ) × n]. (4.4)

The second boundary integral term is equal to zero on the rest part ΓB, because of the

Dirichlet type boundary condition (3.95), i.e. ~Wk × ~n = ~0 on this boundary.

Finally, in the two dimensional case the weak formulation of the ~A - potential for-

mulation with motion voltage term in the time domain is the following:

∫

Ωc∪Ωn

ν(∇× ~Wk) · (∇× ~Aκ) dΩ

+

∫

Ωc

~Wk · σ

(

∂ ~Aκ

∂t
− ~v ×∇× ~Aκ

)

dΩ

=

∫

Ωn

~Wk · ~Jκ
0

dΩ.

(4.5)

The weak formulation of this potential formulation in the frequency domian is the

following, which coming from the partial differential equations (3.98) and (3.99) and on

the interface condition (3.102):

∫

Ωc∪Ωn

ν(∇× ~Wk) · (∇× ~Aκ) dΩ

+

∫

Ωc

~Wk · σ(jω ~Aκ − ~v ×∇× ~Aκ) dΩ

=

∫

Ωn

~Wk · ~Jκ
0 dΩ,

(4.6)

where k = 1, . . . , I.
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4.1.2 The weak formulations of ~T , Φ − Φ - formulation

with motion voltage term

There are two unknown potentials in this formulation, too, the current vector potential
~T in the eddy current region Ωc and the reduced magnetic scalar potential Φ in the

whole region Ωc ∪ Ωn, that is two equations must be realized, coming from the partial

differential equations (3.106)-(3.108) and the boundary and interface conditions (3.109)-

(3.112).

The first weak formulation is based on the partial differential equation (3.106),

∫

Ωc

~Wk · [∇× (ρ∇× ~T κ + ~v × µ(~T κ
0 + ~T κ −∇Φκ))] dΩ

+

∫

Ωc

~Wk ·

[

µ
∂ ~T κ

∂t
− µ∇

∂Φκ

∂t

]

dΩ

= −

∫

Ωc

µ ~Wk ·
∂ ~T κ

0

∂t
dΩ,

(4.7)

where k = 1, . . . J .

The second order derivatives in the first integral can be reduced to first order one by

using the identity

∇ · (~a ×~b) = ~b · ∇ × ~a − ~a · ∇ ×~b, (4.8)

with the notation ~a = ρ∇× ~T κ + ~v × µ(~T κ
0 + ~T κ −∇Φκ) and ~b = ~Wk,

∫

Ωc

[ρ(∇× ~Wk) · (∇× ~T κ + ~v × µ(~T κ
0

+ ~T κ −∇Φκ))] dΩ

+

∫

Ωc

[

µ ~Wk ·
∂ ~T κ

∂t
− µ ~Wk · ∇

∂Φκ

∂t

]

dΩ

+

∫

Γnc

[(ρ∇× ~T κ + ~v × µ(~T κ
0

+ ~T κ −∇Φκ)) × ~Wk] · ~n dΓ

= −

∫

Ωc

µ ~Wk ·
∂ ~T κ

0

∂t
dΩ.

(4.9)

The first boundary integral term is equal to zero on the part Γnc, because of the Dirichlet

type boundary and interface condition (3.111), i.e. ~Wk × ~n = 0 on Γnc.

31



Dániel Marcsa, B.Sc. Thesis 2008

Finally, the first equation of the weak form is the following:

∫

Ωc

[ρ(∇× ~Wk) · (∇× ~T κ + ~v × µ(~T κ
0

+ ~T κ −∇Φκ))] dΩ

+

∫

Ωc

[

µ ~Wk ·
∂ ~T κ

∂t
− µ ~Wk · ∇

∂Φκ

∂t

]

dΩ

= −

∫

Ωc

µ ~Wk ·
∂ ~T κ

0

∂t
dΩ.

(4.10)

The partial differential equations (3.107) and (3.108), moreover the Neumann type

boundary conditions (3.109), (3.112) can be summarized in the weak formulation pre-

sented next. The time derivative of these partial differential equations and the according

Neumann type boundary conditions must be performed, anyway the resulting system

of equations will not be symmetric. It is noted that, it is useful to multiply the partial

differential equations (3.107) and (3.108) by -1. After taking the time derivative, the

following form can be obtained:

−

∫

Ωc

Nk∇ ·

(

µ
∂ ~T κ

∂t
− µ∇

∂Φκ

∂t

)

dΩ

+

∫

Ωn

Nk∇ ·

(

µ∇
∂Φκ

∂t

)

dΩ

+

∫

ΓB

Nk

(

µ
∂ ~T κ

∂t
· ~n − µ∇

∂Φκ

∂t
· ~n

)

dΓ

+

∫

Γnc

Nk

(

µ
∂ ~T κ

0

∂t
+ µ

∂ ~T κ

∂t
− µ∇

∂Φκ

∂t

)

· ~nc dΓ

+

∫

Γnc

Nk

(

µ
∂ ~T κ

0

∂t
− µ∇

∂Φκ

∂t

)

· ~nn dΓ

=

∫

Ωc

Nk∇ ·

(

µ
∂ ~T κ

0

∂t

)

dΩ

+

∫

Ωn

Nk∇ ·

(

µ
∂ ~T κ

0

∂t

)

dΩ,

(4.11)

where k = 1, ..., I.

The first, the second and the last three integral terms can be reformulated by the use of

the identity

∇(ϕ~a) = ~a · ∇ϕ + ϕ∇ · ~a (4.12)
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with the notation ϕ = Nk and ~a = µ∂ ~T κ/∂t, or ~a = µ∇∂Φκ/∂t, or ~a = µ∂ ~T κ
0
/∂t,

∫

Ωc

µ∇Nk ·
∂ ~T κ

∂t
dΩ −

∫

Γnc

Nkµ
∂ ~T κ

∂t
· ~n dΓ

−

∫

Ωc

µ∇Nk ·
∂Φκ

∂t
dΩ +

∫

Γnc

Nkµ
∂Φκ

∂t
· ~ndΓ

−

∫

Ωn

µ∇Nk ·
∂Φκ

∂t
dΩ +

∫

ΓB∪Γnc

Nkµ
∂Φκ

∂t
· ~n dΓ

+

∫

ΓB

Nk

(

µ
∂ ~T κ

0

∂t
· ~n − µ∇

∂Φκ

∂t
· ~n

)

dΓ

+

∫

Γnc

Nk

(

µ
∂ ~T κ

0

∂t
+ µ

∂ ~T κ

∂t
− µ∇

∂Φκ

∂t

)

· ~nc dΓ

+

∫

Γnc

Nk

(

µ
∂ ~T κ

0

∂t
− µ∇

∂Φκ

∂t

)

· ~nn dΓ

= −

∫

Ωc

µ∇Nk ·
∂ ~T κ

0

∂t
dΩ +

∫

Γnc

Nkµ
∂ ~T κ

0

∂t
· ~n dΓ

−

∫

Ωn

µ∇Nk ·
∂ ~T κ

0

∂t
dΩ +

∫

ΓB∪Γnc

Nkµ
∂ ~T κ

0

∂t
· ~n dΓ.

(4.13)

The first, and the second, moreover the third and the last boundary terms defined

on Γnc are vanishing, because of the same terms with opposite sign in the fifth and

sixth boundary integral term. The fourth boundary integral, defined on ΓB is vanishing

according to the terms in the third and in the eighth boundary integrals.

Finally, the following weak formulation can be obtained:

∫

Ωc

µ∇Nk ·
∂ ~T κ

∂t
dΩ −

∫

Ωc∪Ωn

µ∇Nk ·
∂Φκ

∂t
dΩ

= −

∫

Ωc∪Ωn

µ∇Nk ·
∂ ~T κ

0

∂t
dΩ.

(4.14)

Finally, the weak formulation of the ~T , Φ−Φ - formulation in the time domain is the

following,

∫

Ωc

[ρ(∇× ~Wk) · (∇× ~T κ + ~v × µ(~T κ
0

+ ~T κ −∇Φκ))] dΩ

+

∫

Ωc

[

µ ~Wk ·
∂ ~T κ

∂t
− µ ~Wk · ∇

∂Φκ

∂t

]

dΩ

= −

∫

Ωc

µ ~Wk ·
∂ ~T κ

0

∂t
dΩ,

(4.15)
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−

∫

Ωc

µ∇Nk ·
∂ ~T κ

∂t
dΩ +

∫

Ωc∪Ωn

µ∇Nk ·
∂Φκ

∂t
dΩ

=

∫

Ωc∪Ωn

µ∇Nk ·
∂ ~T κ

0

∂t
dΩ.

(4.16)

The weak formulation of this potential formulation in the frequency domian is the

following, which coming from the partial differential equations (3.114) and (3.115) and

on the Neumann type boundary conditions (3.116), (3.119),

∫

Ωc

[ρ(∇× ~Wk) · (∇× ~T κ + ~v × µ(~T κ
0

+ ~T κ −∇Φκ))] dΩ

+

∫

Ωc

[

µ ~Wk · jω~T κ − µ ~Wk · ∇jωΦκ

]

dΩ

= −

∫

Ωc

µ ~Wk · jω~T κ
0

dΩ,

(4.17)

where k = 1, . . . , J ,

−

∫

Ωc

µ∇Nk · jω~T κ dΩ +

∫

Ωc

µ∇Nk · jωΦκ dΩ

+

∫

Ωn

µ∇Nk · jωΦκ dΩ

=

∫

Ωc

µ∇Nk · jω~T κ
0

dΩ +

∫

Ωn

µ∇Nk · jω~T κ
0

dΩ,

(4.18)

where k = 1, . . . , I.
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Chapter 5

The finite element method

The basis of numerical techniques is to reduce the partial differential equations by using

scalar and vector potentials to algebraic ones. These algebraic equations can be solved

by numerical methods e.g. (4.6), (4.17) [5,6,9,11–14,16,17,22,25]. This reduction can be

done by discretizing the partial differential equations in time if necessary and in space.

The potential functions, the approximation method and the generated mesh distinguish

the numerical field solvers.

The Finite Element Method (FEM) is the most popular and the most flexible numer-

ical technique to determine the approximate solution of the partial differential equations

in engineering. For example, commercially available FEM software package is COMSOL

Multiphysics [39], which has been used in this work.

5.1 Fundamentals of finite element method

This section summarizes the finite element method as a computer aided design (CAD)

technique in electrical engineering to obtain the electromagnetic field quantities in the

case of eddy current field problems. Here, we show how to approximate potential func-

tions with nodal and vector functions, and the main steps of simulation with FEM. This

shown in Fig. 5.1.

5.1.1 Preprocessing

A. Model specification

Firstly, in the model specification phase, the model of the problem, which simulation

require electromagnetic field calculations must be set up, i.e. we have to find out the

partial differential equations, which must be solved with prescribed boundary and conti-

nuity conditions. We have to find out, whether it is a eddy current free reagion, where has

been used the static magnetic field equations, and which one is an eddy current region
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Fig. 5.1. Steps of simulation by finite element method.

where has been used the magnetodynamic Maxwell’s equations, and how the character-

istics of the materials look like. After selecting potentials, the weak formulation of these

partial differential equations must be worked out as well. It is depending on the problem,

of course, but the chosen mathematical model of the arrangement should be adequate

to calculate electromagnetic field quantities in the given accuracy. The geometry of the

problem must be defined by a CAD software tool.

The next step is the preprocessing task. Here we have to give the values of different

parameters, such as the material properties, i.e. the relative permeability, the excitation

signal, angular velocity and the others. The geometry can be simplified according to

symmetries or axial symmetries.

This step is shown in Fig. 5.2. In this figure the geometry of the three-phase motor,

the used constants, the different subdomain expressions e.g. constitutive relations, and

the weak formulations of partial differential equations of subdomains can be seen.
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Fig. 5.2. The model specification in COMSOL Multiphysics.

B. 2D finite element mesh

In the preprocessing task the geometry of the problem must be discretized by a finite

element mesh. The fundamental idea of FEM is to divide the problem region to be

analyzed into smaller finite elements with given shape. A finite element can be trinagles

or quadrangles in two dimensions.

A triangle (Fig. 5.3(a)) has three vertices 1, 2 and 3, here numbered anticlockwise

and has 3 edges. The quadrangle element (Fig. 5.3(b)) has 4 nodes and 4 edges.

(a) Triangular element. (b) Quadrangle element.

Fig. 5.3. Typical finite elements in the two dimensional x − y plane.
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(a) The single-phase motor. (b) The three-phase motor.
(c) The motor with closing
boundary.

Fig. 5.4. The two induction motors is meshed by triangles.

Fig. 5.5. The three-phase induction motor is meshed by triangles.

FEM mesh, as illustration, generated by COMSOL multiphisics can be seen in Fig.

5.4 and Fig. 5.5. The arrangement of single-phase (Fig. 5.4(a)), and of three-phase

motor (Fig. 5.4(b)) have been discretized by a trinagular mesh as it is shown at the Fig.

5.4. In Fig. 5.5, the enlarged region of the half of the three-phase motor is shown.

All the simulations have been studied using the same mesh, which consists of 43522

second-order triangular elements as it can be seen on the left hand side of Fig. 5.4.

Fig. 5.4(c) shows the used mesh to calculate the impressed current vector potential
~T0. ~T0 is calculated in free space, i.e. µ = µ0 must be set everywhere in the problem

region. The mesh of induction motor and the closing boundary consists of 223426 second-

order triangular elements. The number of unknowns are different in the two potential

formulations. Using the ~A, V − ~A - formulation, the number of unknowns is 87405, and

in case of the ~T , Φ − Φ - formulation the number of unknowns is 147107. In case of the
~A, V − ~A - formulation, only the magnetic vector potential ~A in all the problem region

Ωc ∪Ωn is present. In the ~T , Φ−Φ - formulation, current vector potential ~T only in the
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conductive region Ωc, while the reduced magnetic scalar potential Φ in the conductive

and non-conductive region Ωc ∪ Ωn must be used.

5.1.2 Shape functions

The presented potential functions can be scalar valued, e.g. the reduced magnetic scalar

potential Φ, or vector valued, e.g. the magnetic vector potential ~A, or the current vector

potential ~T and or the impressed current vector potential ~T0.

The scalar potential functions can be approximated by the so-called nodal shape

functions and the vector potential functions can be approximated by either nodal or

so-called vector shape functions, also called edge shape functions.

Generally, a shape function is a simple continuous polynomial function defined in a

finite element and it is depending on the type of the used finite element.

Each shape function is defined in the entire problem region, and a scalar shape

function corresponds to just one nodal point and each vector shape function corresponds

to just one edge. Each scalar shape function is nonzero over just those finite elements

that contain its nodal point and equals to zero over all other elements and each vector

shape function in nonzero over just those finite elements that contain its edge and equals

to zero over all other elements. Furthermore, the scalar shape function has a value unity

at its nodal point and zero at all the other nodal points, and the line integral of a vector

shape function is equal to one along its edge and the line integral of it is equal to zero

along the other edges. Moreover the shape functions are linearly independent, i.e. no

shape function equals a linear combination of the other shape functions.

The accuracy of solution obtained by FEM can be increased in three ways. The first

one is called h-FEM, it is increasing the number of finite elements, i.e. decreasing the

element size. The second way is calles p-FEM, it is to increase the degree of polynomials

building up a shape function. The third way is called hp-FEM, it is the mixture of the

previous methods.

A. Nodal shape functions

Scalar potential functions can be represented by a linear combination of shape functions

associated with nodes of the finite element mesh. Within a finite element, a scalar

potential function Φ = Φ(~r, t) is approximated by [9, 12]

Φ '

m
∑

i=1

NiΦi, (5.1)

where Ni = Ni(~r) and Φi = Φi(t) are the nodal shape functions and the value of potential

function corresponding to the ith node, respectively. The number of degrees of freedom is

m = 3 in a 2D problem using triangular FEM mesh, and the shape functions are linear,
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and the numer of degree of freedom is m=6 the shape functions are second order. The

nodal shape functions can be defined by the relation

Ni =

{

1, at the node i,

0, at other nodes.
(5.2)

2D linear shape functions can be built up as follows when using a finite element

mesh with triangular finite elements. Linear basis functions can be introduced by using

the so-called barycentric coordinate system in a triangle. The barycentric coordinate

system is a coordinate system for an n-dimensional Euclidean space in which each point

is represented by n constants whose sum is 1, and whose product with a given set of

linearly independent points equals the point. The area of a triangle is denoted by 4 and

it can be calculated as

4 =
1

2

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

, (5.3)

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of the three nodes of the triangle in

the global coordinate system building an anticlockwise sequence. The area functions(see

Fig. 5.6) of a given point inside the triangle with coordinates (x, y) can be calculated as

41 =
1

2
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∣

∣

∣

∣
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1 x2 y2

1 x3 y3

∣
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∣

∣
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∣
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∣

∣

∣
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1 x y

1 x3 y3
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∣

∣

∣

∣

∣

∣

, 43 =
1

2
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∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x y

∣

∣

∣

∣

∣

∣

∣

, (5.4)

i.e. 41 = 41(x, y), 42 = 42(x, y) and 43 = 43(x, y) are depending on the coordinates

x and y.

Fig. 5.6. The area of the triangle.

The barycentric coordinates are Li = Li(x, y) can be defined by the above area

functions as

Li =
4i

4
, i = 1, 2, 3. (5.5)
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Three linear shape functions Ni = Ni(x, y) can be described as

Ni = Li, i = 1, 2, 3. (5.6)

The shape function Ni is equal to 1 at the ith node of the triangle and it is equal to zero

at the other two nodes, because 4i is equal to 4 at node i and it is equal to zero at the

other two nodes. That is why the relation (5.2) is satisfied. It is obvious that the three

shape functions are linearly independent.

If the potential at the nodes is known, then a linear approximation of the potential

function can be represented by (5.1). The derivative of a first order approximation is

zeroth order, i.e. constant. The magnetic field intensity ~H , or the magnetic flux density
~B are constant within a triangle, if these are obtained from a first order approximation

by ~H = −∇Φ, or ~B = ∇× ~A. This may results in inaccurate solution. This is the reason

why higher order approximations are studied.

Higher order shape functions can also be built up by using the barycentric coordinates

L1, L2 and L3 introduced above in (5.5) [9, 12].

A polynomial of order n must contain all possible terms xpyq, 0 ≤ p + q ≤ n, as it is

presented by Pascal’s triangle [9, 14, 15],

1

x y

x2 xy y2 . . .

The first row contains the only one term of the zeroth order polynomials, the second

and third rows contain the terms of the first and second order polynomials. Pascal’s

triangle can be used to generate the elements of a polynomial with given order. Such a

polynomial contains

m =
(n + 1)(n + 2)

2
(5.7)

elements altogether, i.e. m = 1 and m = 3 in the case of zeroth and the first and the

second order polynomials. It means that m coefficients must be expressed, finally m

points must be placed within a triangle. Pascal’s triangle can be continued, of course.

The interpolation function of order n can be constructed as

Ni = P n
I (L1)P

n
J (L2)P

n
K(L3), where I + J + K = n, (5.8)

and the integers I, J and K label the nodes within the triangle, resulting in a numbering

scheme. Fig. 5.7 illustrated the numbering scheme of the first (Fig. 5.7(a)) and the

second (Fig. 5.7(b)) order approximations.
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(a) Linear element.

(b) Quadratic element.

Fig. 5.7. Numbering scheme for triangular elements.

The polynomials P n
I (L1), P n

J (L2) and P n
K(L3) are defined as

P n
I (L1) =

I−1
∏

p=0

nL1 − p

I − p
=

1

I!

I−1
∏

p=0

nL1 − p, if I > 0, (5.9)

P n
J (L2) =

J−1
∏

p=0

nL2 − p

J − p
=

1

J !

J−1
∏

p=0

nL2 − p, if J > 0, (5.10)

P n
K(L3) =

K−1
∏

p=0

nL3 − p

K − p
=

1

K!

K−1
∏

p=0

nL3 − p, if K > 0, (5.11)

and as a definition

P n
0 = 1. (5.12)

If n=1, then m=3, i.e. (see Fig. 5.7(a))

N1 = P 1

1 (L1)P
1

0 (L2)P
1

0 (L3) = L1,

N2 = P 1

0
(L1)P

1

1
(L2)P

1

0
(L3) = L2,

N3 = P 1

0
(L1)P

1

0
(L2)P

1

1
(L3) = L3,

(5.13)
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since

P 1

1 (Li) =

1−1
∏

p=0

1Li − p

1 − p
= Li, (5.14)

as it was mentioned (5.6).

If n=2, then m=3, i.e. (see Fig. 5.7(a))

N1 = P 2

2
(L1)P

2

0
(L2)P

2

0
(L3) = L1(2L1 − 1),

N2 = P 2

0 (L1)P
2

2 (L2)P
2

0 (L3) = L2(2L2 − 1),

N3 = P 2

0
(L1)P

2

0
(L2)P

2

2
(L3) = L3(2L3 − 1),

N4 = P 1

1
(L1)P

1

1
(L2)P

1

0
(L3) = 4L1L2,

N5 = P 1

0 (L1)P
1

1 (L2)P
1

1 (L3) = 4L2L3,

N6 = P 1

1
(L1)P

1

0
(L2)P

1

1
(L3) = 4L1L3,

(5.15)

because

P 2

1
(Li) =

1−1
∏

p=0

2Li − p

1 − p
= 2Li, (5.16)

and

P 2

2
(Li) =

2−1
∏

p=0

2Li − p

2 − p
= Li(2Li − 1). (5.17)

The scalar potential along any edge of a triangle is the linear combination of the

values defined in the points of this edge (see Fig. 5.7), so that, if two triangles share

the same vertice, the potential will be continuous across the interface element boundary.

This means that the approximate solution is continuous everywhere, however its normal

derivate is not.

The magnetic vector potential ~A, and the magnetic scalar potential Φ have been

approximated by second order nodal shape function in this study.

B. Edge shape functions

Vector potentials can be represented by either nodal shape functions or so-called edge

shape functions. Edge shape functions are also called vector shape functions [9, 12].

The natural approach is to treat the vector field ~T = ~T (~r, t) as two coupled scalar

fields Tx = Tx(~r, t), Ty = Ty(~r, t), i.e.

~T = Tx~ex + Ty~ey (5.18)

in 2D, respectively, ~ex, ~ey are the orthogonal unit vectors in the x − y plane.

Nodal shape functions can be used in this case as well, as it was presented for scalar

potentials in the previous section, however each node has two or three unknowns in 2D
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or in 3D, respectively. Nodal shape functions can be applied to approximate the scalar

components of the vector field ~T . For example in 2D, ~T can be approximated as

~T '

m
∑

i=1

Ni(Tx,i~ex + Ty,i~ey) = ~ex

m
∑

i=1

NiTx,i + ~ey

m
∑

i=1

NiTy,i. (5.19)

Here Ni = Ni(~r) are the usual nodal shape functions defined by (5.2) and Tx,i = Tx,i(t),

Ty,i = Ty,i(t), are the values of components of the approximated vector potential at node

i. The number of degrees of freedom is 2m in a 2D problem using a triangular mesh.

Nodal shape functions are used to approximate gauged vector potentials. This ap-

proach was the first in the history of finite element method in electromagnetics. Unfor-

tunately, there are some problems when the usual nodal based finite elements are used

to interpolate vector potentials. The lack of gauging results in a system of algebraic

equations, which has infinite number of solution and the application of iterative solvers

sometimes fails. In this work the nodal shape function can be applied to approximate

the magnetic vector potential ~A, because this is a 2D problem, and the gauge is satisfied

automatically.

The vector shape functions have been developed in the last decades, which application

in static and eddy current field problems is more and more popular, because of their

advantages. The use of edge shape functions solve the problems described above. Vector

shape functions are usually called edge shape functions, because they are associated to

the edges of the FEM mesh.

Instead of scalar shape functions, edge shape functions ~Wi = ~Wi(~r) can be applied

to approximate a vector potential ~T ,

~T '

K
∑

i=1

~WiTi, (5.20)

where Ti = Ti(t) is the line integral of the vector potential ~T along the edge i. The

approximation of the vector function T is known along the edges of the mesh, then

(5.20) can be used to interpolate the function anywhere and in linear case K = 3. First

order vector shape functions are defined by the line integral

∫

l

~Wi · d~l =

{

1, along edge i,

0, at other edges,
(5.21)

i.e. the line integral of the vector shape function ~Wi along the ith edge is equal to one.

In other words, the vector shape function ~Wi has tangential component only along the

ith edge and it has only normal component along the other edges, because ~Wi ·d~l is equal

to zero only if the vectors ~Wi and d~l are perpendicular to each others.

If two triangles share the same vertices, the tangential component of the approxi-

44



Dániel Marcsa, B.Sc. Thesis 2008

mated vector potential will be continuous across the interface element boundary. This-

means that the tangential component of the approximate solution is continuous every-

where, however its normal component is not. In the words of equations, according to

the definition (5.21), the line integral of the vector potential along the mth edge is equal

to Tm, i.e.

∫

lm

~T · d~l =

∫

lm

(

K
∑

i=1

~WiTi

)

· d~l =

K
∑

i=1

∫

lm

( ~WiTi) · d~l = Tm

∫

lm

~Wm · d~l = Tm. (5.22)

The vector function

~wij = Li∇Lj − Lj∇Li (5.23)

will be applied to construct the edge shape functions, because it can be used in functions,

which satisfies (5.21) and (5.22). According to the notations in (3.103), the edges of a

finite element are pointing from node i to node j, as it can be seen in Fig. 5.8.

Fig. 5.8. The definition of edges with local directions of the triangular finite element.

The edge shape functions defined on triangles based on (5.23) are collected. The

basic 2D vector shape functions ~Wi can be constructed by using the first order nodal

shape functions,

~W1 = l1(N1∇N2 − N2∇N1)δ1,

~W2 = l2(N2∇N3 − N3∇N2)δ2,

~W3 = l3(N3∇N1 − N1∇N3)δ3.

(5.24)

Here li (Fig. 5.8) denotes the length of the ith edges of the triangle. The value of δi

is equal to ±1, depending on whether the local direction of the edge is the same as the

global direction or opposite (see Fig. 5.8 for local direction). This set of vector functions

is called zeroth order vector shape functions.

If the approximation of the vector function ~T is known along the edges of the mesh,

then (5.20) can be used to interpolate the function anywhere and in linear case m = 3.

Higher order vector shape functions can be constructed by using the vector function
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(a) Numbering scheme for the first order vector element associated
with ~w12.

(b) Numbering scheme for the first order vector element associated
with ~w23.

(c) Numbering scheme for the first order vector element associated
with ~w31.

Fig. 5.9. Numbering scheme for the first order vector elements.

~wij defined by (5.23), too. This vector function must be multiplied by a complete inter-

polatory polynomial, which results in the higher order vector shape functions. First and

second order polynomials will be used to build up first and second order vector shape

functions. Here, we follow [9, 12], the method is as follows.

First of all, an indexing sequence must be set up, which is similar to the method used

to build up the scalar shape functions, because the higher order vector shape functions are

based on the Lagrange polynomials and (5.23). In the case of in first order approximation,

the numbering scheme of the third order scalar interpolation can be used and the points

are shown in Fig. 5.9 must be used to represent first order vector shape functions

associated to the edge {1, 2}, {2, 3} and {3, 1}, respectively. The interpolation points

have been selected in this special way, because the interpolation of field vectors along
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vertices have been avoided, i.e. the points have been shifted inside the triangle and the

indexing scheme of order n + 2 is used to represent the vector interpolation of order

n. This is called global numbering and denoted by (I, J, K) on the ’big’ triangle, local

numbering means the numbering scheme with the real order (i, j, k) defined over the

’small’ triangle.

The COMSOL Multiphysics software uses this kind of vector shape functions, however

n = 0, n = 1 and n = 2 are named as linear and quadratic vector shape functions.

In Fig. 5.10 the absolute value of magnetic flux density inside the rotor steel along

the line x = −20, ..., 20mm, y = 0mm can be seen.
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(a) The ~A, V − ~A - formulation.
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(b) The ~T , Φ − Φ - formulation.

Fig. 5.10. Comparison between the different order element and different FEM mesh.

The accuracy of solution can not be increased very well by increasing the number

of finite elements, however applying higher order approximation results in better distri-

bution of the magnetic flux density. Here, the coarse mesh consists of 1335 triangles

with 695 unknowns and the approximation is linear. The coarse mesh consist of 1335

trinagles with 2724 unknowns, the very fine mesh consists of 33568 triangles with 67453

unknowns when second order approximation is applied.

Fig. 5.11 shows the comparison between results simulated by the ~A, V − ~A - for-

mulation and by the ~T , Φ − Φ - formulation, both formulations with the second order

approximation. The fine mesh with 8358 elements and 16877 unknowns has been used.

The solutions of both potential formulations seem to be equal.

5.1.3 Computation

The next step in FEM simulations is solving the problem. The FEM equations, based

on the weak formulations [5, 6, 9, 11–14, 16–18, 22, 25], must be set up in the level of

one finite element, then these equations must be assembled through the FEM mesh.

Assembling means that the global system of equations is built up, which solution is

the approximation of the introduced potential. The obtained global system of algebraic
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Fig. 5.11. Comparison between the potential formulations by the same order element
and FEM mesh.

equations is linear, depending on the medium to be analyzed. Then this global system

of equations must be solved by a solver. The computation may contain iteration. If the

problem is solved in the time-domain, then the solution must be worked out at every

discrete time instant.

If the problem is solved in the time-domain, the numerical computations were per-

formed using computer programs developed under MATLAB environment using the

COMSOL script language. Fig. 5.12 shows one part of the iteration script of the ~T , Φ−Φ

- formulation in the time-domain.

A. Solvers

Generally, computation programs take into account the symmetry of the global matrix,

and storing only the half of this matrix in the memory. However, in this case the whole

matrix must be stored, becasuse the global matrix is unsymmetric [10,32,35]. In practice,

analysis with velocity terms normally needs a separate solver [10].

At the ~A, V − ~A - potential formulation, the vector potential function ~A has been

approximated by nodal shape function, i.e. the problem based on nodal finite elements

have been solved by the direct solver UMFPACK (Unsymmetric MultiFrontal PACKage)

solver [39, 40].

In the ~T , Φ − Φ - potential formulation, the current density ~J0 of winding has been

represented by the impressed current vector potential ~T0 approximated by edge shape

functions. The edge shape functions have been approximated by vector elements, and

the iterative solver GMRES (Generalized Minimum Residual Method) solver [7,39] with

SSOR (Symmetric Successive Over-Relaxation) preconditioner [39,41] has been applied.

In Fig. 5.13 the real part of the impressed current vector potential can be seen. The

current vector potential ~T has been approximated by edge shape functions and the
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Fig. 5.12. One part of the script of the time-domain iteration.

reduced magnetic scalar potential Φ has been approximated by nodal elements, and this

has been solved by the direct solver SPOOLES (SParse Object Oriented Linear Equations

Solver) [39, 42]. This solver used, because of the UMFPACK has been used much more

memory than the SPOOLES, and as mentioned above, the number of unknowns at the
~T , Φ − Φ - potential formulation, is more than .

Fig. 5.13. Solution of impressed current vector potential.
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5.1.4 Postprocessing

The result of computations is the approximated potential values in the FEM mesh. Any

electromagnetic field quantity (e.g. magnetic field intensity, magnetic flux density, etc.)

can be calculated by using the potentials at the postprocessing stage. Loss, inductance,

energy, force and other quantities can also be calculated. The postprocessing gives a

chance to modify the geometry, the material parameters or the FEM mesh to get more

accurate result.

In the ~A, V − ~A - formulation the magnetic flux density ~B is the primer quantity.

In the ~T , Φ− Φ - fomulation the magnetic field intensity ~H is the primer quantity. The

primer quentity coupled with e.g. constitutive relations gives the other quantities.

This section deals with the determination of the torque, the induced voltage, and the

losses of the rotor, and of the rotor steel. In Fig. 5.14 the regions e.g. S, ΩRS and ΩRAl

and the boundary Γ of the computed quantities can be seen.

Fig. 5.14. Regions and surface of the computed quantities.

A. Torque

A precise analysis of an electrical rotating machine requires the study of the interac-

tion between mechanical and electrical quantities. The electromagnetic torque plays a

fundamental role in the corresponding energy conversation.

There are different methods, based in several formulations, to evaulate the torque.

The method of the Maxwell’s stress tensor to calculate the torque [10, 13, 29, 43–49].

This is commonly used in the calculation of forces and torques in the numerical analysis

of electrical devices.
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The electromagnetic torque is obtained as a surface integral, but in two dimensional

case the surface integral is reduced to a line integral along the air gap.

For the practical application of Maxwell’s stress tensor, suppose that the magnetic

field intensity ~H is known on the surface Γ enclosing the rotor. It is also required that

this body is located in air or within a material with permeability µ = µ0. Fig. 5.15

shows such a body, where Γ is a line along the air gap, ~n is a unit vector. Maxwell’s

stress tensor is given by

d~F = µ0( ~H · ~n) ~H −
µ0

2
H2~n, (5.25)

where ~H is the magnetic field intensity, and H = | ~H| is the absolute value of magnetic

field intensity.

Substitute the ~H = 1/µ0
~B into the above equation gives the next equation

d~F =
1

µ0

( ~B · ~n) ~B −
1

2µ0

B2~n, (5.26)

where ~B is the magnetic flux density, and B = | ~B| is the absolute value of magnetic flux

density.

The electromagnetic torque is obtained as a line integral [10, 13, 29, 43–49]

~Te = L

∫

Γ

(~r × d~F )dΓ = L

∫

Γ

(

~r ×

[

1

µ0

( ~B · ~n) ~B −
1

2µ0

B2~n

])

dΓ, (5.27)

where L is a depth of the domain (in the z-direction), and ~r is the position vector linking

the rotation axis to the element dΓ, and Γ is a surface, which places around the air gap.

Fig. 5.15. Body under magnetic field surrounded by the surface Γ.

B. Induced voltage

Compute by the ~A, V − ~A - formulation. In particular, the induced voltage [1,13,

49–54] means the induced voltage per unit depth per turn. The winding is assumed to be

comprised of N turns per unit cross-sectional area S (in Fig. 5.14 the lined regions). The
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voltage/turn induced in a winding can be predicted by computing the average magnetic

vector potential ~A for the forward winding less that for the reverse winding. For the

single turn winding having a cross-section S. Only in the phase coil A has been used in

computing the induced voltage at the three-phase machine.

In the time domain, the equation is the following:

Vi = N
L

S

∫

S

∂ ~A

∂t
· d~S, (5.28)

where N is the number of turns in the winding, L is the lenght of the motor in the

z-direction.

In this problem, the winding is a single turn winding, i.e. N = 1, and the lenght of

the motor is 1m, i.e. L = 1m, and the magnetic vector potential has only z-component.

These are considering, gives the following equations:

Vi =
1

S

∫

S

∂Az

∂t
~ez · d~S. (5.29)

The induced voltage in the frequency domain only the derivation by time is trans-

formed to a multiplicate by jω. It has been computed as the integral of the average

magnetic vector potential ~A in the total area of the winding cross-section, i.e. [51]

Vi = jω
1

S

∫

S

Az~ez · d~S. (5.30)

Fig. 5.16 shows the induced voltage in the whole motor. In the phase coils, the

induced voltage is much higher than the other parts, and it is the smallest in the stator

and in the rotor steel.

(a) The single-phase induction motor. (b) The three-phase induction motor.

Fig. 5.16. The induced voltage in the induction motors.
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Compute by the ~T , Φ − Φ - formulation. This potential formulation has not been

used in the simulation of induction machines, because some quantities has not been

common computed by the ~T , Φ − Φ - fomultaion, for example this induced voltage.

Firstly, transformed the (5.28) and gives the following

Vi = −N
L

S

∫

S

~E · d~S, (5.31)

where ~E is the electric field intensity.

The above equation is not usable in this formulation, because in the ~T , Φ − Φ -

formulation, the ~E = ∇ × ~T , and the current vector potential ~T is presented only the

eddy current region. Furthermore, the phase coil A, where computed the induced voltage

is in the eddy current free region.

The other one chance has been used the (2.4) to denote the ~E.

∇× ~E = −
∂ ~B

∂t
= −

∂

∂t
µ ~H = −

∂

∂t
µ(~T0 −∇Φ), (5.32)

but the curl is not vanished the equation, hence the electric field intensity is not denoted

by this way.

Some papers in the literature can be found about the voltage computation by this

formulation [55, 56]. From this papers, the voltage is the following

u =

∫

Ω

~E · ∇ × ~T0 dΩ, (5.33)

where Ω the whole problem region. This equation seems to be the most usable way, but

this voltage is not same the induced voltage from the TEAM problem.

The induced voltage is not computed by the ~T , Φ − Φ - potential formulation yet,

because could not find, how is compute the induced voltage.

C. Losses

Losses means the rotor loss, and the steel loss as well. These two losses due the average

power dissipation in the body of rotor, which due to the eddy current losses of the rotor

and the rotor steel [10, 25, 38, 44, 49–51,54]. The rotor loss is computed as a sum of the

eddy current loss of rotor steel ΩRS and rotor aluminum ΩRAl. These regions shows in

the Fig. 5.14. Furthermore, the rotor steel loss due to I2R dissipation [50, 54].

The average power dissipation due to the eddy current losses of the rotor. The average

power dissipation has been calculated by the following equation [10,25,38,44,49–51,54]

Pd =
1

T

∫ T

0

∫

Ω

σ| ~E|2 dΩ dt, (5.34)
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where the power density loss, i.e. the integrand can be integrated over the surface of the

rotor body Ω, and ~E is the electric field intensity, moreover T is the period of time. The

region Ω = Ωs when the steel loss is computed , and Ω = ΩAl ∪ Ωs when the rotor loss

is computed.

In the frequency domain the equation of eddy current losses are the following

Pd =

∫

Ω

<

{

1

2
σ ~E · ~E∗

}

dΩ, (5.35)

where < denotes the real part of the power density loss 1

2
σ ~E · ~E∗, which can be integrated

over the surface of the rotor Ω, and ~E is the electric field intensity, and moreover ~E∗

conjugated of electric field intensity.

Fig. 5.17 shows the average power disspiation in the rotor. The power disspiation in

the rotor aliminum is nearly hundred times bigger than the rotor steel, this is why the

power dissipation in the rotor steel seems to be equal zero.

(a) The rotor of the single-phase induc-
tion motor.

(b) The rotor of the three-phase induc-
tion motor.

Fig. 5.17. The power dissipation in the rotor.
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Chapter 6

Solution of the Problem

The Problem 30a of TEAM Workshops is a benchmark problem, and the different meth-

ods, formulations have been compared by this problem.

This problem has been solved by analyticaly [50], by the boundary element method

[51], and by the time-harmonic finite element method [30, 31].

The above sections show the used potential formulations of the simulation, and the

methods of secondary quantities (e.g. torque) in the time domain, and in the frequency

domain.

The used potential formulations are the ~A, V − ~A - potential formulation and the
~T , Φ − Φ - potenatial formulation with motion voltage term in the time domain, and in

the frequency domain, too.

Furthermore, the results of the commercial finite element code, the COMSOL Mul-

tiphysics [49]. These results have been computed in the frequency domain, because of

the moving part option of COMSOL is only in the frequency domain computation.

These results of formulations have been compared with the analytical solution, and

to each others. The results of analytic analysis is presented in [4, 50].

The time-dependent numerical computations were performed using computer pro-

grams developed under MATLAB environment using COMSOL script language. The

programs have been run on a Genuine Intel(R) processor with the clock frequency of the

processor 1.6GHz with 4GByte RAM.

The time-harmonic numerical computations were performed using the computer pro-

grams developed by using functions of COMSOL Multiphysics. The procedures have

been run on an Intel(R) Core(TM)2 Duo CPU T9300 with the clock frequency of the

processor 2.50 GHz with 2Gbyte RAM.

6.1 Results of the single-phase induction motor

In this section the simulations results are presented, as well as the computed quanti-

ties of the single-phase motor by some field plots and tables with the exact values of
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computation and figures to compare the different results.

In the ~A, V − ~A - formulation, the used mesh consist of 43522 second-order triangular

element, and the number of unknowns is 87405.

In the ~T , Φ−Φ - formulation the used mesh consists of firstly (when compute the ~T0)

223426 second-order triangular element, and the total number of unknowns are 404286.

The computation time is 388s becasue the impressed current vector potential has been

used and the iterative solver (GMRES with SSOR preconditioner), and the number of

iterations are 1157. In Fig. 6.1, the error as function of the number of iterations can be

seen. The computation of ~T , Φ − Φ the used mesh consist of 43522, and the number of

unknowns are 147107.
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E
rr
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Fig. 6.1. The number of iteration of computation of ~T0.

In the time domain, the stationary state of this eddy current field problem can be

reached after the third period of the excitation, but six periods have been calculated. In

this simulation, a period of the current excitation has been divided into 720 time steps.

The error of the Euler formula [x(n + 1) − x(n)]/4t is small, then 4t is small, e.g. the

period of excitation current has been divided into small enough. All of quantities in the

time domain have been computed in the sixth period.

Table 6.1 presents the computation time consumption of the different formulation. In

the frequency domain, the ~A, V − ~A- formulation is the fastest, because computation time

of this formulation is ranging from 5.48s to 6.61s, whereas the CPU time of ~T , Φ − Φ -

formulations is ranging from 13.62s to 23.05s. Furthermore, the impressed current vector

potential ~T0 has been computed when the edge-element based ~T , Φ − Φ - formulation is

applied, and this adds about 388s in every simulations. The computation time of ~T , Φ−Φ

- formulation in the time domian is the total computation time, with the computation
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Table 6.1. The computation time of single-phase motor.

Computation time
[sec]

Angular ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 5.86 13.62 21340.53 22639.86
39.79351 6.61 20.59 20777.19 23384.88
79.58701 6.18 20.41 20303.44 24483.06
119.3805 5.48 20.17 21227.74 22473.55
159.174 5.57 21.1 21287.39 23467.34
198.9675 6.1 20.84 20909.61 23956.02
238.761 5.48 20.96 21471.22 23948.47
278.5546 6.2 21.07 22034.45 23694.19
318.3481 5.8 20.93 22186.13 23734.68
358.1416 6.42 23.05 21915.94 23511.65

time of impressed current vector potential. The computation time of impressed current

vector potential in time domain is same than the frequency domain, e.g. 388s. In the

time domain the ~A, V − ~A- formulation is the fastest, too, because the CPU time of this

formulatin is about 21000s, whereas the computatin time of ~T , Φ − Φ - formulations is

more than 23000s.

Firstly, the primer quantities are studied, e.g. magnetic flux density ~B. Fig. 6.2 shows

the peak value of real part of the magnetic flux density lines of the single-phase motor

(a) ~A, V − ~A - potential formulation. (b) ~T , Φ − Φ - potenatial formulation.

Fig. 6.2. The magnetix flux lines in the frequency domain at 278 rad/s angular velocity.
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(a) ~A, V − ~A - potential formulation. (b) ~T , Φ − Φ - potenatial formulation.

Fig. 6.3. The magnetix flux lines in the time domain at 278 rad/s angular velocity.

in the frequency domain at 278 rad/s angular velocity. Fig. 6.3 shows the magnetic flux

lines of the single-phase motor computed in the time domain, in the last step of sixth

period at 278 rad/s angular velocity. The magnetic flux lines seem to be equal in the

figures in the time and in the frequency domain.

Fig. 6.4 shows the computed equipotential lines of the magnetic vector potential

at 278 rad/s angular velocity. Fig. 6.4(a) shows the real part of the magnetic vector

potential, and Fig. 6.4(b) presents the imaginary part of magnetic vector potential.

These figures are almost the same as the presented figures in the papers [30, 31].

(a) The real part of the magnetic vector poten-
tial.

(b) The imaginary part of the magnetic vector
potential.

Fig. 6.4. Real and imaginary part of the magnetic vector potential at the maximum of
the torque.
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Table 6.2. Torque in the single-phase motor

TORQUE
[Nm]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 0 5.468e-9 1.681e-5 1.566e-4 1.011e-5 6.125e-6
39.79351 0.052766 0.04422 0.04428 0.04434 0.0436 0.0436
79.58701 0.096143 0.08571 0.85808 0.08584 0.0851 0.0851
119.3805 0.14305 0.12569 0.12673 0.12677 0.1246 0.1245
159.174 0.19957 0.17555 0.17574 0.17575 0.1738 0.1738
198.9675 0.2754 0.24126 0.24149 0.24146 0.2363 0.2362
238.761 0.367972 0.31915 0.32021 0.32015 0.3135 0.3134
278.5546 0.442137 0.37683 0.37713 0.37702 0.3645 0.3633
318.3481 0.375496 0.30146 0.30182 0.30166 0.2857 0.2855
358.1416 -0.0707 -0.10068 -0.10024 -0.10046 -0.1113 -0.1115
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Fig. 6.5. Torque-speed characteristics of the single-phase motors.

Table 6.2 presents the analytic values and the computed electromagnetic torque values

by the presented potential formulations, where the value of the angular velocity can be

seen, as well. The quantity of torque can be seen in Fig. 6.5. In this figure the five

different finite element approaches are practically the same. The difference between the

analytic and the finite element results is increased with the increase of velocity, and the

difference is the biggest at the maximum of torque or the point of breakdown torque.

Furthermore the curves shows the typical torque-speed characteristic of single-phase
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Table 6.3. Rotor loss in the single-phase motor

ROTOR LOSS
[W/m]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 341.7676 321.8952 321.8952 321.8952 321.2812 321.2811
39.79351 341.2465 321.461 321.4612 321.4609 320.9589 320.9588
79.58701 340.4618 320.5624 320.5624 320.5623 319.9352 319.9531
119.3805 340.0396 320.0629 320.063 320.0625 319.4121 319.4118
159.174 340.225 320.1429 320.1429 320.1423 319.3881 319.3877
198.9675 339.2994 319.1407 319.1407 319.1406 318.0969 318.0964
238.761 333.6163 313.5793 313.5792 313.5784 312.5161 312.5154
278.5546 317.9933 298.7739 298.774 298.7728 297.4517 297.3147
318.3481 288.079 271.4886 271.4886 271.4873 270.6503 270.6492
358.1416 256.6437 244.3109 244.311 244.3093 244.1438 244.1427
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Fig. 6.6. The power dissipation of rotor of the single-phase motors.

induction motors, and the point of full load torque is nearly 350 rad/s.

The next table (Table 6.3) represents the total rotor loss in both the aluminum and

the rotor steel. The solutions of both potential formulations and the commercial FEM

code seem to be equal in frequency and time domain at all different angular veloci-

ties. The character of finite element results similar than of the analytic solution. The

characteristics of solutions are represents the Fig. 6.6. The difference between the char-

acteristics is decreased when de speed becomes higher. The difference is the biggest
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Table 6.4. Steel loss in the single-phase motor

STEEL LOSS
[W/m]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 3.944175 3.707725 3.707716 3.707715 3.683761 3.683762
39.79351 3.933111 3.696603 3.696601 3.696603 3.674073 3.674071
79.58701 3.900878 3.664197 3.664213 3.664209 3.639751 3.639753
119.3805 3.848117 3.611196 3.611191 3.611203 3.586207 3.586204
159.174 3.767681 3.530708 3.530713 3.53071 3.504074 3.504077
198.9675 3.635357 3.399406 3.400102 3.399497 3.368849 3.368851
238.761 3.404092 3.172887 3.172904 3.172902 3.142321 3.142326
278.5546 2.999715 2.784787 2.784802 2.784803 2.751628 2.749486
318.3481 2.355622 2.186231 2.186245 2.186238 2.163209 2.163214
358.1416 1.674353 1.577268 1.577313 1.577316 1.568528 1.568523
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Fig. 6.7. The power dissipation of rotor steel of the single-phase motors.

when the motor is standstill.

Table 6.4 represents just the rotor steel loss, which is due to the I2R dissipation.

The curves of the steel loss similar to the curves of rotor loss, but the steel loss a good

deal smaller. Furthermore, the differences of analytic and finite element analysis are the

largest here as well, at the standstill motor. The difference between the curve of analytic

results and of FEM results is decreased when the speed becomes higher. The steel loss

versus angular velocity can be seen in Fig. 6.7.
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Table 6.5. Induced voltage in the single-phase motor

INDUCED VOLTAGE
[V/m/turn]

Angular Analytical COMSOL ~A,V − ~A ~A,V − ~A
Velocity Solution Multiphysics Frequency Time
[rad/s] domain domain

0 0.536071 0.521899 0.521902 0.5187
39.79351 0.537466 0.523172 0.523201 0.5201
79.58701 0.541495 0.527026 0.527032 0.5239
119.3805 0.548603 0.533771 0.533784 0.5307
159.174 0.650074 0.544594 0.544612 0.5416
198.9675 0.578808 0.562153 0.562152 0.5587
238.761 0.609649 0.590768 0.590797 0.5853
278.5546 0.658967 0.635713 0.635708 0.6245
318.3481 0.728552 0.697472 0.697494 0.6728
358.1416 0.790068 0.750178 0.750188 0.7091
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Fig. 6.8. The induced voltage of the single-phase motor.

The last quantity of single-phase machine, which presents, the induced voltage in the

phase coil A. The induced voltage has been computed by the magnetic vector potential
~A. Table 6.5 shows the computed values of the induced voltage by analytic and by finite

element method. The two finite element solutions in the frequency domain are nearly

same, and the difference between the analitic and the frequency domain solutions are

unchanged all angular velocity. This can be shown in Fig. 6.8. The difference between

the analytic and the finite element result in time domain, and between the solutions of
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frequency domain and if time domain is increased with the increasing velocity, and the

difference is the biggest at the maximum of velocity, at 358 rad/s angular velocity.

6.2 Results of the three-phase induction motor

In this section shows the simulations results, and the computed quantities of the three-

phase motor by some field plots and tables with the exact values of computation and

figures to compare the different results.

In the ~A, V − ~A - formulation and in the ~T , Φ−Φ - formulation, the used meshes, the

number of unknowns are same than the single-phase case. In the ~T0 computation the

impressed current vector potential has been used and the same iterative solver, however

the computation time of the impressed current vector potential is 1139s.

Furthermore, at the three-phase motor in the time domain eight period have been

calculated, but the period of the current excitation is same, 720 time steps.

Table 6.6. The computation time of three-phase motor.

Computation time
[sec]

Angular ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 4.78 13.06 24411.51 24631.74
200 4.88 21.12 25146.18 30071.09
400 5.11 25.82 24134.82 29124.82
600 5.18 35.14 25885.04 28873.51
800 5.15 51.54 23415.82 29348.17
1000 5.21 70.21 25145.21 30178.72
1200 4.97 79.77 23543.02 31471.19

Table 6.6 presents the computation time consumption of the different formulation.

In the frequency domain, the ~A, V − ~A- formulation is the fastest, because computation

time of this formulation is nearly 5s, whereas the CPU time of ~T , Φ−Φ - formulations is

ranging from 13s to 79s. Furthermore, the impressed current vector potential ~T0 has been

computed when the edge-element based ~T , Φ−Φ - formulation is applied, and this adds

about 1139s in every simulations. The computation time of ~T , Φ − Φ - formulation in

the time domian is the total computation time, with the computation time of impressed

current vector potential. The computation time of impressed current vector potential in

time domain is same than the frequency domain, e.g. 1139s. In the time domain the
~A, V − ~A- formulation is the fastest, too, because the CPU time of this formulatin is
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(a) ~A, V − ~A - potential formulation. (b) ~T , Φ − Φ - potenatial formulation.

Fig. 6.9. The magnetix flux lines in the frequency domain at 1200 rad/s angular velocity.

(a) ~A, V − ~A - potential formulation. (b) ~T , Φ − Φ - potenatial formulation.

Fig. 6.10. The magnetix flux lines in the time domain at 1200 rad/s angular velocity.

ranging from 23415s to 25885s, whereas the computatin time of ~T , Φ−Φ - formulations

is ranging from 24631s to 31471s.

Firstly in the three-phase motor, the primer quantities are studied, e.g. magnetic

flux density ~B. Fig. 6.9 shows the peak value of real part of the magnetic flux density

lines of the three-phase motor in the frequency domain at 1200 rad/s angular velocity.

Fig. 6.10 shows the magnetic flux lines of the single-phase motor computed in the time

domain, in the last step of eighth period at 1200 rad/s angular velocity. The magnetic

flux lines are practically the same in the figures in the time and in the frequency domain.

The magnetic field lines are equal in both domain as well, because in this problem has
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Table 6.7. Torque in the three-phase motor

TORQUE
[Nm]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 3.825857 3.59153 3.5912 3.5919 3.5884 3.6113
200 6.505013 6.02069 6.0209 6.0215 5.9835 6.0117
400 -3.89264 -3.39807 -3.3979 -3.3976 -3.2941 -3.3138
600 -5.75939 -5.63975 -5.3697 -5.3694 -5.3482 -5.3676
800 -3.59076 -3.37833 -3.3778 -3.3779 -3.3763 -3.3771
1000 -2.70051 -2.54736 -2.5465 -2.5469 -2.5472 -2.5469
1200 -2.24996 -2.12514 -2.1241 -2.1247 -2.1249 -2.1251
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Fig. 6.11. Torque-speed characteristics of the three-phase motors.

been linear relation between ~H and ~B.

Table 6.7 presents the analytic values and the computed electromagnetic torque values

by the presented potential formulations, where the value of the angular velocity of the

three-phase motor analysis can be seen, as well. The quantity of torque can be seen in

Fig. 6.11. In this figure the five different finite element approaches seem to be nearly

equal, and the solutions of the frequency domain are closed each others. The difference

between the analytic and the finite element results is varying, but the maximum of

the difference is less than 10%. The curves of FEM analysis are behave similar than

the reference analytic curve. Additionally the curves shows the typical torque-speed

characteristic of three-phase induction motor. Fig. 6.11 shows when the motor is operated
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Table 6.8. Rotor loss in the three-phase motor

ROTOR LOSS
[W/m]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 1455.644 1366.922 1366.922 1366.921 1366.104 1366.002
200 1179.541 1093.952 1093.952 1093.951 1087.317 1087.552
400 120.0092 108.5928 108.5922 108.5903 106.5816 107.0713
600 1314.613 1227.914 1227.912 1227.905 1223.403 1223.706
800 1548.24 1458.668 1458.666 1458.654 1458.401 1458.529
1000 1710.686 1615.641 1615.636 1615.621 1616.509 1616.233
1200 1878.926 1776.372 1776.637 1776.623 1778.113 1777.846
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Fig. 6.12. The power dissipation of rotor of the three-phase motors.

than a motor and after about 300 rad/s than a generator.

The next table (Table 6.8) represents the total rotor loss of three-phase induction

motor in both the aluminum and the rotor steel. The solutions by both potential for-

mulations and by the COMSOL are practically the same in frequency and time domain

at all different angular velocities. The character of finite element results similar than of

the analytic solution. The characteristics of solutions are represents the Fig. 6.12. The

difference between the characteristics is decreased to 400 rad/s, and after the difference

is increased when de speed becomes high. The rotor loss is the smallest at 400 rad/s

angular velocity. The difference is the biggest when the angular velocity is 1200 rad/s,

in this point it is 5.4%.
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Table 6.9. Steel loss in the three-phase motor

STEEL LOSS
[W/m]

Angular Analytical COMSOL ~A,V − ~A ~T , Φ − Φ ~A,V − ~A ~T , Φ − Φ
Velocity Solution Multiphysics Frequency Frequency Time Time
[rad/s] domain domain domain domain

0 17.40541 16.34462 16.34461 16.34462 16.25782 16.25661
200 16.98615 15.7367 15.7367 15.73672 15.55293 15.55238
400 1.383889 1.20661 1.20662 1.206611 1.167651 1.163473
600 17.87566 16.65631 16.6563 16.65631 16.50407 16.50374
800 16.88702 15.87404 15.87402 15.87404 15.79943 15.82615
1000 14.32059 13.49334 13.49335 13.49335 13.45032 13.45703
1200 12.01166 11.33068 11.3307 11.33066 11.30354 11.31948
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Fig. 6.13. The power dissipation of rotor steel of the three-phase motors.

Table 6.9 represents just the rotor steel loss, which is due to the I2R dissipation. The

results of potential formulations and of the commercial finite element code seem to be

equal in frequency and time domain at all different angular velocities. The curves of the

steel loss similar to the curves of rotor loss from 0 rad/s to 600 rad/s, because after the

steel loss is decreased. Furthermore, the difference of analytic and finite element analysis

are the largest at 200 rad/s angular velocity, in this point it is 7.4%, and the smallest

at 400 rad/s angular velocity, than the case of rotor loss. The steel loss of three-phase

motor versus angular velocity can be seen in Fig. 6.13.

Table 6.10 shows the exact value of induced voltage. The results of numerical analysis

in the frequency domian are close same, too. The results are same from 0 rad/s to
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Table 6.10. Induced voltage in the three-phase motor

INDUCED VOLATGE
[V/m/turn]

Angular Analytical COMSOL ~A,V − ~A ~A,V − ~A
Velocity Solution Multiphysics Frequency Time
[rad/s] domain domain

0 0.637157 0.625034 0.625058 0.6255
200 0.845368 0.825837 0.825844 0.8154
400 1.477981 1.399524 1.399531 1.3064
600 0.76176 0.746331 0.746335 0.7686
800 0.617891 0.606367 0.606386 0.6271
1000 0.575699 0.564498 0.564507 0.5829
1200 0.556196 0.545063 0.545083 0.5623
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Fig. 6.14. The induced voltage of the three-phase motor.

400 rad/s, than at the single-phase machine, i.e. the difference between the analytic

solution and the finite element solutions is increasing to 400 rad/s, and after this angular

velocity is decreasing. This shown in the Fig. 6.14. The results of the time domain

computation are only one anguler velocity differ too, at the maximum of induced voltage.

The next quantities, i.e. the radial B field (Br) and θ-directed H field (HΘ) computed

only in the case of the three-phase exposed winding motor. These quantities are to

be determined in the phase coil A, in ten different point along the x-axis. The radial

magnetic flux density and the θ-directied magnetic field density at 200 rad/s angular

velocity have also been simulated.

These quantities computed only in the frequency domian, because of the Br and the
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Table 6.11. Real Part of the Radial B field for the three-phase motor

< {Br}
[T]

x Analytical COMSOL ~A,V − ~A ~T , Φ − Φ
[m] Solution Multiphysics Frequency Frequency

domain domain
0.032 0.018854 0.01774 0.01777 0.01781

0.034222 0.017122 0.01612 0.01614 0.01616
0.036444 0.015643 0.01463 0.01468 0.01463
0.038667 0.014375 0.01341 0.01344 0.01338
0.040889 0.013284 0.01232 0.01235 0.01233
0.043111 0.012341 0.01143 0.01143 0.01141
0.045333 0.011522 0.01089 0.01063 0.01061
0.047556 0.010807 0.00997 0.00992 0.00991
0.049778 0.010179 0.00931 0.00929 0.00929

0.052 0.009625 0.00876 0.00876 0.00875

0.032 0.036 0.04 0.044 0.048 0.052
0.008

0.0104

0.0128

0.0152
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Fig. 6.15. The real part of radial magnetic flux density.

HΘ have been divided into two part. These parts are the real and the imaginary part,

and these are only in time-harmonic case.

The first is the real part of radial B field. The ten different points of computation in

phase coil A are shown in Table 6.11, where the analytic results and the exact values of

numerical computations can be seen, as well. The real part of Br is the biggest the inner

side of phase coil A, and continuous decreased from the inner side to the outter side

of winding. This shows the Fig. 6.15. The three different finite element solution seems
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Table 6.12. Imaginary Part of the Radial B field for the three-phase motor

= {Br}
[T]

x Analytical COMSOL ~A,V − ~A ~T , Φ − Φ
[m] Solution Multiphysics Frequency Frequency

domain domain
0.032 0.016392 0.01596 0.01596 0.01598

0.034222 0.017079 0.01654 0.01654 0.01654
0.036444 0.017412 0.01665 0.01665 0.01678
0.038667 0.017455 0.01676 0.01676 0.01675
0.040889 0.017266 0.01655 0.01655 0.01651
0.043111 0.016895 0.01611 0.01611 0.01609
0.045333 0.016385 0.01527 0.01527 0.01553
0.047556 0.015772 0.01488 0.01488 0.11488
0.049778 0.015085 0.01416 0.01416 0.01416

0.052 0.014347 0.01342 0.01343 0.01343

0.032 0.036 0.04 0.044 0.048 0.052
0.013

0.014

0.015

0.016
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0.018
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Fig. 6.16. The imaginary part of radial magnetic flux density.

to be equal all of points, only in the x=0.45333 has been a little difference between

the results of the commercial FEM code and of the two potential formulations. The

difference between the analytical and FEM analysis nearly same every points.

The next is the other part of the radial B field, the imaginary part. The values of

different analysis presented the Table 6.12. The maximum of imaginary part is not the

inner side of phase, than the real part. The maximum is inside the phase, it is in the

x=0.038667 point. In Fig. 6.16 the curves of the results can be seen. The imaginary
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Table 6.13. Real Part of the Azimuthal H field for the three-phase motor

< {Hθ}
[T]

x Analytical COMSOL ~A,V − ~A ~T , Φ − Φ
[m] Solution Multiphysics Frequency Frequency

domain domain
0.032 -46504.9 -45042.7 -44778.4 -44794.7

0.034222 -39165.7 -37526.1 -37523.3 -37526.9
0.036444 -32564.6 -30997.4 -30944.6 -31015.2
0.038667 -26449.5 -24985.6 -24983.9 -24987.4
0.040889 -20817.4 -19353.5 -19352.4 -19351.1
0.043111 -15405.7 -13979.5 -13980.8 -13976.1
0.045333 -10181.6 -8789.34 -8789.38 -8788.15
0.047556 -5084.64 -3718.38 -3717.22 -3720.01
0.049778 -71.2009 1271.767 1271.575 1271.508

0.052 4888.668 6212.994 6213.853 6215.281

0.032 0.036 0.04 0.044 0.048 0.052
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Fig. 6.17. The real part of θ-directed magnetic field intesnity.

part of the radial magnetic flux density opposite the curve of real part, is growing the

x=0.038667, and after this point is decreasing. The difference between the curve of the

finite element analysis and of the analitic analysis is unchanged all along.

The next quantities is the θ-directed magnetic field. First of all, the real part of this

quantity. Table 6.13 shows the exact results of θ-directed H field. This is the only one,

where is the computed values are bigger than the analytic analysis results. Fig. 6.17

shows the comparison of analytic and computed HΘ. The difference between the two
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Table 6.14. Imaginary Part of the Azimuthal H field for the three-phase motor

= {Hθ}
[T]

x Analytical COMSOL ~A,V − ~A ~T , Φ − Φ
[m] Solution Multiphysics Frequency Frequency

domain domain
0.032 -10757.6 -11101.6 -11096.6 -11107.5

0.034222 -8939.18 -9296.83 -9293.24 -9310.26
0.036444 -7462.55 -7846.27 -7847.01 -7848.92
0.038667 -6253.55 -6660.39 -6660.59 -6667.57
0.040889 -5250.13 -5677.03 -5679.32 -5677.96
0.043111 -4406.77 -4850.71 -4851.54 -4850.75
0.045333 -3690.02 -4148.36 -4149.02 -4147.22
0.047556 -3074.86 -3545.74 -3546.24 -3543.66
0.049778 -2542.22 -3024.09 -3024.16 -3023.87

0.052 -2077.37 -2568.85 -2568.87 -2567.37

0.032 0.036 0.04 0.044 0.048 0.052
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Fig. 6.18. The imaginary part of θ-directed magnetic field intesnity.

types of analysis is same every points, and the results of FEM analysis are nearly equal

each points.

The last is the imaginary part of θ-directed H field. Table 6.14 presents the precise

values of this quantity. Here as well the computed values are about equal each other.

The curves of analytic and FEM analysis are shown in Fig, 6.18. The difference between

the curve of analytic results and of FEM results is decreased from x=0.32 to x=0.052.

At this quantity the character of curves of real and imaginary part is similar.
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Chapter 7

Conclusions and future works

The analysis of induction motors is based on the numerical solution of the different

potentials. The ~A, V − ~A - potential formulation coupled with moving velocity seems to

be the most widely used formulation of electrical machines. This formulation has been

worked out with motional voltage term in numberless articles and papers, and quentities

of machines e.g. torque, losses have been realized by this formulation. The ~T , Φ − Φ -

potential formulation coupled with moving velocity has not been used in the simulation

of induction machines, but few papers in the literature can be found from the other part

of FEM analysis. This is why has been applied the ~T , Φ−Φ - formulation coupled with

motion to solved this induction motor problem.

The used numerical procedure of eddy current field calculation results in the expected

data. The two different potential formulations, and the time domain and frequency

domain solutions have been compared and the results seem to be close to each other.

The numerical results have been compared to analytical results and the used potential

formulation is allowing fine approximation. The computed and analytic results agree

within 10 %.

In the two dimensional case, the ~A, V − ~A - potential formulation seems to be better

solver with motion voltage term. The ~A, V − ~A - potential formulation with motion

voltage term faster, the number of elements and unknowns are less than the ~T , Φ − Φ -

potential formulation with motion voltage term.

The one of further research is the nonlinear analysis of induction motors by means of

the ~A, V − ~A, and the ~T , Φ−Φ - potential formulation taking the ferromagnetic hysteresis

into account. The hysteresis is considered through a vector Preisach model [9,52,57–60].

The 2D finite element analysis taking the hysteresis into account by combining a Preisach

model and the Fixed-Point iterative technique [9, 28, 60–63].

The other further investigation, continue this work, and will be computed the induced

voltage by the ~T , Φ − Φ - potential formulation, and will be solved another TEAM

problems.
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Istvan University.

I would like to express my gratitude to Dr. Miklós Kuczmann, Ph.D., associate

professor, Head of the Laboratory of Electromagnetic Fields, for the guidance, advice

and encouragement during the course of this work.

Special thanks to Professor Herbert De Gersem, Professor Oszkár Biró and Professor
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[58] A. Iványi. Hysteresis Models in Electromagnetic Computation. Akadémiai Kiadó,
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