COMPARISON OF THE DIFFERENT DESIGN SOFTWARE TOOLS FOR THE BRUSHLESS DC MOTOR DESIGNING

1Gergely KOVACS, 2Miklos KUCZMANN

1 Regional University Knowledge Center for Vehicle Industry, Széchenyi István University
Egyetem tér 1, H-9026 Győr, Hungary, e-mail: kovacsg@maxwell.sze.hu
2 Department of Telecommunications, Széchenyi István University, Egyetem tér 1
H-9026 Győr, Hungary, e-mail: kuczmann@maxwell.sze.hu

Received 6 January 2012; accepted 13 January 2013

Abstract: The paper presents simulation results of a two-dimensional permanent magnet synchronous motor, which were calculated by the help of the Infolytica MotorSolve and of the COMSOL Multiphysics, as well. The simulation results were compared with each other focusing on the torque, the magnetic flux density and the magnetic potential of the permanent magnet synchronous motor.

Keywords: Permanent magnet synchronous motor, Finite element method, Infolytica MotorSolve, COMSOL Multiphysics

1. Introduction

The computer-aided design is one of the most important parts of the electric motor development. The development of the electric engine is evaluated at the Széchenyi István University, as well. One part of this development is to design a Permanent Magnet Synchronous Motor (PMSM) [1] family and calculate their parameters by the help of finite element method [2]-[8]. These developed motors will be applied with bicycles and smaller motors.

The main essential of the PMS motor development is to reduce the weight and the size of the engine but the torque and losses of the motor not to change. The aim of the development of the engine was to design PMS motor, which in low-speed case has about 10 Nm torque. The Fig. 1 shows the scheme of the developed permanent magnet synchronous motor, which is designed by the help with Infolytica MotorSolve [9].
This PMS motor was developed moreover it is under construction. The outer diameter of the motor is 205 mm furthermore the inner diameter of the motor is 187 mm. The rotor type is exterior and it has 28 Neodymium magnets. The stator has 36 slots with three phase double layers windings. The type of the rotor and the stator material is M19. The maximum power of the PMSM is 1200 W, as well as the maximum rotational speed of the motor is 1000 RPM. In this case the delivered torque is about 64 Nm. When the rotational speed is about 100 RPM then the delivered torque is 11.8 Nm and the motor has 200 W power.

The aim of this work is to reproduce the MotorSolve simulation results in the COMSOL [10]-[11] environment focusing the torque, the magnetic potential and the magnetic flux density of the developed permanent magnet synchronous motor.

2. Simulation of the PMSM motor with Infolytica MotorSolver

The computer-aided design is usually the first parts of the electric engine development. There are more ways for the electric motor design, as well. For instance the Infolytica MotorSolve is electric motor design software for brushless Direct Current (DC) motor. In this case the motor design is evaluate by the help with different templates. By the help of the change of the sizes of the schemes can have been designed the electric motor furthermore the Fig. 2 shows some templates of the magnets of the rotor.

Fig. 2. Some template of the slots of the stator in Infolytica MotorSolve
Fig. 3 shows some templates of the slots of the stator.

![Template of the slots of the stator in Infolytica MotorSolve](image)

Fig. 3. Some template of the slots of the stator in Infolytica MotorSolve

The parameters of the electric motor are calculated by the help of an automated-FEA (Finite Element Analysis) solver, for example torque, losses, power, and the others. The disadvantage of the program that the motor designing is possible by the help only with some defined templates, which means that there is no way to design a motor with optional geometry. The easy applicability is the advantage of the program.

3. Simulation of the PMSM motor with COMSOL Multiphysics

The COMSOL Multiphysics is a finite element based software for the modeling and simulation of any physics-based system. In this case calculations on optional geometry have been able to make with the program; however the preprocessing is more difficult for instance to draw the model, or to set the boundary conditions. The Fig. 4 shows some possibility of settings.

![Graphical user interface of COMSOL](image)

Fig. 4. The graphical user interface of COMSOL
The simulated model has been modeled as a static magnetic field problem, where the following Maxwell's equations [2]-[8] can be used:

\[\nabla \times \mathbf{H} = \mathbf{J}_0, \mbox{ in } \Omega_0 \cup \Omega_m, \]
(1)

\[\nabla \cdot \mathbf{B} = 0, \mbox{ in } \Omega_0 \cup \Omega_m. \]
(2)

Here \(\mathbf{H} \) is the magnetic field intensity, \(\mathbf{J}_0 \) is the source current density, \(\mathbf{B} \) is the magnetic flux density. The \(\mathbf{H} \) magnetic field intensity can be expressed as

\[\mathbf{H} = \begin{cases} v_0 \mathbf{B}, & \mbox{in air, } \Omega_0, \\ v_0 \nu_r \mathbf{B}, & \mbox{in magnetic material, } \Omega_m. \end{cases} \]
(3)

Here \(v_0 \) is the reluctivity of vacuum and \(\nu_r \) is the relative reluctivity. The air region is denoted by \(\Omega_0 \) and the magnetically region is denoted by \(\Omega_m \). The magnetic flux density can be expressed as

\[\mathbf{B} = \nabla \times \mathbf{A}, \]
(4)

where \(\mathbf{A} \) is the magnetic vector potential [2], [8]. This expression is satisfied by (2), because of the identity \(\nabla \cdot \nabla \times \mathbf{v} = 0 \) for any vector function \(\mathbf{v} = \mathbf{v}(\mathbf{r}) \). Substituting (4) into (1) and (2) and using (3), the constitutive relations the following partial differential equations can be obtained:

\[\nabla \times (v_0 \nabla \times \mathbf{A}) = \mathbf{J}_0, \mbox{ in } \Omega_0, \]
(5)

and

\[\nabla \times (v_0 \nu_r \nabla \times \mathbf{A}) = \mathbf{J}_0, \mbox{ in } \Omega_m. \]
(6)

The divergence of the magnetic vector potential can be selected according to Coulomb gauge,

\[\nabla \cdot \mathbf{A} = 0, \]
(7)

which is satisfied automatically in two dimensional problems [2], [8]. In two dimensional case the source current density has only \(z \) component, moreover the magnetic field intensity vector and the magnetic flux density vector have \(x \) and \(y \) components,

\[\mathbf{J}_0 = J_{0,z}(x,y) \mathbf{e}_z, \]
(8)
\[\mathbf{H} = H_x(x,y)e_x + H_y(x,y)e_y, \quad (9) \]
\[\mathbf{B} = B_x(x,y)e_x + B_y(x,y)e_y. \quad (10) \]

The magnetic vector potential has only \(z \) component
\[A_z = A_z(x,y)e_z, \quad (11) \]
and the \(x \) and \(y \) components of the magnetic flux density can be described as
\[B_x(x,y) = \frac{\partial A_z}{\partial y}, \quad (12) \]
and
\[B_y(x,y) = -\frac{\partial A_z}{\partial x}. \quad (13) \]

The boundary conditions of a two dimensional static magnetic field problem can be formulated as
\[(\nabla \times \mathbf{A}) \times \mathbf{n} = 0, \text{ on } \Gamma_H, \quad (14) \]
and
\[\mathbf{n} \times \mathbf{A} = 0, \text{ on } \Gamma_B. \quad (15) \]

The problem was calculated by the help of the (5) and (6) partial differential equations and the (13) and (14) boundary conditions.

The presented PMS motor was designed by Infolytica MotorSolve. The designed geometry was imported to the COMSOL environment. The aim was to reproduce the simulation results of the MotorSolve calculation in COMSOL environment focusing the torque and the magnetic field results of the motor with the maximum rotational speed, which is 1000 RPM.

4. Comparison of the simulation results

In this work Infolytica MotorSolve simulation results were compared with COMSOL Multiphysics simulation results focusing the magnetic potential, the magnetic flux density and the torque of the PMSM in the case of 1000 RPM rotational speed. Fig. 5 shows the simulation results of the magnetic potential of the PMSM, which was calculated with Infolytica MotorSolve.

In this case the magnitude of the magnetic potential is changing from \(-8.48 \cdot 10^{-6} \text{ Vs/m}\) to \(8.48 \cdot 10^{-6} \text{ Vs/m}\).
Fig. 5. The magnetic potential calculated by Infolytica MotorSolve

Fig. 6 shows the simulation results of the magnetic potential of the PMSM, which was calculated by the help of COMSOL Multiphysics.

Fig. 6. The magnetic potential calculated by COMSOL Multiphysics

In this case the magnitude of the magnetic potential is from $-8.48 \cdot 10^{-6}$ Vs/m to $8.48 \cdot 10^{-6}$ Vs/m.

The simulation results of the magnetic potential of the PMSM were compared along the same line as well. Fig. 7 shows the simulation result of the magnetic potential calculated by the Infolytica MotorSolve.

Fig. 7 shows the simulation result of the magnetic potential calculated by Infolytica MotorSolve.

Fig. 8 shows the simulation result of the magnetic potential by the help of COMSOL Multiphysics.

Comparing the simulation results which were calculated two different design software tools they are similar in the case of 1000 RPM rotational speed.
Fig. 7. The simulation results of the magnetic potential with the help Infolytica MotorSolve

In this case the magnitude of the magnetic flux density is from 10^{-5}T to 2.61×10^{-5}T.

Fig. 8. The simulation results of the magnetic potential with the help COMSOL Multiphysics

Fig. 9 shows the simulation results of the magnetic flux density of the PMSM, which was calculated with Infolytica MotorSolve.

In this case the magnitude of the magnetic flux density is from 5.08×10^{-5}T to 2.61T.

Fig. 10 shows the simulation results of the magnetic flux density of the PMSM, which was calculated by the help of COMSOL Multiphysics.

In this case the magnitude of the magnetic flux density is from 9.00×10^{-7}T to 2.796T.
The simulation results of the magnetic flux density of the PMSM were compared along the same line as well. *Fig. 11* shows the simulation result of the magnetic flux density calculated by the Infolytica MotorSolve.

Fig. 12 shows the simulation result of the magnetic flux density by the help of COMSOL Multiphysics.

Comparing the simulation results which were calculated two different design software tools they are similar in the case of 1000 RPM rotational speed.

The simulation results of the PMSM were compared with each other focusing the delivered torque in the case of 1000 RPM rotational speed, as well. Calculating the delivered torque with Infolytica MotorSolve is \(-68.4\) Nm and with COMSOL Multiphysics is \(-67.25\) Nm in the case of maximal rotational speed.

Pollack Periodica 8, 2013, 1
A developed PMSM was simulated with two different design software tools. The aim of the work is to reproduce the simulation results of the Infolytica MotorSolve in COMSOL Multiphysics environment. The paper presents comparisons of the simulation results with two different design software tools for the PMS motor focusing on the torque, the magnetic flux density and the magnetic potential. Comparing the simulation results are similar to each other which means the two different design software tools are convenient to design PMS motors. The main advantage of the Infolytica MotorSolve is that the development of the motor is easier than with COMSOL Multiphysics.

5. Conclusion, future work

Pollack Periodica 8, 2013, 1
Disadvantage of the first program is that the motor design is possible by the help with only some predefined templates. The main advantage of the COMSOL Multiphysics is the possibility of designing the PMS motors with optional geometries, however the method of this development is more difficult with COMSOL Multiphysics.

Acknowledgements

TAMOP-4.2.1 /B-09/1/KONV-2010-0003: Mobility and Environment: Research in the fields of motor vehicle industry, energetic and environment in the Central- and Western-Transdanubian Regions of Hungary. The Project is supported by the European Union and co-financed by the European Social Fund and by Széchenyi István University.

References