
 

 

SZÉCHENYI ISTVÁN EGYETEM 

AUDI HUNGÁRI JÁRMŰMÉRNÖKI 

KAR 

 

 

 

 

 

HELP FOR THE PROJECT WORK 

 

 

Measurement practice I. 

 

FOR VEHICLE ENGINEER STUDENTS 

 

 

 
 

 

 

 

 

 

 

 

 Version: 1.0 

 

 

Széchényi István University 

Department of Power Electronics and Drives 

  



 

- 2 - 

1. Introduction 

In this document you will find some useful information and examples to help you with the 

compulsory project work.  

The project work is about to build a simple resistor measurement system with the help of an 

Arduino UNO board and a liquid crystal display (LCD). The measurement method is based on 

the voltage division law. The system applies a known voltage (5 V) to a series resistance 

network that consists of a resistor with known value and the one which’s value we want to 

determine. The Arduino board measures the voltage of the unknown resistor and determines 

the value of the resistor based on the voltage division law, then it displays this value on the 

LCD. In this file you will find examples on how to measure the voltage with the Arduino board 

using its analog ports and how to control the LCD. Based on these examples you should be 

able to do the project work, if this is not enough feel free to contact us in email or at the 

laboratory classes. 

 

The examples are implemented in “Tinkercad” environment. Tinkercad is a free and easy to 

use online application for 3D modelling, (basic) circuit simulation, coding and microcontroller-

based application simulations. Before building the actual system in the laboratory you will need 

to implement it in a Tinkercad simulation environment. 

 

To write and upload code on an Arduino board, you will need to use the Arduino IDE which 

you can download from the official website. The Arduino IDE (Integrated Development 

Environment) is a software application that serves as the primary platform for programming 

and developing projects on the Arduino platform. Using this link you can find some basic 

information and a starter guide for the IDE. 

1.1 Using Tinkercad  

In order to use Tinkercad you need to create a free account, then after logging in you can create 

a new circuit design as you can see it in figure 1. 

 

Fig.1. Creating new design 

https://www.tinkercad.com/
https://www.arduino.cc/en/software
https://docs.arduino.cc/learn/starting-guide/the-arduino-software-ide


 

- 3 - 

In a “Circuit design” you can place various electric components, sensors, actuators, 

microcontrollers, breadboards etc. from the “components” menu (at the right). You can connect 

the components using wires by clicking on the pins of the components. The editor displays 

realistic images of each component, which makes it easy to use as you can see it in figure 2.  

 

Fig.2. The user interface of Tinkercad 

If your circuit contains a programmable device e.g., a microcontroller, you can write a code 

(by clicking on the “code” button on the top right) and upload it on the device. You can write 

your code using blocks or text, but you must use the text format as you will need to implement 

your written code on a real Arduino board using the Arduino IDE. By clicking the “Start 

Simulation” button the code gets compiled and uploaded to the selected microcontroller 

automatically and the simulation will start. 

 

Fig.3. The code editor window 

3. Using the analog pins on the Arduino 

To measure analog signals microcontrollers, use analog to digital converters (ADC). The 

Arduino Uno has a 10-bit ADC, that can measure voltages between 0 and 5 V. This means it 

will give a digital value in the range of 0 – 1023 (2^10). This is called as a resolution which 



 

- 4 - 

indicates the number of discrete values it can produce over the range of analog values. The 

Arduino Uno’s ADC has 6 independent channel which means it can handle 6 analog input pins. 

If you want to learn more about ADC's click on the link. It is important to mention that in most 

cases microcontrollers can only measure voltage on their analog pins. 

 

In order to access the converted digital value of an analog pin you can use the “analogRead()” 

function which returns the digital value of a specified analog input. You can see how to use it 

in the example project provided below. 

 

To demonstrate how to use the analog inputs of an Arduino Uno I created a Tinkercad project, 

which measures the voltage of a potentiometer and sends the read value to the serial monitor.  

 

 

Fig.4. Digital multimeter 

Serial communication is a standardized communication protocol that is used in 

microcontrollers to communicate with the PC or with other devices. If you want to know more 

about serial communication click on the link. You can use the Arduino environment’s built-in 

serial monitor (in Tinkercad too) to communicate with an Arduino board.  Click the serial 

monitor button in the toolbar and select the same baud rate used in the call to begin().  If you 

want to learn more about Arduino’s serial communication click the link. 

The most important functions to use the serial monitor for the project work is “Serial.begin()” 

and “Serial.print()”, “Serial.println()”. The “Serial.begin()” function starts the serial 

communication between the board and the PC with the baud rate specified as the input of the 

function (for this project 9600 is fine). The “Serial.print()” and “Serial.println()” functions are 

used to print information to the serial monitor, they work the same way, except the second one 

prints a new line character to the end. You can see how to use them in the example. You can 

also send data from your PC to the Arduino using the serial monitor, but that is not needed for 

the project work.  

 (In Tinkercad you can open the serial monitor by clicking the “Serial Monitor” button at the 

bottom of the code window.)  

 

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://www.contec.com/support/basic-knowledge/daq-control/serial-communicatin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/


 

- 5 - 

You can access the Tinkercad design using this URL: Using Arduino’s analogRead example. 

To open the design, you should click on the “tinker this” button. I provided comments to each 

line of the code as an explanation. It is strongly encouraged to play around in all the provided 

projects, try to understand the code, and write it on your own, also try other components etc.  

4. Displaying data on an LCD with Arduino 

LCDs or liquid crystal displays are using liquid crystals to either block or allow the backlight 

to pass through, creating characters and symbols on the screen. The specific LCD you will need 

to use can display characters in 2 rows with 16 columns in each row, so it is a 2x16 display. 

Each character is displayed using a 5x7 pixel matrix.  

 

 

Fig.5. The used LCD. 

The LCD has two registers, the command, and the data register. The command register stores 

commands for the display. Commands are predefined tasks for the display like clearing the 

display, moving the cursor etc. The data register stores the data to be displayed on the LCD. 

The data is the ASCII value of the character to be displayed. We can access the command and 

data register of the LCD with the 8 data pins (D0-D7) of the LCD. To choose which of the two 

registers we want to access we can use the RS (register select) pin of the LCD. We can read or 

write these two registers as well, which can be decided with the Read/Write (R/W) pin. There 

is also an enable pin (E) which is used to enable the LCD to perform the required task. You 

can also turn on or off the backlight (A,K pins) and adjust the contrast of the display with a 

variable resistance using the Vo pin. (If you want to know more about controlling a 2x16 LCD 

click on the link.) 

As you can see in order to control an LCD, we need to control multiple digital inputs of the 

display at the same time, that requires multiple digital output of the microcontroller which is 

not very convenient. To overcome this problem there is an I2C communication capable GPIO 

(General Purpose In-/Output) expander connected to the LCD called PCF8574. This module 

performs the control of the parallel digital inputs of the LCD based on the commands it gets 

from the microcontroller on the I2C bus.  

I2C is a half-duplex, synchronous serial communication protocol that uses only two lines for 

data communication called Serial Clock (SCL) and Serial Data (SDA). Serial Clock is used for 

https://www.tinkercad.com/things/kUmMyl4R3dd?sharecode=2pKXTaDWXZGDk5rLxPZ_ai9JHxgTJOkHuGlwU9cYgDo
https://www.electronicsforu.com/technology-trends/learn-electronics/16x2-lcd-pinout-diagram


 

- 6 - 

timing of the signals on the Serial Data line which is used for the data transfer. An I2C device 

can operate in Master or Slave mode, the Master device creates the clock signal on SCL and 

controls the communication. There can be more than one Master devices connected to the same 

I2C bus. Every slave device has an 8-bit Slave Adress, which is used by the master devices to 

address the specific slave device. The data is transmitted in the form of 9-bit packets. The 

communication sequence starts with a Start Condition, which is followed by the Slave Address, 

and then an Acknowledge bit. If you want to learn more about I2C communication click on the 

link. 

To communicate with the LCD using I2C, you will need to use predefined libraries. A library 

is a collection of pre-written code that provides specific functionality and can be reused in 

various programs or projects. You can find bunches of libraries on the internet (for example on 

Github) for different specific applications. An Arduino library is typically composed of two 

main files, the header file (.h), and the source file (.cpp). The header file is like a user manual 

or blueprint for the library. It provides the set of functions, classes, and variables that can be 

used in your Arduino code. It acts as an interface for your Arduino code to interact with the 

library, listing what functions are available and what parameters they expect. The source file is 

where the actual code for the library is written. It contains the implementation of the functions 

and classes declared in the header file. 

To use a library, you need to include the header file at the beginning of your code like: 

#include<Wire.h> and after that you are ready to use the functions and classed defined in the 

library. In Tinkercad you can only use the supported libraries that are already added to the 

platform. You can check the supported libraries by clicking on the “Libraries” button in the 

code editor window as you can see on figure 6. If you want to use a not supported library, you 

will need to manually copy the content of the source and the header file. 

 

Fig.6. The supported libraries in Tinkercad. 

In the case of the Arduino IDE there are several libraries that you can use by default, but you 

can also add new libraries. To add new libraries and check the already added libraries you will 

need to use the library manager. On figure 7. you can see how to access the library manager. 

 

Fig.7. Opening the library manager in Arduino IDE. 

https://www.geeksforgeeks.org/i2c-communication-protocol/


 

- 7 - 

To controll the LCD you will need to use the “Wire” and the “LiquidCrystal_I2C” libraries. 

The Wire library is used to communicate with I2C devices, and the LiquidCrystal_I2C library 

is for using I2C capable LCDs. 

To demonstrate how to use an I2C capable LCD with the Wire and LiquidCrystal_I2C libraries 

I created a Tinkercad project that you can access using the link. In Tinkercad you can set the 

address of the LCD, as you can see in figure 8, for the provided project the address is set 32. It 

is important to note that in the case of the real LCD you will need to use for the project this 

address is 39. In the case of the Arduino IDE, you will need to give this address as a 

hexadecimal number, so you will need to write it like this, “0x27”. The “0x” prefix denotes 

that the number provided is hexadecimal. In the case of Tinkercad you can write the address in 

simple decimal form. 

 

Fig.8. Using LCD in Tinkercad. 

https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://reference.arduino.cc/reference/en/libraries/liquidcrystal-i2c/
https://www.tinkercad.com/things/fDAtsTz7RGB?sharecode=a_wucc9B_IkGfVcVgXSFRDxAwbJ8y08gBwWc8549y-M

