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A New Neural-Network-Based Scalar
Hysteresis Model

M. Kuczmann and A. Ivanyi

Abstract—A neural network (NN)-based model of scalar
hysteresis characteristics has been developed for modeling the
behavior of magnetic materials. The virgin curve and a set of the
first-order reversal branches can be stored preliminary in a system
of three NNs. Different properties of magnetic materials can be
simulated by a simple if—-then type knowledge-based algorithm.
Hysteresis characteristics of different materials predicted by the
introduced model are compared with the results of the classical
Preisach simulation technique. Comparisons are plotted in figures.

Index Terms—Feedforward-type neural networks, Preisach
model, scalar hysteresis model.

. INTRODUCTION

IMULATION of hysteresis characteristics of magnetic ma-
erials must be included in computer-aided design software

as a tool to predict the behavior of different electrical equip-
ments. The industrial sector has increasing demand for hys-
teresis models to simulate electromagnetic field quantities in
many kind of arrangement. Mathematically, hysteresis charac-
teristics of magnetic materials can be described by a hysteresis
operator, which is a nonlinear, multivalued relation between
the magnetic field intensityl (¢) and the magnetizatioh/ ().
Many available approaches and hypothesis have been devel-
oped since the last period of magnetic research, as the clas-
sical Preisach model and its generalizations, the Jiles—Atherton
model, the Stoner—Wohlfarth model and some new approach
constructed on the theory of neural networks (NNs) [1]-[6].

A hysteresis operator based on the well-known function ap-
proximation capability of feedforward type NNs is introduced
in this paper [7]-[8]. The virgin curve and a set of the first-order
ascending and descending reversal branches after some prepro-
cessing can be predicted by NNs. General properties of h¥§g—_ 1
teresis phenomena can be developed as if-then type rules of
the knowledge-base of the model. Two kinds of training data
sets have been generated by the classical Preisach model arldie classical scalar Preisach model [1] has been used to gen-
the good agreement between the two simulation technique£igte different types of training data sets to find the appropriate

First-order reversal curves.

illustrated in figures. one. Consequently, the anhysteretic curve and two sets of the
first-order transition branches (Fig. 1) have been measured. Sys-
II. NEURAL NETWORK MODEL OF HYSTERESIS tematically generated ascending and descending external mag-

netic field must be excitated to measure transition curves. The

The developed model consists of a system of three feedf?é'quired first-order reversal curves are obtained with the input

ward-type NNs with bipolar sigmoid transfer functions and

; . unction
if—then type knowledge-base about the hysteresis phenomena
[7], [8]. -1 1
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Fig. 3. lllustration for parametes.
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Fig. 2. First-order reversal curves after preprocessing. Memory

. . . ) Fig. 4. Block diagram of the scalar model.
Introducing a new dimension, measured and normalized as-

cending and descending data sets, which are multivalued funchsistS of three trained NNs. so anhvsteretic maanetization
tions can be described by a set of single-valued and three-dim&n- ) ’ y 9
rve and the first-order reversal curves are stored, but memory

. . u
sional (3-D) surfaces. The upgrade part of hysteresis characfel- . i . .
istics can be described with a positive real paramgtand the Imgcht:;l]nlslin shlogld ts)e reah;edt ?ﬁ' an add;uonalf e;]lgotrlthm..

descending curves can be approached with negative value of Ip.g N nOV\II edge- asl,e tﬁ ou el'prc()jper €S c;. tYS eretS|s
same parametet The value of this parameter for a first-ordef, cnomena. in general, he normalized magnetization at a

transition branch can be calculated at turning points of norm;§|'-mUIatlon step responsed by '_[he neural _mo_del IS con_structed
ized magnetic field intensity, as on the actual value of the relative magnetic field intensity, the

appropriate value of parametérand a set of turning points

(asc) 14+ Hy, stored in the memory of the model. The knowledge-base is the
£ =1- 9 @) main part of the implemented neural model. It contains if—then
] type rules about hysteresis phenomena and controls the other
for ascending and blocks of the model. The block representation of the model can
be seen in Fig. 4.
1+ Hy, 0 ) ) )
gldese) - _2F D (38)  The operation of the model is built on a set of turning

2 points in the ascending and descending branches, saved

for descending curves. The effect of this preprocessing te¢h- the memory, which is a matrix with the division
nique can be seen in Fig. 2 for ascending and descendMBATRIX = [H,, My, &)
branches. These are surfaces on the plane of the normalizeflurning points can be detected by the evaluation of a se-
magnetic field intensity and the additional parameteHys- quence of Hy_1, H;}, generated by a tapped delay line. After
teresis curves for different values of the paraméteran be detecting a turning point;, = H;_; and storing it in the
seen in Fig. 3. memory, the aim is to select an appropriate transition curve for
After preprocessing of the first-order reversal curveshe detected turning poifff;;,, M;,). Conditions are collected
function approximation is worked out by the well-knowrin the selection rules, to choose the suitable NN, as follows.
feedforward type NNs, trained by the Levenberg—Marquardt Starting from demagnetized state, or reversible magnetiza-
backpropagation method. The developed hysteresis motieh process is simulated, NN that approximates the anhysteretic
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) ) e . Fig. 6. Minor loops.
Fig. 5. Alternating magnetic field intensity.

. . . . not equal. So some correctionsnust be used to eliminate this
curve must be operated either increasing or decreasing eXCli&Viation to close a minor loop. The value of parametean

tion. be calculated as the difference between the required value of
NN, which simulates descending branches, must be used gggnetization and the response of the actual NN at the value of
tecting a turning point with the following setting#f,_1 >  magnetic field intensityHcoar, (MON(Hgour, &sTart))s
Hy_, andHy, < Hy_;. when an actual minor loop is closed,
NN that models ascending curves must be turn on, when a

turning point is shaped with settind$,. | < Hi_» andHj >
Hk_l_g P P 9B o g n= My — MM (Heoar, Esrart).- 4)

The netvzg;li)simulating thgs\grg;‘n curvle must ble applied ifpq parameter must be calculated ahead, when opening a minor
MATRIX (MATRIX™) has only one column or a loop. £ésTart is the value of parametérat the actuaHsragr.

minor loop in the anhysteretic curve is just closed. The parameter; must be taken into consideration while
The same NN is selected at stephan applied at simulation closing a minor loop at the valu#lgoar, SO an additive

stepk — 1, when turning point has not detected. correction must be summed with the response of the actual
If MATRIX“*) (MATRIX®*) has more columns NN. The value of magnetizatioi/,,,) and the response of the

and magnetic field intensity is increasing (decreasing), tlelected NN(AZ NN (Hgpagrr, ésTarr)) are corresponding

actual minor loop must be closed at the minimum value @ft the turning point, where the minor loop opens, so that

Ht(;le“) (maximum value oth(ijC)). This is the condition of an appropriate curve is joined &srarr by the calculated

closing minor loops. After closing a minor loop, the appropriatearamete€srarr. The value of correction must be summed

columns must be erased. with the response of the actual NNet;., increasing linearly
The results of simulation have showed that the value of ndit thekth step

malized magnetization responsed by the according NN and the

adequate value of normalized magnetization, chosen from the H;, — Hsragrr

appropriate column of the memory at the valuethfoar, are My = Nety+n- Heoar —

(®)

Hgrarr
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at ascending branches if thBMATRIX (‘%) has more anhysteretic magnetization curve and a set of the ascending and
columns and a set of the descending first-order reversal branches must be
measured on a real magnetic material. Introducing an additional

M, = Nety, + 17 - Hsrary — Hy (6) paramete solves a fundamental problem of simulating hys-
Hstart — HooaL teresis characteristics, that is the multivalued property. The mag-
netization becomes a single-valued function of two variables
at descending curves if tFI ATRIX * is not a vector. and an if—then type knowledge-base can be used for simulating

There are reversible and irreversible parts on the virgin curv@fferent phenomena of magnetic materials.
A normalized parameteH.., must be given to determine the  Ajm of further investigations is to compare the hysteresis

limit of reversible magnetization process. characteristics simulated by the developed model and measure-
ments and introducing different properties of magnetization
Ill. COMPARISONSWITH THE PREISACH MODEL phenomena as temperature dependence, frequency dependence

The experimented NN model of hysteresis can be used aand accommodation. A 3-D vector hysteresis model can be

a .
scalar model with continuous output to simulate the behavigtrave'Opecl constructed on the anisotropy energy.

of isotropic magnetic materials. Two kind of hysteresis charac- REFERENCES
teristics predicted by the developed model have been compared

; ; i [1]1 A. Ivanyi, Hysteresis Models in Electromagnetic Computa-
with the results of the Preisach model to show the good appli on. Budapest, Hungary: Akadémia Kiadd, 1097,

Cap”ity- The response of magnet?c m_aterial for alternating Mag-12] C. Serpico and C. Visone, “Magnetic hysteresis modeling via feed-for-
netic field intensity can be seen in Fig. 5. Noncongruent minor  ward neural networks,[EEE Trans. Magn.vol. 34, pp. 623-628, May

H H H 1998.
loops .are. plotted in Flg. 6 Ap_proach of NN mOde_I is denoted [3] A.A.Adly and S. K. Abd-El-Hazif, “Using neural networks in the iden-
by solid line, approximation with Preisach model is plotted by tification of Preisach-type hysteresis model§EE Trans. Magn.vol.

points. 34, pp. 629-635, May 1998.

As it can be seen from the figures, hysteresis characteristic§?! A. A- Adly, S. K. Abd-El-Hafiz, and I. D. Mayergoyz, “Identification
of vector Preisach models from arbitrary measured data using neural

mgasureq in the ro.IIing anq in the tran;verse direction on an  petworks,"J. Appl. Phys.vol. 87, no. 9, pp. 6821-6823, 2000.
anisotropic magnetic material can be simulated as well. Non-5] J. Fiizi and A. Ivanyi, “Isotropic vector Preisach particl@fysica B
; ; _vol. 275, pp. 179-182, 2000.
Congruent minor loaps are also can be predicted by the NN hys [6] Zs. Szab6 and A. Ivanyi, “Computer-aided simulation of Stoner—Wohl-
teresis model. farth model,”J. Magnetism Magn. Matvol. 215-216, pp. 33-36, 2000.
[7] M. Kuczmann and A. Ivanyi, “Neural network-based scalar hysteresis
model,” in Proc. 10th Int. Symp. Applied Electromagnetics and Me-
IV. CONCLUSION chanics Tokyo, Japan, May 13-16, 2001, pp. 611-612.
. . . [8] ——, “Scalar hysteresis model based on neural networkZrat. IEEE
A NN mo_del for m?‘.gnet'c hysteresis based On. the function Int. Workshop Intelligent Signal Processjrigudapest, Hungary, May
approximation capability of NNs has been experimented. The  24-25, 2001, pp. 143-148.

Authorized licensed use limited to: Miklos Kuczmann. Downloaded on July 16, 2009 at 02:39 from IEEE Xplore. Restrictions apply.



