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Chapter 1

Introduction and the scope of my

research

From mathematical and engineering point of view, the hysteresis characteristic is a non-
linear and multivalued relationship between the magnetic field intensity and the mag-
netization of the magnetic materials. This phenomenon has been researched by many
physicists and material scientists as well. The point of view of interests may be very
different; the physicists are interested in the microscopic behavior and the microscopic
description of the magnetic materials, the mathematicians treat this as an interesting
mathematical problem from the field of nonlinear systems. I focus on the models of
hysteresis characteristics of the ferromagnetic materials –as many engineers– as a math-
ematical tool to handle the hysteretic behavior of the magnetic materials, to work out a
model with simple identification process which can be built into a finite element software.

The possible origin of magnetism is the motion of electrons at different energy levels
in the atomic structures of the materials and this motion can be simulated by elemen-
tary current loops. The associated magnetic dipoles are characterized by the magnetic
moments. The volume density of the vector sum of these moments results in the magneti-
zation vector. The assumption of elementary current loops is the basis of the macroscopic
description and of the theory of domain structure. Microscopic models consider energy
contributions on very small dimensions, based on energy minimization of different energy
terms (e.g. demagnetization, anisotropic, exchange and so on). The microscopic models
have precise physical justification, but it may be difficult to apply them to solve real
engineering problems, because of the very large computation time.

Applying neural networks in the field of function approximation has the advantage
of easy identification, and the resulting model can approximate the measured object
attractively as a continuous function. At the same time, neural networks are black box
models, and there is no connection between the physical meaning of the phenomenon
to be simulated and the parameters of the model. The main challenge of simulations
is to predict the behavior of an arrangement, but the atomic level and the microscopic
behavior are not in the focus of engineers. The basis of simulations is to work out a
mathematical model of the given arrangement and a mathematical model of the material
behavior. These models can be applied to calculate the physical quantities which we are
interested in.

In engineering practice, the simulation of measuring arrangements and various electri-
cal equipments is based on Maxwell’s equations coupled with the constitutive relations.
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It is very important to take into account the hysteretic behavior as well as the vector
property of the magnetic field quantities. However, in some cases it is adequate to use
constant permeability or single valued nonlinearity. Hysteresis characteristics must be
taken into consideration when, for example, hysteresis losses in electrical machines or
effects related to the remanent magnetization are to be calculated.

The finite element method is the most widely used and the most popular simulation
technique in the solution of electromagnetic field problems. The weak form of the partial
differential equations formulated by potentials, obtained from Maxwell’s equations can
be solved by using simple shape functions on a discrete mesh of the arrangement. When
hysteresis characteristics must be taken into consideration, the solver and the model must
be coupled by an adequate iteration scheme, because the resulting system of equations
is nonlinear.

Nowadays, electromagnetic nondestructive evaluation methods have a dynamic and
intense development, applied to secure the structural integrity of complex mechanical
systems. Nondestructive inspection techniques require continuously better and better
detection sensitivity and field applicability. There are several benchmark problems can be
found in the literature aiming to compare different measuring systems, computer software
and solvers. There are some common areas of nondestructive testing, e.g. optimization
of probes, fast electromagnetic field analysis to reconstruct natural cracks, etc.

1.1 The proposed research activity

The scope of my PhD dissertation is to develop a new neural network based vector
hysteresis operator and the insertion of this model into a three dimensional finite element
based procedure to simulate an installed nondestructive testing equipment.

In view of the advantageous properties of neural networks in function approximation,
it is a challenge for me to develop a new neural network based scalar hysteresis operator.
I intend to build a measurement system to show the applicability of the predictions of
the model by comparing scalar measurements and simulation results. I will generalize
the scalar model to describe the vector hysteresis property in 2D and in 3D, and I will
take into account the anisotropic behavior as well. My aim is to develop an original
identification procedure to fit the isotropic and the anisotropic models to measured
hysteresis curves. Unfortunately, the vector hysteresis measurement is a large project in
itself, especially no 3D measurements are known to me. This is beyond my research’s
scope, that is why I will generate 2D and 3D measurements via the Preisach model.

I intend to build a nondestructive testing measurement system, and to realize simple
test measurements by applying the FluxSet sensor and the Hall–type sensor as well. I
will examine manufactured specimens with well defined artificial slots and holes. My
aim is not to work out a new measurement system, but to allow to check the simulation
results obtained from calculations introduced in the next paragraph.

To simulate the above measurement system, I will apply the finite element method
with the combination of the nodal and the edge shape functions. I intend to develop
a 3D finite element model of the arrangement and to take into account the effect of
hysteresis characteristics by comparing measured and simulated results. I will use the
T ,Ψ−Ψ potential formulation, because it directly gives the magnetic field intensity
vector, therefore I can apply the direct isotropic neural network based vector hysteresis
model. I intend to identify the isotropic vector hysteresis model from measurements,

2



Miklós Kuczmann, PhD Theses 2004

using a specimen of toroidal shape made of the same material as the nondestructive
testing arrangement. I will develop and implement in the finite element method a fixed–
point iteration scheme to handle the nonlinearity of the hysteresis characteristics.

The organization of my dissertation is the following.
Chapter 2 contains a brief overview of some results known from the literature. The

basics of the application of neural networks in system identification, scalar and vector
hysteresis models based on neural network techniques, the general nondestructive testing
methods and procedures, and an overview of the finite element method, especially edge
finite elements can be found here. A short introduction, how to develop the nodal and
the edge shape functions for triangular and tetrahedral finite elements is also given.

The following chapters contain the summary of my research activity.
In Chapter 3, I introduce the neural network based scalar hysteresis operator de-

veloped by me. I present some comparisons with real scalar measurements to show
the applicability of the model. I perform a possible generalization to describe 2D and
3D vector properties, and I propose a new and original identification technique. The
generalization has been worked out both for the isotropic as well as the anisotropic case.

In Chapter 4, I describe the finite element based procedure developed both for the
time varying magnetic field and the eddy current field problems. First of all, I have
analyzed a simple 2D arrangement, then I have introduced the global to local model
in 3D to simulate the measurement equipment introduced in Chapter 5. I introduce
the fixed–point iteration scheme to handle the nonlinearity of the simulated material.
Chapter 5 deals with the studied nondestructive testing equipment built in our Magnetic
Laboratory. The arrangement worked out and the studied specimens, the applied sensors
and the measurement set–up controlled by a graphical user interface implemented in the
frame of the software package LabVIEW are discussed. Finally, I show some comparisons
between measurements and simulations to verify the computations.

Last, the summary of my dissertation, the PhD theses can be found in Chapter 6, and
conclusions with future works are presented in Chapter 7. Main references in alphabetical
order used through my research are also given at the end of this dissertation.

I used the LATEX word processor to write this document. Figures are located at the
top of the actual page. I used the following notations: vectors are denoted by bold italic
letters, e.g. T , scalars are denoted by italic letters, e.g. µ, matrices and arrays are
denoted by bold letters, e.g. K.

1.2 Acknowledgment

I wish to express my grateful acknowledgement to my supervisor Amália Iványi for her
advices, encouragements and suggestions provided during my PhD studies. I am very
grateful to Imre Sebestyén, Oszkár B́ıró, Maurizio Repetto, Carlo Ragusa, József Pávó
and János Szöllősy for their assistance during developing the finite element software and
the measurements using the FluxSet sensor. The scalar hysteresis measurements have
been developed with the help of Péter Kis and János Füzi. I thank my student, Szilárd
Jagasics for developing the Hall sensor. I would like to express my thanks to György
Fodor, Oszkár B́ıró and Imre Sebestyén for reading of the dissertation and for the helpful
suggestions and also for all members of the Department. I thank the scholarship provided
by the Tateyama Laboratory Hungary Ltd. Last but not least, I would like to thank my
family, my parents and my girlfriend, Ĺıvia Kicsák for the daily assistance and patience.
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Chapter 2

Literature overview

In this chapter, I briefly present the major research directions in the field of application
of neural networks in system identification, using neural networks in hysteresis modeling,
and formulations of the finite element method, especially in the field of nondestructive
testing. I focus on the topics which are close to my research activity.

2.1 Artificial neural networks

Artificial neural networks (NNs) are parallel, information–processing systems imple-
mented by hardware (like Hopfield–type NN, HNN, Cellular Neural Network, CNN)
or software (simulation tools, e.g. NN Toolbox of the software package MATLAB). Ap-
plying the technique of NNs is a quite new and challenging field of research, motivated by
neuroscience, the study of the human brain and the nervous system. The brain’s capacity
of self–accommodation, powerful thinking, remembering and problem solving capabilities
have inspired many scientists to attempt computer modeling of its operation [19,25,27].

2.1.1 Biological background

The human brain and nervous system consist of billions of ganglion–cells which are
densely interconnected. For example, the human brain is estimated to have 1011 to
1012 neurons with more than 1015 synapses among them. The function of individual
nerve–cells or how groups of neurocytes operate together is the scope of investigations
by neurologists and neuroscientists.

The structure of a biological neuron is very tricky. There are three main parts building
a neuron; the cell body (soma) is the central part of the ganglion–cell containing the
nucleus, the dendrites where the excitation is accepted, and the axon (neurit) is the
continuation of the soma splitting up nerve endings and connects to other dendrites
through synapses [4].

2.1.2 Structure and training of feedforward neural networks

There is an increasing number of different types of NNs, like feedforward NNs, Adaptive
Resonance Theory (ART) networks, Cerebellar Model Articulation Controllers (CMAC),
Principal Component Analysis (PCA) networks, CNN, HNN, and so on. There is a large
number of books in this field, I mainly studied and worked through [19,25,27], where the
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structure, the training methods and a wide range of applications can be found. I used
the group of feedforward–type NNs to approximate hysteresis characteristics, because
this is the simplest NN.

Feedforward NNs can be applied as an alternative mathematical tool for universal
function approximation. This application is based on the Kolmogorov–Arnold theorem
(1958) [27]:

Kolmogorov–Arnold 2.1.1 For each positive integer n, there exist 2n+ 1 continuous
functions Φ1,Φ2, . . . ,Φ2n+1, mapping [0, 1] into the real line, and having the additional
property that, for any continuous function f of n real variables, there is a continuous
function Ψ of one variable on [0, n] into the real line such that

f(x1, x2, . . . , xn) =

2n+1∑

q=1

Ψ

(
n∑

p=1

Φq(xp)

)
, (2.1)

for all values of x1, x2, . . . , xn in [0, 1].

There is no general rule yet, how to choose the functions Ψ and Φq, but there is a lot of
latitude from experimental methods.

The formulation (2.1) can be represented by feedforward type NNs with at least two
hidden layers with nonlinear activation function.

The output of an individual neuron (processing element, PE) y is the output of the so
called activation function (transfer function) ψ(s) and the input of this transfer function
is the linear combination of I inputs, x = [x1, x2, . . . , xI ]

T and the bias b of the PE,
s =

∑I
i=1 wixi + b = wTx + b, where the vector w contains the weight parameters of a

neuron, w = [w1, w2, . . . , wI ]
T (see the upper right hand corner of Fig. 2.1). The transfer

functions are generally non–linear, continuous and differentiable functions. There are
some widely used activation functions (e.g. hard limit, linear, saturating linear, radial
basis function and so on), I used the bipolar sigmoidal function (hyperbolic tangent
function),

ψ(s) =
1− e−2s

1 + e−2s
. (2.2)

This function transfers its input space s ∈ R into the interval [−1, . . . ,+1].
A feedforward NN can be built by using such PEs grouping them into layers as it

can be seen in Fig. 2.1. The inputs of the neurons in layer j are the weighted sum of the
outputs of the neurons in layer j − 1. In this case, a multi input single output (MISO)
system has been shown for simplicity.

After selecting the activation functions of the individual neurons and the number of
layers and neurons, the only degree of freedom left is setting the value of weights and
biases of the NN. Weights and biases of neurons in a layer are collected in the weight
matrix W. Training is an iterative and convergent algorithm which modifies the weights
and the biases until a given value of a suitably defined error ε (e.g. mean square error,
MSE, sum squared error, SSE, etc.) between the desired output value (target) t and the
output of the NN d according to the given input vector x is reached. This training method
is based on the training sequence, τ (N) = {(xk, tk), k = 1, ..., N}, which may be a set of
measured data, that should be approximated by the NN, i.e. tk = f(xk), k = 1, ..., N .
The function f(·) represents the measured functional relationship between the input–
output patterns, and N denotes the number of measured data pairs.

5
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Fig. 2.1. Structure and training of feed-forward type NNs

According to the training sequence τ (N), the aim of training is to find the optimal
weight coefficients and biases of the network W∗, i.e. to minimize the function

W∗ : min
W

1

N

N∑

k=1

(tk −N (xk,W))2 , (2.3)

where dk = N (xk,W) is the function approximated by the NN. Once training is finished,
the NN –with given number of neurons and given structure– is able to approximate the
function f(x) with the given value of the error function ε,

∃W∗ : ‖N (x,W∗)− f(x)‖ < ε. (2.4)

A trained NN is able to generalize. This means that, not only the discrete set of the
training sequence can be represented, but other input–output data can be approximated
which are not included in the training sequence, because the NN is a continuous function
approximator.

The training can be done by any optimization technique based on the gradient
method. The aim of optimization is to minimize an error function ε = ε(λ) depend-
ing on the individual λ = t − d values: ∂ε/∂W = ∇[ε] → 0. Weights are adapted in
every iteration step k as

Wk+1 = Wk +4Wk. (2.5)

The value of4Wk can be formulated in many ways. The backpropagation (BP) training
algorithm is the most widely used one, but the faster Levenberg-Marquardt iteration
technique as a modification of the BP method is preferred with the adaptation rule
4W = −(JTJ +αI)−1JTe, where J is the Jacobian matrix formed by the derivatives of
each error to each weight, I is the unit matrix, α is the Levenberg parameter and e is
the error vector [99].

The operation of a MISO feedforward NN model can be expressed mathematically as

N (x,W) = ψ

(
∑

i

W
(L)
i ψ

(
∑

j

W
(L−1)
ij . . . ψ

(
∑

m

W
(1)
kmxm

)))
, (2.6)

where ψ(·) denotes the transfer functions of a PE.

6



Miklós Kuczmann, PhD Theses 2004

Using the chain rule, the derivatives of the formulation (2.6) with respect to any
input of the NN can be expressed in analytical form.

This is the general form of feedforward type NNs; although not all models share all
of the characteristics. Individual neurons can have numerous inputs and can send data
to numerous other PEs. There is such a large variety of NNs.

2.2 Preisach–type hysteresis models based on NN

The hysteresis phenomenon is encountered in many different areas of science, and has
been in the focus of research and investigation for a long time. Thanks to the fast
computers available nowadays, it is possible to simulate hysteresis characteristics more
and more precisely taking into account important physical phenomena. The developed
models can be inserted into field calculation software to examine an investigated material
or an arrangement.

There are many hysteresis models to simulate the behavior of magnetic materials,
such as the Preisach model [39, 67, 88, 93], the Jiles–Atherton model [43], the Stoner–
Wohlfarth model [18,39,88,93] etc., and applying a new technique, the method of NNs,
which will be presented with references in this section.

The investigated NN model of magnetic hysteresis presented in this dissertation is
mainly based on the ideas of the Preisach model, therefore this model with its modifi-
cations, and some methods, where the NN techniques are used are briefly described and
overviewed.

2.2.1 The classical scalar Preisach model

The classical scalar Preisach model [31, 32, 39, 67, 88, 93] describes the scalar hysteresis
phenomenon as a collection of elementary shifted rectangular hysteresis operators γ̂(α, β)
with different coercive fields (see Fig. 2.2). The switching fields α and β –where the
magnetization jumps up from −1 to +1 and jumps down from +1 to −1, respectively–
characterize each operator. The operators also can be defined by their coercive field,
hc = (α − β)/2 and their interaction field, hm = (α + β)/2. The magnetization M can
be expressed by the integral

M(t) =

∫∫

α≥β

µ(α, β) γ̂(α, β)H(t) dαdβ, (2.7)

where µ(α, β) is the Preisach distribution function, i.e. the weight function of the ele-
mentary hysteresis operators γ̂(α, β), H(t) is the applied magnetic field intensity, and
M(t) is the magnetization at time t. In a computer realization, the integral (2.7) is
approximated by the weighted sum of elementary operators as

M(t) '
N+1∑

i=1

N+1∑

j=N+2−i

µ(αi, βj) γ̂(αi, βj)H(t), (2.8)

where N is the number of subdivisions in the Preisach plane. Each point on the half
space α ≥ β corresponds to one elementary hysteresis operator only. In this way, a math-
ematical representation can be introduced and known as the Preisach triangle [39, 67],

7
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Fig. 2.2. Magnetization curve of an elementary hysteresis operator, γ̂(α, β)
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shown in Fig. 2.3. Applying the staircase line L(t), the magnetization can be calcu-
lated taking into account the prehistory of the material. Increasing the magnetic field
intensity, the staircase line is moving from left to right, and decreasing the magnetic
field intensity, the staircase line is moving from top to bottom on the Preisach triangle
switching the elementary operators, and the magnetization can be calculated by the for-
mula (2.8). The Preisach distribution function can be easily approximated by Gaussian
or exponential distribution functions, and the parameters of these distributions can be
fitted to experimentally measured hysteresis curves.

Using the Everett function leads to a very favorable implementation of the Preisach
model [39, 67]. The discrete Everett table must be calculated once from the measured
first order reversal curves at very low frequency (f < 1 Hz), avoiding the computation
of the integral in (2.7) or the sum in (2.8). It gives a better approximation, because the
Everett function is very close to measurements,

E(α, β) =
1

2
(Mα −Mα,β), (2.9)

where Mα is a reversal magnetization point in the major hysteresis loop corresponding to
the magnetic field intensity α, and Mα,β is the value of magnetization in a reversal curve
starting from the reversal point (α,Mα), when the magnetic field intensity is equal to
β. A reversal curve with given points can be seen in Fig. 2.4. The Preisach distribution
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function can be expressed from the Everett function as

µ(α, β) =
∂2E(α, β)

∂α ∂β
, and E(α, β) =

∫∫

α≥β

µ(α′, β ′) dα′ dβ ′. (2.10)

The differentiation must be performed numerically from the measured Everett function
which amplifies the measurement noise. An example –generated by the Preisach model–
for a calculated Everett function E(α, β) and the corresponding distribution function
µ(α, β) are plotted in Fig. 2.5(a) and in Fig. 2.5(b), respectively.

Knowing the Everett function, the following expression can be used to determine the
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magnetization [67, 72]:

M = −E(α0, β0) + 2

n∑

k=1

{E(Mk, mk−1)− E(Mk, mk)} , (2.11)

where {Mk}
n
k=1 and {mk}

n
k=1 are the increasing and the decreasing sequences of the

magnetic field intensity applied to the sample and stored by using the staircase line, and
α0 = 1, β0 = −1.

The classical scalar Preisach model is unable to describe some phenomena, such as
noncongruency [39, 44, 67] and accommodation [39, 67, 94]. Simulated minor loops are
congruent, i.e. a stable minor loop cycling between two fixed values of the applied field
has the same size and shape. The moving model [39, 72] and the product model [39, 45]
can solve this problem. The moving model contains the classical Preisach model with
a feedback which modifies the actual value of the applied magnetic field intensity by
a term of αM , i.e. Hk = Hk + αMk−1 at the discrete time of simulation tk, and α is
a small positive number. In the product model, the rate of change of magnetization
with respect to the applied field dM/dH is expressed by a Preisach–like integral formula
multiplied by a function R(M). Accommodation of a loop means that, it takes many
cycles for a minor hysteresis loop to stabilize and it continues until an equilibrium is
reached asymptotically. The moving model and the product model also can fulfill this
property. Accommodation cannot be simulated by the classical Preisach model, because
a minor loop closes at the same point (H,M), where it was started. This is caused by
the wiping–out property.

2.2.2 The classical scalar Preisach model via NNs

The memory storage mechanism of the ferromagnetic materials can be described by
means of the Preisach triangle. Several papers have been written about this approach
when using NNs.

The authors of [84] used a discrete set of Play operators Ψj = Ψ(t, hjc), j = 0, ..., J−1
to simulate the memory mechanism of magnetic materials and a feedforward NN to
store the experimentally measured data set B = HB{Ψ(t, hjc)}. The block diagram of
this model can be seen in Fig. 2.6. The authors have considered a NN with J = 20
inputs and one hidden layer with 40 neurons. Each neuron employs a bipolar sigmoidal
activation function. The training data set has contained 50 H−B pairs in a nested loop.
Five first order reversal curves have been measured in one magnetic sample and seven
in another sample. They have demonstrated the good quality of the predictions of the
model by comparing simulation results and measured symmetrical minor loops. This
model has also been applied to simulate noisy and incomplete measurement data [98].
It is very difficult to identify the classical Preisach model when the reversal curves have
been loaded with noise, but NNs are able to filter the noise during the learning process.
Preprocessing of noisy measured data is not required in this case.

A possible way to represent the main features of the classical scalar Preisach model
applying NNs can be found in [1]. The block representation of the Preisach model
has been realized by a NN structure with bipolar sigmoidal activation function, if the
hysteresis operators are represented by elementary rectangular loops γ̂(α, β), and the
distribution function µ(α, β) has been characterized by the weights of the network as
illustrated in Fig. 2.7. This means that, a large number of inputs (few hundred), and
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consequently a large number of unknown weights are required for the model, so the
authors have grouped the rectangular operators into a smaller, but more sophisticated
set of 20 hysteresis operators having different widths and 10 neurons in one hidden layer.
The measured data set contains 304 H −B pairs in the form of a decreasing oscillating
sequence. After training, higher order minor loops are demonstrated and compared with
measured data.

The approximation of the Preisach distribution function or the Everett function can
be realized by a feedforward NN with 2 inputs (α and β) and one output (µ(α, β)
or E(α, β)) [23]. The output of a NN having continuous and differentiable activation
functions can be differentiated with respect to its input, and the value of the differential
susceptibility χdiff = dM/dH is a continuous function of H and it can be expressed
in analytical form. Applying the Newton–Raphson iteration technique in numerical
field calculation problems leads to faster convergence, but this technique requires the
differential susceptibility. It is also shown in the paper that, the integral form (2.7), as
well as the energy losses can also be worked out by an analytical expression when NNs
are used. It gives a computationally effective model. The authors used a NN with 75
neurons in one hidden layer to approximate a measured Everett surface with very good
accuracy.

NN technique combined with the Fourier description can be used to calculate the
magnetization in cases when a periodic magnetic field excites the ferromagnetic device as
presented in [80]. This method is a quite simple computational instrument for designers
and takes into account the frequency dependence of the hysteresis characteristics.

A nonlinear circuit model of hysteresis characteristics can be developed as proposed
in [20]. The investigated model is based on a two–layer feedforward connected nonlinear
circuit. The first layer contains elementary cells (simple hysteresis operators) and the
second layer is a simple adder. The parameter identification of this model can be solved
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by a NN approach. The proposed model has been compared with the Jiles–Atherton
hysteresis model and a good agreement has been found, including the dynamic properties
(e.g. frequency dependence) of the hysteresis loop.

The dynamic Preisach model which encompass the dynamic effects such as the eddy
currents and the domain wall displacement is a generalization of the static Preisach
model introducing the rate of change of the magnetization dM/dt [30, 39, 67], i.e.

M(t) =

∫∫

α≥β

µ(α, β, dM/dt) γ̂(α, β)H(t) dαdβ. (2.12)

The rate dependent generalization of the Preisach model considers the hysteresis switches
to be not ideal ones [5], but their output changes at a finite rate, so ideal rectangular
hysterons are changed to idealized magnetization characteristic. The disadvantage of
this model is the time consuming calculation of the output.

This effect can also be handled by the classical Preisach model coupled with a differ-
ential equation as shown in [30]. The differential equation responsible for the dynamic
features uses a variable Hm as input for the static Preisach model delayed with respect
to the actual field strength H is

dHm

dt
= a(H −Hm)− b

dB

dt
+ c

dH

dt
, (2.13)

where dH/dt and dB/dt are the magnetic field intensity and the magnetic flux density
variation rates and a, b and c are model parameters, adjusted by an iterative method.

A recurrent NN can be used to handle time dependent mapping. The authors of [79]
used the Elman type recurrent NN which is a three–layer recurrent network. The middle
layer is recurrent containing hidden and context neurons. The context neurons act as
a delay in one sampling period, meaning that, the magnetization is a function of the
present state, the previous state and the present magnetic field intensity. The network
was trained using two symmetrical hysteresis loops and tested with another loop different
from the training sequence. The simulation results agree well with the experimental
measurements, but minor loops are not shown in the paper.

I have developed a new NN based hysteresis operator which differs from the above
models (Chapter 3). Measured curves are approximated by NNs, the memory mechanism
of the model is based on a knowledge–base containing the properties of the hysteresis
characteristics as if–then rules.

2.2.3 Vector hysteresis modeling

Scalar hysteresis characteristics can simulate special cases, when the magnetic field in-
tensity and the magnetization vectors are in the same direction (e.g. inside a toroidal
shape core), but generally, these vectors do not have the same directions. In this case, a
vector hysteresis model must be used.

The Stoner–Wohlfarth model is the most successful physics–based model, because a
graphical representation by means of an astroid can be used to follow the magnetization
vector in the presence of a two–dimensional magnetic field intensity [5, 39, 88, 93]. The
anisotropic behavior is embedded in the equations of the model, but the identification
process is a difficult task.
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The most widely used vector model is proposed by Mayergoyz [67]. This is an exten-
sion of the classical Preisach model, because this vector model is built as a superposition
of continuously distributed scalar Preisach models in given directions eϕ of the 2D plane.
The magnetization vector M can be expressed in two dimensions as

M =

∫ π/2

−π/2

eϕ H {Hϕ} dϕ, (2.14)

where Mϕ = H {Hϕ} is the scalar magnetization in the direction eϕ. The character-
istic H {·} depends on the polar angle ϕ if the magnetic material presents anisotropy,
otherwise it is ϕ–independent [10, 67, 77, 78].

The identification process can be worked out by applying either the Everett func-
tion or the Preisach distribution function both for isotropic and anisotropic case. The
identification process is based on the integral equation

F (α, β) =

∫ π/2

−π/2

cosϕE(α cosϕ, β cosϕ) dϕ, (2.15)

where F (α, β) and E(α, β) are the measured scalar Everett function and the unknown
vector Everett function. The identification process based on the Preisach distribution
function can also be applied, i.e.

µ(α, β) =

∫ π/2

−π/2

cos3 ϕ ν(α cosϕ, β cosϕ) dϕ, (2.16)

where µ(α, β) and ν(α, β) are the measured scalar distribution function and the unknown
vector distribution function. These integral equations can be solved only numerically,
because no analytical solution is available, that is why the Preisach triangle must be
divided into elements.

The above integral equations are valid for isotropic characterization for simplicity.
A possible solution composed with the Preisach distribution function of an anisotropic
material with the help of Fourier expansion can be found in [78].

Working out a vector hysteresis measurement system is an extensive project [34,64,85,
86], therefore, it is sometimes simpler to use a known model to generate measurements.

A vectorial realization based on NN technique has been investigated and performed
in [2]. After some mathematical formulations of the basic equations of the anisotropic
2D vector Preisach model and applying Fourier expansion, the vector Preisach model
can be identified by a two layer feedforward type NN. The input layer consists of twice
as many nodes as the number of elementary hysteresis operators necessary to construct
a reasonably accurate hysteresis model. Only 36 rectangular elementary hysteresis op-
erators have been used in the model. The identification of the model is based on 706
H −M pairs. Measured first order reversal curves have been compared with predictions
of the model.

I have worked out an original identification method based on the measured Everett
function to simulate both isotropic and anisotropic magnetic materials. A possible gen-
eralization for 3D also will be presented in Chapter 3, however, only two–dimensional
anisotropic vector models are known from the literature.
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2.3 The nondestructive testing method

Structural damage may result from a number of causes and it can be of different types. It
is most often called crack which is a change in the geometry with respect to the uncracked
state of the structure. Early stages of cracks may be undetectable, but cracks may
grow and propagate at a very high rate quickly compromising the structural integrity.
Detection of cracks is the main goal of the damage detection systems under design [46,81].

There are two main groups of testing of materials in the industry, destructive and
nondestructive testing methods.

In the first case, a sample from the analyzed structure must be taken and examined in
a laboratory. After making a standardized test specimen (with given size and shape) from
the sample, some measurements can be done, such as the hardness test, the Charpy’s
striking–bending test, tensile strength test, measuring different electrical properties and
so on [76].

In nondestructive testing (NDT), the tested material is not damaged [46, 81], but it
needs more precise measuring equipments controlled by computers. Thanks to the intense
advance in computer techniques, these methods have an extreme advance nowadays
researched by many engineers. Using computers and electronic control in NDT systems
allows to reduce operator workload and improves the speed and quality of the process.
Of course, it requires extensive software development, too. The reason for this extensive
work is that, products of standardized production must satisfy increasingly rigorous
criteria. Monitoring can be worked out by fast and precise measuring arrangements. The
automation of NDT techniques and procedures is beginning to spread among different
industries and fields of engineering. The benefits of automated NDT include more reliable
and more predictable operation machinery, decreased probability of industrial accidents
and less operation costs.

There are several major directions of such methods. For example the X–ray method is
the first flaw detection technique, the UV optical technique with digital image processing
methods, measuring with electronmicroscope, the ultrasonic test [95]. I mainly focus
on the magnetic flux leakage method [46]. In short, the basis of the magnetic flux
leakage method is that, inhomogenities (like cracks, slots and flaws) change the generated
homogeneous field distribution inside the material, and this field perturbation can be
measured by an appropriate sensor. The specimen can be magnetized either by passing
a direct current throught it or by applying an external magnetic field. It is easy to
understand that, the surface cracks can be identified much easier than cracks lying
inside the material, because flux lines disperse to the area surrounding the defect, but
this problem can be handled by choosing an appropriate frequency or amplitude of the
excitation. It is also hard to find a crack parallel to the magnetic flux. Much better
results can be obtained when two separate and perpendicular magnetization fields are
used, because cracks with any orientation can be detected then.

The other general magnetization process found in the literature is to move an ex-
citing coil above the specimen generating a magnetic field intensity. The leakage field
modified by the eddy currents inside the material can be measured then. This method
is limited by the skin effect only to thin and non–magnetic structural components. A
possible alternative is the use of pulse eddy currents [12,15,74], when the rich harmonic
component of a pulse accounts for a multi–frequency analysis, since the lower harmonics
penetrating deeper into the structure.
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An increasing number of articles about nondestructive testing (e.g. [13, 14, 28, 37,
71, 74, 95, 96] and so on) can be found in books, proceedings and journals in recent
years. There are many sensors [15, 28, 33, 37, 69–71, 75, 96, 97], measuring arrangements
and visualization techniques described in the literature. There are two main groups
of probes: measuring the changes in coil impedance, and measuring induced voltages.
The measuring test arrangement consists of a test specimen with artificial cracks, a
positioning device which is used to scan the surface by moving the probe above the test
specimen and a computer to control the measuring system and to store the measured
data.

The applied simulation techniques are mainly based on the finite element method with
different potential formulations. Modeling natural cracks is a long–standing and difficult
task, let us think about pits caused by corrosion, hairline cracks with varying shape
and depth, flaws and so on [89]. Such natural cracks can be found in real industrial
environment. It is in the scope of interest of many projects to form the complicated
profiles of natural cracks, but in computation it is obvious to use simply characterized
cracks of elliptical, semielliptical or rectangular shape. The simplest model is to discretize
the geometry by finite elements and to assign the same material properties to crack as
to the air region.

Visualization, as well as recognition and identification of damage are also impor-
tant stages in NDT techniques [3,14,69,70,74,92,103,104]. The recognition is an inverse
problem. It should be performed automatically with high reliability. In the field of recog-
nition and classification of computational intelligence (as fuzzy systems, neural networks,
neuro–fuzzy systems, knowledge–based systems) there is an increasing challenge and re-
vival of learning. It is the main direction of research which replaces the statistical and
traditional methods.

A search of literature (IEEE Transactions on Magnetics, Electromagnetic Nonde-
structive Evaluation, Applied Electromagnetics and Mechanics in the frame of Studies
in Applied Electromagnetics and Mechanics, and Proceedings of Conferences) show a
wide and increasing area of automated NDT applications. There are several benchmark
problems aimed at working out the common standards and solvers, to compare different
numerical techniques. This activity shows the increasing importance of this field.

2.4 Formulation and potentials of the electromag-

netic field problems

An electromagnetic field calculation problem can be characterized by the field intensities
and the flux densities described by partial differential equations derived from Maxwell’s
equations and boundary conditions [6, 21, 29, 40, 41, 87]. There are several potential
formulations applicable to calculate the field quantities, fundamentally using scalar and
vector potentials. In this section, I briefly overview only the most popular formulations
used in the simulation of nondestructive testing methods in connection with the Finite
Element Method (FEM) [6,7,16,68,90,91], especially with the edge element based FEM.
Essentially, NDT represents an eddy current field problem.

At low frequencies and with normal conducting materials used in NDT techniques,
the displacement currents are small compared with the conductive currents and can
be neglected. Consequently, the studied electromagnetic field can be described by the
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quasi–static Maxwell’s equations written in differential form as

∇×H = J , (2.17)

∇×E = −∂B/∂t, (2.18)

∇ ·B = 0, (2.19)

B = H {H}, (2.20)

J = J0 + σE, (2.21)

where H and E are the magnetic and the electric field intensities, B is the magnetic flux
density, J is the total current density and J 0 represents the current density of the excit-
ing current. The symbol H {·} represents the hysteresis characteristic of the magnetic
material and σ is the conductivity of the investigated material. The hysteresis opera-
tor can be a linear or nonlinear and/or hysteretic relation depending on the analyzed
material.

A typical structure of an eddy current field problem (object of NDT) can be seen
in Fig. 2.8. A current excitation i(t) (or a current density J 0) with given waveform
is placed into the nonconducting region Ωn (where µ0 is the vacuum permeability), the
eddy current distribution is unknown in the conducting material Ωc. Maxwell’s equations
are valid in the problem region Ω = Ωc ∪ Ωn.

The boundary conditions of the problem can be given at the artificial far boundaries
of the nonconducting region Γn, where homogeneous boundary conditions are assumed,
i.e. the tangential component of the magnetic field intensity or the normal component of
the magnetic flux density is zero, H ×n = 0 or B ·n = 0, where n is the outer normal
unit vector of the region. Homogeneous boundary conditions can be supposed along the
symmetry planes (a part of Γn and Γc): H × n = 0, i.e. J · n = 0 and E × n = 0. On
the interface between the conducting and the nonconducting regions Γnc, the interface
conditions must be satisfied: H × n and B · n must be continuous and J · n = 0.

There are several potential formulations that can be used to solve a problem [6, 21,
29, 40, 41, 87].

The static magnetic field in the eddy current free region (air) can be described by
the magnetic scalar potential Ψ or by the magnetic vector potential A. The magnetic
scalar potential is defined by

H = T 0 −∇Ψ, (2.22)

where the impressed field quantity T 0 can be applied to consider the current density
of the current source J 0, that is ∇ × T 0 = J0, because ∇ · J0 = 0. It is better to
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find an approximating vector potential T 0 to take into account the effect of the exciting
current, than generating a mesh for J 0, since it leads to a consistent right hand side of
the equations, moreover the exact modeling of the coils can be avoided. The magnetic
scalar potential is approximated by nodal shape functions, T 0 can be represented by the
aid of edge basis functions.

The magnetic vector potential is defined by

B = ∇×A (2.23)

which satisfies (2.19) exactly. The magnetic vector potential can be approximated by
nodal or edge shape functions as well, depending on the dimension of the problem.
The reduced vector potential Ar, approximated by edge shape functions can be applied
more efficiently if current sources are present, since the right hand side of the assembled
equation is then consistent. The reduced vector potential can be introduced as

B = µ0Hs +∇×Ar, (2.24)

where Hs is the Biot–Savart field of the exciting current flowing in the exciting coils.
The use of the magnetic scalar potential in eddy current free region reduces the

computational costs as compared with the use of the magnetic vector potential, because
Ψ has only one component, and A has three components, when using nodal shape
functions. Furthermore, the use of A requires the inclusion of the coils in the mesh
increasing the number of unknowns. A simpler mesh can be generated by using the
vector field of T 0.

Two potential functions can be used in the eddy current region, either a current vector
potential T or a magnetic vector potential A. The current vector potential approximated
by edge shape functions can be applied more effectively when thin flaws in the conducting
material are present [7]. The current vector potential is introduced as [6]

H = T 0 + T −∇Ψ. (2.25)

The magnetic vector potential can be applied in several ways: the A
∗–formulation,

the A, V –formulation, and the Ar, V –formulation and some other combinations of the
potentials as presented in [6].

The various formulations in the conducting and nonconducting regions must be cou-
pled through the interface conditions. In my research work, I used the T ,Ψ − Ψ for-
mulation. In this case, Ψ is approximated by nodal shape functions, T and T 0 are
approximated by edges shape functions, Ψ and T 0 are defined in the whole region Ω,
and T is defined only in the conducting region Ωc.

2.5 The finite element method

By using potentials, Maxwell’s equations can be transformed into partial differential
equations and they can be solved by numerical methods. The basis of numerical tech-
niques is to reduce the partial differential equations to algebraic equations whose solution
gives the unknown potentials in the given points of a mesh. This reduction can be done by
discretizing the partial differential equations in time and in space as well. The potential
functions, the approximation method and the generated mesh distinguish the numerical
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field solvers. There is a number of methods, e.g. the finite element method, the finite
difference method, the boundary element method, the integral equation method and the
global variational method [40, 41].

The FEM is the most popular and flexible numerical technique to determine the
approximate solution of partial differential equations in engineering [8, 21, 35, 82, 105].
The fundamental idea of the FEM is to divide the problem region to be analyzed into
smaller finite elements with given shape (e.g. triangles in 2D or tetrahedra in 3D). The
scalar potential functions can be approximated by nodal shape functions, and the vector
potential functions can be approximated by either nodal or vector shape functions. A
shape function is a simple continuous polynomial function defined in a finite element.
Applying first–order nodal and edge shape functions, the unknown potentials can be
associated with the nodes as well as the edges of the finite element mesh. Shape functions
are described below in this section.

The finite element analysis consists of four main steps. The first step is to work
out a simplified mathematical model of the arrangement which is adequate to calculate
electromagnetic field quantities. There may be some details that can be neglected or
simplified, e.g. the symmetry of the equipment can be taken into account. This cannot
be automated, it is advisable to build a problem specific model. The preprocessing
task is the second step when the geometry, the material parameters, the excitation
waveform, etc. must be given and then the finite element mesh can be generated. The
next step is the calculation, generation of the element based equations, assembling of
the global system of linear equations, and the solution of the assembled equations must
be performed. The last step is the postprocessing, when calculated results are plotted
and shown, quantities of interest (e.g. capacity, losses) are calculated. There are some
feedbacks during FEM calculations, for example to make a denser mesh, to vary time
steps and so on. If the problem to be solved is nonlinear, then an iterative feedback must
be used during the third step of calculations.

In my research, I used the first–order nodal and edge shape functions which vary
linearly in a finite element to determine the magnetic field intensity above a test specimen
with well defined surface cracks (slots and holes with different, but well defined size). A
problem not easily treated by nodal finite elements arises, when singularities are to be
approximated at sharp corners, for example at cracks in a conducting material. This is
the reason why I used the combined nodal and edge finite elements.

My work is mainly based on the papers [6, 36, 66] and on the dissertation [21]. In
the followings, I briefly describe the nodal and edge finite elements, following the above
literature.

2.5.1 Nodal finite elements

Scalar potential functions can be represented by a linear combination of shape functions
associated with nodes of the finite element mesh. Within a finite element, a scalar
potential function Ψ = Ψ(r, t) is approximated by Ψh = Ψh(r, t) as

Ψh '

I∑

i=1

NiΨi, (2.26)

where Ni = Ni(r) and Ψi = Ψi(t) are the first–order nodal shape functions and the value
of potential function corresponding to the ith node. The number of degrees of freedom
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is I = 3 in a 2D problem using triangular FEM mesh and I = 4 in a 3D arrangement
meshed by tetrahedral elements.

The sum of all nodal shape functions is equal to 1,
∑I

i=1Ni = 1, hence the sum of

their gradients is zero,
∑I

i=1∇Ni = 0. This means that, the maximal number of linearly
independent gradients of the nodal basis functions is I − 1. The shape functions are
presented in the sections 2.5.3 and 2.5.4.

2.5.2 Edge finite elements

Vector potentials can be represented by nodal shape functions as well. The natural
approach is to treat the vector field T = T (r, t) as two (in 2D) or three (in 3D) coupled
scalar fields, Tx, Ty and Tz. Scalar shape functions can be used again, i.e. each node has
two (2D) or three (3D) unknowns, and scalar shape functions can be used. For example
in 3D, T can be approximated by T h = T h(r, t) as

T h '

I∑

i=1

(Tx,iex + Ty,iey + Tz,iez)Ni. (2.27)

Instead of scalar shape functions, I used vector shape functions

T h '
K∑

k=1

W k Tk, (2.28)

where W k = W k(r) and Tk = Tk(t) are the first–order edge shape functions and the
degree of freedom is associated to the edges. The number of degrees of freedom is K = 3
in 2D when applying triangular mesh and K = 6 in the 3D case by applying tetrahedral
finite elements. The shape functions are also presented in the sections 2.5.3 and 2.5.4.

I used linear elements [21], having only K unknowns in each finite element, one
attached to each edge. They allow the normal component of the field to be free to jump
at each facet of the element. The direction of the edges must be defined by the global
mesh, but the equations of one element assume a local orientation.

The line integral of the shape functions W k along the kth edge is equal to one,
meaning that the line integral of the vector potential along this edge is Tk,

∫

lk

T h · dl =

∫

lk

(W kTk) · dl = Tk. (2.29)

This means that, the value of Tk along an edge of a finite element is equal to the value
of Tk along the edge of another finite element if these finite elements share the edge.
Therefore the vector function T is tangentially continuous across all element interfaces,
but its normal component is not.

The gradients of the nodal shape functions are in the function space spanned by the
edge basis functions, that is

∇Ni =
K∑

k=1

cikW k, i = 1, . . . , I − 1, (2.30)
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where
∑K

k=1 c
2
ik > 0. Taking the curl of each equation in (2.30) results in

K∑

k=1

cik∇×W k = 0, i = 1, . . . , I − 1. (2.31)

This shows that, the maximal number of linearly independent curls of the edge basis
functions is K − (I − 1). The interdependence of the curls of the edge basis functions
means that, an ungauged formulation leads to a singular, positive semidefinit finite
element curl–curl matrix. Singular systems can be solved by iterative methods, if the
right hand side of the system of equations is consistent.

2.5.3 FEM in 2D using linear shape functions

I used a finite element mesh with triangular finite elements. Linear basis functions can
be introduced by using the barycentric coordinate system in a finite element. The area
of a triangle is denoted by 4, and it can be calculated as

4 =
1

2

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
,

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of the three nodes of the triangle
in the global coordinate system building an anticlockwise sequence. The area functions
(see Fig. 2.9) of a given point inside the triangle with coordinates (x, y) can be calculated
as

41 =
1

2

∣∣∣∣∣∣

1 x y
1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, 42 =

1

2

∣∣∣∣∣∣

1 x1 y1

1 x y
1 x3 y3

∣∣∣∣∣∣
, 43 =

1

2

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x y

∣∣∣∣∣∣
.

Three linear shape functions Ni can be described by the above area functions as

Ni = 4i/4, i = 1, 2, 3. (2.32)

A shape function Ni is equal to 1 at the ith node of the triangle, and equal to zero at
the other two nodes and varies linearly over the triangle. If the potentials at the nodes
are known, then a linear approximation of the potential function can be represented by
(2.26).

The gradients of the basis functions are used to assemble the global system of equa-
tions, and the constant gradients of linear shape functions can be calculated as

∇N1 =
{
(y2 − y3) ex + (x3 − x2) ey

}
/ 24,

∇N2 =
{
(y3 − y1) ex + (x1 − x3) ey

}
/ 24,

∇N3 =
{
(y1 − y2) ex + (x2 − x1) ey

}
/ 24.

(2.33)

Whitney complex

The first–order (linear) edge basis functions can be generated by means of the Whitney
complex, briefly described here, the extensive mathematical background can be found
in [9, 21].
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The Whitney complex can be described as finite element bases for differential forms
and it consists of a family of piecewise polynomial differential forms. Differential forms
are fields of alternating multilinear mappings from R

p to R, and only forms of degree
p = 0, 1, 2, 3 are considered and stand for vertices, edges, facets and tetrahedra. These
forms are known as p–forms or Whitney forms. If p = 0 or p = 3, then they correspond
to scalar functions, if p = 1 or p = 2, then to vector functions.

The Whitney forms in 3D are constructed as follows: consider a vertex i and a point
x belonging to one of the tetrahedra which share vertex i, let Ni be the barycentric
weight of x in its tetrahedron with respect to vertex i. The Whitney form associated
with any p–simplex is defined as

pwi0,...,ip = p!

p∑

j=0

(−1)jNijd
0Ni0 × . . .× d

0Nip , (2.34)

were the differential operator d stands for

d0φ = (∇φ) → for p = 0,
d1

u = (∇× u) → for p = 1,
d2u = (∇ · u) → for p = 2,

(2.35)

and for p = 3, set d3φ = 0. The expressions φ and u are arbitrary scalar and vector
functions in the problem region.

The lowest order Whitney element can be obtained when p = 0, i.e. wi = Ni, the
nodal shape function. If p = 1, and providing that i and j are vertices of an edge, then
equation (2.34) gives the 1–form, the linear edge basis function, wij = Ni∇Nj −Nj∇Ni.
By applying the Whitney form, 2D vector basis functions W i can be calculated by using
the nodal shape functions,

W 1 = (N1∇N2 − N2∇N1)δ1 = W1,x ex +W1,y ey,

W 2 = (N2∇N3 − N3∇N2)δ2 = W2,x ex +W2,y ey,

W 3 = (N3∇N1 − N1∇N3)δ3 = W3,x ex +W3,y ey.

(2.36)

The edge basis function W i (i = 1, 2, 3) has tangential component only along the ith edge
and it is perpendicular to the other two edges as represented in Fig. 2.10(a)–2.10(c). It
is easy to see that, an edge shape function has magnitude and direction. In linear edge
functions, the value of δi is equal to ±1, depending on whether the local direction of the
edge is the same as the global direction or opposite (see Fig. 2.11).
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(c) The edge shape function
W 3

Fig. 2.10. The 2D edge shape functions
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Fig. 2.11. The definition of edges with local directions of the triangular finite element

In eddy current field problems the curl vector of the edge basis functions must be
applied, that is

∇×W i =

∣∣∣∣∣∣

ex ey ez

∂/∂x ∂/∂y 0
Wi,x Wi,y 0

∣∣∣∣∣∣
= ez

{
∂Wi,y

∂x
−
∂Wi,x

∂y

}
, (2.37)

and explained as

∇×W 1 = 2(∇N1 ×∇N2),

∇×W 2 = 2(∇N2 ×∇N3),

∇×W 3 = 2(∇N3 ×∇N1).

(2.38)

The curl vector of linear edge shape functions is constant in a finite element, because of
the constant value of the gradients of the linear nodal shape functions.
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2.5.4 FEM in 3D using linear shape functions

Linear basis functions can be introduced again by using the barycentric coordinate sys-
tem. The volume of a tetrahedron is denoted by V , and it can be expressed as

V =
1

6

∣∣∣∣∣∣

x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣
,

where (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, y4, z4) are the coordinates of the four
nodes of the tetrahedron as shown in Fig. 2.12. The volume functions according to a
given point inside the tetrahedron with coordinates (x, y, z) can be calculated as

V1 =
1

6

∣∣∣∣∣∣

x4 − x y4 − y z4 − z
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣
,

V2 =
1

6

∣∣∣∣∣∣

x4 − x1 y4 − y1 z4 − z1
x4 − x y4 − y z4 − z
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣
,

V3 =
1

6

∣∣∣∣∣∣

x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x y4 − y z4 − z

∣∣∣∣∣∣
,

V4 =
1

6

∣∣∣∣∣∣

x− x1 y − y1 z − z1

x− x2 y − y2 z − z2

x− x3 y − y3 z − z3

∣∣∣∣∣∣
.

Four linear shape functions Ni correspondingly to the four nodes are

Ni = Vi/V, i = 1, 2, 3, 4. (2.39)

A shape function Ni is equal to 1 at the ith node of the tetrahedron, moreover it is equal
to zero at the other three nodes and varying linearly within the tetrahedron. If potentials
at the nodes are known, then a linear approximation of the potential function can be
represented by (2.26).

The gradients of such linear basis functions are constant and can be calculated as

∇N1 =
{
[ z2 (y3 − y4) + z3 (y4 − y2) + z4 (y2 − y3) ] ex

+[ x2 (z3 − z4) + x3 (z4 − z2) + x4 (z2 − z3) ] ey

+[ y2 (x3 − x4) + y3 (x4 − x2) + y4 (x2 − x3) ] ez
}
/ 6V,

∇N2 =
{
[ z1 (y4 − y3) + z3 (y1 − y4) + z4 (y3 − y1) ] ex

+[ x1 (z4 − z3) + x3 (z1 − z4) + x4 (z3 − z1) ] ey

+[ y1 (x4 − x3) + y3 (x1 − x4) + y4 (x3 − x1) ] ez
}
/ 6V,

∇N3 =
{
[ z1 (y2 − y4) + z2 (y4 − y1) + z4 (y1 − y2) ] ex

+[ x1 (z2 − z4) + x2 (z4 − z1) + x4 (z1 − z2) ] ey

+[ y1 (x2 − x4) + y2 (x4 − x1) + y4 (x1 − x2) ] ez
}
/ 6V,

∇N4 =
{
[ z1 (y3 − y2) + z2 (y1 − y3) + z3 (y2 − y1) ] ex

+[ x1 (z3 − z2) + x2 (z1 − z3) + x3 (z2 − z1) ] ey

+[ y1 (x3 − x2) + y2 (x1 − x3) + y3 (x2 − x1) ] ez
}
/ 6V.

(2.40)
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Fig. 2.12. The definition of edges with local directions of the tetrahedral finite element

Corresponding to the edge shape function defined in 2D, the 3D vector basis functions
W i can also be generated by the Whitney form, and can be calculated by using the nodal
shape functions, i.e.

W 1 = (N1∇N2 − N2∇N1)δ1 = W1,x ex +W1,y ey +W1,z ez,

W 2 = (N2∇N3 − N3∇N2)δ2 = W2,x ex +W2,y ey +W2,z ez,

W 3 = (N3∇N1 − N1∇N3)δ3 = W3,x ex +W3,y ey +W3,z ez,

W 4 = (N1∇N4 − N4∇N1)δ4 = W4,x ex +W4,y ey +W4,z ez,

W 5 = (N2∇N4 − N4∇N2)δ5 = W5,x ex +W5,y ey +W5,z ez,

W 6 = (N3∇N4 − N4∇N3)δ6 = W6,x ex +W6,y ey +W6,z ez.

(2.41)

The value of δi is also equal to ±1 depending on whether the local direction of the
edge is the same as the global direction or opposite. The edge definition employed in
my analysis can be seen in Fig. 2.12. For example, the edge basis function W 1 has
tangential component only along the 1st edge and the facets {1− 2− 4} and {1− 2− 3},
and perpendicular to the other five edges and the facets {1 − 3 − 4} and {2 − 3 − 4},
where the numbers denote the nodes of the tetrahedron.

In eddy current field problems, equations contain the curl vector of the edge basis
functions:

∇×W i =

∣∣∣∣∣∣

ex ey ez

∂/∂x ∂/∂y ∂/∂z
Wi,x Wi,y Wi,z

∣∣∣∣∣∣
, (2.42)

or
∇×W i = 2(∇Nj ×∇Nk), (2.43)

where the edge i is pointing from the jth node to the kth node. Using linear shape
functions, the curl vector has also constant value in a tetrahedron.
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Chapter 3

Neural network based hysteresis

operator

Hysteresis characteristics are nonlinear and multivalued relationships between the mag-
netic field intensity vector H and the magnetization vector M or the induction vector
B.

In this chapter, I present the NN based scalar [50, 53, 54, 60, 63] and the vector hys-
teresis operators [51, 56, 57, 62] developed by me with the necessary measurement data,
the proposed identification technique and comparisons between measurements and sim-
ulations to show the applicability of the model. Finally, some properties of the model
are presented.

3.1 The scalar hysteresis operator

In the scalar case (e.g. approximately inside a toroidal shape core), the hysteretic re-
lationship can be represented by the scalar hysteresis operator, M(t) = HM{H(t)} or
B(t) = HB{H(t)} [39].

3.1.1 Training sequence and preprocessing of measured data

When using NNs for function approximation, it is difficult to take into account the
multivalued property of the hysteresis characteristics. To overcome this problem, I have
introduced a new variable ξ associated with the measured first order reversal curves.

The first magnetization curve and a set of the first order reversal curves must be
measured to build the model. Systematically generated ascending or descending external
magnetic fields must be applied to measure the first order reversal curves applying the
relation

H(t) = Hs

[
α− 1

2
+
α + 1

2
sin(2πft+ π/2)

]
, (3.1)

where Hs is the magnetic field intensity in the saturation state, f is the frequency of
the excitation, α = k

n
and k ∈ [−n, n] is an integer, and 2n + 1 is the number of

generated reversal curves. These measurements must be performed at very low frequency
(f < 1 Hz) to decrease the effect of eddy currents and other dynamic properties. Similar
results can be obtained, when a triangular waveform is applied. Before measuring a
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Fig. 3.1. The measured and the preprocessed training sequence

reversal curve, it is advisable to generate some major loops to make a loop stable after
accommodation.

After measurements, it is useful to work with relative quantities, H/Hs and M/Ms

or B/Bs, so that the input and the output of the model can run in the interval [−1, 1]
and the subscript s denotes the saturation state.

If a new variable ξ is added to the measured and normalized first order reversal
curves, the multivalued characteristic can be represented by a single valued 2D surface
with two independent variables H and ξ. It is enough to measure either the ascending
or the descending branches because of the symmetry of the magnetic hysteresis char-
acteristics. The upgrade part of the hysteresis characteristics can be described by a
positive real parameter ξ(asc) = 1 − (1 + H

(asc)
tp )/2, and the downgrade part can be ap-

proximated by a negative real parameter ξ(desc) = −(1 + H
(desc)
tp )/2. These parameters

can be calculated for a given transition curve starting from a turning point Htp, and
ξ(asc) ∈ [0, 1], ξ(desc) ∈ [−1, 0]. The values ±1 represent the major curve, e.g. −1 denotes
the descending curve of the measured major loop.

After preprocessing, the aim is to find the approximating nonlinear functions which
can be realized by feedforward type NNs trained by the Levenberg-Marquardt BP method
[19,25,27]. Two NNs must be used, one to approximate the first magnetization curve and
another one for the preprocessed first order reversal branches. The first magnetization
curve (about 40 data pairs) can be approximated by a NN with 8 neurons in 1 hidden
layer (1 input, H and 1 output, M or B), and the preprocessed first order transition
curves (about 500-800 data pairs give accurate result depending on the shape of the
characteristic) can be approached by a NN with 2 inputs (H and ξ) and 1 output (M
or B) built by 7, 11 and 6 PEs in three hidden layers. The structure of the NN and
the number of hidden layers and neurons have been set after some trials. The transfer
function of the neurons is selected to be a bipolar sigmoid function.
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The training of the two NNs took about 20 minutes on a Celeron 566 MHz com-
puter (192 Mbyte RAM) using the Neural Network Toolbox of MATLAB [99]. When
applying a training sequence described above to identify the first magnetization curve
and the preprocessed first order reversal curves, the stopping criterion MSE = 10−6

can be reached by not more than 500 and 1200 training epochs in the two NNs. The
measured first order descending curves (containing 46 branches) generated by the exci-
tation waveform (3.1) are plotted in Fig. 3.1(a). In this case n = 20, but there are some
measured curves near the coercive field where the characteristic is very steep and there
is no information enough about the variation of the curves in this area. After applying
the proposed preprocessing technique, a 2D surface can be obtained as shown in Fig.
3.1(b). The training sequence contained 1296 measured points. The measurement was
performed at f = 0.2 Hz frequency on a toroidal shape C19 structural steel [52]. In
this case, only technical saturation can be described by the values Hs = 1.433 · 104 A/m
and Bs = 1.688 T. Higher magnetic field intensity could not be generated by the ap-
plied power supply. The particular presentation of the measurement setup and scalar
hysteresis measurements can be found in the section 3.1.4.

3.1.2 Operation of the model

As I stated in the last section, the developed hysteresis model consists of two trained
NNs. The first magnetization curve and the first order reversal branches are stored in
NNs, but a memory mechanism must be realized by an additional algorithm based on
heuristics. The block representation of the NN based scalar hysteresis model can be seen
in Fig. 3.2 and described below.

In general, the actual value of the magnetization (or the magnetic induction) is
dependent on the actual value of the magnetic field intensity and the prehistory of the
magnetic material. The normalized magnetization Mk or magnetic induction Bk at the
simulation step k yielded by the NN based model is constructed on the actual value of
the normalized magnetic field intensity Hk, the appropriate value of the parameter ξ and
a set of turning points stored in the memory of the model.

The knowledge–base is the main part of the implemented NN model. It contains if–
then type rules about the hysteresis phenomena and about the properties of the hysteresis
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characteristics, and controls the other blocks of the model. The operation of this model is
based on a set of turning points in the ascending and in the descending branches denoted
by H

(asc)
tp and H

(desc)
tp , respectively. Turning points are stored in the memory, that is an

array with the elements [Htp,Mtp, ξ]
T or [Htp, Btp, ξ]

T , denoted by MATRIX(asc) and
MATRIX(desc) for ascending and descending curves. Turning points can be detected by
the evaluation of a sequence of {Hk−1, Hk} generated by a tapped delay line (TDL). After
detecting a turning point Htp = HSTART = Hk−1 and storing it in the memory, the aim is
to select an appropriate transition curve with the right value ξ for the detected turning
point (Htp,Mtp) or (Htp, Btp), where Mtp = MSTART = Mk−1 or Btp = BSTART = Bk−1.
This task has been solved by the regula–falsi method.

There are some basic rules I have implemented in the knowledge–base as if–then type
rules. First, a simple lemma about the behavior of the minor loops has been determined:
they must be closed as illustrated in Fig. 3.3(a). Therefore the accommodation phe-
nomena cannot be simulated yet. After detecting a turning point, the algorithm for a
general minor loop can be summarized as follows. If MATRIX(desc) (MATRIX(asc))
has more than one column and the normalized magnetic field intensity Hk is increasing
(decreasing) at the kth simulation step, i.e. Hk > Hk−1 (Hk < Hk−1), then the actual

minor loop must be closed at the last stored value of HGOAL = H
(desc)
tp (HGOAL = H

(asc)
tp )

which can be found in the last column of MATRIX(desc) (MATRIX(asc)). The value
of the normalized magnetization Mk yielded by the NN model at HGOAL must be equal
to MGOAL = M

(desc)
tp (MGOAL = M

(asc)
tp ) stored in the last column of the appropriate

MATRIX (it is also true for magnetic induction). This is the condition for closing a
minor loop. The data sets of reached turning points where the actual minor loop is
closing must be cleared from the memory by deleting the appropriate column of the
arrays according to the closing minor loop. These are always stored in the last column
of the memory. The first column of the arrays in the memory containing the parameters
of the normalized major loop ([+1,+1,−1]T and [−1,−1,+1]T ) cannot be cleared. The
memory mechanism is very similar to the staircase line of the classical Preisach model,
but the memory as well as the output of the NN model is continuous in nature and not
discrete.

The results of simulation have highlighted that, the value of the normalized magneti-
zation (induction) yielded by the relevant NN and the adequate value of the normalized
magnetization (induction) chosen from the appropriate column of the memory at the
value HGOAL are not equal. Therefore a correction η = η(H,M) (η = η(H,B)) must be
used to eliminate this deviation while closing a minor loop. The value of the parameter
η can be calculated as the difference between the required value of magnetization (in-
duction) and the response of the actual NN at the value of the magnetic field intensity
HGOAL when an actual minor loop is closed:

η = MGOAL −M
(NN) (HGOAL, ξSTART ) , (3.2)

where ξSTART is the value of the parameter ξ at the actual value of HSTART . The
parameter η must be calculated beforehand when opening a minor loop and must be
applied increasing linearly during the magnetization process from zero (when the minor
loop is opening) to the given value η (when the minor loop is closing).

An additional precept must be used as formulated in the following rule: symmet-
ric hysteresis loops are assumed (see Fig. 3.3(b)). After the detection of a turning
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Fig. 3.3. Rules of minor loops in the knowledge–base of the model

point and an ascending (descending) curve has been chosen, furthermore MATRIX(desc)

(MATRIX(asc)) has only one column, thenHGOAL = −HSTART andMGOAL = −MSTART .
If MATRIX(desc) or MATRIX(asc) has been reduced to a single column array after

the wiping out process, then saturation is assumed: HGOAL = 1, MGOAL = 1 or HGOAL =
−1, MGOAL = −1, depending on the direction of the magnetic field intensity.

Accommodation property can also be simulated when Hk = Hk + αMk−1 is applied
as input of the model, where α is the so called moving parameter.

The above two rules are also valid if the output of the model is the magnetic flux
density.

3.1.3 Properties of the scalar model

The presented NN based hysteresis model is a mathematical model without physical
meaning, because a NN is a black box model, and there is no connection between the
object to be simulated and the weight coefficients of the NN model. However, the
well known Preisach, the Jiles–Atherton and the Stoner–Wohlfarth models are based on
physical background. These simulation techniques can also be used in Computer Aided
Design (CAD) software and, in addition, they can explain physical phenomena. Some-
times it is difficult to identify these models from noisy measurements. From engineering
point of view, it is very useful to apply a mathematical model with simple identification
process.

There are some important advantages of the developed NN based scalar model, such
as

(a) the proposed preprocessing task can be applied on any kind of hysteresis char-
acteristics, i.e. hysteresis curves with different shapes can be simulated without
modifications of the model,
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Fig. 3.4. Comparisons between the simulated and the measured symmetric minor loops
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Fig. 3.5. The error in the hysteresis area between the measured and the simulated
characteristics

(b) the identification of the scalar model is an easy task, once the measured first
magnetization curve and the first order reversal branches are known,

(c) the output of the model, i.e. the normalized magnetization or the normalized
induction is a continuous function of the magnetic field intensity, because NNs can
interpolate between trained data according to the generalization property of the
NNs,

(d) if necessary, the differential susceptibility χdiff as well as the integral of the output
of the model (e.g. to calculate hysteresis losses) can be expressed in analytical
form.

It is very important to verify a NN based model by comparing the simulated and
the measured data which were not contained in the training sequence. I have measured
symmetric minor loops, and the comparison between measurements and simulations can
be seen in Fig. 3.4(a), Fig. 3.4(b) and Fig. 3.4(c). The maximum value of the calculated
error 4B = 100|(Bm − Bs)/Bm,s| is 35%, 10% and 8% respectively, where Bm and Bs
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are the measured and the simulated induction, respectively, and Bm,s = 1.688 T is the
measured induction in the saturation state. The maximum difference can be located
near the coercive field as highlighted in the figures. The measured major loop and the
measured first order reversal curves (i.e. the training sequence) can be approximated
with an error value less than maximum 4− 5%.

To compare the measured and the simulated characteristics, the hysteresis losses from
the enclosed area of the hysteresis loops are determined for 20 measured and simulated
symmetric minor loops. The calculated relative error in the losses with respect to the
measured curves is plotted in Fig. 3.5.

3.1.4 Scalar magnetic hysteresis measurement using LabVIEW

Ferromagnetic hysteresis measurement has been performed in our Magnetic Laboratory
by a computer controlled automated measuring system [47, 48, 52]. Generation of exci-
tation and measurements are carried out by applying the user–friendly environment of
LabVIEW. The graphical user interface of the developed software is illustrated in Fig.
3.6, data and graphs in the window are presented briefly below.

LabVIEW is an application software to perform sophisticated display and analy-
sis capabilities required for virtual instrumentation. This can be used to create test
measurement systems by combining different hardware and software components. Data
acquisition and waveform generation can be carried out by virtual software instruments
and tools, and the measurement can be realized by plug–in hardware connected to the
computer via special National Instruments driver software [38].

Schematic view of the measurement set–up can be seen in Fig. 3.7. The investigated
ferromagnetic sample has toroidal shape. It is supposed that, both the magnetic field
intensity with its scalar value H and the magnetic induction B are uniform inside the
material and directed along the axis of the toroidal core. This results in a scalar hysteresis
characteristic. The excitation coil is excited by the current i(t) supplied by the power
generator KIKUSUI [22] and the current waveform is measured by the voltage of the
temperature and voltage independent resistor of R = 0.01 Ω (i(t) = uP (t)/R). The
measured magnetic field intensity is proportional to the exciting current and can be
calculated as

H(t) =
Np i(t)

l
, (3.3)

where Np = 170 is the number of turns of the excitation (primary) coil, i(t) is the
excitation current and l = 176 mm is the equivalent magnetic length of the toroidal
core. The magnetic flux density B can be calculated from the measured induced voltage
of the measuring (secondary) coil us(t) as

B(t) = B0 +
1

S Ns

∫ t

0

us(τ) dτ, (3.4)

where B0 is an integration constant, S = 20 mm2 is the cross-section of the core and
Ns = 182 is the number of turns of the measuring coil. The measured signals, the
calculated waveform of the magnetic field intensity and of the magnetic flux density and
the resulted hysteresis characteristic are visualized in the user interface (see Fig. 3.6).

Measurements are performed by using the LabVIEW environment. The computer
communicates with the measuring instruments through an NI–DAQ (National Instru-
ments, Data Acquisition Device) BNC–2090 panel which is connected to the DAQ
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Fig. 3.6. LabVIEW GUI example

card. The bipolar power supply KIKUSUI PBX 20–20 (power limit is approximately
100W [22]) is applied to generate the excitation of the primary coil. KIKUSUI is con-
trolled by the constant–current mode (CC mode) [22], since current is proportional to
the magnetic field intensity. The excitation signal is derived by LabVIEW functions and

32



Miklós Kuczmann, PhD Theses 2004

PSfrag replacements

SR

up(t) us(t)

i(t)

Np Ns

l

Φ

KIKUSUI PBX 20–20 Computer

Waveform of excitation current

D
ata

A
cq

u
isition

D
ev

ice
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the power supply can follow this signal by the analog output of the BNC panel. The
induced voltage is measured by using the same DAQ card. Data acquisition and genera-
tion of the excitation current can be performed simultaneously by using the intermediate
virtual instruments (circular buffered waveform generation and measurement) [38].

Measured curves are saved to a file, for further use of the measured data using other
software or for a report. The waveform, the amplitude and the frequency of the excitation
current, the number of measured periods and of measured samples in one period, and
other parameters (Np, Ns, S, l, R) can be set through the graphical user interface.

Computer–aided measurements can only be performed by sampling using A/D and
D/A converters (acquisition) [38]. This can be carried out through general DAQ devices,
GPIB interfaces, RS–232 instruments and so on. This may be a weak point of the
measurement process if very steep signals must be measured (e.g. induced voltage in
the secondary coil), but it can be eliminated by the appropriate choice of the sampling
rate. The main advantage of applying computer controlled measurement is the data
analysis, such as curve fitting, frequency response, filtering, Fourier analysis and many
other numerical operations realized by a software.
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3.2 The isotropic vector hysteresis operator

3.2.1 Description of the model

The vector NN based model of the magnetic hysteresis is constructed as a superposition
of scalar NN based models. The magnetization vector M can be expressed in two
dimensions as

M =

∫ π/2

−π/2

eϕ H {Hϕ} dϕ, (3.5)

where Mϕ = H {Hϕ} is the scalar magnetization in the direction eϕ, and the projected
magnetic field intensity is Hϕ = |H| cos(ϑH − ϕ) with the direction of the magnetic field
intensity vector H , denoted by ϑH . First, I have analyzed the isotropic vector hysteresis
characteristic, when the same NN based scalar hysteresis operator H {·} has been used
in all directions.

In computer realization, it is useful to discretize the interval ϕ ∈ [−π/2, π/2] as
ϕi = −π/2 + (i − 1)π/n′, where i = 1, . . . , n′, and n′ is the number of directions. The
magnetization vector is the vectorial sum of the scalar magnetization yielded by the
individual scalar hysteresis models, i.e. (see Fig. 3.8)

M ∼=

n′∑

i=1

eϕi
Mϕi

=

n′∑

i=1

eϕi
H {Hϕi

}. (3.6)

In three dimensions, the following expression can be obtained,

M =

∫ π/2

−π/2

∫ π/2

−π/2

eϕ,ϑ H {Hϕ,ϑ} dϕ dϑ, (3.7)

where the projected magnetic field intensity is Hϕ,ϑ = [a1 a2 a3]ϕ,ϑ[HxHyHz]
T , and the

directions are given as a = a1ex + a2ey + a3ez, |a| = 1 corresponding to the given di-
rections allocated by the angles ϕ and ϑ as shown in Fig. 3.9(a) and generated by an
icosahedron (see Fig. 3.9(b)). The angles ϕ and ϑ are measured from the x–axis and
from the x − y plane, respectively. Any kind of regular 3D formation can be used (like
polyhedrons, e.g. cube, octahedron, dodecahedron and so on), but I have found that, the
icosahedron gives the best results. The applied scalar hysteresis operator is also unique
for all directions. The integral formula (3.7) can be realized by a numerical sum in the
discrete form

M ∼=

n′∑

i=1

eϕi,ϑi
Mϕi,ϑi

=
n′∑

i=1

eϕi,ϑi
H {Hϕi,ϑi

}, (3.8)

where n′ is the number of directions in the 3D space.

3.2.2 The identification process

I have measured the Everett function in the x direction, then the following well known
trivial condition can be obtained between the measured scalar Everett function F (α, β)
and the unknown 2D vector Everett function E(α, β) [67]:

F (α, β) =

∫ π/2

−π/2

cosϕE(α cosϕ, β cosϕ) dϕ. (3.9)
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This expression can be written by skipping the constant 4ϕ = π/n′ in a discretized form
as

F (αk, βl) ∼=

n′∑

i=1

cosϕiE(αk cosϕi, βl cosϕi). (3.10)

If assuming isotropic magnetic material, then the measured Everett function F (α, β)
is unique for every direction [67]. Expression (3.10) can only be solved numerically
during the optimization process. The Everett tables F (αk, βl) and E(αk, βl) have been
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. In this case α ∈ [−1, . . . ,+1], β ∈ [+1, . . . ,−1] and N must be
an even number.

In the 3D case, the expression (3.10) can also be applied, but ϕi is then the spatial
angle between the directions generated by the icosahedron and the x–axis.

The identification process is divided into two main parts. In the first step, the part
of the Everett function can be identified where β = 0 and α = −β. In the second step,
the other parts can be calculated step by step by using values from the first step and
some points from the second step.

The first step: starting the identification process

I have developed the identification technique on the basis of the above process as de-
scribed in the following.

A part of the Everett function is independent of one of the two variables α and β
along the line α ≥ 0 and β = 0, i.e. k = N

2
+ 1, . . . , N + 1 and l = N

2
+ 1,

F (αk, 0) ∼=

n′∑

i=1

cosϕiE(αk cosϕi, 0). (3.11)

In this case, the Everett function can be divided into two parts. The first n′
1 points are

known, but the other n′
2 points contain the unknown part of the vector Everett function

E(αk, 0),

F (αk, 0) ∼=

n′

1∑

i1=1

cosϕi1 E(αk cosϕi1, 0)

+

n′

2∑

i2=1

cosϕi2 E(αk cosϕi2, 0).

(3.12)

When αj−1 < αk cosϕi1 ≤ αj and αj−1 < αj ≤ αk−1 and assuming linear interpolation
between known points of the vector Everett function (αj−1, E(αj−1, 0)) and (αj, E(αj, 0)),
the following formula –illustrated in Fig. 3.10– can be applied to interpolate a given
value,

E(αj, 0)− E(αj−1, 0)

αj − αj−1

=
E(αk cosϕi1 , 0)− E(αj−1, 0)

αk cosϕi1 − αj−1

, (3.13)

from which

E(αk cosϕi1 , 0) = E(αj−1, 0) +
αk cosϕi1 − αj−1

αj − αj−1

×
(
E(αj, 0)− E(αj−1, 0)

)
.

(3.14)
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This expression contains known values of the vector Everett function calculated in
the previous steps. The number of known points increases with the index k. When
αk−1 < αk cosϕi2 ≤ αk, then a similar expression can be used:

E(αk, 0)− E(αk−1, 0)

αk − αk−1

=
E(αk cosϕi2 , 0)− E(αk−1, 0)

αk cosϕi2 − αk−1

, (3.15)

from which

E(αk cosϕi2 , 0) = E(αk−1, 0) +
αk cosϕi2 − αk−1

αk − αk−1

×
(
E(αk, 0)− E(αk−1, 0)

)
.

(3.16)

This contains the only one unknown point of the vector Everett function E(αk, 0). The
following expression can be obtained by substituting the relations (3.14) and (3.16) into
the equation (3.12):

F (αk, 0) =

n′

1∑

i1=1

cosϕi1

{
E(αj−1, 0)

+
αk cosϕi1 − αj−1

αj − αj−1

(
E(αj, 0)− E(αj−1, 0)

)}

+E(αk−1, 0)
(
(1 + bk)c1 − akc2

)

+E(αk, 0)
(
akc2 − bkc1

)
,

(3.17)

where ak = αk

αk−αk−1
, bk =

αk−1

αk−αk−1
, c1 =

∑n′

2
i2=1 cosϕi2 , and c2 =

∑n′

2
i2=1 cos2 ϕi2 and

E(αk, 0) can be expressed.
A similar mathematical formulation can be obtained along the line α = −β. In this

case, the indices k and l are in the interval [N
2

+ 1, . . . , N + 1]. According to the linear
interpolation between two points, the following expressions can be obtained after some
mathematical manipulations. If αj−1 = βj−1 < αk cosϕi1 = βl cosϕi1 ≤ αj = βj and
αj−1 = βj−1 < αj = βj ≤ αk−1 = βk−1, then the known point in the Everett function
can be expressed as

E(αk cosϕi1 , βl cosϕi1) = E(αj−1, βj−1)

+

√
α2
k cos2 ϕi1 + β2

l cos2 ϕi1 −
√
α2
j−1 + β2

j−1
√
α2
j + β2

j −
√
α2
j−1 + β2

j−1

×
(
E(αj, βj)− E(αj−1, βj−1)

)
.

(3.18)

If αk−1 = βk−1 < αk cosϕi2 = βl cosϕi2 ≤ αk = βk, then the unknown point in the
Everett function can be expressed as

E(αk cosϕi2, βl cosϕi2) = E(αk−1, βl−1)

+

√
α2
k cos2 ϕi2 + β2

l cos2 ϕi2 −
√
α2
k−1 + β2

l−1

√
α2
k + β2

l −
√
α2
k−1 + β2

l−1

×
(
E(αk, βl)− E(αk−1, βl−1)

)
.

(3.19)

Here E(αk, βl) is the only unknown, and it can be expressed after substituting the re-
lations (3.18) and (3.19) into (3.10). This generates some points in the vector Everett
function and gives an initiative step to determine the other values.
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The second step: the other points on the vector Everett plane

I have divided the vector Everett function into triangles and I have applied linear inter-
polation on these triangles to calculate the values on the Everett functions corresponding
to the coordinates (αk cosϕ, βl cosϕ). An explanatory plot with notations can be seen
in Fig. 3.11.

In this case, the Everett function can also be divided into two parts. The first n′
1

points are known, but the other n′
2 points contain the unknown part of the vector Everett

function E(αk, βl),

F (αk, βl) ∼=

n′

1∑

i1=1

cosϕi1 E(αk cosϕi1 , βl cosϕi1)

+

n′

2∑

i2=1

cosϕi2 E(αk cosϕi2 , βl cosϕi2).

(3.20)

If α > 0 and β < 0 (k = l + 1, . . . , N + 1, l = N
2

+ 2, . . . , N + 1) and the point
(αk cosϕi1 , βl cosϕi1) is on a triangle with known node values, then the equation of a
plane with three points e.g. (αk−1, βl, E1), (αk, βl−1, E2) and (αk−1, βl−1, E3) can be
applied as ∣∣∣∣∣∣

αk cosϕi1 − α1 βl cosϕi1 − β1 E − E1

α2 − α1 β2 − β1 E2 − E1

α3 − α1 β3 − β1 E3 − E1

∣∣∣∣∣∣
= 0, (3.21)

where α1 = αk−1, β1 = βl, α2 = αk, β2 = βl−1, α3 = αk−1, β3 = βl−1, E1 = E(αk−1, βl),
E2 = E(αk, βl−1), E3 = E(αk−1, βl−1) and E = E(αk cosϕi1 , βl cosϕi1). From this
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equation

E(αk cosϕi1, βl cosϕi1) = E1−
(αk cosϕi1 − α1)(cf − ed)

(ad− bc)

−
(βl cosϕi1 − β1)(be− af)

(ad− bc)
,

(3.22)

where a = α2−α1, b = α3−α1, c = β2− β1, d = β3− β1, e = E2−E1 and f = E3−E1.
Varying these three points, the equation of any other triangles with known node values
can be represented and known points can be calculated.

If point (αk cosϕi2 , βl cosϕi2) is on a triangle which contains the unknown value of
the vector Everett function E(αk, βl), then the equation of a plane with the three points
(αk−1, βl, E1), (αk, βl, E2) and (αk, βl−1, E3) can be applied as

∣∣∣∣∣∣

αk cosϕi2 − αk−1 βl cosϕi2 − βl E − E1

αk − αk−1 βl − βl E2 − E1

αk − αk−1 βl−1 − βl E3 − E1

∣∣∣∣∣∣
= 0, (3.23)

where E1 = E(αk−1, βl), E2 = E(αk, βl), E3 = E(αk, βl−1) and E = E(αk cosϕi2 , βl cosϕi2).
From this equation

E(αk cosϕi2 , βl cosϕi2) = E1

+
(βl−1 − βl)(αk cosϕi2 − αk−1)(E2 − E1)

(αk − αk−1)(βl−1 − βl)

−
(αk − αk−1)(βl cosϕi2 − βl)(E2 − E3)

(αk − αk−1)(βl−1 − βl)

(3.24)

can be obtained which contains the unknown value E2. Substituting (3.22) and (3.24)
into (3.20) E2 can be expressed for all indices k and l.

If α > 0 and β > 0 (k = N +3− l, . . . , N +1, l = N
2
, . . . , 1), then a similar procedure

can be applied, but the shape of the triangles is different.
The Everett function is symmetrical with respect to the line α = −β, so it is enough

to identify only the half of the vector Everett function.

3.2.3 Verification of the model

To illustrate the above process, I have assumed that, the measured Everett function is
given in the x direction and it is plotted in Fig. 3.12(a). The identified 2D vector Everett
function, and the identified 3D vector Everett function are shown in Fig. 3.12(b) and
Fig. 3.12(c).

Identification has been performed by the method described above, 20 directions and
9 directions have been used in the 2D and in the 3D model, respectively. The measured
scalar Everett surface can be approximated with a relative error below 0.3% and 0.4%
by the 2D and the 3D models by substituting into the trivial condition (3.10). The
resulting vector Everett functions –as highlighted in the figures– do not have the usual
shape, meaning that, the first order reversal curves also do not have the usual descending
shape, but they can be approximated easily by the scalar NN based hysteresis model.

First order reversal curves can be derived from the identified vector Everett function,
and NNs can be trained as well as models can be built by trained NNs. A comparison
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Fig. 3.12. Identification results of the isotropic vector hysteresis model
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Fig. 3.13. Identification results for isotropic case

between measured (denoted by points) and simulated first order reversal curves by the
identified 2D and 3D models (denoted by dotted line) can be seen in Fig. 3.13(a) and
Fig. 3.13(b).

Some other verification and comparisons with the anisotropic model are presented at
the end of this chapter.
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3.3 The anisotropic vector hysteresis operator

The anisotropic vector NN based model of magnetic hysteresis is also constructed as a
superposition of scalar NN based models in the directions eϕ, but these scalar hysteresis
characteristics are not the same. The magnetization vector M can be expressed in two
dimensions as (see Fig. 3.8)

M =

∫ π/2

−π/2

eϕ Hϕ{Hϕ} dϕ. (3.25)

In three dimensions a similar expression can be obtained (see Fig. 3.9(a)):

M =

∫ π/2

−π/2

∫ π/2

−π/2

eϕ,ϑ Hϕ,ϑ{Hϕ,ϑ} dϕ dϑ. (3.26)

The main point of my research was to handle the angular dependence of the hysteresis
characteristics, and applying the same identification process with minor modifications
as used in the isotropic case. The Fourier expansion on the Everett surfaces can be used
efficiently, when assuming uniaxial anisotropy.

3.3.1 Anisotropic model in 2D

I have assumed that, the scalar Everett function can be measured in any given direc-
tion. This is the scalar characterization of the vector hysteresis property. In this case,
the following condition can be obtained between the measured scalar Everett function
F (α, β, ϕ) and the unknown vector Everett function E(α, β, ϕ):

F (α, β, ϕ) =

∫ π/2

−π/2

cosψ E(α cosψ, β cosψ, ψ + ϕ) dψ, (3.27)

and this expression can be derived in a discretized form as

F (αk, βl, ϕj) ∼=

n′∑

i=1

cosψiE(αk cosψi, βl cosψi, ϕi), (3.28)

where ψi = ϕi − ϕj is the angle between the direction of the measured scalar Everett
function in the direction eϕj

and the unknown vector Everett function in the direction
eϕi

. The identification process is based on n′ directions, ϕi ∈ [−π/2, . . . , π/2], selected
as ϕi = −π/2+(i−1)π/n′, where i = 1, . . . , n′. Assuming that the material has uniaxial
anisotropy, the measured scalar Everett function must be π-periodic and an even function
with respect to ϕ, if ϕ = 0 represents the rolling direction and ϕ = π/2 is perpendicular
to the rolling direction (transverse direction), i.e.

F (αk, βl, ϕj + π) = F (αk, βl, ϕj), (3.29)

and
F (αk, βl,−ϕj) = F (αk, βl, ϕj). (3.30)

I supposed that, there are n + 1 measured Everett functions F (αk, βl, ϕj) in the
interval ϕj ∈ [0, . . . , π/2], ϕj = j∆ϕ, ∆ϕ = π/2n and j = 0, . . . , n, and n′ is chosen as
n′ = 2n as plotted in Fig. 3.14.
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Fig. 3.15. The measured Everett functions to build the 2D anisotropic vector hysteresis
model in (3.31)

In my experiments, I assumed to have n + 1 = 10 scalar hysteresis characteristics,
i.e. ϕ0 = 0◦, ϕ1 = 10◦, . . . , ϕ9 = 90◦, generated by the elliptical interpolation function

F (ϕ) = F 2
x cos2 ϕ+ F 2

y sin2 ϕ, (3.31)

where F (ϕ) = F (α, β, ϕ), Fx = F (α, β, 0) and Fy = F (α, β, π/2) are the assumed
normalized Everett functions in the rolling and in the transverse directions, respectively,
and plotted in Fig. 3.15(a) and Fig. 3.15(b).

Due to the periodicity of the measured Everett function, it can be approximated
by its Fourier series. It is difficult to take into account the angular dependence of the
measured Everett function during the identification process, but the Fourier expansion is
an accurate method to handle this phenomenon. Since F (α, β, ϕ) is an even function with
respect to ϕ, only the real part of the complex Fourier series must be calculated (to make
the equations below shorter, the following notation will be used: F (ϕj) = F (αk, βl, ϕj)),
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Fig. 3.16. The Fourier coefficients of the measured 2D Everett surfaces

i.e.
F (ϕj) '

∑

m

Fm cos(2mϕj), (3.32)

where ω = 2π
π

= 2 is the angular frequency and the Fourier coefficients Fm = Fm(αk, βl)
must be calculated. The subscript m is the number of Fourier coefficients and it can
be maximum n. The Fourier coefficients have been calculated by their definition. The
zeroth order component can be calculated as

F0 =
1

π

∫ π/2

−π/2

F (ϕ) dϕ =
2

π

∫ π/2

0

F (ϕ) dϕ. (3.33)

Integration has been performed numerically by the trapezoidal rule, i.e.

F0 '
∆ϕ

π

{
F (0) + F

(π
2

)
+ 2

n−1∑

j=1

F (ϕj)

}
. (3.34)

The higher order harmonics can be calculated as

Fm =
2

π

∫ π/2

−π/2

F (ϕ)e−jmωϕ dϕ =
4

π

∫ π/2

0

F (ϕ) cos(2mϕ) dϕ, (3.35)

and applying numerical integration:

Fm '
2∆ϕ

π

{
F (0) + (−1)mF

(π
2

)
+ 2

n−1∑

j=1

F (ϕj) cos(2mϕj)

}
. (3.36)

By applying this approach, the angular dependence of the measured scalar Everett
function has been handled, since the Fourier coefficients Fm are independent of the polar
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angle. The second step is to find a relation between the measurement and the theoretical
expressions, which can be found in the section 3.3.3.

By applying the zeroth (Fig. 3.16(a)) and only the first order (Fig. 3.16(b)) Fourier
coefficients, the measured Everett functions in the directions of measurements can be
approximated with a relative error as small as about 4% (this is the maximum value).

Increasing the number of directions of the measured scalar Everett functions results in
better approximation between the directions of measurements. In this case, the relative
error is smaller than 5− 6% (e.g. in the direction 45◦).

3.3.2 Anisotropic model in 3D

The 3D anisotropic vector hysteresis model is a theoretical generalization of the 2D
anisotropic vector model, since there exists no well applicable method and measurement
equipment to measure the 3D vector hysteresis property.

I have assumed that, the scalar Everett function can be measured in any directions,
then the following condition (in discretized form) can be obtained between the mea-
sured scalar Everett function F (αk, βl, ϕj1, ϑj2) and the unknown vector Everett function
E(αk, βl, ϕi1 , ϑi2):

F (αk, βl, ϕj1, ϑj2)
∼=

n′∑

i1=1

m′∑

i2=1

cosψi1,i2 E(αk cosψi1,i2, βl cosψi1,i2, ϕi1, ϑi2), (3.37)

where ψi1,i2 is the angle between the direction of the measured Everett function with
direction ϕj1 and ϑj2 and the vector Everett function in the given direction signed by
the angles ϕi1 and ϑi2 .

I have assumed the following properties while developing the model and the identifi-
cation procedure. I supposed that, there are (n+ 1)× (m+ 1) measured scalar Everett
functions F (ϕj1, ϑj2) = F (αk, βl, ϕj1, ϑj2) in the interval ϕ ∈ [0, . . . , π/2], ϕj1 = j1∆ϕ,
∆ϕ = π/2n and j1 = 0, . . . , n, moreover ϑ ∈ [0, . . . , π/2], ϑj2 = j2∆ϑ, ∆ϑ = π/2m and
j2 = 0, . . . , m, since the identification is constructed on n′ = 2n and m′ = 2m directions.
The angles ϕ and ϑ are measured from the x–axis and from the x−y plane, respectively.
The measured scalar Everett function is π-periodic with respect to angles ϕ and ϑ, i.e.

F (ϕj1 + π, ϑj2) = F (ϕj1, ϑj2), (3.38)

F (ϕj1, ϑj2 + π) = F (ϕj1, ϑj2). (3.39)

The measured scalar Everett function is symmetrical with respect to the x–axis and the
x− y plane, i.e.

F (−ϕj1, ϑj2) = F (ϕj1, ϑj2), (3.40)

F (ϕj1,−ϑj2) = F (ϕj1, ϑj2). (3.41)

These are the simplest assumptions, and can be generalized.
I have assumed 5×5 measured scalar hysteresis characteristics, generated by the

elliptical interpolation function

F (ϕ, ϑ) = cos2 ϑ (F 2
x cos2 ϕ+ F 2

y sin2 ϕ) + F 2
z sin2 ϑ, (3.42)
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Fig. 3.17. The measured Everett functions to build the 3D anisotropic model in (3.42)

where F (ϕ, ϑ) = F (α, β, ϕ, ϑ), moreover Fx = F (α, β, 0, 0), Fy = F (α, β, π/2, 0), and
Fz = F (α, β, 0, π/2) are the assumed normalized Everett functions in the x, y and z
directions, and plotted in Fig. 3.17(a)–3.17(c).

The measured Everett function can also be approximated by its Fourier series due to
the assumed periodicity. The measured Everett function is an even function with respect
to the angles ϕ and ϑ, therefore only the real part of the complex Fourier series must be
calculated as

F (ϕj1, ϑj2) '
∑

n1

∑

m1

Fn1m1 cos(2n1ϕj1) cos(2m1ϑj2), (3.43)

where Fn1m1 = Fn1m1(αk, βl) are the Fourier coefficients. The maximum value of n1 and
m1 can be n and m.

The zeroth order component F00 can be calculated by the integral

F00 =
1

π2

∫ π/2

−π/2

∫ π/2

−π/2

F (ϕ, ϑ) dϕ dϑ =
4

π2

∫ π/2

0

∫ π/2

0

F (ϕ, ϑ) dϕ dϑ. (3.44)

The following expression can be obtained by applying the trapezoidal rule:

F00 '
∆ϕ∆ϑ

π2

{
F (0, 0) + F

(
0,
π

2

)
+ F

(π
2
, 0
)

+ F
(π

2
,
π

2

)

+ 2
n−1∑

j1=1

(
F (ϕj1, 0) + F

(
ϕj1 ,

π

2

))

+ 2

m−1∑

j2=1

(
F (0, ϑj2) + F

(π
2
, ϑj2

))
+ 4

n−1∑

j1=1

m−1∑

j2=1

F (ϕj1, ϑj2)

}
.

(3.45)

The harmonic components can be calculated by the definition as well, i.e.

Fn1m1 =
2

π2

∫ π/2

−π/2

∫ π/2

−π/2

F (ϕ, ϑ) e−jn1ωϕ e−jm1ωϑdϕ dϑ

=
8

π2

∫ π/2

0

∫ π/2

0

F (ϕ, ϑ) cos(2n1ϕ) cos(2m1ϑ) dϕ dϑ,

(3.46)
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Fig. 3.18. The Fourier coefficients of the measured 3D Everett surfaces

and numerically

Fn1m1 ' 2
∆ϕ∆ϑ

π2

{
F (0, 0) + F

(
0,
π

2

)
(−1)n1

+ F
(π

2
, 0
)

(−1)m1 + F
(π

2
,
π

2

)
(−1)n1+m1

+ 2
n−1∑

j1=1

(
F (ϕj1, 0) + F

(
ϕj1,

π

2

)
(−1)m1

)
cos(2n1ϕj1)

+ 2
m−1∑

j2=1

(
F (0, ϑj2) + F

(π
2
, ϑj2

)
(−1)n1

)
cos(2m1ϑj2)

+ 4

n−1∑

j1=1

m−1∑

j2=1

F (ϕj1, ϑj2) cos(2n1ϕj1) cos(2m1ϑj2)

}
.

(3.47)
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The Fourier coefficients Fn1m1 are independent of the angles ϕ and ϑ.
By applying the zeroth F00 and only the first order Fourier coefficients F01, F10 and

F11, the measured Everett functions along the directions of the measurements can be
approximated with a relative error as small as about maximum 5− 6%. The calculated
Fourier coefficients are plotted in Fig. 3.18(a)–3.18(d).

3.3.3 The relation between the scalar and the vector Everett

functions

The angle dependence of the measured scalar Everett function can be handled by apply-
ing the Fourier series, but a relation between the scalar and the vector Fourier coefficients
must be developed. This gives the basic expression of the identification procedure.

Authors of [78] used the distribution function of the classical Preisach model. Here,
I use the Everett function, because this is the basis of the NN based vector hysteresis
model.

The identification task of the 2D model is based on the integral equation

F (α, β, ϕ) =

∫ π/2

−π/2

cosψE(α cosψ, β cosψ, ψ + ϕ) dψ, (3.48)

where the measured scalar Everett function along an angle ϕ, F (α, β, ϕ) must be equal
to the projected sum of the vector Everett functions E(α, β, ψ + ϕ). Unfortunately,
the unknown vector Everett function is placed on the right hand side of this integral
equation.

The 2D vector Everett function E(ϕ) = E(α, β, ϕ) also depends on the polar angle
ϕ, and it can also be approximated by its Fourier series by assuming the same conditions
as used for the measured Everett function F (α, β, ϕ), i.e.

E(ϕ) '
∑

m

Em cos(2mϕ). (3.49)

Substituting the Fourier series (3.32) and (3.49) into the integral equation (3.48), the
following equation can be obtained:

∑

m

Fm(α, β) cos(2mϕ) =

∫ π/2

−π/2

cosψ
∑

m

Em(α cosψ, β cosψ)

× cos(2m(ψ + ϕ)) dψ,

(3.50)

and this equation can be rewritten in the form

∑

m

Fm(α, β) cos(2mϕ) =

∫ π/2

−π/2

cosψ
∑

m

Em(α cosψ, β cosψ)

× cos(2mψ) cos(2mϕ) dψ

−

∫ π/2

−π/2

cosψ
∑

m

Em(α cosψ, β cosψ)

× sin(2mψ) sin(2mϕ) dψ

(3.51)
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Fig. 3.19. The identified vector Fourier coefficients in 2D

by applying the mathematical formulation cos(2m(ψ + ϕ)) = cos(2mψ) cos(2mϕ) −
sin(2mψ) sin(2mϕ). The second term is equal to zero, because the integrand is an odd
function with respect to ψ, i.e.

∑

m

Fm(α, β) cos(2mϕ) =
∑

m

{∫ π/2

−π/2

cosψ cos(2mψ)

× Em(α cosψ, β cosψ) dψ

}
cos(2mϕ).

(3.52)

The identification procedure is then based on the following integral equation which links
the mth harmonic components of the unknown vector Everett function to the correspond-
ing scalar one, i.e.

Fm(α, β) =

∫ π/2

−π/2

cosψ cos(2mψ)Em(α cosψ, β cosψ) dψ. (3.53)

In this case, the identification procedure developed for the isotropic vector model can
also be applied, but the cos(2mψ) term must be included. Identification results of the
zeroth and the first order harmonics of the 2D vector Everett function can be seen in
Fig. 3.19(a) and Fig. 3.19(b).

In the 3D case, a similar mathematical formulation can be used which leads to the
following equation, that is the basis of the identification task,

Fn1m1(α, β) ∼=

n′∑

i=1

cosψi cos(2n1ϕi) cos(2m1ϑi)

× En1m1(α cosψi, β cosψi),

(3.54)

where angle ψi is the angle between a direction generated by the icosahedron and the
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Fig. 3.20. The identified vector Fourier coefficients in 3D

x–axis. In this case, equation (3.37) should be rewritten in a simplified form,

F (αk, βl, ϕj, ϑj) ∼=

n′∑

i=1

cosψiE(αk cosψi, βl cosψi, ϕi, ϑi), (3.55)

where n′ is replaced by n′ ·m′. The four identified Fourier series of the vector Everett
function are plotted in Fig. 3.20(a)–3.20(d).

From the Fourier coefficients of the vector Everett function, the Everett functions in
all directions (e.g. 9 directions generated by the icosahedron) as well as the first order
reversal curves can be calculated, then NNs can be trained. It is obvious that, different
NNs must be trained in different directions.
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Fig. 3.21. The resulting identification in 2D, anisotropic case
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Fig. 3.22. The resulting identification in 3D, anisotropic case

Simulation results –trivial conditions in the directions of the x, of the y and of the
z axis– for the reversal curves obtained from the identified Everett functions in two
dimensions (18 directions) and in three dimensions (9 directions) can be seen in Fig.
3.21(a), Fig. 3.21(b) and Fig. 3.22(a)–3.22(c). The experimental results are denoted by
points, the hysteresis characteristics given by the NN based vector model are denoted by
dotted line. Increasing the number of directions results in a better approximation, but
at the same time in slower model. If I use the 3D NN based vector hysteresis model in
a finite element software, then I have to make a compromise.
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Fig. 3.23. Simulated H and M loci of the rotational process in the isotropic case
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Fig. 3.24. Simulated H and M loci of the rotational process in the anisotropic case

3.4 Some properties of the vector hysteresis charac-

teristics

In this section, I present some cases which can characterize the behavior of the vector
model prescribed above.

Applying an anticlockwise rotational magnetic field intensity with different amplitude
and with linearly increasing amplitude, the output of the 2D vector models (isotropic
and anisotropic models) have been plotted in Fig. 3.23(a)–3.23(c), and in Fig. 3.24(a)–
3.24(c). The specimen is magnetized to a given value in the direction of the x–axis,
and the magnetic field intensity is then rotated keeping its magnitude constant. In Fig.
3.23(c), and in Fig. 3.24(c), the vector of the magnetization is gradually approaching
the regime of the uniform rotation, since the amplitude of the magnetic field intensity
is increasing during the polarization cycle. The magnetization vector has some delay
in comparison with the angle of the magnetic field intensity vector, especially in the
case, when the magnetic field intensity is lower then in the saturation state. Increasing
the magnitude of the magnetic field intensity results in decreasing the phase between
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Fig. 3.25. The simulated H and M loci of the linear excitation in the isotropic case
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Fig. 3.26. The simulated H and M loci of the linear excitation in the anisotropic case

the magnetization and the magnetic field intensity vectors. Higher above the satura-
tion state, they rotate together. In the figures yielded by the anisotropic model, the
anisotropic behavior can be seen easily, because the amplitude of magnetization in the
y–axis is smaller than in the x–axis and the delay between the magnetic field intensity
and magnetization vectors is larger.

In the second test case, the magnetic field intensity vector has applied in a linear
variation (ϑH = 60◦). In isotropic case, the magnetic field intensity and the magne-
tization vectors are parallel as plotted in Fig. 3.25(a)–3.25(c), but in anisotropic case
(see Fig. 3.26(a)–3.26(c)) there is an angle between them, because of the anisotropic
behavior: the magnetization vector tries to be close to the x–axis. The projected hys-
teresis characteristics in the x–axis and in the y–axis are also presented. The hysteresis
characteristics in the x-axis and in the y–axis are similar in the isotropic case, but the
shape of the characteristics is very different in the anisotropic case.

Anisotropic behavior of the isotropic model induced by the remanent magnetization
can be observed as well. Let us suppose that, the magnetic field intensity is first increased
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Fig. 3.27. The induced anisotropy in isotropic material

in the y direction to a given value, and then it is decreased to zero. This process results in
a remanent magnetization in the y direction. After reaching the remanent magnetization,
the magnetic field intensity is increased in the x direction. The orthogonal remanent
magnetization can be reduced as presented in the Fig. 3.27(a). In the 3D case, a similar
magnetization process can be applied with similar simulation results, e.g. the magnetic
field intensity is increased and then decreased in the x direction resulting remanent
magnetization in the x direction, then increased and then decreased in the z direction,
and finally increased in the y direction. This process can be seen in Fig. 3.27(b).

Using a large number of directions results better approximation, but the calcula-
tions may be time consuming. Smaller number of directions gives higher error between
measured and simulated curves, however the model is faster. To make a compromise,
the presented model with given number of directions can be used in Computer Aided
Design software tools (e.g. in the Finite Element Method) with a given accuracy which
is acceptable as illustrated in the figures of this chapter.

3.5 New scientific results

1. Thesis I have developed a new scalar hysteresis operator based on the function ap-
proximation capability of the neural networks to simulate the behavior of ferromagnetic
materials. I have represented the first order reversal curves with a surface by introduc-
ing the variable ξ and I have approximated this surface by neural network technique.
I have built a knowledge–base which contains if–then type rules about the behavior of
the hysteresis characteristics. I have shown the applicability of the model by comparing
simulated and measured results. I have taken into account the vectorial behavior of the
magnetic field intensity and the magnetic flux density by applying the neural network
based vector hysteresis model, and I have recommended a new identification procedure
to build up the vector model. I have worked out the three dimensional anisotropic vector
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hysteresis model, and I have analyzed the behavior of the developed vector models.

1.a I have developed a new neural network based mathematical representation of the
scalar hysteresis operator. I have handled the multivalued property of the hysteresis
characteristics by introducing the new variable ξ associated with the measured first
order reversal curves. This preprocessing can be applied on any kind of hysteresis
characteristics. I have built a knowledge–base which contains if–then type rules
about the behavior of the hysteresis characteristics. This is the memory mechanism
of the model. I have realized the identification procedure by the training of the
neural networks. I have built a measurement system to measure hysteresis curves
on a toroidal shape C19 structural steel, and I have used these measurements
to show the applicability of the neural network based scalar hysteresis model by
comparing measurements and simulation results.

1.b I have developed the two dimensional and the three dimensional isotropic vector
hysteresis models based on the neural network based scalar model. I have worked
out an original and new identification procedure based on the measurable Everett
function both to predict two dimensional and three dimensional isotropic hysteresis
characteristics. I have compared the measured and the predicted curves and I have
shown the behavior of the vector model in linear and in rotational magnetic fields.

1.c I have developed the two dimensional and the three dimensional neural network
based anisotropic vector hysteresis models by the means of Fourier expansion of
the measured Everett function of the anisotropic material. I have generalized the
two dimensional model in three dimensions as a theoretical expansion of the two
dimensional model, and I have recommended an identification procedure to fit to
measured curves. I have compared the measured and the predicted curves and I
have shown the behavior of the vector model in linear and in rotational magnetic
fields, finally I have compared the isotropic and the anisotropic models.
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Chapter 4

Nonlinear FEM using edge finite

elements

In this chapter, I present the T ,Ψ− Ψ potential formulation [6, 21] in the time domain
using the FEM. I have developed the 3D numerical simulation of the built NDT equip-
ment presented in the next chapter. First of all, I have solved a similar 2D problem,
then the 3D simulation of the NDT equipment.

This chapter deals with the mathematical formulations of the time varying magnetic
field problem and of the eddy current field problem and I present the simulation of a 2D
arrangement. The same nonlinear partial differential equations, weak forms, boundary
conditions and iteration scheme can be used to solve the 3D problem. The simulated
NDT arrangement with measurements and simulation results are presented in the next
chapter. The hysteresis characteristic of the magnetic material has been simulated by
the introduced NN based isotropic vector hysteresis model. The nonlinear system of
equations has been solved by the fixed–point iteration scheme [11, 17, 24, 49, 77]. In 2D
triangular finite elements, in 3D tetrahedral finite elements have been used.

4.1 Problem definition and the FEM formulation

I have used the nodal and the edge finite elements to approximate the scalar and the
vector potentials. The partial differential equations have been solved in the time domain,
because the effect of hysteresis characteristic of the material has been taken into consid-
eration. I have applied the T ,Ψ−Ψ potential formulation, since this directly obtains the
magnetic field intensity vector H, so I could apply the direct vector hysteresis operator,
i.e. B = H {H}.

I have solved the problem through the following steps: first of all, I have solved a
time varying magnetic field problem, then an eddy current field problem in linear media,
finally I have inserted an identified isotropic NN based vector hysteresis operator into
the FEM procedure. I have developed the simulations myself in the frame of MATLAB.

A simple 2D arrangement (see Fig. 4.1) has been examined as a case study [58]. The
major steps and equations are presented by this example. The region Ωc is filled by the
yoke’s material bounded by the boundary Γc. The yoke is in the air, Ωn, bounded by the
artificial far boundary Γn. The interface between the yoke and the air is denoted by Γnc.
The excitation current is placed in the air region. The whole problem region is denoted
by Ω = Ωc ∪ Ωn.
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Fig. 4.1. Sketch of the solved 2D problem, a case study
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Fig. 4.2. The generated mesh of the 2D problem

The example contains a closed yoke made of iron with excitation coils under a given
waveform of current. First, the characteristic of the yoke is linear, then the hysteresis
characteristic of the yoke’s material has been taken into consideration. Only the half of
the arrangement has been analyzed, because this is symmetrical with respect to the line
y = 0. The generated FEM mesh has been finalized after some preliminary simulations,
and it contains 299 nodes, 548 finite elements (Fig. 4.2(a), the size of the arrangement
also can be seen in this figure) and 846 edges (Fig. 4.2(b)). The generated mesh is a
Delaunay–type mesh. The applied boundary conditions can be seen in Fig. 4.2(c) [6,21]
and presented below in the text.

4.1.1 Time varying magnetic field problem in linear media

As the simplest case, the closed yoke made of linear magnetic material with a given
relative permeability µr is placed into air. The excitation is a coil wounded around the
yoke with sinusoidal time function of current i(t).
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The basic equations of a time varying magnetic field problem to be solved are as
follows:

∇×H = J0, (4.1)

∇ ·B = 0, (4.2)

B = µH, (4.3)

where H is the magnetic field intensity, B is the magnetic flux density, J 0 is the current
density of the exciting current and µ is the permeability (in air, µ is equal to the vacuum
permeability µ0 = 4π · 10−7 V s

Am
, and µ = µ0µr inside the linear magnetic material and

µr = 1000 is used). Field quantities are depending on time and space, i.e. H = H(r, t).
The boundary conditions of the time varying magnetic field problem can be given at

the artificial far boundaries of the air region Γn, where homogeneous boundary conditions
are assumed, i.e. the tangential component of the magnetic field intensity or the normal
component of the magnetic flux density is zero, H × n = 0 or B · n = 0, where n is
the outer normal unit vector of the region. Homogeneous boundary conditions can be
supposed along the symmetry planes (a part of Γn and Γc): H×n = 0. On the interface
between the yoke and the air Γnc, the interface conditions must be satisfied: H ×n and
B · n must be continuous.

The effect of the current density of the coil J 0 can be described by an impressed field
quantity, i.e. by the known current vector potential T 0 derived from ∇·J0 = 0 as [6,21]

J0 = ∇× T 0, (4.4)

where T 0 can be obtained by using the Biot–Savart law. The impressed field quantity can
be calculated according to the line integral (2.29), i.e. the line integral of the magnetic
field intensity in free space H0 along an edge lk gives the line integrals of T 0 along the
kth edge, i.e.

T0,k =

∫

lk

H0 · dl, (4.5)

where k = 1, . . . , Ne, and Ne is the number of the edges (T 0 ≡ H0). This is used
in (4.12). Numerically, every edge should be divided into some line segments with the
unit vector dls as presented in Fig. 4.3, then the magnetic field intensity H0,s can be
calculated at the center point of such segments, finally the values of scalar products
H0,s · dls have to be summed. The magnetic field intensity can be calculated as

H0,s =
I

4π

∮

lcoil

dl×R0

R2
. (4.6)
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Fig. 4.4. Construction of the current vector potential T 0

In 2D case, H0 can be calculated as the superposition of the magnetic field intensity
of infinite long wires, i.e. H = I/(2rπ), where r is the distance between a given point in
the space, where the magnetic field intensity must be calculated and the wire.

This gives an interpolation of T 0 by applying the edge element based shape functions,
so the geometry of the exciting coil need not be included in the FEM mesh. The function
T 0 must satisfy the symmetry conditions on the symmetry planes as illustrated in Fig.
4.4(a), meaning that, the magnetic field intensity of the current of the whole conductor
must be calculated. The magnetic field intensity of the exciting current in free space can
be seen in Fig. 4.4(b). The exciting current is equal to 1 A, and the resulting function
of T 0 can be applied to determine the effect of currents of any value.

Substituting (4.4) into the Maxwell’s equation (4.1), the magnetic scalar potential Ψ
can be defined as

H = T 0 −∇Ψ. (4.7)

Writing equation (4.7) into (4.2) and using the constitutive relation (4.3), the partial
differential equation to be solved can be formulated as

∇ ·
{
µT 0 − µ∇Ψ

}
= 0. (4.8)

It must be solved in the problem region Ω.
According to the method of weighted residuals, the partial differential equation (4.8)

can be multiplied by the weighting function Nj and must be integrated over the region
Ω, i.e. ∫

Ω

Nj ∇ ·
{
µT 0 − µ∇Ψ

}
dΩ = 0. (4.9)

Applying the mathematical identity ∇ · (u v) = v · ∇u + u (∇ · v), and substituting
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u = Nj and v = µT 0 − µ∇Ψ, and using the Gauss law, leads to the equation

−

∫

Ω

∇Nj ·
{
µT 0 − µ∇Ψ

}
dΩ +

∮

Γ

Nj

{
µT 0 − µ∇Ψ

}
· n dΓ = 0. (4.10)

The boundary integral term is equal to zero, because B · n = 0 on the artificial far
boundary Γn, so the equation for one finite element is the following:

µ

∫

Ωe

∇Nj · ∇Ψ dΩ = µ

∫

Ωe

∇Nj · T 0 dΩ, (4.11)

where Ωe represents one finite element. In the case of FEM, the weighting function Nj

is equal to the basis function of the nodal FEM.
The unknown magnetic scalar potential Ψ is approximated by linear nodal basis

functions Ni, the known current vector potential T 0 is approximated by linear edge
basis functions W k as

Ψ '
I∑

i=1

Ni Ψi, T 0 '
K∑

k=1

W k T0,k. (4.12)

The number of degrees of freedom is I = 3, and K = 3 using triangular finite elements.
For simplicity, the subscript h presented in sections 2.5.1 and 2.5.2 is omitted.

Substituting the approximation functions (4.12) into the weak formulation (4.11),
the system of equations of one finite element can be derived as

I∑

i=1

{
µ

∫

Ωe

∇Nj · ∇Ni dΩ

}
Ψi =

K∑

k=1

{
µ

∫

Ωe

∇Nj ·W k dΩ

}
T0,k. (4.13)

This system of equation contains I equations and j = 1, . . . , I. After assembling this
system of equations, a system of equations (stored by using the sparse technique) can be
obtained which contains as many unknowns as the number of nodes of the finite element
mesh.

The magnetic scalar potential along the artificial boundary and along the symmetry
plane is set to be zero. By using the nodal shape functions to approximate the unknown
magnetic scalar potential, the interface conditions can be fulfilled automatically. The
solution of this assembled system of equation gives the approximation of the unknown
magnetic scalar potential Ψ.

Simulation results as comparisons with the results of the eddy current field problem
are presented in the next section.

4.1.2 Eddy current field in linear media

The same closed iron yoke made of linear and conducting magnetic material with relative
permeability µr and conductivity σ is placed into air (µr = 1000 and σ = 1/48·108 S/m).
The excitation is the current flowing in the coil with sinusoidal function i(t). The dis-
placement current ∂D/∂t is neglected. In time–varying case, electric and magnetic fields
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are coupled as described by Maxwell’s equations

∇×H = J0 + J e ≡ J , (4.14)

∇×E = −Ḃ, (4.15)

∇ ·B = 0, (4.16)

B = µH, (4.17)

J = σE, (4.18)

where H and E are the magnetic and the electric field intensities, B is the magnetic flux
density, J0 is the current density of the excitation coils, and J is the current density equal
to J0 in air, but contains the effect of the eddy currents J e in the conducting material.
Symbol µ is the permeability and σ is the conductivity of the magnetic material, · denotes
the time derivative.

The boundary conditions of the eddy current field problem can be given as follows. At
the artificial far boundaries of the nonconducting region (air) Γn, homogeneous boundary
conditions are assumed, i.e. the tangential component of the magnetic field intensity or
the normal component of the magnetic flux density is zero, H×n = 0 or B ·n = 0, where
n is the outer normal unit vector of the region. Homogeneous boundary conditions can
be supposed along the symmetry planes (a part of Γn and Γc): H×n = 0, i.e. J ·n = 0
and E × n = 0. On the interface between the conducting (yoke) and nonconducting
(air) regions Γnc, the interface conditions must be satisfied: H × n and B · n must be
continuous and J · n = 0.

Starting from ∇ · J = 0, the current density J can be described by two current
vector potentials [6,21]: one is the known current vector potential T 0, corresponding to
the exciting current, the other is the unknown current vector potential T , defined only
in the conducting material, Ωc, taking into account the effect of the eddy currents, i.e.

J ≡ J0 + J e = ∇× T 0 +∇× T , (4.19)

that is J0 = ∇× T 0 and J e = ∇× T . The magnetic field intensity H can be approx-
imated by the magnetic scalar potential Ψ and by the current vector potentials T and
T 0 by substituting equation (4.19) into (4.14), i.e.

H =

{
T 0 −∇Ψ, in air containing the coil,
T 0 + T −∇Ψ, in conducting material.

(4.20)

The problem can be divided into two parts: there is a time varying magnetic field problem
in air, and an eddy current field problem in the conducting material. The two parts must
be coupled. This is the so called T ,Ψ− Ψ potential formulation.

Substituting (4.19) into the relation (4.18) and using the characteristic (4.17) and the
second definition in (4.20), Maxwell’s equation (4.15) can be formulated by the partial
differential equation

∇×
1

σ
∇× T + µṪ − µ∇Ψ̇ = −∇×

1

σ
∇× T 0 − µṪ 0. (4.21)

The Maxwell’s equation (4.16) can be rewritten in the form

∇ ·
{
µT 0 + µT − µ∇Ψ

}
= 0. (4.22)
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The partial differential equations to be solved in this case are the equation (4.8) in air
(but µ = µ0), moreover the equations (4.21) and (4.22) in the conducting material.
These equations are coupled through the interface conditions between the air and the
conducting material.

According to the method of weighted residuals, the partial differential equation (4.21)
can be multiplied by the vector weighting function W j and integrated over the region
Ω, i.e.

∫

Ω

W j · ∇ ×
1

σ
∇× T dΩ +

∫

Ω

µW j · Ṫ dΩ−

∫

Ω

µW j · ∇Ψ̇ dΩ

= −

∫

Ω

W j · ∇ ×
1

σ
∇× T 0 dΩ−

∫

Ω

µW j · Ṫ 0 dΩ.

(4.23)

Applying the mathematical identity ∇· (u×v) = v ·∇×u−u ·∇×v, and substituting
u = W j and v = 1

σ
∇ × T , and using the Gauss law, the following equation can be

obtained:
∫

Ω

1

σ
∇×W j · ∇ × T dΩ−

∮

Γ

W j ×

(
1

σ
∇× T

)
· ndΓ

+

∫

Ω

µW j · Ṫ dΩ−

∫

Ω

µW j · ∇Ψ̇ dΩ

= −

∫

Ω

1

σ
∇×W j · ∇ × T 0 dΩ +

∮

Γ

W j ×

(
1

σ
∇× T 0

)
· n dΓ

−

∫

Ω

µW j · Ṫ 0 dΩ.

(4.24)

The boundary integral terms can be neglected, because E × n = 0 at the boundary of
the conducting material Γc, i.e.

∫

Ω

1

σ
∇×W j · ∇ × T dΩ +

∫

Ω

µW j · Ṫ dΩ−

∫

Ω

µW j · ∇Ψ̇ dΩ

= −

∫

Ω

1

σ
∇×W j · ∇ × T 0 dΩ−

∫

Ω

µW j · Ṫ 0 dΩ.

(4.25)

The approximating functions can also be introduced as the weighted sum of the potential
values in nodes and along edges, i.e.

Ψ '

I∑

i=1

Ni Ψi, T 0 '

K∑

k=1

W k T0,k, T '

K∑

k=1

W k Tk. (4.26)

The number of degrees of freedom is I +K = 6 using triangular finite elements.
The time derivatives of the variables have been approximated by the Euler backward

algorithm, Ṫ ' T
(n+1)−T

(n)

∆tn
at a given discrete time of the simulation tn. Using this

formula and substituting equations in (4.26) into (4.25), then the following system of
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equations can be obtained in one finite element placed in the conducting material:

K∑

k=1

{
1

σ

∫

Ωe

∇×W j · ∇ ×W k dΩ +
µ

4t

∫

Ωe

W j ·W k dΩ

}
T

(n+1)
k

−

I∑

i=1

{
µ

4t

∫

Ωe

W j · ∇Ni dΩ

}
Ψ

(n+1)
i

=
K∑

k=1

{
µ

4t

∫

Ωe

W j ·W k dΩ

}
T

(n)
k −

I∑

i=1

{
µ

4t

∫

Ωe

W j · ∇Ni dΩ

}
Ψ

(n)
i

−

K∑

k=1

{
1

σ

∫

Ωe

∇×W j · ∇ ×W k dΩ

}
T

(n+1)
0,k

−
K∑

k=1

{
µ

4t

∫

Ωe

W j ·W k dΩ

}{
T

(n+1)
0,k − T

(n)
0,k

}
.

(4.27)

The partial differential equation (4.22), similarly as in the time varying magnetic field
problem, can be weighted by the scalar weighting function Nj and must be integrated
over the region Ω, i.e.

∫

Ω

Nj ∇ ·
{
µT 0 + µT − µ∇Ψ

}
dΩ = 0. (4.28)

Applying similar mathematical formulations as in the time varying magnetic field prob-
lem, the following system of linear equations can be obtained in one finite element:

−

K∑

k=1

{
µ

∫

Ωe

∇Nj ·W k dΩ

}
T

(n+1)
k +

I∑

i=1

{
µ

∫

Ωe

∇Nj · ∇Ni dΩ

}
Ψ

(n+1)
i

=
K∑

k=1

{
µ

∫

Ωe

∇Nj ·W k dΩ

}
T

(n+1)
0,k .

(4.29)

The boundary conditions are the following: the magnetic scalar potential along the
boundary and the symmetry plane as well as the tangential component of the unknown
current vector potential along the symmetry plane and along the interface between the
conducting and the nonconducting material are set to be zero.

Unfortunately, the system of linear equations generated by the edge elements of the
FEM is singular which can only be solved by iterative solvers. I used the stabilized bicon-
jugate gradient method (bicgstab, implemented in MATLAB [26,99]). This iteratively
finds an accurate solution of the system of equations starting from an initial guess. The
solution is depending on the starting vector. The stopping criterion is based on the error

ε =
‖b−Kx‖

‖b‖
(4.30)

to reach ε < 10−12, and K is the system matrix, b is the right hand side of the assembled
equations and x contains the unknown potentials. The initial guess of the iteration at a
time instant is the stable solution of the previous time instant.
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Fig. 4.5. Results of the time varying magnetic field simulations
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Fig. 4.6. Results of the eddy current field simulations, f = 2 Hz

The solution of the resulting system of linear equations gives the unknown potentials
T and Ψ at the time instant tn+1.

The test example has been studied with the following parameters: the eddy current
field problem in linear media has been run for four periods to reach the stationary state,
one period has been divided into 40 time steps and the peak value and the frequency of
the exciting current have been 1 A and 2 Hz, respectively. The following figures compare
the results of the time varying magnetic field problem and the results of the eddy current
field problem. The vectors of the magnetic field intensity and of the magnetic flux density
can be seen in Fig. 4.5(a) and Fig. 4.5(b), and in Fig. 4.6(a) and Fig. 4.6(b) for the time
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Fig. 4.7. The effect of extrusion of current v.s. increasing the frequency

varying case and for the eddy current case, respectively. The figures show the vectors at
the time instant, when the current has a maximum value. The effect of the eddy currents
is unambiguous in the pictures, let us compare the figures: the value of H and of B are
smaller inside the magnetic material in the case of the eddy current field problem than
in the case of the time varying magnetic field problem. This effect can be associated
with the skin effect. The effect of frequency of the exciting current can be seen in Fig.
4.7(a)–4.7(d). These figures illustrate the x component of the magnetic field intensity
Hx inside the yoke, along the line x = 20 mm, and y ∈ [30, . . . , 50] mm. The value of

the skin depth has been calculated by δ = δL = δR =
√

1
πfµσ

. Applying linear shape

functions results in staircase like functions as can be seen in the figures.
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Fig. 4.8. The projected hysteresis characteristic in the x direction and the linear term
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4.1.3 The T ,Ψ−Ψ formulation in hysteretic media

In this section, the time varying magnetic field and the eddy current field problems
are explained taking into account the hysteretic relationship between the magnetic field
intensity H and the induction B, i.e. B = H {H}.

First, I present the partial differential equations and the weak form of the time varying
magnetic field and of the eddy current field problems, then the simulation results are
described.

The constitutive relation between the magnetic field intensity H and the mag-
netization M or the magnetic flux density B can be linearized by the polarization
method [11, 17, 24, 49, 58, 77]. The isotropic NN based B = H {H} relation is used,

B = H {H} = µFPH + RFP , (4.31)

where µFP is an ideal permeability, illustrated in Fig. 4.8 and selected by the relation

µFP =
µmax + µmin

2
, (4.32)

where µmax and µmin are the maximum and the minimum slope of the major hysteresis
loop of the hysteresis characteristic, and RFP is the nonlinear residual term (in this
example µmin ' 0). The value of µFP is constant during the calculations. The residual
term RFP is derived iteratively during the nonlinear iteration scheme at every time step.

Time varying magnetic field problem in hysteretic media

Changing the linear constitutive relation B = µH to the nonlinear, but linearized
relation (4.31) and using the potential formulation (4.7) in the Maxwell’s equation (4.2),
the following partial differential equation can be obtained:

∇ · {µFPT 0 − µFP∇Ψ + RFP} = 0. (4.33)

65



Miklós Kuczmann, PhD Theses 2004

This equation is valid in the magnetic material Ωc. The partial differential equation
in the air region Ωn is (4.8), but µ = µ0. The boundary conditions are the same as
prescribed in section 4.1.1.

Applying the method of weighted residuals, the following system of equations for one
finite element can be obtained in the nonlinear medium:

I∑

i=1

{
µFP

∫

Ωe

∇Nj · ∇Ni dΩ

}
Ψi

=

K∑

k=1

{
µFP

∫

Ωe

∇Nj ·W k dΩ

}
T0,k +

∫

Ωe

∇Nj ·RFP dΩ.

(4.34)

This system of equations is coupled with the weak form (4.13) with µ = µ0.
Only one NN based hysteresis operator is defined in the barycenter of one finite

element, therefore the nonlinear residual term RFP is supposed to be constant in a finite
element.

Eddy current field problem in hysteretic media

Using the linearized constitutive relation (4.31) in nonlinear media, Ωc, and the second
potential formulation in (4.20) in the Maxwell’s equations (4.15) and (4.16) with the
relation (4.18) leads to the following partial differential equations:

∇×
1

σ
∇× T + µFP Ṫ − µFP∇Ψ̇ = −∇×

1

σ
∇× T 0 − µFP Ṫ 0 − ṘFP , (4.35)

∇ · {µFPT 0 + µFPT − µFP∇Ψ + RFP} = 0. (4.36)

The partial differential equation (4.8) valid in the air region Ωn with µ = µ0 must be
coupled with the above partial differential equations (4.35) and (4.36) applying the same
boundary conditions as prescribed in section 4.1.2.

After using the method of weighted residuals and the Euler backward algorithm, the
following system of linear equations can be obtained for one finite element from the
partial differential equations (4.35) and (4.36):

K∑

k=1

{
1

σ

∫

Ωe

∇×W j · ∇ ×W k dΩ +
µFP
4t

∫

Ωe

W j ·W k dΩ

}
T

(n+1)
k

−

I∑

i=1

{
µFP
4t

∫

Ωe

W j · ∇Ni dΩ

}
Ψ

(n+1)
i

=
K∑

k=1

{
µFP
4t

∫

Ωe

W j ·W k dΩ

}
T

(n)
k −

I∑

i=1

{
µFP
4t

∫

Ωe

W j · ∇Ni dΩ

}
Ψ

(n)
i

−

K∑

k=1

{
1

σ

∫

Ωe

∇×W j · ∇ ×W k dΩ

}
T

(n+1)
0,k

−
K∑

k=1

{
µFP
4t

∫

Ωe

W j ·W k dΩ

}{
T

(n+1)
0,k − T

(n)
0,k

}

−
1

4t

∫

Ωe

W j ·
{
R

(n)
FP −R

(n−1)
FP

}
dΩ,

(4.37)
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and

−

K∑

k=1

{
µFP

∫

Ωe

∇Nj ·W k dΩ

}
T

(n+1)
k +

I∑

i=1

{
µFP

∫

Ωe

∇Nj · ∇Ni dΩ

}
Ψ

(n+1)
i

=
K∑

k=1

{
µFP

∫

Ωe

∇Nj ·W k dΩ

}
T

(n+1)
0,k +

∫

Ωe

∇Nj ·R
(n)
FP dΩ.

(4.38)

The fixed–point iteration method

Handling the nonlinearity of the hysteresis characteristics can be worked out by the
polarization method. An iterative solution of the governing system of linear equations
leads to an approximate solution of the time varying magnetic field and of the eddy
current field problems at the time instant tn [11, 17, 24, 49, 58, 77].

The initial conditions (when t0 = 0) are as follows: the magnetic field intensity, the
magnetic flux density and the residual term are set to be zero in all finite elements, i.e.
H = 0, B = 0, RFP = 0. This is the demagnetized state of the magnetic material.

During the fixed–point iteration, the time does not change, so for simplicity, super-
script n does not label. The steps of the jth fixed–point iteration step are illustrated in
Fig. 4.9 and are the following:

1. Generating and solving the actual –above described– system of linear equations
(Kxj = bj, where K is the constant system matrix, bj is the right hand side of
the assembled equations and the vector xj contains the unknown potentials, i.e.
xj = [Tj Ψj]

T ) which gives the new iteration of the potentials Ψj and/or T j.

2. The actual value of the magnetic field intensity H j inside the magnetic material can
be calculated by the equation (4.7) or by the second expression in (4.20) according
to the time varying magnetic field or the eddy current field problem. The value of
vector Hj is calculated only in the barycenter of all finite elements.

3. An under relaxation method has been applied to speed up the convergence of the
iteration,

Hj ← (1− α)Hj−1 + αHj,

where α = 0.5j. It generates an always convergent method [65].

4. The value of the magnetic flux density vector of all finite elements Bj can be
obtained by the NN based vector hysteresis operator according to the vector H j.
These Hj − Bj pairs are stored. Only one vector hysteresis operator has been
applied in one finite element, and the residual term is supposed to be constant
over it.

5. Updating the residual term RFPj+1
in every finite element placed in the magnetic

material,
RFPj+1

= Bj − µFPHj.

6. Convergence can be controlled by the norm

ε = ‖Hj −Hj−1‖.
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Fig. 4.9. Block diagram of the fixed–point iteration scheme
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Fig. 4.10. Results of the nonlinear time varying magnetic field simulations

20 30 40 50 60
20

30

40

50

60

x [mm]

y 
[m

m
]

(a) The magnetic field intensity, H

20 30 40 50 60
20

30

40

50

60

x [mm]

y 
[m

m
]

(b) The magnetic flux density, B

Fig. 4.11. Results of the nonlinear eddy current field simulations, f = 1 Hz

If it is fulfilled in every finite element, then the iteration step is convergent (in my
experiments ε = 10−4 has been used after some trials). In this case, the new time
instant can be applied (tn+1 = tn + ∆t, and j = 0), otherwise the iteration must
be repeated from the 1st step (j ← j + 1). The new iteration step uses the new,
updated residual term.

Iteration has no physical meaning, i.e. every iteration step must be started from the
previous stable point on the hysteresis characteristic and R

(n−1)
FP does not change, but

R
(n)
FP = R

(j+1)
FP .
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Fig. 4.12. Comparison of the projected hysteresis characteristics in the x and y directions
obtained from the time varying magnetic field (s) and eddy current field (e) problems
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The 2D nonlinear time varying magnetic field and the eddy current field problems
have been applied to study the fixed–point technique in the FEM. The steady state of
the eddy current field problem can be reached after the second period of the excitation,
but four periods has been calculated. The magnetic field intensity and the magnetic
flux density vectors are plotted in Fig. 4.10(a), Fig. 4.10(b) and in Fig. 4.11(a), Fig.

4.11(b) at the steady state when the exciting current has a maximum value (Î = 5 A).
The effect of eddy currents inside the magnetic material is unambiguous in the figures:
the magnetic field intensity and the magnetic flux density inside the magnetic material
are smaller in the case of the eddy current field problem than in the case of the time
varying magnetic field problem. The figures show only the corner of the magnetic yoke.

I have worked out an other comparison between the time varying magnetic field and
the eddy current field problems: the projected hysteresis characteristics in the x and in
the y directions resulting by the orthogonal components of the magnetic field intensity
and of the magnetic flux density have been analyzed. Three points have been selected;
Point 1 is at the vertical left leg of the yoke, where the magnetic field intensity has only
vertical, y directed component, Point 2 is at the center of the horizontal part, where
the magnetic field intensity has only horizontal, x directed component and Point 3 is at
the corner. Results are plotted in Fig. 4.12(a)–4.12(f). The result of skin effect can be
seen easily in the figures: the amplitude of the magnetic field intensity is smaller when
eddy currents are taken into account than in the time varying magnetic field problem.
Hysteresis characteristics projected in the x and in the y directions are plotted at the
steady state. In the case of eddy current field problem, the hysteresis curves are smaller,
since the magnetic field intensity is smaller according to the skin effect.

4.2 Summary

This 2D example shows the applicability of the T ,Ψ − Ψ potential formulation with
taking into account the hysteresis characteristic of the magnetic material in the frame
of the FEM using nodal and edge shape functions.

The same formulations can be used to solve the nonlinear 3D simulation of the
measuring test equipment introduced in the next chapter.

4.3 New scientific results

2. Thesis I have implemented the developed neural network based vector hysteresis
model to the finite element method. I have applied the Ψ and the T ,Ψ − Ψ potential
formulations, because these directly give the magnetic field intensity vector which is
the input variable of the direct vector hysteresis model. I have used the nodal and the
edge shape functions for the approximation of the potentials. I have handled the neural
network based vector hysteresis model by applying the B–scheme of the polarization
method, and I have solved the linearized system of equations by the fixed–point iteration
technique. I have used an under–relaxation scheme to speed up the convergence of the
method. This results in a convergent and a well applicable method to solve both time
varying magnetic field problem and eddy current field problem.
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Chapter 5

Simulation of the built NDT

measurement system

I have manufactured a nondestructive testing equipment in our Magnetic Laboratory.
My aim was not to work out a new measurement system, but to allow the checking of
the finite element based software presented in the previous chapter. The description of
the measurement set–up with measured crack signals can be found in this chapter. Com-
parisons between the results of the 3D simulations and the measurements are presented
at the end of this chapter.

5.1 Description of the measurement system

A photo of the installed NDT arrangement can be seen in Fig. 5.1.
The U–shaped yoke can be magnetized by the excitation coils (number of turns is

N = 129). A specimen with well defined artificial surface cracks can be inserted among
the legs of the yoke. In my experiments, I have applied the FluxSet sensor and the
Hall–type sensor to measure the leakage magnetic field above the tested specimen. The
applied sensor has measured the three orthogonal components of the magnetic field. The
yoke and the specimen are made of the same magnetic material with the thickness of
5 mm (the size of the whole arrangement is 320×240×5 mm). In this case, the specimen
is magnetized by a longitudinal magnetic flux.

I have experienced the well known and obvious measurement result, i.e. increasing
the distance between the surface of the specimen and the sensor (it is the so called lift–
off) results in decreasing measured signal. I put the sensors as close to the surface as
possible.

The schematic view of the built measurement set–up can be seen in Fig. 5.2 and
described here.

The measuring arrangement contains a positioning device controlled by a Pulse Width
Modulation signal (fPWM = 10 kHz). The duty cycle of the PWM signal controls the
position of the applied sensor above the tested specimen on the x− y plane. The mea-
surement of the x, the y and the z components of the magnetic field intensity vector
can be picked out by using a 3D sensor which contains 3 orthogonal sensors with appro-
priate electronics. All tasks have been handled by the software package LabVIEW on a
user–friendly graphical user interface [38] developed by me.

The excitation signal represented by its discrete set has been generated by a software
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Fig. 5.1. The installed measuring arrangement
PSfrag replacements
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Fig. 5.2. The schematic view of the measurement set–up

based on the Instrument Control Toolbox of MATLAB [99] and has been downloaded into
the memory of the power supply KIKUSUI using the GPIB bus [22,100] (remote–control
in high speed fast sequence, in CC mode). KIKUSUI can follow this signal continuously.
The current generation and the measurements can be separated by this method.

At the scanning points, measurements have been performed through the NI–DAQ
card built in the PC [38]. The basis of the measurements is very similar which used
in the scalar hysteresis measurement system. After measuring some points, the average
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of the measured signal (in DC case), or the amplitude and the phase, or the effective
value of the measured signal (in AC case with sinusoidal excitation) can be calculated.
Acquired data are stored and saved to a file automatically during the scanning and
measuring process.

First, in section 5.2, I present my measurements with the FluxSet sensor, then in
section 5.3, I show the results applying the Hall–type sensor. I present calibration
techniques both to calibrate the FluxSet and the Hall sensors via simple measuring
arrangements. I conclude my experiments in section 5.4.

5.2 Applying the FluxSet sensor

The FluxSet sensor is a high sensitivity sensor which is suitable for measuring DC and
middle AC frequency (f ≤ 100 Hz) magnetic field. This device has a very good sensi-
tivity, stability, linearity and frequency independence as presented in [33, 75, 97].

The sensing element of the probe is an amorphous alloy ribbon with high initial
permeability and low saturation. The probe of the sensor is made of two solenoids
wound on each other. The inner solenoid and the outer solenoid are called the driving
and the pick–up coils, respectively. The length of the sensor is about 14 mm. The core
has an elliptical shape to decrease the air gap between the core and the coils. This core
is periodically saturated by a triangle–shaped magnetic field produced by the driving
coil, and the signal of the pick–up coil is transformed into pulses. The edges of these
pulses control the counting clock converting the magnetic field intensity measurements
into precise time measurements. Without any external magnetic field, the time intervals
between the pulses are equal, but if an external field is applied, then the time intervals
will be no longer symmetrical [33, 75, 97].

The probe has a so called compensation input. This can be used to set the zero
point of the sensor. The compensation has to be performed beforehand in all scanning
points and has to be stored in a file. In this case, the value of the output voltage of the
sensor without any excitation is equal to 2.5 V, because the range of the output voltage
is [0, . . . , 5] V. Unfortunately, it has to be performed at every scanning points, because of
the magnetic field of the positioning device, the arrangement and other unknown noises.
This compensation process has also been worked out by using LabVIEW functions [55,
59].

5.2.1 Preliminary measurements

First of all, I have analyzed the linearity and the frequency independence of the FluxSet
sensor, and I have demonstrated them with comparisons between measurements and
calculations based on a simple arrangement as presented here.

The homogeneous and inhomogeneous magnetic fields have been generated by a sim-
ple test arrangement. This consists of 5 straight and parallel wires with the diameter of
1.4 mm, and they can be connected on any kind of variations. The axis of the wires is
parallel to the x coordinate of the frame of reference. DC or AC current can be supplied
through the wires, then the generated magnetic field has been measured by the FluxSet
sensor on a scanning line perpendicular to the wires (y direction). The current flowing in
the wires has only x component, i.e. the magnetic field intensity has y and z components.
The frame of reference can be seen in Fig. 5.1.
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(b) Linearity of the z directed sensor

Fig. 5.3. Linearity of the two orthogonal sensors

The output voltage of the FluxSet sensor depends on the magnetic field intensity and
this dependence is linear. I have checked this very important property, and the results
of a test measurement can be seen in Fig. 5.3(a) and Fig. 5.3(b). The position of the
wires is denoted by circles. It is obvious that, the y component of the magnetic field
intensity has a maximum value, and the z component has zero value just above the wire.
According to my measurements, the relative linearity error of the z directed sensor is
maximum about 3− 4 %, however there is no difference between the measured and the
calculated signals of the y directed sensor. In this case, the reference signal is the curve
according to the current Î = 1 A, and the other curves have been determined by using
these values multiplied by the value of the appropriate current. These measurements
have been performed supplying a current with sinusoidal waveform (f = 10 Hz), then
the effective value of the sensor output has been measured. My experiment is that, the
z directed sensor is loaded by a higher noise than the y directed sensor. The lift–off (the
distance between the sensor and the wire) of the y directed sensor is about 1.5 mm and
the lift–off of the center point of the z directed sensor is about 8 mm. That is why the z
directed sensor can measure magnetic field intensity generated by higher currents, and
this may be the reason of the higher noise as well.

The output voltage is independent of the frequency of the excitation, if f ≤ 100 Hz.
This measurement has been performed on the same arrangement, and I have found that,
the difference in the frequency range f ∈ [0, ..., 100] Hz is maximum about 5% relative to
the DC measurements. Increasing the frequency results decreasing effective value, e.g.
if f = 160 Hz, the relative difference is about 15%.

5.2.2 Calibration of the sensor

The magnetic field generated by the above system of wires is inhomogeneous. A model
must be built to simulate the behavior of the sensor. This is the calibration of the
FluxSet sensor.
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Fig. 5.4. Comparison between calculated and measured signals

For homogeneous fields, it is enough to measure and to calculate the magnetic field
intensity along the axis of a Helmholtz–type core, then a calibrating factor can be cal-
culated.

I have found that, the magnetic field intensity generated by the above measurement
system can be calculated analytically as the superposition of magnetic field intensities
of H = I/(2rπ). Here, I is the effective value of the current flowing in the wires, r
is the distance between the wire and a point of the space where the effective value of
the magnetic field intensity H is calculated. The vector components Hy and Hz of the
magnetic field intensity can be obtained. The calculated signals can be fitted to the

76



Miklós Kuczmann, PhD Theses 2004

measured ones using several calibration parameters.
The length of the sensor coil is about 14 mm, and it cannot be assumed that the sensor

is a pointwise instrument. It is supposed that, the measured signal can be predicted by
the weighted sum of the calculated magnetic field intensities obtained in the axis of the
sensor, because the sensor is linear. The weighting coefficients are calculated by finding
the best fit to the actually measured curves during the optimization process in the least
square sense. The magnetic field is calculated in L locations along the sensor and in P
sensor positions (P > L) [55, 59, 73]. According to this process the

Aw = b (5.1)

system of linear equations can be generated, where A is a P × L matrix storing the
calculated magnetic field intensities, b is a column vector containing the effective value
of the measured voltages in P positions and w is the unknown weighting vector. The
optimal solution of (5.1) can be obtained as

w = (ATA)−1(ATb), (5.2)

because the number of equations is larger than the number of unknowns.
This calibration technique has been applied to approximate measured curves. The

system of linear equations (5.1) has been built with P = 201 sensor positions, and L = 9
locations (y directed sensor) and L = 3 locations (z directed sensor). After some trials,
this set–up has given the best results as plotted in Fig. 5.4(a) and in Fig. 5.4(c).

My experiment is that, the resulting weights can be used to simulate the sensors when
measuring the magnetic field intensity generated by less wires or other configurations (see
Fig. 5.4(b) and Fig. 5.4(d)) with the maximum relative error 10 − 15%. This is the
verification of the calibration method.

It can be clearly seen in the figures that, the y directed sensor can be calibrated much
better than the z directed sensor. The y directed sensor is closer to the measured wires
(lift–off is about 1.5 mm), and the distance between the center point of the z directed
sensor and the wires is about 8 mm. This important difference may be the reason of
the worse calibration results. Moreover, the output voltage of the z directed sensor is
not symmetrical at the simplest case (1 wire, Fig. 5.4(d)), however the calculation gives
symmetrical output voltage, and this is a consequence of the arrangement. I think, the
motor of the positioning device, or the whole mechanics disturb the measurements. A
more precise positioning servo would be better, where the servo is far enough from the
measuring arrangement, but this is a cheap equipment prepared from an old, redone
x− y plotter.

In the NDT measurements, I have used only the y directed sensor which is parallel to
the surface of the specimen. My experiment is that, the output voltage of the y directed
sensor gives the best and the most attractive results for this NDT arrangement.

5.2.3 The lock–in amplifier

I have used a lock–in amplifier implemented in LabVIEW for precise measurement of
the AC signals [100]. The block diagram of the lock–in amplifier can be seen in Fig.
5.5. The reference signal with frequency ωr (the signal of the excitation current) is fed
into an internal reference synthesizer (PLL) that extracts the frequency and the phase
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Fig. 5.5. Simplified lock–in block diagram

information from the reference signal and generates a pure sine wave. This signal is then
mixed with the measured signal with frequency ωs. It results two output components
with the frequency equal to the difference and the sum of the internal reference signal
and the measured one. For the component of the input signal with frequency equal to
the internal reference signal (ωs = ωr), the first mixer component will be a DC signal
and the second component will have frequency equal to twice of the reference frequency
which can be rejected by a low–pass filter. The two outputs of the lock–in amplifier are
the real and the imaginary parts of the measured signal referred to the reference signal.
The amplitude A and the relative phase ϕ also can be determined.

5.2.4 NDT measurements

The winding has been excited by a sinusoidal signal (Î = 0.5 A, f = 1 Hz). My exper-
iment was that, the amplitude of the exciting current must be small generating small
magnetic field intensity inside the yoke, otherwise the sensor goes to saturation (the
maximum value of the output voltage of the sensor is 2.5 V, above this value the sen-
sor cannot measure variations). In this case, the maximum amplitude of the measured
voltage was about 1.8 V.

The effect of hysteresis characteristic of the yoke and of the specimen could not
sensed, because the magnetization is depending almost linearly on the applied magnetic
field intensity, since the magnetic field intensity is small. By applying demagnetization,
the demagnetized state (H = 0, M = 0, B = 0) almost can be reached. Demagnetization
has been performed under a sinusoidal signal with decreasing amplitude at low frequency
(f = 0.1 Hz).

I have measured three types of artificial surface cracks scanning the same surface
where the crack has been located. The scanning area was 30 mm×30 mm around the
crack (crack was in the origin) and the measurements have been performed in 31×31
points by using the lock–in amplifier. According to my measurements, the phase of the
measured signal was almost constant (ϕ ' −4◦), i.e. the real part was almost equal to
the amplitude of the measured signal and the imaginary part was relatively small.

The detection of cracks has been based on a comparison with a crackless specimen
(etalon). First of all, a specimen without any cracks has been analyzed, then the mea-
sured voltage according to the crackless specimen has been subtracted from the measured
voltage belonging to the cracks. The edge effect according to the side of the arrangement
also can be decreased.

The output voltage of the sensor had a maximum value just above the crack, because
I have measured the y component of the leakage magnetic field.

In the first case, the effect of diameter of the surface hole has been measured and
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Fig. 5.6. Measurement results I, the effect of diameter of the crack
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Fig. 5.7. Measurement results II, the effect of depth of the crack

the results are plotted in Fig. 5.6(a)–5.6(c). The diameter of the cracks is given in the
figures, the depth of the cracks was 2.5 mm. Increasing the diameter results increasing
value of the output voltage of the sensor.

In the second measurement set, the effect of depth of the hole has been analyzed
and the diameter was 2 mm (see Fig. 5.7(a)–5.7(c)). A crack with a depth of 0.5 mm
could not detect, but increasing the depth of crack results increasing output voltage of
the sensor.

Finally, the orientation of the surface slots (see Fig. 5.8) has been detected. The
first slot was perpendicular to the direction of the scanning lines, the second one was
transversal to this. The contour plot of the surface of the measured voltage can be seen
in Fig. 5.9(a) and 5.9(b). The size of the slots was 5 mm×1 mm, and the depth was
2.5 mm. The perpendicular slot could be detected easily, because the peak value of the
measured sensor voltage was about 80 mV, but the maximum value of the measured
voltage according to the transversal slot was just about 15 mV.

My experiment was that, similar results with smaller output voltage can be obtained
when analyzing the same cracks, but scanning the opposite surface of the specimen. In
this case, the output voltage was about the half of the above results.
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Fig. 5.9. Top view of the measured voltage

A 2D adaptive noise–removal filtering has been performed on measured signals by
the Wiener filter implemented in the Image Processing Toolbox of MATLAB [99]. This
lowpass filters the intensity image that has been degraded by additive noise and Wiener
filtering causes a little smoothing as well.
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Fig. 5.10. Examination of the Hall–type sensor

5.3 Applying the Hall–type sensor

A 3D Hall–type sensor has been developed in the frame of a student work under my
supervisorship [42]. The sensor is a GaAs sensor, and the type is OH10003. The pre-
pared probe contains three orthogonal Hall sensors as close to each others as possible.
The output signal of the Hall sensor is very small (in this case, it is in the range of
10 . . . 100µV), so it is amplified by an operational amplifier (to the range of 1 . . . 10 V).
This is a simpler and cheaper instrument than the FluxSet sensor. The size of the ap-
plied Hall sensor is 2.9 mm × 1.5 mm× 1.1 mm, and it is much smaller than the length
of the coil in the FluxSet sensor (14 mm).

Classically, the Hall effect in a semiconducting medium is based on the Lorentz force
F = Q(v × B) when a particle with charge Q is moving with velocity v within a
magnetic field B. If a long, flat current–carrying conductor is placed in a magnetic field,
the moving charges will experience a force perpendicular to the direction of the current
and of the magnetic field. It results an un–even charge distribution and gives rise to an
electric field E which generates a measurable Hall–voltage which is proportional to the
magnetic flux density [69, 70].

5.3.1 Preliminary measurements and calibration

However the sensor has satisfactory linearity with respect to the magnetic field intensity
and small temperature coefficient according to the catalogue of the sensor, we have
analyzed the linearity and the frequency independence of the sensor and its electronics.

Test measurements have been performed by a calibrating coil which length was
l = 340 mm, the radius was about r = 50 mm and the number of turns was N = 305.
The Hall sensor has been placed into the axis of the coil and the output voltage has been
measured in the range of z ∈ [−155, . . . , 155] mm, if z = 0 is the center point of the coil.
The magnetic field intensity along the axis of the coil can be calculated easily by the
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Biot–Savart law according to the relation [29]

Hz(z) =
NI

2l

{
l/2− z√

(l/2− z)2 + r2
+

l/2 + z√
(l/2 + z)2 + r2

}
. (5.3)

According to the supposed linearity, the effective value of the output voltage is propor-
tional to the effective value of the magnetic field intensity, i.e. UHall = kHz, where k is a
constant calculated from measurements. In this case k = 5.095 · 10−4 Vm/A, and it can
be used as a calibrating factor.

The linearity and the calibration results can be seen in Fig. 5.10(a). The calculated
output voltage is denoted by points, the measured signal is denoted by solid line. The
calibration error is maximum 4% referred to the signal according to the current Î = 1A.

The frequency independence of the output voltage of the sensor has been analyzed in
some given frequency (1 Hz < f < 20 Hz), and the frequency independence of the sensor

is illustrated in Fig. 5.10(b) (Î = 2A).
In the NDT measurements, I used only the z directed sensor which is perpendicular

to the surface of the specimen. The other two sensors are far away from the surface,
however we tried to place them as close to the surface as possible. My experiment is that,
the output voltage of the z directed sensor is the most effective for NDT measurements.

5.3.2 NDT measurements

The core has been excited by a sinusoidal signal (Î = 8 A, f = 1 Hz). In this case, the
amplitude of the exciting current can be higher, because the saturation of the Hall sensor
is higher than the saturation of the FluxSet sensor. The Hall sensor is able to measure
higher magnetic field intensity, but it is more sensitive to noise.

The hysteresis characteristics can be sensed, i.e. the magnetization is depending on
the hysteresis curve of the yoke. Before measurements, the yoke and the specimen have
been demagnetized by a sinusoidal signal with decreasing amplitude.

I have performed some preliminary measurements along a scanning line through a
crack to find the best excitation. I have set the amplitude (Î = 2 A, 4 A, 6 A, 8 A, 10 A),
and the frequency (f = 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz) of the exciting current to find
the best one, since the amplitude and the frequency determine the hysteresis curve of
the material. I have experimented that, increasing the amplitude results increasing
amplitude of the measured crack signal, but increasing the frequency in the given range
results no significant modifications. If the amplitude, and the frequency are chosen
as Î = 8 A and f = 1 Hz, respectively, I can obtain the best results. I tried to use
small frequency, because the hysteresis model applied in the simulations is a frequency
independent model.

The measured voltage is larger close to the leg of the yoke, and smaller close to
the symmetry plane of the arrangement resulting a small rise in the measured signal as
illustrated in Fig. 5.11. This rise can be eliminated by subtracting the crackless signal.
The peaks in the signal of the z directed sensor denote the crack, but the other two
sensors cannot detect the crack exactly. This subtraction results only the signal caused
by the crack.

The LabVIEW user–friendly graphical user interface (GUI) can also be seen in Fig.
5.11. The measured components and the spectrum of the measured signals can be seen
at the bottom of this window. The effective value of the measured signals is also plotted

82



Miklós Kuczmann, PhD Theses 2004

and saved in a file. Important data can be set through the GUI: the coordinates of
the scanning area, the number of steps above the specimen, the number of samples per
periods and the number of periods to be measured.

The bridge, where the sensor is moving in the y direction is made of aluminum, but
unfortunately, the mechanics of it disturbs the measured signal. I have prepared a spacer
which enables to move the sensor far away from this mechanics. A comparison between
the two measurements can be seen in Fig. 5.12, where the 1st measurement is performed
without the spacer and the 2nd is with using the spacer. This figure shows the output
voltage of the z directed sensor. Measurements are closer to the calculated results when
the effect of mechanics has been eliminated. I have realized this problem after developing
the FEM software and I have made the measurements again.

I have measured the same artificial surface cracks as analyzed by the FluxSet sensor.
In this case, the scanning area was 40 mm×40 mm around the crack and the measure-
ments are performed 41×41 points (the crack is in the origin). After measuring 5 periods,
the effective value of the measured voltage has been calculated, then the crackless signal
has been subtracted from it.

The output voltage of the sensor had zero value just above the crack and had maxi-
mum and minimum values before and after the crack, because I have measured applying
the z directed sensor. These two peaks results much accurate contour plots than the one
peak of the y component.

In the first case, the effect of diameter of the surface hole has been measured and the
results are plotted in Fig. 5.13(a)–5.13(c). The diameter of the cracks is given in the
figures, the depth of the cracks was 2.5 mm. Increasing the diameter results increasing
value of the output voltage.

In the second measurement set, the effect of depth of the hole has been analyzed,
when the diameter was 2 mm (see Fig. 5.14(a)–5.14(c)). A crack with a depth of 0.5 mm
could be detected again, but increasing the depth of the crack results in increasing output
voltage.

Finally, the orientation of the same surface slots has been detected (see Fig. 5.8).
The first slot was perpendicular to the direction of the scanning line, the second one was
transversal to this. The top view of the measured voltages can be seen in Fig. 5.15(a) and
Fig. 5.15(b). The perpendicular slot could be detected easily, because the peak value
of the measured voltage was about 0.15 V, and the maximum value of the measured
voltage according to the transversal slot was just about 0.06 V, but the contour plot of
the measurements show the orientation of the crack. The orientation and the size of the
slots is deducible. Measuring the z component gives more accurate contour plots than
measuring the y component.

5.4 Conclusions of the measurements

I have experimented that, the FluxSet sensor is more sensitive than the Hall–type sensor,
i.e. the FluxSet sensor can measure small magnetic fields. The Hall sensor is able to
measure much higher magnetic fields.

The Hall sensor has a very small size, but I think, a matrix with 3×3, or 5×5 sensors
would give better and more accurate measurements. Of course, more sensitive type of
sensor should be used. There exists a problem of the demagnetizing process: the power
supply can generate a current with the maximum peak value of 20 A. It seems that, it is
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Fig. 5.11. LabVIEW GUI of the measurements

not enough to reach the saturation state of the material with the given number of turns
of the exciting coil, i.e. the demagnetizing process is not perfect.
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Fig. 5.13. Measurement results I, the effect of diameter of the crack
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Fig. 5.14. Measurement results II, the effect of depth of the crack

An important experiment when applying the Hall sensor is: measuring the z compo-
nent of the magnetic field intensity gives more accurate contour plots than measuring the
y component of the magnetic field intensity. However, the z directed coil of the FluxSet
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Fig. 5.15. Top view of the measured voltage

sensor is far from the surface of the specimen.
I have developed a 3D nonlinear FEM software to simulate the presented measure-

ment system to compare calculations and the above measurements. I only focus on the
measurements performed by the Hall sensor. Other important measured signals with
comparisons with the simulated ones are also shown in the next section.

5.5 Simulation of the installed NDT equipment

The same mathematical formulations can be used as described in the previous chapter,
but applying the 3D shape functions in tetrahedral finite elements (I = 4 and K = 6)
and the 3D NN based vector hysteresis model [61].

On the basis of the 2D problem presented in the previous chapter, I have developed
the 3D numerical simulation of the built NDT equipment. A global to local model has
been used: first, a global model has been applied to determine the potential distribution
near the crack, then a local domain including the crack has been investigated. The
global model has been applied to determine the artificial boundary conditions of the
local model.

Comparisons between the measured and the simulated crack signals are presented at
the end of this section.

5.5.1 Global–local model in 3D calculations

The generated meshes, the boundary conditions and properties of the calcu-

lations

The size of a manufactured crack is very small comparing with the size of the whole
arrangement: e.g. the diameter of a surface hole is maximum 2.5 mm and its depth is
maximum 5 mm, the size of the U–shaped yoke is 320×240×5 mm, i.e. the order is
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Fig. 5.16. The global to local model (dimensions are in mm)

two. The generated mesh of the whole arrangement is not accurate to simulate the effect
of a crack. If a very dense mesh is used, then the number of unknowns is increasing
very much (about 80000–120000 elements). On the other hand, if a coarse mesh is
applied, then the system of equations is not very large, but the result around the crack
is inaccurate, since the number of elements around the crack is very few. Unfortunately,
I have experimented that, the iterative solvers of MATLAB cannot solve a system of
equations with more than about 20000 unknowns (after solving the system of equations,
the allocated memory will not be free).

Therefore, a global to local model (domain–decomposition) has been applied in two
steps (see Fig. 5.16). I have generalized the domain–decomposition method in the time
domain based on the static electric field calculations in [83]. First, a large–scale model
without any crack is used to determine the boundary conditions of the local model, then
the local domain including the crack is investigated. The size of the local domain is
40×40×20 mm, x ∈ [170, . . . , 210] mm, y ∈ [−40, . . . , 0] mm, z ∈ [−10, . . . , 10] mm, and
the place of the crack is x=190 mm, y=-20 mm.

The FEM mesh of the global model can be seen in Fig. 5.17. This mesh consists
of 2965 nodes, 15208 elements, and 8442 edges. Because of symmetry, I have analyzed
only the half of the whole equipment. This mesh is accurate: I have stopped increasing
the number of elements when I have attained no relevant changes in the numerical
solution. I have calculated 3 periods, and one period has been divided into 40 time
steps. Calculation time of the global model was about 7 days. This very long time can
be associated to the large number of hysteresis characteristics, since I used one 3D vector
hysteresis model placed in the barycenter of one finite element in iron (5150 element),
and one vector model consists of 9 scalar hysteresis models resulting 46350 hysteresis
models.

The effect of the current flowing in the exciting coils has been taken into account
again by the impressed field quantity T 0 calculated by the Biot–Savart law. Coils have
been modelled with simple filamentary conductors, then T 0 has been determined along
every edge. The advantage of applying T 0 can be sensed especially in 3D calculations,
because the coils must not be meshed and the number of elements is much smaller.

The boundary conditions of the 3D eddy current field problem can be prescribed
similarly to the 2D ones. Homogeneous boundary conditions are assumed at the artificial
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Fig. 5.17. Mesh of the global model; the generated mesh in air is not shown
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Fig. 5.18. Mesh of the local model with a hole; the generated mesh in air is not shown

far boundaries in air, i.e. the tangential component of the magnetic field intensity or the
normal component of the magnetic flux density is zero, H ×n = 0 or B ·n = 0, where
n is the outer normal unit vector of the region. Homogeneous boundary conditions can
be supposed along the symmetry planes: H × n = 0, i.e. J · n = 0 and E × n = 0.
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On the interface between the yoke and the air regions, the interface conditions must be
satisfied: H × n and B · n must be continuous and J · n = 0. The unknown vector
potential T has to set to be zero on the interface and along the symmetry plane. The
magnetic scalar potential Ψ is set to be zero at the artificial far boundary and along the
symmetry plane.

The global model has been applied on a coarse, but appropriate mesh to calculate
the boundary conditions of the local model. The local model around the crack on a
dense mesh (relative to the size of the analyzed domain) has been applied to calculate
the field quantities more accurately. An example mesh of the local model is shown in
Fig. 5.18. Parameters of the generated meshes of the local model (the number of nodes,
the number of edges in iron, and the number of finite elements) for simulated cracks can
be seen in the following table:

Crack Nodes Edges in iron Element
ø3 mm 830 2503 3997
ø2 mm 1347 3950 6638
Slot1 624 1840 2941
Slot2 1494 4176 7343

For validation, I have performed calculations by applying denser meshes, but the
above meshes turn out a success.

The algorithm for calculation of the boundary potentials of the local model is sum-
marized as follows. Every node and every edge at the boundary of the local model must
be converted into the space of the global model. Then the finite element of the global
domain which contains the given nodes and edges must be found. The value of the
potentials T and Ψ on the boundary of the local domain can be calculated by using
the shape functions and calculated potentials from the global model. These boundary
potentials are stored at every time instant. Then the local model can be used. The
interface condition for the local model is the same: the tangential component of the
magnetic field intensity vector H × n must be continuous along the interface between
the yoke and the air, i.e. the vector potential T has been set to be zero on the interface.

Verification of the global model

I have calculated 3 periods to reach the steady state. The resulting magnetic flux density
vectors can be seen in Fig. 5.19, when the exciting current has a maximum value of 8 A.

I have verified the global model by two methods. The first one is a simple analytical
approach to verify the linear model. The peak value of the magnetic field intensity inside
the yoke can be calculated approximately as Ĥ = NÎ/l, where N = 129 is the number of

turns of the exciting coils, Î = 8 A is the peak value of the exciting current and l = 0.86 m
is the equivalent magnetic length of the yoke. This calculation results Ĥ = 1200 A/m.

The linear time varying magnetic field calculations have resulted Ĥ ' 1095 A/m, but

the linear eddy current field calculations have resulted Ĥ ' 905 A/m in the middle of
the iron yoke. The magnetic field generated by the eddy currents decreases the magnetic
field intensity. These simple comparisons give reassuring results to validate the linear
global model.

Another verification of the global model has been done by the following comparison
between the nonlinear simulations and the measurements. Simulations have been per-
formed by applying a single valued inverse tangent type vector characteristic and the
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Fig. 5.19. The resulting magnetic flux density vectors inside the yoke simulated by the
global model
(there are two layers, where the vectors are drawn: z = −1.25 mm and z = 1.25 mm)

3D NN based isotropic vector hysteresis model identified by the presented method (see
Chapter 3). I have used real measurements applying a toroidal shape coil made of the
same material as the specimen and as the yoke. I have supposed that, the material is an
isotropic magnetic material. Characteristics are shown Fig. 5.20(a). The measurement
was the following: I have measured the induced voltage of a coil wound the yoke’s leg and
I have calculated it as well. The number of turns of the measurement coil was N = 100.
The Fig. 5.20(b) shows this comparison. These comparisons show the very good agree-
ment between the simulations and the measurements, especially when I have applied the
NN based vector hysteresis characteristic. However, applying the simpler inverse tangent
type characteristic has also resulted accurate solution. The induced voltage simulated
by the inverse tangent type characteristic is higher than the induced voltage simulated
by the NN based vector hysteresis model, because the inverse tangent type characteristic
is steeper and the induced voltage depends on the shape of the characteristic, i.e.

Ui = −N
d

dt

∫

S

B · n dS,

where S is the area of the yoke’s leg. These simulations show the applicability of the
NN based vector hysteresis model and of the proposed identification technique. The
correctness of the applied global FEM mesh, the boundary conditions, the iteration
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Fig. 5.20. Verification of the global model

scheme have also been validated by these calculations and comparisons.

Surface integrals in the local model

When the global model is applied, the boundary conditions on the artificial far boundary
and on the symmetry plane can be subscribed easily. In the case of the local model, the
surface integrals on the boundary cannot be neglected, because the local model is not
symmetrical. If the local model is used, then the boundary conditions can be calculated
from the global model as described above, and the terms from the surface integrals must
be included into the assembled system of linear equations.

The following surface integrals are derived only in the 3D eddy current field problem
using the local model.

There is a time varying magnetic field problem in the air region Ωn, therefore the
equation (4.10) has to be used, but the boundary integral term on Γn cannot be neglected,
i.e. ∮

Γn

Nj

{
µ0T 0 − µ0∇Ψ

}
· ndΓ 6= 0. (5.4)

This surface integral must be calculated at every triangular face of a tetrahedron con-
necting to the boundary as

6∑

k=1

µ0

∫

S

Nj(W k ·n) dS T0,k −
4∑

i=1

µ0

∫

S

Nj(∇Ni) · n dSΨi, (5.5)

where S is the area of the face of the tetrahedron connecting to the boundary of the
local model and n is the outer normal unit vector of this surface triangle. The first sum
is known and it has to be subtracted from the right hand side of (4.13). There are three
nodes connecting to the boundary which potential value Ψi are known from the global
model. These surface integral terms must also be assembled to the right hand side of
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(4.13). There is only one node with unknown potential and the according term must be
assembled to the left hand side of (4.13).

There is an eddy current field problem inside the specimen Ωc, that is the boundary
integral term from the integral (4.28) must be applied, i.e.

∮

Γc

Nj

{
µT 0 + µT − µ∇Ψ

}
· n dΓ 6= 0. (5.6)

This surface integral must be calculated at every triangular face of a tetrahedron con-
necting to the boundary as

6∑

k=1

µ

∫

S

Nj(W k · n) dS T0,k +
6∑

k=1

µ

∫

S

Nj(W k · n) dS Tk

−
4∑

i=1

µ

∫

S

Nj(∇Ni) · ndS Ψi.

(5.7)

The surface integral in (4.24)
∮

Γc

W j ×
{ 1

σ
∇× T 0 +

1

σ
∇× T

}
· n dΓ (5.8)

gives

6∑

k=1

1

σ

∫

S

W j · (∇×W k × n) dST0,k

+

6∑

k=1

1

σ

∫

S

W j · (∇×W k × n) dSTk.

(5.9)

There are three nodes and three edges of a tetrahedron connecting to the boundary of
the local model. The according potentials Ψi and Tk are known from the global model
and these surface integral terms must be assembled to the right hand side of (4.29)
and (4.27). There is only one node and three edges with unknown potentials and the
according terms must be assembled to the left hand side of (4.29) and (4.27).

In the case of taking into account the hysteresis characteristic of the nonlinear media,
the surface integral ∮

Γc

Nj(RFP · n) dΓ (5.10)

from the weak form of the partial differential equation (4.36) must also be inserted. The
value of RFP ·n is constant in one finite element and must be subtracted from the right
hand side of the according equations. In this case, the above surface integrals should be
modified as µ = µFP .

A comparison between the magnetic induction vectors inside the specimen according
to the area of the local domain, calculated using the global model and using the local
model can be seen in Fig. 5.21(a) and Fig. 5.21(b). The maximum relative difference be-
tween the calculated induction vectors is about 5%. This comparison shows the accuracy
of the global–local model.

The global model is a time consuming model, but this must be used only once. The
local model can be applied to simulate all of the measured cracks (the computation time
of the local model is about 2 hours).
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Fig. 5.21. Comparison between the resulting B vectors (there are two layers, where the normalized
vectors are drawn: z = −1.25 mm and z = 1.25 mm)

5.5.2 Simulation of the Hall sensor

Calculation of the output signal

The gradient of the measured and of the calculated signal ∂U
∂y

is increasing near to the
crack, because this signal is varying rapidly. Let us have a look at to Fig. 5.22. The
simulated signal is narrower than the measured one, therefore I have used the following
calibration process (it may be that, the mechanics of the positioning device has disturbed
the measurements, however I have used a spacer as presented in the section 5.3.2).

First of all, I have calculated the magnetic field intensity vector H = T 0 − ∇Ψ
at the scanning points along the scanning line through the center of the crack above
the specimen (x = 190 mm, y = −40, . . . , 0 mm). I have supposed that, the sensor is a
pointwise instrument, i.e. I have just multiplied the z–component of the magnetic field
intensity vector (Hz) by the calibrating factor k = 5.095 · 10−4 Vm/A which has been
determined by the calibrating solenoid (see section 5.3.1). This results a very narrow
signal as can be seen in Fig. 5.22, however the simulated peak values are very close
to the measured ones. This signal is a bit staged, because ∇Ψ is constant in a finite
element, since I have used first order shape functions.

Second, I have supposed that, the sensor is not a pointwise instrument, but a very
small one with the length of 2.9 mm. I have calculated the magnetic field intensity at
5 given points along the axis of the sensor and a linear combination of these magnetic
field intensities multiplied by the calibration factor k results in a better simulation (it
is denoted by k′H). This is a similar calibration process presented in the calibration of
the FluxSet sensor (see section 5.2.2). The above calibration technique has to be used,
because the length of the Hall sensor is commensurable with the size of the cracks.
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Fig. 5.22. The calibration is needed along the axis of the sensor
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Fig. 5.23. Comparison between measured and simulated signals (I)

Comparison between the measured signals and the simulation results

I have simulated some measured crack signals which are not buried with a large noise.
First, the magnetic field intensity map according to the holes has been analyzed. I

have simulated the output voltage of the sensor according to the holes with the diameter
of 3 mm and of 2 mm, and the results are plotted in Fig. 5.23(a) and Fig. 5.23(b). In this
case, the Hall sensor is moving through the scanning line x = 190 mm, y = −40, . . . , 0 mm
which is along the center point of the cracks. A comparison between the measured and
the simulated signals according to the hole with the depth of 2.5 mm can be seen in Fig.
5.23(c). Simulated signals shown in Fig. 5.23(b) and Fig. 5.23(c) are the same, because
the two cracks are the same on another specimen. The values of the measured signals
are different, however the waveform is similar.

The next analysis is to compare the measured and the simulated signals according to
the surface slots. The results are plotted in Fig. 5.24(a) and Fig. 5.24(b). The measured
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Fig. 5.24. Comparison between measured and simulated signals (II)

(a) ø3 mm (b) ø2 mm

Fig. 5.25. Simulated surfaces above the scanning area

signal of the transversal slot is more noisy than the signal of the perpendicular slot as it
can be seen in the figures. The size of the transversal is also presented, where the signal
reach the maximum and the minimum peaks. These measurements have given the most
accurate results, since the measurements and the simulations are in a good agreement.
The location of the measured and of the calculated maximum and minimum peaks are
very close to each other.

I have simulated the scanning process by calculating the signal of the sensor at the
same scanning points which I have measured. Simulated results according to the holes
with the diameter of 3 mm and of 2 mm are shown in Fig. 5.25(a) and Fig. 5.25(b). It
can be seen easily that, the calculated signals are narrower than the measured ones by
comparing measured (see Fig. 5.13(c) and Fig. 5.13(b)) and the above simulated signals,
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(a) Measured contour (b) Simulated contour

Fig. 5.26. Comparison between the measured and the simulated contour plots of the
crack ø2 mm

(a) Perpendicular slot (b) Transversal slot

Fig. 5.27. Simulated contour plots above the surface slots

however the peak values and the shape of the signals show very good agreement.
The measured and the simulated contour plot of the signals according the surface

hole with the diameter of 2 mm can be seen in Fig. 5.26(a) and Fig. 5.26(b). The
difference between the measured and the simulated signals can also be seen, i.e. the
simulated signal is narrower, and the size of the hole could be deduced easier from the
simulated signal than from the measured one. The comparison between the peak values
of the measured and of the simulated output voltages show very good agreement.

The simulated contour plot of the signals according the surface slots can be seen in
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Fig. 5.27(a) and Fig. 5.27(b). The size and the orientation of the slots can be determined
easier from simulations than from measurements (see Fig. 5.15(a) and Fig. 5.15(b)). It
can also be seen that, the simulated signals are narrower than the measured ones.

The location and the orientation of the manufactured surface holes and slots can be
determined easier from simulations than from measurements, since simulated signals are
narrower than the measured ones and calculations are not buried with noise.

Conclusions

A more precise measurement arrangement would result much better agreement between
the measurements and the simulations, however I could reach my aim, i.e. to simulate
accurately the test equipment, to check the developed nonlinear FEM software and the
NN based vector hysteresis characteristic by the comparisons between the measurements
and the simulations.

The comparison between the measured and the simulated induced voltages has shown
very good agreement. This global quantity can be measured easily, because the errors
from measurements are averaging. The crack signals are measured in the scanning points
and this measurement is buried with local noise and local measurement error.

5.6 New scientific results

3. Thesis I have confirmed the three dimensional nonlinear simulation technique by
comparing simulated and measured results. I have worked out a measurement system
which is able to detect the surface cracks of a specimen and I have developed the nu-
merical simulation of this arrangement. I have worked out the global to local model
(domain–decomposition) of the arrangement in the time domain. The boundary condi-
tions of the local model have been calculated by using the global model. I have compared
the simulated and the measured output signal of the Hall sensor, and these comparisons
show very good agreement.

3.a I have built a measurement system to analyze the FluxSet sensor and the Hall–
type sensor in the field of measuring the crack signals. I have examined the signals
corresponding to cracks with different size and shape. I have worked out calibration
methods to predict the output voltage of the sensors by using simple arrangements.
The measurements are performed by using the software environment LabVIEW.

3.b I have developed the three dimensional nonlinear numerical analysis of the built
nondestructive testing measurement system and I have used the finite element
method and the T ,Ψ−Ψ potential formulation. I have developed a global to local
model of the built arrangement in the time domain. I have used the global model
without any crack to predict the artificial boundary conditions of the local model
where the crack has been taken into account. I have developed the surface integrals
obtained from the weak form of the partial differential equations necessary to use
in the local model. I have implemented the identified three dimensional neural
network based isotropic vector hysteresis model to the eddy current field problem by
applying the fixed–point iteration technique and the B–scheme of the polarization
method. The comparisons between the measured crack signals performed by the
Hall sensor and the simulation results show the good applicability of the developed
model.
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Chapter 6

Summary of the new scientific

results

Finally, I gather my research work in the field of hysteresis modeling and of the FEM.

1. Thesis I have developed a new scalar hysteresis operator based on the function ap-
proximation capability of the neural networks to simulate the behavior of ferromagnetic
materials. I have represented the first order reversal curves with a surface by introduc-
ing the variable ξ and I have approximated this surface by neural network technique.
I have built a knowledge–base which contains if–then type rules about the behavior of
the hysteresis characteristics. I have shown the applicability of the model by comparing
simulated and measured results. I have taken into account the vectorial behavior of the
magnetic field intensity and the magnetic flux density by applying the neural network
based vector hysteresis model, and I have recommended a new identification procedure
to build up the vector model. I have worked out the three dimensional anisotropic vector
hysteresis model, and I have analyzed the behavior of the developed vector models.

1.a I have developed a new neural network based mathematical representation of the
scalar hysteresis operator. I have handled the multivalued property of the hysteresis
characteristics by introducing the new variable ξ associated with the measured first
order reversal curves. This preprocessing can be applied on any kind of hysteresis
characteristics. I have built a knowledge–base which contains if–then type rules
about the behavior of the hysteresis characteristics. This is the memory mechanism
of the model. I have realized the identification procedure by the training of the
neural networks. I have built a measurement system to measure hysteresis curves
on a toroidal shape C19 structural steel, and I have used these measurements
to show the applicability of the neural network based scalar hysteresis model by
comparing measurements and simulation results.

1.b I have developed the two dimensional and the three dimensional isotropic vector
hysteresis models based on the neural network based scalar model. I have worked
out an original and new identification procedure based on the measurable Everett
function both to predict two dimensional and three dimensional isotropic hysteresis
characteristics. I have compared the measured and the predicted curves and I have
shown the behavior of the vector model in linear and in rotational magnetic fields.
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1.c I have developed the two dimensional and the three dimensional neural network
based anisotropic vector hysteresis models by the means of Fourier expansion of
the measured Everett function of the anisotropic material. I have generalized the
two dimensional model in three dimensions as a theoretical expansion of the two
dimensional model, and I have recommended an identification procedure to fit to
measured curves. I have compared the measured and the predicted curves and I
have shown the behavior of the vector model in linear and in rotational magnetic
fields, finally I have compared the isotropic and the anisotropic models.

2. Thesis I have implemented the developed neural network based vector hysteresis
model to the finite element method. I have applied the Ψ and the T ,Ψ − Ψ potential
formulations, because these directly give the magnetic field intensity vector which is
the input variable of the direct vector hysteresis model. I have used the nodal and the
edge shape functions for the approximation of the potentials. I have handled the neural
network based vector hysteresis model by applying the B–scheme of the polarization
method, and I have solved the linearized system of equations by the fixed–point iteration
technique. I have used an under–relaxation scheme to speed up the convergence of the
method. This results in a convergent and a well applicable method to solve both time
varying magnetic field problem and eddy current field problem.

3. Thesis I have confirmed the three dimensional nonlinear simulation technique by
comparing simulated and measured results. I have worked out a measurement system
which is able to detect the surface cracks of a specimen and I have developed the nu-
merical simulation of this arrangement. I have worked out the global to local model
(domain–decomposition) of the arrangement in the time domain. The boundary condi-
tions of the local model have been calculated by using the global model. I have compared
the simulated and the measured output signal of the Hall sensor, and these comparisons
show very good agreement.

3.a I have built a measurement system to analyze the FluxSet sensor and the Hall–
type sensor in the field of measuring the crack signals. I have examined the signals
corresponding to cracks with different size and shape. I have worked out calibration
methods to predict the output voltage of the sensors by using simple arrangements.
The measurements are performed by using the software environment LabVIEW.

3.b I have developed the three dimensional nonlinear numerical analysis of the built
nondestructive testing measurement system and I have used the finite element
method and the T ,Ψ−Ψ potential formulation. I have developed a global to local
model of the built arrangement in the time domain. I have used the global model
without any crack to predict the artificial boundary conditions of the local model
where the crack has been taken into account. I have developed the surface integrals
obtained from the weak form of the partial differential equations necessary to use
in the local model. I have implemented the identified three dimensional neural
network based isotropic vector hysteresis model to the eddy current field problem by
applying the fixed–point iteration technique and the B–scheme of the polarization
method. The comparisons between the measured crack signals performed by the
Hall sensor and the simulation results show the good applicability of the developed
model.
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Chapter 7

Conclusions and future

developments

A neural network based hysteresis operator has been presented in this work. The iden-
tification of the scalar model is a simple training method on measured and preprocessed
first order reversal curves. The vector hysteresis model in 2D and in 3D has also been
implemented for both the isotropic and the anisotropic case. While the scalar hysteresis
measurement is an easy task, the measurement of the 2D vector hysteresis character-
istics is a great challenge, and it is a large project. There are some problems on the
measurements of the magnetic field intensity as can be found in the literature. It is a
future work to build a vector hysteresis measurement system in our laboratory. The 3D
vector hysteresis measurement is an open question, I have not found any paper about
this topic. I have developed a theoretical representation of the 3D anisotropic model,
but I think there may be several generalizations of this model.

I have built a measurement system which is able to perform simple NDT measure-
ments. It is important to note that, I have used this system to check my computations.
Building a measurement system is a hard work, because several problems can be emerged,
such as the system noise, and other phenomena, that disturb the measurement. This is
true for all measurement systems. I have found that, a more precise x–y positioning de-
vice should be used. The positioning device may be the weak point in my measurements.
I think that, a more sensitive sensor can be built by using the developed Hall–type probe
and by making a sensor matrix with 3×3 or 5×5 sensors.

At the last part of the presented work, I have presented the implemented FEM code
to simulate the built measurement system. As it was presented, the main goal was to
build the developed neural network based vector hysteresis model into the FEM. The
nonlinear behavior of the hysteresis characteristics has been handled by the fixed–point
technique which results relatively long computation time, especially in 3D case using the
global model. The Newton–Raphson type iterative methods may give faster solution.

Another and very important observation is that, a stand alone software should be used
to simulate any arrangement, when applying the FEM. The software package MATLAB
is very powerful, but this is very slow in this case, i.e. a C–code (especially a parallel
code running on a parallel computer) may be a better alternative. Higher order shape
functions may also give better approximation as well [101, 102]. In the case of higher
order shape functions, some case study have to be done (e.g. solving TEAM problems).
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[7] O. B́ıró, K. Hollaus, J. Pávó, and K. Preis. Numerical computation of the mag-
netic field due to a crack in a conducting plate. Electromagnetic Nondestructive
Evaluation (V), pages 11–15, 2001.
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[60] M. Kuczmann and A. Iványi. Neural network based scalar hysteresis model. Pro-
ceedings of the 10th International Symposium on Applied Electromagnetics and
Mechanics, Tokyo, Japan, pages 493–494, May 13-16, 2001.

iv



Miklós Kuczmann, PhD Theses 2004
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