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1 Introduction

In electrical engineering practice, the simulation of deg, measuring arrangements
and various electrical equipments is based on Maxwell'sagqas coupled with the
constitutive relations. It is very important to take intocaant the hysteretic behavior
as well as the vector property of the magnetic field quastitidowever, in some cases
it is adequate to use constant permeability or single vahmdinearity. Hysteresis
characteristics must be taken into consideration whenexample, hysteresis losses in
electrical machines or effects related to the remanent stagtion are to be calculated.
The second chapter is a summary of Maxwell's equationsy fleein in the case of
nonlinear static magnetic field problems and of nonlineatyeclirrent field problems.
Here, we give the correct description of all the possibleeptial formulations used in
solving static magnetic field problems and eddy current fiettblems.

Chapter 3 presents the weighted residual method, which eamsed to solve the
nonlinear partial differential equations obtained fromxXMell's equations by applying
potentials. Here the weighted residual method is appligti¢onveak formulation. The
finite element method is a possible technique to solve nwallyrithe partial differential
equations formulated by using the weak form. It is noted hkat the finite element
method is one of the most widely used methods to solve eleetgoetic field problems.

In chapter 4, we summarize the finite element method fromatréhe nodal finite
elements as well as the newer vector elements. This chaptery useful for students
studying applied electromagnetics in faculties of elealrengineering, too.

The fifth chapter presents the polarization method as welafixed point technique
to solve nonlinear electromagnetic field problems. The retigrield intensity or the
magnetic flux density is split into a linear term and a nordinerm, as defined by the
polarization method. Nonlinear equations can be formdlat® a fixed point equation,
which is solved iteratively by using the fixed point techréqurhis method results in a
convergent numerical tool to solve nonlinear equationa,system of nonlinear equations,
however, the parameter of the linear term must be selectadjrecial way.

The last chapter is the collection of seven problems solwedhb finite element
method. The problems have been solved by using the usedliyigraphical user interface
and functions of COMSOL Multiphysics, which is a commerdiaite element software.

Dr. Miklbs Kuczmann, PhD

Associate Professor
kuczmann@ze. hu
http:// maxwel | . sze. hu



2 Potential formulations in
electromagnetic field

The numerical analysis or the computer aided design (CA@noarrangement, which
require electromagnetic field calculation can be charaetéby the electric and magnetic
field intensities and flux densities.

For determination of these quantities in the electromagtieid, one method is to
find the solution of the partial differential equations df field quantities under prescribed
boundary conditions. The mathematical description ofteteand magnetic fields can be
formulated by the differential form dflaxwell's equationswhich are the collection of
partial differential equations of the electric field intépsE, the magnetic field intensity
H, the electric flux densityD and the magnetic flux densit8. The source of the
electromagnetic field can be the electric current dengijtthe electric charge densipy
the currents, voltages, etc. Constitutive relations betwthe above quantities are defined
to take into account the macroscopic properties of the nmedibere the electromagnetic
field has been studied.

Itis very important to note that the numerical analysis et&lomagnetic fields results
in an approximate solution of the partial differential etijoias expressed from Maxwell's
equations. The partial differential equations to be solgad be formulated for field
guantities or for potentials and the resulting solutiorfilfek the prescribed boundary
conditions as well.

There are several studies on the basic equations of thetegnetic fields and on
their solution based on different potential formulationlB, 28,41-43,52,60,61,81-83].
In the first part of this chapter a short summary of the basiagqgns, i.e. Maxwell’s
equations, boundary and interface conditions can be fowsad on the above cited
widely read books.

Here, we only focus on linear and nonlinear static magnetid firoblems, moreover
on linear and nonlinear eddy current field problems. The Bbtaxwell’s equations can
be transformed into one or two partial differential equiasiby using potentials. Boundary
and interface conditions can also be represented by palgnfihe potential formulations
are presented in the second part of this chapter.
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2.1 Maxwell’s equations and interface conditions

2.1.1 Maxwell's equations
A. The differential form of Maxwell's equations

Electromagnetic field simulation problems can be chareetdby the field intensities and
the flux densities described by the partial differentialapns derived fronMaxwell’s
equationaunder prescribed boundary conditions.

Maxwell’s equations define relations for the electromaigrfetld quantities and the
source elements, i.e. the electric and the magnetic fiethgities, the electric and the
magnetic flux densities, the charge and current distributibxpletively, the so-called
constitutive relations are appended to Maxwell's equatimndescribe the properties of
the media. The differential form of Maxwell's equations ssfallows:

VxH(r,t):J(r,t)—l-%, (2.1)
V x E(r,t) = —%, (2.2)
V-B(r,t) =0, (2.3)
V- D(r,t) = p(r,t), (2.4)
B(r,t) = o[ H(r,t) + M(r,1)],

J(r,t) =o[E(r,t) + E;(r,t)], (2.5)

D(r,t) = eoE(r,t) + P(r,t).

The presented symbols and variables with their name andrusltsystem can be found
in Table2.1 (ugp = 47 - 107" H/m, g9 = 8.854 - 10712F/m). This is the set of partial
differential equations, which can be used in the frame ofranyierical field analysis tool,
e.g. in the finite element method.

The field quantities are depending on spaead on time, therefore in the following
a shorter notation will be used, that B = H(r,t), J = J(r,t), D = D(r,t),
E =E(r,t), B=B(r,t),p=p(r,t), M = M(r,t), E; = E;(r,t), P = P(r,t).

The sources of the electromagnetic field are the electriceotidensity.J and the
electric charge density.

The first Maxwell's equation (2.1) covers tlenpere’s lawin differential form. The
first term of the right-hand side is the current density ofc¢generated by electrons
moving inside coils) andddy currentsnside conducting material. The second termis the
so called displacement current in dielectric media, whichenerated by a time-varying
electric field. This equation represents that currentsiaactors or eddy currents flowing
in conducting materials and time-varying electric fieldagmte magnetic fields as it is
presented irfFig. 2.1.

The second Maxwell’s equation (2.2) is the differentiahfionf Faraday’s law This
states that the time-varying magnetic field induces eledield as it is illustrated in
Fig. 2.2.
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Table 2.1. Name and Sl units of symbols in Maxwell’s equation

0
c
>
=

Notation | Quantity

H(r,t) | magnetic field intensity
E(r,t) | electricfield intensity
B(r,t) | magnetic flux density
D(r,t) | electric flux density
J(r,t) | electric current density
p(r,t) electric charge density
M (r,t) | magnetization

E;(r,t) | impressed electric field
P(r,t) | polarization

BlmBlw BB | EI< B> B|n 8> 8|n H El<El

140 permeability of vacuum
o conductivity
€0 permittivity of vacuum
AJ AT+ 22
L >) ! >)
(@) The electric current density generates (b) The electric current densityy and the
magnetic fieldH displacement current densi§/D/dt¢ generate

magnetic fieldH

Fig. 2.1. Explanation of the first Maxwell's equation

In time-varying situation the first and the second Maxwedkpiations are coupled,
i.e. the time-varying magnetic field generates electridfield this electric field generates
eddy currents inside the conducting materials, which ecismnodify the source magnetic
fields.

Equation (2.3) states that the magnetic field is divergdrex-i.e. free magnetic
charges do not exist physically and magnetic flux lines clge® themselves. This is the
magneticGauss’ law

Equation (2.4) is the electriGauss’ law This means that the source of electric field
is the electric charge and electric flux lines start and clgman the charge.
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oB
|

L )

Fig. 2.2. The time variation of the magnetic flux dengit} /ot
generates electric field intensify

There is an important relationship between the variatichefurrent density and the
charge density, the so-calledrrent continuity equatiofalso calleccharge conservation
law). This law is coming from the first Maxwell's equation. Tagithe divergence of
(2.1), the following equation can be obtained:
oD 0
V-(VXH):V-(JJrE)=V-J+§V-D. (2.6)

The left-hand side is equal to zero according to the identity
V- (Vxwv)=0, (2.7)

for any vectorw = v(r,t) and the second term on the right-hand side can be rewritten by
applying equation (2.4). Finally the current continuityiation has the form

dp

VTt

—0. (2.8)

This equation means that the variation of currents and ehdigjribution according to
space and time is depending on each other.

B. The integral form of Maxwell's equations

There is an other form dflaxwell’'s equationsthe so-called integral form,

]{H-dl:/r<J+aa—?)-dF, (2.9)

0B
?{E-dl_—/rﬁdl“, (2.10)
?{B dr =0, (2.11)
T
?{D-dr:/pdg. (2.12)
T Q

The constitutive relations have the same form as in (2.5).
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The relationship between the integral forms (2.9) and (Rah@ the differential forms
(2.1) and (2.2) can be noticed by applying Stokes’ theorem,

]{v-dl:/va-dF, (2.13)
l T

wherev = v(r, t) is a space vector, which may depend on time, the vediceaddI" are
illustrated inFig. 2.3. In this figure, the relation between the circulationwtibe loopl
and the positive (outer) normal unit vectercan be seen as well.

The first Maxwell's equation (sdeg. 2.3) says that the line integral of the magnetic
field intensity vector along any closed loéps equal to the sum of currents or to the
surface integral of current densities flowing across tha Brieounded by the path The
displacement current has the same effect as the conductingnt. This is the classical
form of Ampere’s law In other words it can be stated that if a current is flowingdas
conductor, then a magnetic field is generated in the viciofityhis conductor.

Fig. 2.3. The Ampere’s law

The surface integral of source current densltyy = oF; is equal to the current
flowing into the surfacé, i.e.

/ Jo-dl =1, (2.14)
T

wherei = i(t) ori = I.

The second Maxwell's equation says that the line integrii@klectric field intensity
vector along any closed lodpis equal to the surface integral of the time variation of
magnetic flux density vector across the ardaounded by the path This is the classical
form of Faraday’s law In other words, if the flux = ®(¢) is varying with time, then
a corresponding induced voltage = u;(t) is generated between the two poles of a coil
placed inside this time varying flux (s€gg. 2.4),

w(t) — 420

— 2.15
- (2.15)
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Fig. 2.4. The Faraday’s law

because of definitions
u;(t) = %E -dl, and @ = / B .dI. (2.16)
l r

The relationship between the integral form (2.11) and (Rah2l the differential form
(2.3) and (2.4) can be expressed by apply@ayss’ theorem

]{v-dF:/V-de, (2.17)
r Q

wherev = v(r, t) is a space vector, which may depend on time, the veltt@nd volume
Q are represented iAg. 2.5.

The third Maxwell's equation says that the surface integfttie magnetic flux density
on a closed surfack is equal to zero, i.e. the flux lines are closed.

Fig. 2.5. The Gauss’ law
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The fourth Maxwell’s equation declares that the surfacegrdl of the electric flux
density on a closed surfatds equal to the volume integral of the charge density endlose
by this surface representing the voluf@s it is illustrated irFig. 2.5. The flux lines are
starting and closing at electric charges. The outer normiaMector of the volumé? is
denoted byn. The volume integral of charge density is equal to the chérge

/deQ = Q. (2.18)

C. The constitutive relations

Equations in (2.5) collect the so-callednstitutive relationswhich — depending on the
properties of the examined material — describe the relghigrbetween field quantities.
In the simplest case these relations are linear, i.e.

M=xH, E,=0, P=c¢yxyFE, (2.19)

wherey andyy are the magnetic and the dielectric susceptibility and

B=uH, J=0E, D=:¢E, (2.20)
where

1= po(1+x) = popr, (2.21)
and

e =eo(l+ xa) = €o&r (2.22)

Herepu, = 1 + x is the relative permeability;. = 1 + x4 is the relative permittivity
of the material and the conductivity is constant. The second equation in (2.20) is the
differential form of Ohm’s law.

Constitutive relations are generally nonlinear, thatésghrmeability, the conductivity
and the permittivity depend on the appropriate field quistit

p=uH,B), oc=0(E,J), ¢=¢c(E,D). (2.23)
This can be written in another way,
B=B(H), J=J(E), D=D(E), (2.24)

whereB(+), J(-) andD(-) are operators. The first one of the above equations will be in
focus in the following, which can be expressed by the hysism@erator, represented by

B=%{H}, or H=%'{B). (2.25)

If the material properties are independent of spgadbey are homogeneous, otherwise
they are inhomogeneous,

p=ulr), oc=olr), e=e(r). (2.26)
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Constitutive relations may depend on the frequency of atioit as well,

p=p(f), O'ZU(f), e=¢(f). (2.27)

When the constitutive parameters depend on the directidheofipplied field, the
materials are anisotropic, otherwise they are isotropig lfhear equations in (2.20) states
for isotropic materials). In the anisotropic case the petility, the conductivity and the
permittivity are tensors,

B=[uH, J=[E, D=[E, (2.28)
for example
Hxx Mmy Mz
W= by Hyy Hyz |- (2.29)
,uzz ,uzy /Lzz

In the most general situation, the constitutive relatioapahd on all of the above
variables, e.g.

B=%{H,r, [} (2.30)

D. Energy of electromagnetic fields

Theenergy balance equatiaf electromagnetic fields can be expressed from Maxwell's
equations. After multiplying the equation (2.1) byE and the equation (2.2) b#f, then
summing these equations, the following expression can tzrau:

H~V><E—E~V><H:—H-8—B—E~J—E~8—D. (2.31)
ot ot
After applying the identity
V(ExH)=H-VxE—-E-VxH (2.32)

on the left-hand side and integrating the resulting equoaticer a volume bounded by
a surfacel” and using Gauss’ theorem, it results in the energy balangatieq of the
electromagnetic fields,

/<E.‘9_D+H.a_B)dQ+/E.Jdﬂ+j{(ExH)-dr_o. (2.33)
Q ot ot Q r

The first volume integral is the rate of change of energy dg$ielectromagnetic fields
w = w(r,t) in the volume, i.e.

dw oD OB
S =E o tH - (2.34)

The second integral can be reformulated by using the seapmnatien in (2.5),

2
E,J_<£_Ei).J_ﬂ_Ei.J, (2.35)
g g



10 2. POTENTIAL FORMULATIONS IN ELECTROMAGNETIC FIELD

This results in

2
/(E.a_D+H.a_B)dQ+ &dﬂ
Q

3t 8t QO 0 (236)

—/EZ—-JdQJr?{(ExH)-dr:o.
Q r

Here the second integral is thessipated energierm, i.e. theloule heatthe third integral
contains the energy supplied by the sources and finally #teslarface integral is the
intensity of energy flow, i.e. the rate of change of energyssimy a unit area whose
normal is oriented in the direction of the vectBrx H (seeFig. 2.6(a) and-ig. 2.6(b)).
This is the so-calle®oynting vector

S=Ex H. (2.37)
AH
E
S=ExH
(a) The direction of Poynting vectd$ (b) The energy crossing the aréR

Fig. 2.6. The Poynting vector

Theenergy densityw = w(r, t) in linear and isotropic media has the form
wr,t) = % (eE? 4 pH?) . (2.38)

In nonlinear and anisotropic media the following expressican be used to determine
the electric and the magnegnergy density

D B
We = / E(D)-dD, and w, = / H(B)-dB, (2.39)
0 0

which depend on the shape of characteristics given by thextips in (2.24).

2.1.2 Interface and boundary conditions

Field equations are valid for points in whose neighborhdedahysical properties of the
medium vary continuously, or in special case they are catstal et us imagine that
there is a surface bounding one medium with material paesgt, o; ande; from
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another one body with material parametgsso2 andes, i.e. there occur sharp changes
in parameters. In this situationterface conditionsn the electromagnetic field quantities
must be fulfilled.

In the case of static magnetic field problems and in eddy otifreld problems the
open boundary is usually modeled by a sphere with a radissco. The energy crossing
the area of this boundary is equal to zero, because theieariait energy of electric and
magnetic field is taking place inside the bounding sphereis Tbndition can only be
fulfilled if

lim 7*(E x H) -n =0, (2.40)
i.e.
lim r|E| =0, and lim r|H|=0. (2.41)

This means that the electric and the magnetic fields musshatiinfinity.

In other words, we can say that during the solution of Maxwedlquations, the
interface and the boundary conditions have to be taken ietoumt along the interface
of the materials and at the boundary surfaces of the probégiom. Here interface and
boundary conditions are collected without deduction.

The used notations are presentedrig. 2.7. The interfac&" (boundary surface) is
placed between two regions denotedby and(2, with material parameters;, o1, €1
andus, o2, €2, respectively. The normal unit vectaris conventionally equal to the outer
normal unit vector of the medium filling the regiéh (heren = ny; andn = —ny).

Qs
E27 DQ; HQ; BQ; J2

H2, 02, &2
Tn
r

E17 Dla Hla Bla Jl

M1, 01, €1
O

Fig. 2.7. For the behavior of electric and magnetic field dtias along the interfacE

A. Electric and magnetic field intensity

The interface conditions prescribe continuity for the &migal component of the electric
field intensity,

n X (EQ — El) =0. (242)
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The surface current densiti{ relates to the tangential component of the magnetic
field intensity vector,

nX(Hg—Hl):K. (243)

The surface current densify is flowing on the surface tangentially to the normal vector
unitn. If there is no surface current density on the interfacetdhgential component of
the magnetic field intensity is continuous,

’I’LX(HQ—Hl):O. (244)

If I" denotes the bounding sphere of dom@ini.e. E; = 0 andH, = 0, moreover
E = E, andH = H 1, then theboundary conditionsan be formulated as

—nxE=0, or Exn=0, (2.45)
and

—nxH=K, or Hxn=K, (2.46)
or (if K = 0)

—-nxH=0, or Hxn=0. (2.47)

B. Electric and magnetic flux density, current density

On the interface of different dielectric materials the nalsomponent of the electric flux
density is continuous only if there is no surface chapges 0,

n- (Dg - Dl) = O, (248)
otherwise the normal component of the electric flux density & jump on the interface,
n - (DQ — Dl) = Ps- (249)

On the interface of different magnetic materials, the ndromponent of the magnetic
flux density must be continuous,

The charge conservation law yields the continuity of thenmadrcomponent of the
conducting current in the case of eddy current field,

’I’L'(JQ—Jl):O, (251)

or generally

ot ot

n'(JQ_J1)+n.<8D2 apl) 0

(2.52)

is valid on the interface.



2.1. MAXWELL'S EQUATIONS AND INTERFACE CONDITIONS 13

If T denotes the bounding sphere of dom@in i.e. D, = 0, By = 0, J, = 0 and
0Dy /0t = 0, moreoverD = D,, B = B; andJ = J; then theboundary conditions
can be formulated as

—-n-D=ps, or D-n=—p,, (2.53)
or

n-D=0, or D -n=0, (2.54)
if p, =0and

-n-B=0, or B-n=0, (2.55)
and

—n-J=0, or J-n=0, (2.56)
or generally

—n~J—n-aa—1t):O, or J~n+8a—lt)~n:O. (2.57)

It can be noted that equation (2.55) can be generalized as
-n-B=b, or B-n=-b, (2.58)

whereb = b(r, t) is the charge density of fictitious magnetic surface charges
These general conditions will be rewritten in problem sfieéorm in section 2.2.

2.1.3 Classification of Maxwell’s equations

The usual classification dflaxwell’s equationss presented here. In the simplest case the
time variation of the field quantities can be neglected,@t = 0. This kind of fields

is denoted as static field, when the magnetic, the electuctla@ current fields can be
regarded independently, because there are no interatiidween them. In time varying
case wherd/dt # 0, the magnetic and electric fields are coupled resultingélsgan of
eddy current fields and wave propagation of electrodynamics

(i) Static magnetic fieldThe time independent current density = J,(r) generates
a time independent magnetic field intensify = H (r) and the time independent
magnetic flux densityB = B(r). The equations are the following:

V x H = Jy, (2.59)

V-B =0, (2.60)
woH, in air,

B =< puou-H, in magnetically linear material, (2.61)

po(H + M), in magnetically nonlinear medium.
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(ii)

(iii)

In nonlinear medium, thenagnetization vectoM = M(r) is depending on the
magnetic field intensity vector, i.8\M = 27 {H }. This operator can be described
by hysteresis models denoted By= #{H }.

This constitutive relationshippas an inverse form as well,

1B, in air,
H =< yv.B, in magnetically linear material, (2.62)
%~'{B}, in magnetically nonlinear medium.

Herevy = 1/po, v = 1/, are the reluctivity of vacuum and the relative reluctivity.
In magnetically nonlinear medium it can be represented bineersehysteresis
operator, H = 2~ '{B}.

The source current distribution ®lenoida) which is evident from theurrent
continuity equatior{2.8),

V- Jo=0. (2.63)

This means that all current lines either close upon themasebr start and terminate
at infinity.

This is the situation when magnetic field generated by ctircarrying coils is
simulated, or the static behavior of electrical machingkésquestion. 17, = 0,
then a boundary value problem should be solved, which carsed to simulate
e.g. the field of magnetic poles.

Static electric field The source of electrostatic field described by the elefitrid
intensity E = E(r) and by the flux densityD = D(r) is the charge = p(r).
The field equations are as follows:

VxE=0, (2.64)
V.-D = p, (2.65)
D=cE, or D=¢FE+P, (2.66)

whereP = P(r) is the polarization vector. For example, this is the situatvhen
simulating the electrostatic field inside capacitors. gy static electric field is
useful in high voltage applications, e.g. in transmissioa problems.

Currents in conducting material§ he motion of charges results in currents flowing
in the conducting material, which can be expressed by tidepandent equations

V x E=0, (2.67)
V.J =0, (2.68)
J=0oE, o J=o0(E+E;). (2.69)

Here E; = E;(r) is the impressed electric field intensity. The testh; can be
represented by the source current dendigy= o E,, i.€.

J=Jy+0E. (2.70)
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These equations can be used efficiently when the currentbdison of a coil
cannot be supposed to be uniform, but can be computed asemtfiow problem.

(iv) Eddy currentfieldIn time varying cased/dt # 0), the magnetic and electric fields
are coupled, but the displacement current can be neglatthe iusual frequency
range, becausd| > |0D/dt|. The equations of 'quasi-static’ field problems are

as follows:
VxH-=J, (2.71)
0B
E=—— 2.72
VxE=-"", 2.72)
V-B =0, (2.73)
woH, in air,
B =< pop-H, in magnetically linear material, (2.74)
po(H + M), in magnetically nonlinear medium,
J=0E. (2.75)

The constitutive relation of the magnetic material may htheanverse form (2.62).

This approximation is applicable in all power frequency laggtions involving
metallic structures. The analysis of power losses in a@dtmachines or some
nondestructive testing problems and the prediction ofsiean problems can be
simulated by this kind of equations.

(v) Wave propagation In this case all terms of Maxwell's equations are considere
without any modification. This group of equations is usefulthhe analysis of
waveguides, cavities or resonators at high frequencies.

In the following sections, we turn our attention mainly te tinear and nonlinear
static magnetic field and the eddy current field problems.

2.2 Magnetostatics and eddy current field problems

In the case of magnetic materials, there are two groups di@mohave to be formulated,
the static magnetic fiel&nd theeddy current field The typical structure — as they can
be found in electrical engineering applications — with s, interface and boundary
conditions of these problems are formulated in this section

2.2.1 Static magnetic fields

The typical structure of a static magnetic field problem casden irFig. 2.8. In the case
of static magnetic field, the currents flowing in cailéepresented by the source current
densityJ ) generate electric field as well as magnetic field, but themaggfield has no
interaction with the electric field. In this cabtaxwell’s equationgan be written as

VxH=Jdy in QqUQ,, (276)
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V-B=0, in QyUQ,,, (2.77)
woH, in air, Q,
B=< uou-H, in magnetically linear material, €2,,, (2.78)

PB{H} =p,H + R, in magnetically nonlinear medium, ,,,.

The last relation is defined in section 5.5.2. Taking themjgace of equation (2.76), the
solenoidal property of the source current density can baioéd,

V-Jy=0. (2.79)
The constitutive relationship (2.78) can be used in itsiisedorm as well,

B, in air, Q,
H=< 1yv.B, in magnetically linear material, 2,,, (2.80)
B B}=v,B+1I, in magnetically nonlinear medium, €2,,,.

The last relation is defined in section 5.5.1.

A current excitation (or a current density ) with given amplitude is placed into air
Qo and symbok2,, represents the magnetic material (which can be represbptiénear
or nonlinear, isotropic or anisotropic, single valued osteyetic model). The current
density can be calculated from known current as

Ni
|Jo| = S (2.81)

whereN is the number of turns of the coil arff] is the cross section area of the coil. The
direction of J is generated by the geometry of the coil. The excitationenirgenerates
magnetic fieldH around the coil.

Maxwell’s equations are valid in the problem regi@n= Q¢ U ©,,,. The problem
region{? is bounded by, which has two disjunct parfSy andI'g, i.e. 92 = 'y U
I'p. Along the dashed line ikig. 2.8 denoted by, the tangential component of the

N\
:\ air r B
. .
1
Ty, Ho i —
1
- Rm
n L FmO *
: magnetic material *"'LO I's
: Qm H7 B
T,
: [y OT %{} o Qo
1
:/ FB FB
v

Fig. 2.8. Structure of a static magnetic field problem
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magnetic field intensity is given by a known surface curremgity K. If K = 0 then
I'y represents a symmetry plane. The boundagsyis usually the closing boundary or a
symmetry plane of the problem region, where the normal carapbof the magnetic flux
density is vanishing. It is assumed to be known in a térlong the interface between
the magnetic material and the air regiony, the tangential component of magnetic field
intensity and the normal component of the magnetic flux dgrmse continuous. These
conditions can be formulated as (see section 2.1.2)

Hxn=K, or Hxn=0, on Iy, (2.82)
and

B-n=-b, or B-n=0, on Ip, (2.83)
wheren is the outer normal unit vector of the region, moreover

Hyxng+H,,xn,,=0, and Bg-ng+ B,, -n,, =0, on I',,0, (2.84)

whereng, n,,, Hy, H,,, By and B,,, are the outer normal unit vectors of the region
filled with air and with magnetic material, moreover the metimfield intensity and the
magnetic flux density in the appropriate region along therfate, respectively, and it is
evident thathg = —n,,, alongl',,.

2.2.2 Eddy current fields

In time varying cased/dt # 0), the electric and the magnetic fields are coupled. Currents
flowing in coils generate magnetic field in the vicinity of tbeil. The time variation of
this magnetic field induces electric field that causes eddyents flowing in conducting
materials. The magnetic field generated by the eddy curmaotifies the effect of
sources. A typical structure of an eddy current field probtam be seen ifig. 2.9.

In the eddy current free region denoted(y, there is a magnetic field with equations

VxH=Jy in Q, (2.85)
V-B=0, in Q,, (2.86)
B=uH, or H=vB, in . (2.87)

Sometimes it is filled with air{ = po, orv = 1y).
At low frequencies and with normal conducting materials, displacement currents
are small compared with the conducting currents and theyeareglected, i.e.

0D /ot < |J]|. (2.88)

Consequently, the studied electromagnetic fields can berided by the 'quasi-static’
Maxwell's equationsvritten in differential form as

VxH=J, in Q, (2.89)
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Fig. 2.9. Structure of an eddy current field problem
0B
VXxE=——, in € (2.90)
ot
V-B=0, in (2.92)
B poprH in magnetically linear material, ), (2.92)
T\ #B{H}=p,H+R, in magnetically nonlinear medium, Q,, '
J=0cE, in Q.. (2.93)

The last relation in (2.92) is defined in section 5.5.2. Ofrseyutheconstitutive relation
(2.92) can be used in its inverse form as well,

H— { Vv, B, in magnetically linear material, ), (2.94)

% Y B}=v,B+1, in magnetically nonlinear medium, {2...

The last relation is defined in section 5.5.1.
Taking the divergence of equation (2.89), the solenoidaperty of the induced
current density can be obtained,

V.J=0, (2.95)

meaning that eddy currents close upon themselves.

A current excitationi(¢) (or a source current densitfj,(¢)) with given signal shape
is placed into the nonconducting regi@n (which is usually the air region) and the eddy
current distributions E is unknown in the conducting materi@. (the corresponding
magnetic field generated by eddy currents is denotef byn the illustration inFig. 2.9).
Regionf2. is sometimes filled with magnetic material (which can beespnted by linear
or nonlinear, isotropic or anisotropic, single valued ostieyetic model).

Static and 'quasi-static’ Maxwell's equations are validtie eddy current free region
Q,, and in the eddy current regidp., respectively. The two regions are coupled through
the interfacd’,,.. The eddy current free regidn,, is bounded by two disjunct partsy,,
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andI'z, the eddy current region is bounded by two disjunct pBftsandI’ . Generally,
the problem regiof2 = Q,, U Q. is bounded by} =T'y, UTp Uy, UT'E.

Along the dashed line placed in the eddy current free regidfig. 2.9 denoted by
I'y,, the tangential component of the magnetic field intensignien by a known surface
currentdensityK. If K = 0thenI'y, represents a symmetry plane, where the tangential
component of the magnetic field intensity is vanishing. Therglaryl's is usually the
closing boundary of the problem region, where the normalpmment of the magnetic
flux density is vanishing. It is assumed to be known by a terhe dashed line signed
in the eddy current regiofi, usually denotes a symmetry plane, where the tangential
component of the magnetic field intensity is zero dhe is the boundary where the
tangential component of the electric field intensity is ghaimg. The surfac& p may
also model electrodes where a voltage source is connectbe wonductor. Along the
interface between the two disjunct regibp., the tangential component of magnetic field
intensity and the normal component of the magnetic flux dgasé continuous, moreover
the normal component of the induced eddy currents are equard. These conditions
can be formulated as (see section 2.1.2)

Hxn=K, or Hxn=0, on Iy, (2.96)
and

B-n=-b, or B-n=0, on Ip, (2.97)
and

Hxn=0, on Iy, (2.98)
and

Exn=0 on Ig, (2.99)

wheren is the outer normal unit vector of the region, moreover

H.xn.+H, xn,=0, on I, (2.100)
and

B. - n.+B, - n,=0, on I, (2.101)
and

J-n.=0, on I, (2.102)

wheren,, n., H,, H., B, and B, are the outer normal unit vector of the region
filled with air and with conducting material, moreover thegnatic field intensity and the
magnetic flux density vectors in the appropriate region eibundary, respectively and
it is evident thatn,, = —n alongl,,..

The magnetic field must satisfy the initial conditions, agl we

B,(t=0)=B,o, in , and B.(t=0)=DB.y, in Q. (2.103)
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As a conclusion of the boundary conditionslog, and onl' g, the normal component
of the eddy current density is vanishing on the boundayy because of equations (2.98)
and (2.89), while on boundaryg, the normal component of magnetic flux density is
equal to zero coming from equations (2.99) and (2.90), i.e.

J-n=0 on Iy, (2.104)
and
B-n=0 on Ig. (2.105)

As a proof, let us take the normal component of the first Maksvetjuation (2.89). It
results in the expressiqiV x H) -n=J -n,i.e. V- (H x n) = J - n. The left-hand
side of this equation is equal to zero B, according to (2.98),i.eJ -n =0o0onTy,.
The equatiomB - n = 0 can be obtained similarly.

2.3 Potential formulations in static magnetic and
eddy current field problems

There are several potential formulations applicable toudate the electromagnetic field
guantities, fundamentally scalar and vector potentiatstiused [3-11, 13, 20-23, 25,
28,41-43,47,49,52,65, 66, 72—75, 79-83, 87, 93]. The aipotdntial formulations is
to reduce the solution of Maxwell's equations to the solutid different type of partial
differential equations at prescribed boundary conditions

This section deals with the potential formulations of statiagnetic field and eddy
current field problems.

2.3.1 Static magnetic fields

The general definition oftatic magnetic fielgproblems can be found in section 2.2.1.
The static magnetic field is defined by Maxwell’'s equation§§2, (2.77), constitutive
relations in (2.78) or in (2.80), moreover the boundary artdriace conditions (2.82),
(2.83) and (2.84).

The static magnetic field can be described byrddrced magnetic scalar potential
d, by thetotal magnetic scalar potential, by the combination of these scalar potentials
(® — ¥-formulation), or by thenagnetic vector potential. The combination of these
formulations is also valid, resulting th& — ®-formulation or thed — A — ®-formulation.

It is noted that the most economical way is using the scaltemial, however, it
results in some problems, especially when iron parts wigh lpiermeability are present.
In this situation the combination of the two scalar potdatian be used, but this introduces
some extra conditions on the iron/air interfaces. The knmsational part of the magnetic
field intensity according to coil’'s current must be calcethbeforehand. This potential is
called impressed current vector potenffal The use of magnetic vector potential is more
general, however, the number of unknowns is increasing wheualating 3D problems.
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A. The reduced magnetic scalar potential, theb-formulation

The magnetic field intensity vector can be split in two pasts a
H=Ty+H,, (2.106)

The curl of the so-calleémpressed current vector potentidl, is equal to the source
current density/y and H ,,, is nonrotational,

VxTy=dJg, and V x H,, =0. (2.107)
The first Maxwell’s equation (2.76) can be fulfilled by thiscdenposition,

VxH=Vx(Tog+H,)=VxTy+V x H, =J. (2.108)
The divergence oI’y can be selected according@ulomb gauge.e.

V-Ty=0, (2.109)

which selection can be useful when creating the funciign

Itis importantto note that the two terrifg andH ,,, can be calculated separately. The
first step is the generation of the functi@iy according to the source current denshty
satisfying the first equation in (2.107), th&h,,, can be represented by a scalar potential.

Generating the functionTy. The first step is to determine tivapressed current vector
potential Ty. There are many possibilities for the construction of therse termTy
from the known source current densify;. Here the four most attractive and the most
widely used solutions are formulated. The impressed fialdbeacalculated by using the
Biot—Savart’s law,T’y can be built up by simple analytical expressions if the gaome
of coils is simple, or by the solution of a partial differaitequation with appropriate
boundary conditions. It must be noted tH&g is calculated in free space, i.e. = ug
must be set everywhere in the problem region.

(i) Applying the Biot—Savart’s lawl he impressed current vector potenflg) can be
selected as the magnetic field of coils in free spBGecalculated byBiot—Savart’s

law (Fig. 2.10),

To(rs) = Hy(ry) = i /Q,, JO(T;)I’X_(:'; 1) 40, (2.110)
or (Fig. 2.11)

Tor)) = Hi(r) = 12 f %f}” (2.111)

Herer; is the field point wherdd (7 ) is calculatedy ; andr; are the source
points whereJ(r ;) andIy(ry) is given. Symbol 'O’ denotes the origin of the
coordinate system. Itresults in a divergence-free imeksarrent vector potential.
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(i)

o

Fig. 2.10. Magnetic field intensitif ; generated by source current density

Fig. 2.11. Magnetic field intensitif ; generated by a filamentary conductor

The source term should be calculated with a given value akati(/y = 1A is

a good choice), or a given value of current density (| = 1A/m?). Then the
calculated source terfy can be multiplied by the actual value of current during
simulation, e.g. whei(t) is sinusoidal od = 0.2A, etc.

Simple analytical formulation can be used when the geonadttlye coil is simple
(for example the formuldd = I,/2rm can be used in case of one filamentary
conductor in 2D simulations). However, this step can be & tiere consuming
task, especially in 3D situations.

Creating a simple function satisfying x T, = J,. Extremely simple analytical
expressions can be formulated in case of simple coil shapédsillustrated by

a cylindrical coil inFig. 2.12. In this case the integration can be avoided and a
simple, tangentially continuous analytical expressiamlza built up.

If Ty has only one component in thedirection, i.e. Ty = Ty .e, moreover
To,» = To,.(r) or Ty, = Tp..(z, y), then source current density in the- ¢ or in
thex — y plane can be represented easily.

In the illustration shown irFig. 2.12, the cylindrical shaped coil is placed around
thez-axis with center at the origin of a cylindrical coordinaystem. The inner and
outer radius of the coil if2 andR’, respectively, the height of the coil isand the
current density isJ, = |Jo|e,. The vector potential’y has only one component
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Fig. 2.12. Creatind’, for cylindrical shaped coil

in the z direction, i.e.Ty = Ty, €., where

0, if |z2] > h/20rr >R,
To. =< |JolL, if |z| < h/2 and r < R, (2.112)
|Jol(R' — ), if|z] <h/2andr >R andr <R’

In this casel’y is equal to zero outside the coil, it is constant inside thkvaoere
the current density is equal to zero and it is varying lingarside the coil where
the current density is not zero. The divergenc&'gfis not equal to zero.

Minimizing an appropriate functionallThe following functional can be built up to
find out the source teril’y:

F{To) = /Q (175 To — o> + (V- To)?] a2, (2.113)
which has to be minimized. This is equivalent to the solutidrthe following
partial differential equations defined in free space:

VxTog=dJy, in Q, (2.114)

V-To=0, in Q. (2.115)
The boundary conditions

Toxn=0, on Iy, (2.116)
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To-n=0, on I'p (2.117)

must also be satisfied() = I' = I'y UT'g). A partial differential equation with
appropriate boundary conditions can be formulated for tle@troned functional
(2.113) what is an advantage of this formulation.

According to the principle of minimum energy, thenctional(2.113) has minimum
value only if the vector fieldl', satisfies the partial differential equations (2.114)
and (2.115). This minimum is a stable configuration of themegotentialT’.

Let us first extract théunctional(2.113),
F{To} :/[|v X To|2=2(V x To)-Jo+|Jo|2(V - To)ﬂ aQ,  (2.118)
Q

and let us introduce a smalariation of the vector potential’y asT'y + adT («
is a small positive number), which results in a variationhsf field energy around
the stable configuration of the potentigj,

y{TOJraaTo}:/ (19 % (T + a6Ty) P
Q

—2[V x (To 4+ adTp)] - Jo + | Jo|* (2.119)
+[V - (To + adTy))?|dQ,

F{To+adT} = / [|v x To|? 4 20 (V x To)-(V x 6T)
Q
+a? |V x 8To|* — 2(V x Tg) - Jo — 2a(V x 8T) - Jo
+|Jo? + (V- To)? + 2a(V - To)(V - 6T)
+a2 (V- éTo)Q}dQ.

(2.120)

This variation can be representedliaylor seriesapproximation as
F{To+adTo} = F{To} + adF{Ty, 6T} + a*6>F{6T,}. (2.121)

Here

§F{To, 86T} = 2/

Q
H(V - To)(V - JTO)] a0,

[(v % To)-(V x 8T) — (V x 8T0) - Jo
(2.122)

and
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S2.F (8T} = / {|V x 8T o) + (V - JTO)Q} an. (2.123)
Q

In concern with the stationary concept, tfiest variation §.%{Ty, 6Ty} has to
be disappear and tteecond variation2.% {6T} has to be positive. In this case
F{T,} leads indeed to its minimum value. The definition of the fiestiation is
(which must be equal to zero)

OF{Ty+ adTo}
Ja

§F{Ty, 86Ty} = =0, (2.124)

a=0

from which

/ |:(v XTO)(V X(;To)—(v X(STO)'JO
¢ (2.125)

H(V - To)(V - 5T0)}d9 —0,

and it is easy to see that the second variation (2.123) idlyqasitive. Using the
identity

Vi(uxv)=v-Vxu—u-V X0, (2.126)

with u = V x Ty, v = 6T in the first integral and witw = Jo, v = 6T in the
second integral and the identity

V-(pv)=v-Vo+¢V-v, (2.127)
with o = V - Ty, v = 8T in the third term results in

0Ty (VXVXxTy—V xJy)dQ
Q

r

Q r

The first boundary integral can be rewritten according tat@epartsl’'y andI'p
of the boundary’,

f(sT() [(V XT()—J()) xn]dF
r (2.129)
:/ (ST()[(VXT()—JQ)XTL]dF
I'yul'p

OnT'g the Dirichlet type boundary conditidiy x n = 0 must be satisfied, i.e. the
tangential component of the variation is equal to zéfBy x n = 0. According to
the identity

JTO'[(VXTO—JO)Xn]:(VXTO—JO)'(nXJTO)

= — (V X TO — Jo) . (6T0 X ’I’L), (2130)
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(iv)

the boundary integral oh; is vanishing. On the rest parts the Neumann type
boundary conditioV x Ty — Jy) x n = 0 must be prescribed to vanish the
surface integral term.

The second boundary integral can also be rewritten in tha for

I I'yul'p
On the parl" 5 the Dirichlet type boundary conditidh, - n = 0 must be specified,
consequentiyT’y - n = 0. On the parl’; the Neumann type boundary condition
V-T, = 0 should be applied to vanish the boundary integral term. iftg@ans that
an extra boundary condition must be specified'gnand onl" 5.

Finally, the integral equation (2.128) results in the fallog partial differential
equation and the boundary conditions:

VXVXTy—VV -Tog=VxJy in Q (2.132)
Toxn=0, on Iy, (2.133)
V- TO = 0, on FH, (2134)
To-n=0, on Ip, (2.135)
(VxTy) xn=0, on Ip. (2.136)

This means that the integral equation (2.128) can be fufife any variation
0T if the partial differential equation (2.132) and the boutydanditions defined
in (2.133)—(2.136) are solved. The solution of this bougdeue problem is a
divergence free impressed current vector potential anduit lme solved by any
numerical field calculation procedure (in this book we areuiing on the Finite
Element Method).

This formulation results igauged impressed current vector potential

Minimizing a functional combined with an appropriate nuinal technique.The
following functional can be built up too, to find out the soeitermTy:

F{To) = / IV x T — Jo[2dQ, (2.137)
Q

which has to be minimized. This is equivalent to the follogvpartial differential
equation defined in free space:

VxTy=dJy, in Q (2.138)
and the boundary conditions are
Toxn=0, on Ipy, (2.139)

To-n=0, on Ip. (2.140)
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A partial differential equation with boundary conditiorancbe formulated for the
mentioned functional (2.137), which can be obtained in dlamway presented in

the last item, only the terms according¥o- T'g = 0 are missing. The result can
be formulated as

VXxVxTy=VxdJdy, in (2.141)
Toxn=0, on Iy, (2.142)
To-n=0, on Ip. (2.143)

The solution of this boundary value problem is a possibléaghof the impressed
current vector potential. It can be solved by a numerical fi@llculation procedure,
which is not sensitive to Coulomb gauge.

This formulation results in anngauged impressed current vector potential

Finally Ty can be regarded as known, because this quantity is caldutegtfore the
numerical simulation.

Calculating the nonrotational part H,,. The second step ob-formulation is the
determination of the nonrotational part of the magnetidfietensity H,,, in (2.106).
It can be derived from the negative gradient ehagnetic scalar potentiab,

H,, =-V3, (2.144)

because of the identity x (V) = 0 for any scalar functiop = ¢(r) (or ¢ = ¢(r,t)).
By this formulation the magnetic field intensity can be veritias

H=T,- V9, (2.145)

which satisfies equation (2.76) exactly. The magnetic sqaitential® is usually called
thereduced magnetic scalar potentiflecause the source term is fundamentally hidden
in Ty.

Applying the linearized form of the nonlinear constitutiegation in (2.78) results in
the magnetic flux density

B =1, (Ty— V®) + R. (2.146)

The divergence of magnetic flux density is equal to zero alingrto (2.77). Finally the
linear partial differential equation of the problem has fitwen

V- (1V®) =V (1oTo)+ V- R, in Q (2.147)

which is a generalizedaplace—Poisson equation

Partial differential equation (2.147) can be obtained iathar way as well. Starting
from the solenoidal property of the source current densfingd by the equation (2.79),
J can be written by the curl of the impressed current vectoemii! according to the
identity V - (V x v) = 0 for any vector functionn = v(r) (orv = v(r, t)),

JQ =V x T(). (2148)
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Substituting the relation (2.148) into Maxwell’s equati{@76) results in
VxH=VxTy = Vx(H-T,=0. (2.149)

The curl-less vector fieldd — Ty can be determined by the negative gradient of the
magnetic scalar potentidl, i.e.

H-Ty=-V® = H=T,—Vo. (2.150)

Substituting the relation of magnetic field intensity in1(20) into (2.77) and using
the linearized constitutive relation in (2.78) also leani¢he partial differential equation
(2.147).

Boundary conditions. Let us now define the boundary and interface conditions of the
d-formulation.

The impressed current vector potenfd) must satisfy the symmetry conditions on
symmetry planes, if any. The tangential component of therésged current vector
potential must vanish off y and its normal component must be equal to zerd'gn
as it was mentioned in (2.133) and in (2.135).

The tangential component of the magnetic field intensitylimgset to the given value
as follows o' g :

Hxn=(Ty—V®)xn=K, on Tp. (2.151)
Avector H = H(r) can be written by the two orthogonal components as Fgpe2.13)

H=(H n)-n+nx(Hxn). (2.152)
The second term is the tangential component, i.e.

nx(Hxn)=nx|[(T)—V®P) xn]=nx K, (2.153)
which can be reformulated as

nx(=Vdxn)=nx(K-T)xn), (2.154)

from which -V ® can be selected as

n x (H xn)
/| Hxn (H-n) n
/H
n Hxn

Fig. 2.13. Definition of the normal and tangential comporwérat vectorH
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Vo =nx(K—-T)xn), (2.155)
because
nx(K-Toxn)=nx{nx(K-Tyxn)]xn}. (2.156)

Using the definition of the gradient of a vector field, the atpma(2.155) results in the
following Dirichlet boundary condition:

® =y, and @0:/n><(K—TO><n)-dl, on I'py. (2.157)
!

If one applies a known source magnetic field intensity ve&fgron the boundary g,
which can be written as a surface current ternfasx n = K, orn x K = H, then

(I):(I)Q, and (1)0:/(H0—TL>< [TO xn])dl, on FH (2158)
l

is valid. Here pathi is lying onT"y and it can be arbitrary.

It is noted that symmetry planes are usually equi-potestighces.

On the rest paiff 5, setting the normal component of the magnetic flux densgylts
in a Neumann type boundary condition,

B-n=-b = (uTo—uV®+R)-n=-b, on Ip, (2.159)

sinceB = p, (To — V®) + R.
If no Dirichlet boundary conditions are prescribed, thien= 0 must be specified at
some points. In this case the reduced magnetic scalar patsninique.

The ®-formulation. The partial differential equation and the boundary coodéi of
a static magnetic field problem solved by the reduced magjsetlar potential can be
written as

V- (1oV®) =V (1oTo)+ V- R, in Q (2.160)
P = (I)(), on FH, (2161)
(1oTo — oV® + R) -m=—b, on Ip, (2.162)

where®, can be determined by the integral (2.157) or (2.158).

B. The total magnetic scalar potential, the?-formulation

The ®-formulation is satisfactory if the permeability of the nigm is not very high In
this case the simulated magnetic fi#ll= T'c — V® does not much differ from the source
magnetic fieldI'y. By increasing the permeability of the medium with lineanstitutive
relation by increasing the slope of the nonlinear charésties (e.g. when soft magnetic
materials are modeled), the resultant magnetic fi€lés decreasing inside the magnetic
material, i.e. Ty ~ V&, which is a strong disadvantage in numerically point of view
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This is the so-calledancellation error when two almost equal quantities are subtracted
from each other.

Fortunately, the source current density is usually zero in ferromagnetic parts with
high value of permeability. In this case, the magnetic fialémsity can be derived from
the so-calledotal magnetic scalar potential as

H=-VY7, (2.163)

sinceV x H = 0 (Jy = 0) inside highly permeable regions.

This can be the situation of magnetic poles. However, in mosttical cases, the
magnetic field intensity is generated by currents flowingoilsc The source coils are
usually placed somewhere around the ferromagnetic pastssdurce currents are not
flowing inside ferromagnetic materials. In this situatidns possible to use the reduced
magnetic scalar potentid in the air region and the total magnetic scalar potential
inside the highly permeable region and the two formulationst be coupled through the
interface between the two regions.

C. The combination of the magnetic scalar potentials, th& — ¥-formulation

This formulation is outdated, the method presented in tikéiteam is more modern.

In this situation the problem region is subdivided into tvegionsQe andQyg as it
is illustrated inFig. 2.14 and? = Qg U Qy. The domairf2g contains all coils and the
permeability is usually equal oy, this is the air region. Here, the magnetic field intensity
is expressed as

H=T)-V®, in Q. (2.164)

Because of the same value of permeabilitflip, no cancellation errorsoccur there.

The rest region contains all the ferromagnetic bodies, ieitsburce current density
is equal to zero, that is why the magnetic field intensity camérived by using the total
magnetic scalar potential,

H=-VY¥, in Q. (2.165)
The partial differential equations are as follows in the subregions:
V- (uoVP) =V - (oTo), in Qo, (2.166)

V- (V¥ =V-R, in Q. (2.167)

The boundary parts ; andI’ g are subdivided int®'y,,, 'y, I' 5, @andl'p,,. On the
'y, UT' g, boundaries, Dirichlet type boundary conditions are spegtéiccording to the
tangential component of the magnetic field intendifyx n = K, i.e.

® =d;, and @0:/n><(K—TO><n)-dl, on Dy, (2.168)
!

U =T, and \Poz/(nxK)-dl, on Tp,, (2.169)
l

or
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Fig. 2.14. The scheme of a static magnetic field problem veittuced
and total magnetic scalar potentials

¢ = (1)0, and (I)Q = /(HQ —n X [TO X ’I’L]) . dl, on FHq), (2170)
l

U=V, and \Ifoz/Ho-dl, on Tp,. (2.171)
l

On the rest part's, U I'p,, Neumann type boundary conditions can be specified
according to the conditiof3 - n = —b,

(‘LL()TO - /Lovq)) n = —b, on FBq), (2172)

(—poV¥ + R)-mn=-b, on Ip,. (2.173)

Interface boundary conditions must be specified along ttezface between the two
subregions$ls andQy. This is denoted by s, v, where the tangential component of the
magnetic field intensity vector and the normal componentefrhagnetic flux density
vector have to be continuous.

The condition for the tangential component of the magneéid fintensity can be
written as

(TO — V(I)) X ne + (—V\IJ) Xng =0, on F.:py\p, (2174)

which can be defined as a Dirichlet boundary condition siryita the boundary condition
(2.157)

U=0-+ /’rl.:p X (TO X ’I’L<p) dl, on F@_]q;. (2175)
l
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Hereng andny are the outer normal unit vectors of the appropriate subregind it is
noted thatny = —nge. Moreover at a poinf,, ® = ¥ must be specified to make the
solution unique.

The condition for the normal component of the magnetic flunsity can be written
as

([L()TO — [L()V(I)) ‘Ne + (—/LOV\IJ + R) Ny = O, on F@_]q;, (2176)

which is a Neumann type boundary condition.
The collection of partial differential equations, boundand interface conditions of
the® — W-formulationis as follows:

V. (1oV®) = V- (uoTo), in Qo 2.177)
V-(i,VU)=V-R, in Qu, (2.178)
b = (I)(), on FH(I), (2179)
U= \Ifo, on FH\I,, (2180)
(oTo — uV®)-n=-b, on Ip,, (2.181)
(—poV¥+ R)-n=-b, on TIp,. (2.182)
U=0+ /’I’ch X (TO X ’I’Lqp) -dl, on qu,\p, (2183)
l
(/LoTo - /L()V(I)) “Ne + (—/LOV\I/ + R) -ng =0, on qu,\p, (2184)

where®, and ¥, can be determined by the integrals (2.168), (2.170), or by6@),
(2.171).

D. Applying the reduced magnetic scalar potential with appopriate
representation of T’y

The cancellation errorinside ferromagnetic materials with high permeability da
eliminated by the appropriate representation of the ingg@urrent vector potential in
numerical field analysis procedures.

The rotational part of the magnetic field intensity is oralp a smooth function
with an infinite number of continuous derivatives, wher&aB is usually interpolated
by simple functions depending on the used method, e.g. bynpaiials having finite
number of continuous derivatives.

A so-calledcompatible approximatioshould be used to interpolate the impressed
field and the unknown nonrotational part. In a finite elemeotpdure this means that
the vector fieldT'y should be represented by edge elements and the scaladfsduld
be interpolated by nodal elements and the order of them neutdosame. In this case,
the ®-formulation has been defined by (2.160)—(2.162) is satisfg. It is advantageous,
because the interface condition (2.183) can be difficulmiplement, moreoveedge
elementepresentation results intangentially continuous vector field
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E. The magnetic vector potential, theA-formulation

Themagnetic vector potentias defined by
B=VxA, (2.185)

which satisfies (2.77) exactly, because of the ideflity x v = 0 for any vector function
v =v(r).

Substituting the definition (2.185) into the first Maxwekliguation (2.76) and using
the linearized constitutive relation from (2.80), it leadshe partial differential equation

VxWwVxA) =Jy—VxI, in (2.186)
when using the source current densfty, or
VXxWVxA)=VxTy—VxI, in (2.187)

when using thémpressed current vector potentiBl, to represent coils as it is introduced
in (2.148).

To ensure the uniqueness of the magnetic vector potemtédivergence of it can be
selected according ©Goulomb gauge

V-A=0. (2.188)

This gauging is useful, because the vector potemtia= A + V¢ also satisfies (2.77) as
well as (2.186) or (2.187), because of the identity« (V) = 0, wherep = ¢(r) is a
scalar function. This is the reason why the magnetic veaitarmial is not unique.

Let us first study a two-dimensional problem, then a threeedlisional one. Gauging
is satisfied automatically in 2D, but unfortunately it is ninoie in 3D. The origin of
numerical problems is the lack of uniqueness of the magretitor potential.

2D problems. In 2D problems Coulomb gaugeé - A = 0 is satisfied automatically, if
the source current density has onlgomponent, the magnetic field intensity vector and
the magnetic flux density vector haveandy components, i.e.

Jo :JO,z(xa y) €,

2.189
H:Hz(xvy)em+Hy(xvy)eya BZBI(x,y)em—i—By(x,y)ey- ( )

In 2D, J is used to represent source current density. The magnetiorygotential has
only z component,

A=A,(z,y)e;, (2.190)

becaused, =0, A, =0andA, = A.(z,v))

€ € e,
: A, A,
B=VxA=|#& £ 0 :ezaa —eyaax, (2.191)
0 0 A, y
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i.e. By(z,y) = 0A./0y and By(z,y) = —0A./0x. The divergence of this one
component vector potential is equal to zero,
v.az 24y (2.192)
0z

Now, let us define the boundary conditions of thformulation.
On the partl'y of the boundary, the tangential component of the magnetid fie
intensity vector can be set to the prescribed value by tlatioel

Hxn=K = WVxA+I)xn=K, on TIyp, (2.193)

which is a Neumann type boundary condition.
The normal component of the magnetic flux density can be set as

B-n=-b = (VxA)-n=-b on Ip. (2.194)
The left-hand side of the last formulation can be rewritten a

(VxA) n=V-(Axn)=-b, (2.195)
finally

V-(nxA)=0b, (2.196)
ie.

nxA=a on Ip, (2.197)

whereV - a = b. This is a Dirichlet type boundary condition. The selectirx is not
evident [11], but in many practical casies- 0, SO

nxA=0, on Ip (2.198)

can be selected.

Finally, the nonlinear partial differential equation ame tboundary conditions of a
two-dimensional static magnetic field problem, which solutsatisfiesCoulomb gauge
can be formulated as

VX WVxA)=Jyg—VxI in Q (2.199)
(WVxA+I)xn=K, on Ty, (2.200)
nxA=a«a on I[p. (2.201)

3D problems. In three-dimensional problems, the uniqueness of the vectiential is
not so evident and it can be prescribed by

(i) implicit enforcement of Coulomb gauge (e.g. when ugiglal elementin the
finite element approximation),

(i) applying a numerical technique, which is not sensitive tuldmb gauge (e.g.
when usingvector element the finite element approximation and taking care
about the representation of source current density).

The first method results in the gauged, the second one in thauged version of the
A-formulation.
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(i) Implicit enforcement of Coulomb gaug&/hen applying the partial differential
equation (2.199) and boundary conditions (2.200) and (@.20solve a three-dimensional
static magnetic field problem, the uniqueness of the veadtergial is not prescribed,
which results in numerical difficulties.

The Coulomb gauge can be prescribed implicitly by the follmyformulations. The
result of this formulation is a modification of the partiaffdrential equation (2.199),
moreover additional boundary conditions are appendeddmtlginal boundary value
problem.

The first step is to define thfeinctionalof the partial differential equation (2.199).
Linear case is presented for simplicity, when= v andI = 0,

F{A} = 1/ V|V x A?dQ —/ Jo-AdQ— [ K- Adl. (2.202)
2 Ja Q Tu
According to theprinciple of minimum energyhis functionalhas minimum value only
if the magnetic vector potential satisfies the partial défeial equation (2.199) and the
boundary conditions (2.200) and (2.201). This minimum isable configuration of the
magnetic vector potential.
Let us now modify this functional by introducir@oulomb gaugas

y{A}:%/ V|V x A|2dQ_/ Jo-AdQ— | K.-AdT
. @ @ Ta (2.203)
—|——/ v(V - A)%dQ.
2 Q

This functional has minimum value only if the magnetic veqtotential satisfies the
partial differential equation (2.199), the boundary cdiodis (2.200) and (2.201), and
Coulomb gauge, however, extra boundary conditions muspperaded to the boundary
value problem defined by the equations (2.199), (2.200) ar20().

This procedure must be done, because we have two partiatetifial equations to be
solved, (2.199) an& - A = 0 with only one unknownA. The two partial differential
equations can be formulated in one partial differentialatigm by the help of (2.203).
The partial differential equation and boundary conditiamsich minimize the functional
(2.203) can be derived as follows.

Let us introduce a smalariation of the magnetic vector potential gf asA + ad A,
which results in a variation of the field energy around thélstaonfiguration of4,

F{A+adA} = %/ V|V x (A + adA)[2dQ
Q

_/JO.(A+Q5A)dQ— K- (A+adA)dl (2.204)
Q 'y
%/ VIV - (A + a6 A)2dQ.

Q

It is important to note that the small variation should notdifythe prescribed Dirichlet
boundary conditions, i.e. the vector field representingsthall variationy A must satisfy
homogeneous Dirichlet boundary condition.
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The variation of the functional can be reformulated as

F{A+adA} :% / V|V x AP2dQ + a/ v(V x A)-(V x§A)dQ
Q Q
a2
+—/ V|V x §A|%dQ
2 Q

—/JoAdQ—a/JotsAdQ

“ » (2.205)
-/ K-Ad—a| K-86AdD

FH FH

1 2 . .
+§/QI/(V-A) dQ—i—a/Qu(V A)(V - 54)dQ

042
+—/ v(V - 5A)2d.
2 Q

This variation can be representedlaylor seriesapproximation as
F{A+adA} = F{A} + a0 F{A,0A} + > F{5A}. (2.206)

In concern with the stationary concept, fivst variationd.%# { A, d A} has to be disappear
and thesecond variation>.# {6 A} has to be positive. In this casé{ A} leads indeed

to its minimum value. The definition of the first variation & fallows (it must be equal

to zero):

O.F{A+abA}

SF{A 6A} = 5
(0%

=0, (2.207)

a=0

which is

63“{A,6A}:/u(VxA)-(deA)dQ—/J0~6AdQ
Q Q

(2.208)
- K-6Ad1“+/u(V-A)(V-&A)dQZO.
Tu Q
It is easy to see that the second variation
PF(5A} = %/ VIV x SA[2Q + %/ (V- 5.4)2d0 (2.209)
Q Q

is usually positive, so (2.208) really states the minimum@af the functional (2.203).
Let us now obtain the according partial differential eqoiatind boundary conditions
for (2.208). After using the identities

Viuxv)=v-Vxu—u-V X, (2.210)
and

Ve (pv)=v-Vo+pV - v, (2.211)



2.3. POTENTIAL FORMULATIONS IN STATIC MAGNETIC AND
EDDY CURRENT FIELD PROBLEMS 37

withu = A, v =vV X A, p = vV - A andv = J A, the following relation can be
obtained:

SF{A,6A} :/ SA-[V x (vV x A)]dQ
Q

+?{[6A><(VV><A)]-ndF— Jo-0AdQ
r Q

(2.212)
— K -0AdT'— | 6A - [V(vV - A)]dQ
Ty Q
+?{VV~A(6A~n)dF:O.
r
This equation can be rewritten in the form
ST{A,5A} :/ SA-IV x (WY x A) — Jo — V(¥ - A)]d
Q
+/ [(WV x A) xn]-§Adl — K -8AdT (2.213)
I'yul'p 'y

+/ vV - A(SA -n)dl = 0.
I'yul'p

The sum of the first and the second surface integrals on thel'pais equal to zero,
because of the boundary conditionV x A) x n = K. The first boundary integral
is equal to zero on the rest pdr, becausay A must satisfy homogeneous Dirichlet
boundary condition, i.en x dA = 0 onI'g and it can be acknowledged according to
the identity[(¢vV x A) x n]-dA = [n x dA] - (vV x A). The last boundary integral in
(2.213) can be eliminated too by some extra boundary camditivV-A = 0or A-n =0
should be specified somewhere, but it must be formulatedsdtae words about the first
integral.

Now, it can be seen that the partial differential equatiobdolved is

Vx(WwVxA) -VWwV-A)=J, in Q (2.214)

because in this case the first integral in (2.213) is equakto for any value of the
variationd A.
Let us take the divergence of equation (2.214),

V- [Vx@VxA)]|-V-[VWV-A)]=V-J. (2.215)

The first term on the left-hand side and the right-hand sidecariously equal to zero,
i.e. theLaplace equation

~V.-V(wV-A)=0, in Q (2.216)

for the scalar variableV - A is left. Here the magnetic vector potentilis the only one
independent variable, so only one partial differentialaon should be used. Fortunately,
the solution of a Laplace equatienV - Vo = 0 (¢ = ¢(r)) can be identically equal to
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zero if the potential is prescribed on the whole boundary as a homogeneous [Eitichl
type boundary condition, or a homogeneous Dirichlet typaioiary condition on one part
and a homogeneous Neumann type boundary condition on thpae®f the boundary.
The solution of Laplace equation

-V -Vp=0, in Q (2.217)
is identically zero irf if
(@) ¢ =00n0%Q, or

(8) ¢ =00nTy anddp/dn = 0 onT'y ando? = I'; U I', moreovem is the outer
normal unit vector of the regiofl.

Let us follow the second way.
First, let us take the normal component of the partial diff¢ial equation (2.214) only
on the boundary g,

n-[Vx@wVxA]-n-VwV-A)=n-Jg, on Ipy. (2.218)
The first term on the left-hand side is equal to zero accortting
n-[Vx@VxA)]|=V-[(vWxA)xn=V-K =0, (2.219)

because of the current conversation law. The right-haralisidbviously zero, because
the normal component of the source current density is equadiio on the boundaiyy; .
Finally, a homogeneous Neumann boundary condition

-n-VwV-A)= —a%(yv -A)=0, on Iy (2.220)

is specified automatically for the scalar quantiy - A. On the rest part of the boundary
I'g, homogeneous Dirichlet boundary condition must be spegifie

vW-A=0, on Ip. (2.221)

In this wayvV - A = 0 in the whole problem regiof and on the boundayy UT'p,
i.e. the last surface integral in (2.213) can be eliminated.

As a last check on the uniqueness of the vector potentialsleppend & ¢ term to
the magnetic vector potentil asA + V¢ and take the divergence of this term,

V- (A+Vp)=V-A+V-Vp=0. (2.222)

The first term of this equation is equal to zero according tal@mb gauge, that is why
only V - Vo = 0 has to be analyzed. On the boundary st the boundary condition
n x (A+ V) = aresults inn x Vo = 0 for ¢, i.e. ¢ is constant ol’'g. On the
rest parfl’ 7, the normal component &7 can be specified &8¢ - n = 0. This can be
obtained by the conditiod - n = 0 onT'g. Finally, it is known that ifV - Vi = 0in Q
andVy - n = d¢p/0n = 0 onT'y, then the constant value gfonT' g can only be zero.
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This means thap = 0 in the problem regioif2 and on the boundayy U Tz, i.e. the
magnetic vector potential is unique.

Finally, the partial differential equation and the bourndeonditions of the static
magnetic field problem, which solution is unique accordiogcbulomb gaugean be
written as follows:

VXxWVxA -VWw,V-A)=Jy—V xI, in (2.223)
WVxA+I)xn=K, on Ty, (2.224)
A-n=0, on Ip, (2.225)
nxA=«a on Ip, (2.226)
v,V-A=0, on Ip. (2.227)

This formulation is the so-called gaugddformulation.

(i) Applying a numerical technique, which is not sensitive telGmb gauge.This
formulation is newer than the first one. The only one rule & the impressed current
vector potential and the unknown magnetic vector potentisgt be approximated by the
so-calledvector elementim the finite element procedures.

The partial differential equation and the boundary conddi of the static magnetic
field problem, which solution is not sensitive to Coulomb geagan be written as

VXxWVxA)=VxTy—VxI, in (2.228)
WVxA+I)xn=K, on Ty, (2.229)
nxA=«a on I[p. (2.230)

First, Ty must be calculated by one of the methods presented on pagehilis called
ungaugedd-formulation.

F. Combination of the magnetic vector potential and the magetic scalar potential,
the A — ®-formulation

Applying themagnetic vector potentiad in the whole domain of a static magnetic field
problem is the general solution, however, applying thel totathe reduced magnetic
scalar potentiall or ® (or their combination) is a more economic way.

The combination of these methods results inthe ®-formulation as it is illustrated
in Fig. 2.15. Itis possible to use the magnetic vector potentigl mrthe region filled with
iron, Q 4 and the reduced magnetic scalar potential in the air regipmwherey is equal
to up. The two potential formulations are coupled through irsteefconditions along the
interfacel 4 4. The main advantage of this formulation is that the numbemsinowns
in the air domain can be decreased significantly, howevéna éxterface conditions have
to be formulated.

In the subregionf2 4, the partial differential equation of the magnetic vectorgmtial
is the same as in (2.223), bdt = 0 is true in iron. The boundary conditions ¥, ,
and onl'p, are the same as in (2.224), (2.225) and in (2.226), (2.283pectively. The
partial differential equation (2.160) and the boundaryditions (2.161), (2.162) are valid
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°

I'p,

Fig. 2.15. The scheme of a static magnetic field problem wilymetic vector potential
and reduced magnetic scalar potential

in the subregiorf)¢ partially bounded by, andI'p,, but R = 0 andu = p. The
tangential component of the magnetic field intensity andrtbienal component of the
magnetic flux density must be continuous on the interface/dat the two subregions,
Fas.

Finally, the partial differential equations, the boundanyl interface conditions of the
static magnetic field problem, which solution is unique adatg to Coulomb gaugean
be written as

Vx (VXA —VwV-A)=-VxI, in Qa, (2.231)
V- (uoV®P®) =V - (uoTo), in o, (2.232)
WoVxA+I)xn=K, on Tp,, (2.233)
A-n=0, on Iy, (2.234)
nxA=«a on I'p,, (2.235)
vwW-A=0, on I'p,, (2.236)
® =30, on Tpy,, (2.237)
(oTo — uoV®) -mn=-b, on TIp,, (2.238)
WoVxA+I)xna+ (To—VP)xng=0, on I'ss, (2.239)
(VxA) ng+pu(To—V®P®) - ng =0, on T'pg, (2.240)

A- na = O, on FA_Q. (2.241)
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Onthel' 4,4 part of the boundary of the subdoméin (024 =Ty, Ul'p, UT' 4 ¢),
the normal component of the magnetic vector potential mestdh to zero (see equation
(2.241)). Coulomb gauge - A = 0 is satisfied in the domaifl 4 partially bounded by
', UT'p,, butitis not true on the new boundary p&ri . Here either the normal or
the tangential component of the magnetic vector potentistine specified. According to
the condition (2.239), the tangential component of the retigfiield intensity is specified
by the unknown scalar potential, i.€,V x A+ 1) xng = —(To — V®) x ng, which
is similar to the condition (2.233). The boundary pBi ¢ is similar to the parl'y,,
where the normal component of the magnetic vector potedmiisibeen specified.

Unfortunately, the behavior of the magnetic field in thenityi of the iron/air interface
may be very strange if the finite element method is used, lsecaiithe weak coupling
between the two regions represented by the equations (2a280(2.240). The reason
of it is that the normal component of the magnetic flux denisityon and the tangential
component of the magnetic field intensity in air may be vewy &s it is illustrated in
Fig. 2.16 (here, an iron cube is placed into a homogeneous madiadtl Hj). It is
easy to see thaB - n = 0 on the left side of the iron cube, wheld x n ~ 0 as
well and this strange behavior can not be eliminated by deang the size of mesh in the
vicinity of iron/air interface. A possible solution of thimimerical difficulty is moving the
A/® interface from the iron/air interface into the air regiorigh results in the so-called
A — A — d-formulation Fig. 2.16).

Ty T

air

I'p I'p )

iron

Fig. 2.16. lllustration for thed — A — ®-formulation

At the end of this section, the partial differential equatipthe boundary and interface
conditions of the static magnetic field problem in the casarmgfauged version are also
presented,

Vx(WVxA)=-VxI, in Qa, (2.242)

V- (V) =V - (uTo), in Qs, (2.243)
WV x A+ xn=K, on T, (2.244)
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nxA=«a on Ip,, (2.245)
=0y, on Tp,, (2.246)
(oTo — uoV®P®) -mn=-b, on TIpg,, (2.247)
(WoVXA+I)xna+ (To—VP®)xne =0, on e, (2.248)
(VxA) na+u(To—VP) -ny =0, on Tae. (2.249)

2.3.2 Eddy current fields

Eddy currenffield is defined by the equations (2.89), (2.90), (2.91),Zp® (2.94) and
(2.93) and the boundary conditions introduced in secti@r2.

Two potential functions can be used in the eddy current regither acurrent vector
potential T' or a magnetic vector potentiad. The current vector potentid can be
coupled with anagnetic scalar potentiahere the reduced magnetic scalar potendtiad
used. The magnetic vector potentidlcan be coupled with aelectric scalar potential
denoted by

A. The current vector potential and magnetic scalar potental, the T', -formulation

Thesolenoidal propertpf the induced eddy current density (2.95) results in thaipdgy
of applying the current vector potentiElto represent the eddy current field in conducting
materials,

V-J=0 = J=VxT, (2.250)

because of the identity - V x v = 0 for any vector functiov = v(r), orv = v(r,t).
Substituting this relation to the first Maxwell's equatiéh&9), i.e.

VxH=VxT = Vx(H-T)=0 (2.251)
results in the reduced magnetic scalar potedtiak
H-T=-V® = H=T-VJ, (2.252)

becausevV x V¢ = 0 for any scalar functionp = ¢(r) or ¢ = ¢(r,t). The first
Maxwell’s equation (2.89) has been satisfied exactly byftrisiulation.

Applying the impressed current vector potentidl, to represent the known source
current density/ placed in the eddy current free region takes easier the irmupf the
present formulation with the reduced magnetic scalar piatein the eddy current free
region, i.e. appendind@, to (2.252) is advantageous,

H=T,+T-Vo. (2.253)

This can be done, sinéé x Ty = 0 in the eddy current regiofi.. It is noted that the
reduced magnetic scalar potential is used in this formadatind we have to take care
about the representation @Y, (see point D on page 32).
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The expressiod = ¢ E = V x T can be written according to the constitutive relation
(2.93), from which the electric field intensitlf can be expressed by the current vector
potential as

E = lv x T. (2.254)
g
Substituting this expression and the linearized form ofdbestitutive relation in (2.92)
into Faraday’s law(2.90) results in the partial differential equation

%_f v 0T OB g (2.285)

1
1yt + . ,
Vx(avx >+“ T TR

The magneti&auss’ law(2.91) can be rewritten in the form
V(T — poV®) = =V - (1, To) —V-R, in Q. (2.256)

The solution of these partial differential equations witle tbelow described boundary
conditions results in two unknown®'(and®) of theT', &-formulation.

Let us now define the boundary conditions.

On thel'y, part of the boundary, the tangential component of the mégfietd
intensity vector must vanish,

Hxn=0 = (T(+T-V® xn=0, on Iy,. (2.257)

The boundary patf 5, always represents a symmetry plane, whEgex n = 0, i.e. the
Dirichlet boundary conditions

Txn=0, and ®=%o;, on gy, (2.258)

have to be specified andly is constant. Oy, the equationJ - n = 0 satisfies
automatically, because of

Jn=(VxT) n=V-(Txn), (2.259)

andT x n = 0 is prescribed here.
On the rest of boundarly g, the tangential component of the electric field intensity
must be equal to zero,

1
Exn=0 = (—VxT)xn_O, on I'g, (2.260)
g

and the normal component of the magnetic flux density musshan
B-n=0 = (uTo+ pT—pV®+R)-n=0, on Ig. (2.261)

These are Neumann type boundary conditions.
Finally, here is the collection of partial differential eations and boundary conditions
of theT', ®-formulation, which is however, not gauged,

or 0P oL, OR Q.. (2.262)

!
- T o Qa, MoV (77 — Ho—F%7,— )
Vx(avx >+“ A T L T
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V(T — poV®) = =V - (1, To) —V-R, in Qg (2.263)

Txn=0, on Iy, (2.264)

P = (I)(), on FHC, (2265)

<1V X T> xn=0, on Ig, (2.266)
o

(LoTo + oI — oV + R) -m =0, on I'pg. (2.267)

The solution of the problem defined by the above equationdanddary conditions
is not unique, because the divergence of the current vedtenpal has not specified
yet. TheCoulomb gaugshould be used in this formulation, similarly to the gaugafix
method applied in thed-formulation (see on page 34), i.e.

V.-T=0, in Q (2.268)

must be specified.
LetusfirstappendaV (1/0V - T) term to the left-hand side of the equation (2.262),

1 1 T d
V x (—v ><T> v (—V-T) +ﬂoa——uova—
g g

ot % (2.269)
__, 0Ty OR
- /’[’0 at at 9 c

Taking the divergence of this equation and taking equaa263) into account results in
alLaplace equatioffior the scalar variablé/oV - T,

~V.V (%v : T) — 0. (2.270)

The solution of a Laplace equatienvV - Vi = 0 can be equal to zero if the potential
is prescribed on the whole boundary by a homogeneous Détibloundary condition, or
a homogeneous Dirichlet boundary condition on one part dammhaogeneous Neumann
boundary condition on the rest of the boundary.

After taking the normal component of the equation (2.269)enboundary segment
I'r, a homogeneous Neumann boundary condition can be presdenittematically

“on\o

0 (1V-T):O, on I'g, (2.271)

because the normal component of the first term in (2.269),

{v y (%v xTﬂ M=V, [Gv ><T> xn] (2.272)

is equal to zero according to the boundary condition (2.26@) the normal component
of the sum of the last four terms in (2.269) is equal to zero, because of the condition
(2.267).



2.3. POTENTIAL FORMULATIONS IN STATIC MAGNETIC AND
EDDY CURRENT FIELD PROBLEMS 45

Consequently, on the rest of the bound&ry,, the following Neumann boundary
condition:

1
-V-T=0, on Ty, (2.273)
g

must be specified.

In this way1/oV - T = 0 in the whole problem regiof2. and on the boundary
FHC Ulg.

Finally, the partial differential equations and the bourydeonditions of an eddy
current field problem, which solution is unique accordingdoulomb gaugecan be
written as

1 1 oT 0P
V x (—V X T) -V (—V-T) —HLOE —,UOVE
g 7 (2.274)
=— —BTO — B—R in
— T T e
V(o — poVP®) = =V - (poTo) — V- R, in £, (2.275)
Txn=0, on Iy, (2.276)
®=>0;, on Iy, (2.277)
lV -T=0, on Iy, (2.278)
o
1
(—V X T) xn=0, on Ig, (2.279)
o
(1oTo + T — 1oVe® + R) -n =0, on Ig, (2.280)
T-n=0, on Ig. (2.281)

The last boundary condition (2.281) is introduced analstjoto the boundary condition
(2.225) in theA-formulation. As a last check of the uniqueness of the curveator
potential, let us append Wy term to the vector potentidl® asT' + V¢ and take the
divergence of this term,

V- (T+Vg)=V-T+V Vp=0. (2.282)

The first term of this equation is equal to zero according tol@mb gauge, i.e. only
V - V¢ = 0 has to be analyzed. On the boundary @3, the boundary condition
(T + V) xn = 0results in(Vy) x n = 0, i.e. pis constant oT'y,. On the rest
partT' g, the normal component &¥y can be specified a¥¢ - n = 0. This can be
obtained by introducin@ - n = 0 onT'g. Finally, it is known thatv - Vo = 0in Q and
Vo -n = dp/dn = 0 onTg, the constant value @ on 'y, can only be zero. This
means thap = 0 in the problem regiof2 and on the boundaiy;;, UT'g, i.e. the current
vector potential is unique.
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B. The magnetic vector potential and electric scalar potenal, the A, V-formulation

The divergence-free magnetic flux density vector can beribest by the curl of the
magnetic vector potentiad, sinceV - V x u = 0, for any vector functiont = u(r), or
u =u(r,t),ie.

B=V x A. (2.283)

This automatically enforces the satisfaction of magn@titiss’ law(2.91). Substituting
expression (2.283) intBaraday’s law(2.90) results in
0 0A 0A
VxE_—EVxA_—VxE = VX<E+E>—0, (2.284)
because rotation (i.e. derivation by space) and derivdtiotime can be replaced. The
curl-less vector fieldz 40 A /0t can be derived from the so-called electric scalar potential
V (V x Vy = 0, for any scalar functiong = (r), oro = ¢(r,t)),

0A

E+4+—=-— 2.285
+ o= -V, (2.285)
and the electric field intensity vector can be described lyypetentials as

E = —%—? - VV. (2.286)

Substituting the relations (2.283) and (2.286) into (2.88% using the linearized
constitutive relation in (2.94) leads to the partial diffetial equation

V x (1,V x A) + U%—? +oVV =-VxI, in Q. (2.287)

The charge conservation law (2.95) with the constitutivatien (2.93) and with the
formulation (2.286) results in the second partial différ@requation of this formulation,

-V (0%—? + UVV) =0, in Q. (2.288)

There are two unknown functionsA(and V'), that is why two equations must be
formulated, however, the second one is coming from takiegdilergence of Ampere’s
law (2.89).

Now, let us define the boundary conditions of the problem.

On theI'y, part of the boundary, the tangential component of the magfietd
intensity vector must vanish,

Hxn=0 = WVxA+I)xn=0, on Ipy,. (2.289)

This is a Neumann boundary condition fdr The normal component of eddy currents
must be equal to zero ofiy,, which can be formulated by the Neumann boundary
condition

J-n = —o%-n—aVVﬂl:O, on Iy, . (2.290)
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On the rest part of the boundalRg, the tangential component of the electric field
intensity must be equal to zero,

Exn=0 = (—%—?—VV) xn=0, on Ig. (2.291)
This boundary condition can be specified by two Dirichlet taary conditions,
nxA=0 and V=V, on Ig, (2.292)

because- A x n = n x A andVj is constant. Her® - n = 0 satisfies explicitly, because
B n=(VxA) - n=V-(Axn), (2.293)

and A x n = 0 has been prescribed yet.
Finally, here is the collection of equations and boundarnydétions of the ungauged
A, V-formulation,

V X (1,V x A) + a% +oVV =-VxI, in Q (2.294)
-V (0%—? + UVV) =0, in €, (2.295)
(WoVxA+I)xn=0, on Iy, (2.296)
—a%—? nm—oVV-n=0, on Ipg, (2.297)
nxA=0, on Ig, (2.298)
V=V, on Ig. (2.299)

The solution of the problem defined by the above equationdanddary conditions
is not unique, because the divergence of the magnetic vpotential has not specified
yet. TheCoulomb gaugshould be used in this formulation similarly to the gaugeniixi
method applied iM-formulation of static magnetic field problems (see on pagjei3e.
V - A = 0 must be specified.

First, let us append the left-hand side of the partial déffeial equation (2.294) by the
term—-V (v,V - A),

A
Vx WV xA) -V wV-A)+ U%—t +oVV ==V xI, in Q. (2.300)
Taking the divergence of this equation and taking the eqongf2.295) into account, it
results in the_aplace equatiotfior the scalar variable,V - A,
-V -V (,V-A)=0. (2.301)

After taking the normal component of the equation (2.300)enboundary segment
'y, , a homogeneous Neumann boundary condition can be set upatitally

—83 (1bV-A)=0, on Iy, (2.302)
n

because the normal component of the first and the last ter(2s300),
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VX (WVXA+I)] - n=V-[(v,VxA+I)xn] (2.303)

is equal to zero according to the boundary condition (2.28@) the normal component
of the sum of the last two terms in (2.300) is equal to zero, b@cause of the condition
(2.297).

Consequently, on the rest part of the boundBgy, the following Neumann type
boundary condition:

vWwW-A=0, on Ig (2.304)

must be specified.

In this wayv,V - A = 0 can be satisfied in the whole problem regiopand on the
boundanf'y, UTE.

Finally, the partial differential equations and the bourydeonditions of an eddy
current field problem, which solution is unique accordingdoulomb gaugean be
written as

V x 1,V x A) =V (v,V - A) —i—a%—? +oVV =-VxI, in Q. (2.305)

A
-V (0% + UVV) =0, in Qg (2.306)
(WoVxA+I)xn=0, on Iy, (2.307)
- (0% + UVV> n=0, on Iy, (2.308)
A-n=0, on Iy, (2.309)
nxA=0, on Ig, (2.310)
V=V, on Ig, (2.311)
vwW-A=0, on Ig. (2.312)

Here, equation (2.309) is introduced according to the ppoe$ented on page 38.

C. The modified magnetic vector potential, thed*-formulation

This formulation can only be applied when the ungaugedoarsi theA, V-formulation
is used.

In this situation, the electric scalar potentidlcan be supposed to be equal to zero,
if and only if, the conductivitys is constant. The set of partial differential equations
and boundary conditions are coming from the equations £-49.299), but the partial
differential equations and boundary conditions contajiiinhave been eliminated, i.e.

V x (1,V x A*) + 06:94; =-VxI, in Q, (2.313)
(W VxA*+I)xn=0, on Iy, (2.314)

nxA*=0, on Ipg. (2.315)
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2.3.3 Coupling static magnetic and eddy current fields

In mosteddy currenfield problems, the conductors carrying the eddy curremtableast
partially surrounded by a nonconducting medium free of eddyents (e.g. air) where a
static magnetic field is preserig. 2.17). The static magnetic field is induced both by the
eddy currents and by the source current of coils. That is Wwhypbtential formulations
of the static magnetic field and of the eddy current field mestdupled.

J():O

°

Fig. 2.17. The eddy current region is surrounded by noncadiityregion

The static magnetic field if2,, can be described by magnetic scalar potential
(reduced, total or the combination of them), or bynagnetic vector potentialln the
first case, applying the reduced magnetic scalar potedtialsimpler to use, however,
currents of coils must be represented by an impressed ¢weetor potentiall’y, which
must be realized in a special way. Application of the magnegtctor potential is a more
general way. Combination of the two formulations can alssuggposed, e.gA — &, or
A — A — ® method.

The eddy current field if2, can be represented by a vector potential coupled with a
scalar potential. Theurrent vector potentidl” can be coupled with theeduced magnetic
scalar potentiald and themagnetic vector potentiadl can be coupled with thelectric
scalar potentiall/.

Itis important to note that the vector potentials can beegitingauged or gauged. The
ungauged version has infinite number of solutions for themimls, but electromagnetic
field quantities calculated from the potentials are unigdepurse, since the solution of
Maxwell’s equations is unique. The gauged versions resulinly one unique solution
for the potentials, too.

Here, the possible potential formulations are shown in theggd and ungauged
situations. The partial differential equations and therwtary conditions are based on



50 2. POTENTIAL FORMULATIONS IN ELECTROMAGNETIC FIELD

the last section, but the interface conditions betweendf®ns with and without eddy
currents are presented below. First, the basic formulsao@shown, th&, ® formulation

in the eddy current region is coupled to thdormulation in the eddy current free region
resulting theT', ® — ® formulation, then thed, V formulation in the eddy current region

is coupled to theA formulation in the eddy current free region resulting thel” — A
formulation. TheT', ® — ® formulation can not be used when the eddy current region is
multiply connectedThis problem can be solved by tfie & — A formulation and by the
T,» — A — & formulation. TheA,V — A formulation is not an economic procedure,
there are three unknown functions to represrin air, that is why thed, vV — ® and the
AV — A — @ formulations have been developed.

A. The gaugedT’, & — & formulation

The reduced magnetic scalar potentiél is used in the eddy current free regif as
well as in the eddy currentregid.. It is a continuous scalar variable in the entire region
Q. U, and on the interfacE,,., too. The equations to be used are (2.160)—(2.162) and
(2.274)—(2.281), however, some continuity equationg'gnmust be appended to these
equations.

The magnetic field intensity vector is derived BE = Ty — V& in Q, and it is
written asH = Ty + T — V® in Q.. The tangential component of the magnetic field
intensity can be set to be continuous o). by a continuous magnetic scalar potential
and by setting the tangential component of tluerent vector potentiagéqual to zero by
the boundary conditiof” x n = 0 onT',,.. It must be noted thdl'y x n is continuous.
Vanishing the normal component of eddy current density'gnsatisfies automatically,
because] = Vx T andJ -n = (VxT)-n = (T xn)- V. The term in the last
brackets has been set to zero, ife.n = 0 onT,,..

The continuity of the normal component of magnetic flux dgnsisults in a Neumann
type boundary condition (see (2.329)). The divergence fmeperty of T' has been
defined only in the domaif. and on the boundary/y, U T'g. On the rest segment
e 1/0V - T = 0 must be specified as a new Neumann type interface conditicanl|
be introduced similarly to (2.273).

The summarized equations of the gauged version are as fo(kse-ig. 2.17):

V x (%VXT)—V(%V-T) +M08T Va—(b

=~ Mo
ot ot (2.316)
Ty R
== Ho ot o’ m ¢y
V(o — poVP®) = =V - (poTo) — V- R, in £, (2.317)
=V (upV®) ==V - (uTy), in Qp, (2.318)
Txn=0, on Ipg, (2.319)
P = (I)(), on FHC, (2320)

1
-V-T=0, on Ty, (2.321)
g
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&=, on Iy, (2.322)
<1V X T> xn=0, on Ig, (2.323)

o
(1oTo + oI — 1oV® + R)-n=0, on I'pg, (2.324)
T-n=0, on Ig, (2.325)
(uTo—pVP®)-n=-b, on Ip, (2.326)
® is continuous on I',, (2.327)
Txn.=0, on I, (2.328)

(uTo — pVP) - ny + (oTo + T — 1oV® + R) -m. =0, on I'y., (2.329)

19720, on To. (2.330)
g

B. The ungauged?’, ® — & formulation

The reduced magnetic scalar potentiél is used in the eddy current free regif as
well as in the eddy current regidl. and it is a scalar continuous variable in the entire
regionQ2. U Q,, and on the interfac#,., too. The equations of ungaugdd ® — ®
formulation can be built up by using (2.160)—(2.162) an@§2)—(2.267), which must be
appended by some continuity equations defined',gn

The interface conditions can be defined as in the gaugedvetsdwever, (2.330) is
not used.

The summarized equations are as follows (Sge2.17):

Vv x (%V X T> + u()%—]; - uov%—f = —uo% - %if, in Q. (2.331)
V- (1T — poV®) = =V - (uoTo) — V- R, in Q, (2.332)
-V - (uV®) = -V - (uTy), in Q,, (2.333)
Txn=0, on Iy, (2.334)
®=30;, on Iy, (2.335)
®=30;, on Iy, (2.336)
(%V X T) xn=0, on Ig, (2.337)
(1toTo + p1oT — poV® + R) -m =0, on Ig, (2.338)
(uTo—pVP®)-n=-b, on Ip, (2.339)
® is continuous on I',, (2.340)
Txn.=0, on I, (2.341)

(uTo — puVP) - ny + (oTo + T — 1oV + R) -m. =0, on I'ye. (2.342)



52 2. POTENTIAL FORMULATIONS IN ELECTROMAGNETIC FIELD

Note. TheT',® — & formulation can not be used in caserofiltiply connected regian
In this situation the formulatiorn&, ® — A orT,® — A — ® can be used.

Note. TheT, ® — & formulation can not be useful in caserofiltiply connected regign
however, a simple modification can be introduced in this caBlee holes filled with
nonconducting materialss(= 0) can be replaced by conducting materials with very
small conductivity § ~ 0 comparing with the conductivity of the conducting material
e.g.o = o./a, wherea is constant).

C. The gaugedA, V — A formulation

Themagnetic vector potentiad is used in this formulation throughout the regiopu(2,,
and theelectric scalar potential” only in €2.. Here, the equations (2.223)—(2.227) and
(2.305)—(2.312) have to be used to prepare the formulatigtrthe set of these equations
have to be appended by continuity equations defineld,gn

The magnetic vector potential is continuous, meaning thattangential and the
normal component of the magnetic vector potential are naotis oT',,.. The continuity
of the tangential component of the magnetic vector poteimtimediately enforces the
continuity of the normal component of the magnetic flux digrfsom (2.101) and (2.357),

(VxA) n.+(VxA) n,=V-(Axn)+V-(Axny,)

2.343
=V-(Axn.+Axmn,)=0. ( )

The continuity of the tangential component of the magnetid fintensity vector must be
prescribed by an additional interface conditionIgp. (see the Neumann type condition
(2.359)). Itis obvious that the normal component of the eddyent density must vanish
onTl,.. The divergence free property & has been defined only in the doma&lpu Q,,
bounded by'y;, UT'r UT'y, U 'p, but not onl',,.. On the parf’,. vV - A must be
continuous, which can be prescribed by a Neumann type dondgee (2.361)).

The summarized equations are as follows (Sge2.17):

V x 1,V x A) =V (v,V - A) —i—a% +oVV ==V xI, in Q. (2.344)

ot
-V <o% + O'VV) =0, in Qg (2.345)
Vx(WwVxA) -VWV-A)=Jy, in Q,, (2.346)
(WoVxA+I)xn=0, on Iy, (2.347)
- (0% + UVV> 'n=0, on Iy, (2.348)
A-n=0, on Iy, (2.349)
WxA)yxn=K, on Ty, (2.350)

A-n=0, on Iy, (2.351)
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nxA=0, on Ipg, (2.352)
V=V, on Ig, (2.353)
v,V-A=0, on Ig, (2.354)
nxA=a on I[p, (2.355)
vW-A=0, on Ip, (2.356)
nexA+n,xA=0, on I, (2.357)
A n.+A-n,=0 on I, (2.358)
(WoVXA+I)xn.+w¥VXxA) xn,=0, on I, (2.359)

A
— (a%—t + UVV> ‘n.=0, on T, (2.360)
wV-An.+ ¥V-A)n, =0, on T (2.361)

Note. It must be highlighted that the interface condition (2.368)st be eliminated,
if the permeability is changing abruptly along the integfdg,.. In this casd’,,. is an
iron/air interface (remembdiig. 2.16). The conditiorvV - A = 0 onT',,. can be satisfied
according to the discretization. The problem can be solyethé ungaugedd,V — A
formulation too, presented in the next item.

D. The ungaugedA, V' — A formulation

Themagnetic vector potentiad is used in this formulation in the regiéh. U (2,, and the
electric scalar potential/ only in Q.. The equations of ungaugetl V' — A formulation
can be built up by using (2.228)—(2.230) and (2.294)—(2.288ich must be appended
by some continuity equations defined By...

The interface conditions can be defined as in the case of datagsion, however,
equations (2.349), (2.351), (2.354), (2.356), (2.358)@1861) are not used. Her€, is
used to represent the source current denbity

The summarized equations are as follows (SEge2.17):

V x (1,V x A) + a%—? +oVV =-VxI, in Q (2.362)
-V (a%—? + UVV) =0, in Qg (2.363)
Vx(WwVxA)=VxTy in Q, (2.364)
(WoVxA+I)xn=0, on Iy, (2.365)
— (a%—? + aVV) ‘n=0, on Ig, (2.366)
(WxA)yxn=K, on Tp, (2.367)

nxA=0, on Ig, (2.368)
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V =V, on Ig, (2.369)
nxA=a on Ip, (2.370)
nexA+n,xA=0, on I, (2.371)
WoVxA+I)xn.+WVxA) xn,=0, on I, (2.372)
- (a% + avv> ‘=0, on Ty (2.373)

Note. If ois constantinf2. and the ungauged, V' — A formulation is used, thel = 0
can be selected. This results in the ungaudéd- A formulation.

Note. A more economical way ofA-based formulations is using the reduced magnetic
scalar potential in the air region resulting tdeV — & and theA, V — A —® formulations.

E. The ungaugedA™ — A formulation

The equations of this formulation are (2.228)—(2.230) &ha813)—(2.315) appended by
the continuity equations (2.100) and (2.101) (B&p 2.17),

V x (1,V x A*) + aagf =-VxI, in Q, (2.374)
VxWVxA)=VxTy in Q, (2.375)
(WoVxA*+I)xn=0, on Ty, (2.376)
WxA)yxn=K, on Iy, (2.377)
nxA*=0, on Ig, (2.378)
nxA=«a on Ip, (2.379)
nex A +n, xA=0, on I, (2.380)
(o Vx A +I)xn.+¥VXxA) xn,=0, on I, (2.381)

F. The gaugedI’, ® — A formulation

TheT, ® — ® formulation is not capable of treatimgultiply connected conductovghen
all the eddy current free region is described by the reducaginetic scalar potentidi.
This difficulty can be overcome by applying the magnetic eegiotential in the eddy
current free regiort),,. Thisis calledl’, & — A formulation.

In this formulation, the gaugeclrrent vector potential” with thereduced magnetic
scalar potentiak® is used in the eddy current regiéh and the gaugethagnetic vector
potential A is used in the region free of eddy currerfds,. The equations to be used are
(2.274)—(2.281)and (2.223)—(2.227). Some continuityadigns and boundary conditions
defined orl",,. must be appended.

The magnetic field intensity is derived 86 = Ty+ T —V® in Q. andH = vV x A
in ©,,, while the magnetic flux density can be writtenBs= 1,(To + T — V®) + R
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in 2. andB = V x A in §,. The continuity equations (2.100) and (2.101) can be
reformulated by these equations.

The potential functions are not continuous B, therefore this surface acts as a
boundary of the two subregions.

It must be noted here that the uniqueness of a vector poteatiabe ensured by
defining either its tangential component and its divergemdes normal component and
the tangential component of its curl.

The tangential component of the current vector potentialnzz be set to zero on the
interfacel’,,. since this would imply that no net current can flow around tbie filled by
A. That is why the other conditions must be prescribed hexe]i- n = 0onT,,.. The
curl of the current vector potential is the electric fieldeinsity sinceE = 1/0V x T,
which tangential component is continuous on any surfageFfl. x n. + E,, X n, =0
must be satisfied. From the second Maxwell’'s equation (2.90)

(VXE)-n:—%(VXA)-n = V-(EXH)ZV-[—%(AXTL)], (2.382)

from which

E><n:<lV><T)><n:—2A><n. (2.383)
o ot

This is a condition for the tangential component of the mégnector potential too,
which uniqueness of,,. can be ensured by prescribing its divergence.
The summarized equations of the gauged version are as fo(kse-ig. 2.17):

1 1 oT o
V x (;V X T) -V (;V . T) —HLOE — uova (2.384)

=— o 0To/0t —OR/Ot, in .,

V(T — ppoVP®) = =V - (poTo) — V- R, in £, (2.385)
Vx(WwVxA) -VWV-A)=Jy, in Q,, (2.386)
Txn=0, on Iy, (2.387)
®=>0;, on Iy, (2.388)
lV -T=0, on Iy, (2.389)
o

(WxA)yxn=K, on Tpy, (2.390)
A-n=0, on Iy, (2.391)
<1V X T> xn=0, on Ig, (2.392)

o

(1oTo + T — 1oV® + R) -n =0, on Ig, (2.393)
T -n=0, on Ig, (2.394)

nxA=a«a on Ip, (2.395)
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vW-A=0, on Ip, (2.396)
(To+T—-VP) xn.+¥VxA)xn, =0, on T, (2.397)
(16T + 1T — VO + R) -ne+ (Vx A) np =0, on T,  (2.398)
T-n.=0, on I, (2.399)
<%V X T> X Ny — % Xxn, =0, on I, (2.400)
vW-A=0, on [, (2.401)

G. The ungaugedI’, ® — A formulation

In this formulation, the ungaugedirrent vector potential” with the reduced magnetic
scalar potentiab is used in the eddy current regié and the ungaugedagnetic vector
potential A is used in the region free of eddy currenis,.

The ungauged”, ® — A formulation can be built up by using (2.262)—(2.267) and
(2.228)—(2.230), which must be appended by some contimmityboundary conditions
defined orT,,..

The interface conditions can be defined as in the gaugedwetsdwever, equations
(2.389), (2.391), (2.394), (2.396), (2.399) and (2.40&ywt used. The impressed current
vector potentiall'y is used in this formulation to represefy.

The summarized equations of the gauged version are as fo(kse-ig. 2.17):

oT o 0Ty, OR

1 .

V x (;V X T) + MOE - /LOVE = _MOW — W’ m Qc, (2402)
V(T — poV®) = =V - (1, To) — V-R, in Qg (2.403)
Vx(WwVxA)=VxTy in Q, (2.404)
Txn=0, on Iy, (2.405)
®=30;, on Iy, (2.406)
WxA)yxn=K, on TIpy, (2.407)
(lv X T) xn=0, on Ig, (2.408)

o
(oTo + T — 1oV® + R)-n =0, on I'pg, (2.409)
nxA=«a on Ip, (2.410)
(To+T—-VP®) xn.+¥VxA) xn,=0, on I, (2.411)
(/LOTO + NOT - /LOVCI) + R) "M+ (v X A) *Mp = 07 on F’ILC7 (2412)
<1V X T> X Ny — % Xn, =0, on I, (2.413)

o ot

Note. A more economical way of th@", & — A formulations is using the reduced
magnetic scalar potential in a subregiorfbf. This is theT', & — A — & formulations.
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H. The gaugedT', & — A — ® formulation

This is a modification of the gaugdd ® — A formulation. Applying thenagnetic vector
potentialin the static magnetic field region is not economical, beeatsequires three
scalar unknown functionsA;, A, and A.). This can be reduced to one by using the
reduced magnetic scalar potentiala subregion of air, which is simple connected.

The current vector potential” with the reduced magnetic scalar potentbais used
in the eddy current regiofl., the magnetic vector potentia is used in the holes of the
eddy current region, which is free of eddy currents and dehby2 4. The rest region
is described by the reduced magnetic scalar potedtaid this region is denoted 1§ .
The scheme of this formulation can be seeffig. 2.18. The problem region has three
disjunct parts§2 = Q. U Q,,, U £, . This means that the boundary of eddy current free
region and the interface have two disjunct partg, = 'y, UT'y,, ' =T, UT'B,,
I'pe =Thea U, . The further interface betweén, , and<2,,, isT4s.

N B

g

c

*t

I'e Lhca
= popr or B{-}

Fig. 2.18. ApplyingA and® in the air region in the case of multiply connected
eddy current region

The equations to be used are (2.274)—(2.281), (2.2232{2&nhd (2.160)—(2.162)
in the subregiort2,, ,,, and,,, respectively, which must be appended by some
continuity equations and boundary conditions defined gnandI’ 4 .

The interface conditions oh,,., are the same as dn,. in the gaugedl’,® — ®
formulation, see (2.327)—(2.330). The interface condiionT,,., are the same as on
T',c in the gauged’, ® — A formulation, see (2.397)—(2.401).

The tangential component of the magnetic field intensity tiechormal component
of the magnetic flux density must be continuous on the interfay ¢, moreover this is
a boundary of the regiof?,, ,, whereA - n = 0 is prescribed because of the condition
for the tangential component of the magnetic field intensitiich is a condition for
(vV x A) x n (see (2.439)).
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The summarized equations of the gauged version are as ®llow

V x (%VxT)—V(%V-T) +M08T Va—(b

FSAT (2.414)
=— o 0To/0t —OR/Ot, in .,
V(T — poV®) = =V - (1, To) —V-R, in Qg (2.415)
=V - (uV®) = -V - (uTo), in Qu,, (2.416)
VXxWwVxA)-VWV-A)=Jy, in Q,,, (2.417)
Txn=0, on Iy, (2.418)
P = (I)(), on FHC, (2419)
lV -T=0, on Iy, (2.420)
o
(WxA)yxn=K, on Tpy,, (2.421)
A-n=0, on Ipy,, (2.422)
®=>0;, on Tp,, (2.423)
(lv X T) xn=0, on Ig, (2.424)
o
(1oTo + T — 1oV® + R) -n =0, on Ig, (2.425)
T-n=0, on Ig, (2.426)
nxA=«a on Ipg,, (2.427)
vW-A=0, on I'p,, (2.428)
(uTo—pVe®)-n=-b, on Ip,, (2.429)
® is continuous on I'yey, (2.430)
Txn.,=0, on I, (2.431)
(MTO - /qu)) ‘N + (MOTO + MOT - /LOV(I) + R) Ne = 07 on Fncgn (2432)
lV -T=0, on Iy, (2.433)
o
(To+T—-VP) xn.+(WVxA) xng=0, on T.,, (2.434)
(16T + T — 1oV® + R) n.+ (Vx A)-na=0, on T,.,, (2.435)
T -n.=0, on Dye,, (2.436)
<1V ><T> xnc—% xna=0, on [,,, (2.437)
o ot

vW-A=0, on D[u,, (2.438)
(To—VP®)xne+(w¥VxA)xng=0, on I'as, (2.439)
(uTo—uVP®) -ne+(VxA) -na=0, on Taaq, (2.440)

A- na = O, on FA_Q. (2.441)
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I. The ungaugedT', ® — A — ® formulation

Applying the same notations presented in the last item, uh@sarized equations of the
gauged version can be set up, howevky,is represented b{l'y. The scheme of this
formulation can be seen IFg. 2.18.

The equations to be used are (2.262)—(2.267), (2.228B3@2ahd (2.160)—(2.162) in
the subregioni2,, 2,,, and(,,, respectively. Some continuity equations and boundary
conditions defined on,,., (see (2.340)—(2.342)), dn,., (see (2.412)—(2.413)) and on
I'a,5 (see (2.439) and (2.440)) must be appended.

Finally, the system of equations of the ungau@&db — A — & formulation are as
follows:

Vv x (%V X T) + u()%—f - MOV%—(? = —uo% - %—}:, in Q. (2.442)
Vo (T — poV®) = =V - (uoTo) —V-R, in (2.443)
=V (upV®) ==V - (uTy), in Qp,, (2.444)
Vx(WwVxA)=VxTy in Q,, (2.445)
Txn=0, on Iy, (2.446)
d =30, on Iy, (2.447)
(WxA)yxn=K, on Ipy,, (2.448)
®=>0;, on Tp,, (2.449)
(%V X T) xn=0, on Ig, (2.450)
(1toTo + p1oT — poV® + R) -m =0, on Ig, (2.451)
nxA=«a on Ip,, (2.452)
(uTo—pVP®)-n=-b, on TIp,, (2.453)
® is continuous on I'ye,, (2.454)
Txn=0, on I, (2.455)
(uTo — pV®) -1y, + (uoTo + poT — 1oV® + R) -n. =0, on T'pe,, (2.456)
(To+T—-VP) xn.+(WVxA) xng=0, on T.,, (2.457)
(11eTo + ptoT — poV® + R) -ne+ (VX A) - na=0, on [n,, (2.458)
(%V XT) ch—%—? xna=0, on I'.,, (2.459)
(To—VP®)xne+ (¥VxA)xng=0, on Tasg, (2.460)

(uTo —pVe) - ng+(VxA) -na=0, on Tas. (2.461)
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J. The gaugedA, V — ® formulation

This formulation is a modification of thd, V' — A potential formulation. Thenagnetic
vector potentialin the eddy current free regiof,, has been replaced by thmeduced
magnetic scalar potentiab. The two potentialsA andV remain inQ2.. The number of
unknown potential functions is decreased from three to nfig,i but it can be used only
if the eddy current regiofe. is a simple connected domain.

The equations to be used are (2.305)—(2.312) and (2.16QBAY, moreover some
continuity equations and boundary conditions defined’gnmust be appended to these
equations.

The tangential component of the magnetic field intensitytaerchormal component of
the magnetic flux density must be continuous on the interfface moreover the normal
component of the eddy current density must vanish there.iftbgface is a boundary of
the A-region, too, i.e. the uniqueness of the magnetic vectami@ must be satisfied
onTl,. as well. It can be performed by using the conditidn n = 0, because of the
condition for the tangential component of the magnetic figensity, which is a condition
for (vV x A) x n (see (2.473)).

The summarized equations are as follows (Gge2.17):

Vx WV xA) -V wV-A)+ U% +oVV =-VxI, in Q. (2.462)

ot
-V <a% + O'VV) =0, in Qg (2.463)
=V - (uV®) = =V - (uTy), in Q, (2.464)
(VbVxA+I)xn=0, on Iy, (2.465)
— (a%—? + aVV) n=0, on Ig, (2.466)
A-n=0, on Ip, (2.467)
P = (I)(), on FHH, (2468)
nxA=0, on Ig, (2.469)
V=V, on TIg, (2.470)
v,VW-A=0, on Ig, (2.471)
(uTo—pVe®)-n=-b, on Ip, (2.472)
(WoVXA+I)xn.+ (To—VP) xn, =0, on T, (2.473)
(VxA) n.+ (pTo—puVe)-n, =0, on Ty, (2.474)
A
— (a%—t + aVV) ‘n.=0, on T, (2.475)

A-n.=0, on I, (2.476)
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Note. In the case ofnultiply connected regigrthe so-called gauged,V — A — @
formulation can be used.

K. The ungaugedA, V — & formulation

This formulation is a modification of thd, VV — A potential formulation, thenagnetic

vector potentialin the eddy current free regiof,, has been replaced by theduced

magnetic scalar potentiab. The two potentialsA andV remain inQ2.. The number of
unknown potential functions is decreased from three to nfig,i but it can be used only
if the eddy current regiof2.. is a simple connected domain.

The equations of the ungaugetd V' — & formulation can be built up by using the
relations (2.294)—(2.299) and (2.160)—(2.162), whichamepleted by some continuity
and boundary conditions defined dy.. The interface conditions can be defined as in
the gauged version, however, equations (2.467), (2.4HLj2A76) are not used.

The summarized equations are as follows (Sge2.17):

V x (1,V x A) + U%—? +oVV =-VxI, in £, (2.477)
V. G% n avv) -0, in Q, (2.478)
SV (uVB) = —V - (uTo), in D, (2.479)
(WoVxA+I)xn=0, on Iy, (2.480)
- (a% + avv> ‘n=0, on Iy, (2.481)
=0y, on Iy, (2.482)
nxA=0, on Ig, (2.483)
V="V, on I, (2.484)
(uTo— pVP®)-n=-b, on Ip, (2.485)
(WoVXA+I)xn.+ (To—VP) xn, =0, on T, (2.486)
(VxA) n.+ (uTo—puVe) -n, =0, on Ty, (2.487)
- (0% + avv> ‘=0, on Ty (2.488)

Note. If the conductivity of the media placed in. was constant, thelW = 0 could be
supposed. This results in the ungaugd- ® formulation. This is based on the equations
(2.477)—(2.488) neglecting the temVV in (2.477) and ignoring the equations (2.478),
(2.481), (2.484) and (2.488).

Note. Inthe case of multiply connected region, the so-called” — A — ® formulation
can be used.
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L. The gaugedA,V — A — ® formulation

The aim of this formulation is to modify thd, V' — & potential formulation in such a
way that the resulting formulation will be able to simulateltiply connected regionsy
introducing themagnetic vector potentiah the holes placed in the eddy current region.
The region of holes filled with nonconducting material is oted by}, ,. The two
potentialsA andV remain inQ2. and ® in the remaining part of the eddy current free
region€l,,, i.e. Q, = Q,, UQ,,. The problem region has three disjunct parts, that
is = Q. UN,, UQ,,.. This means that the boundaries of eddy current free region
and the interface have two disjunct patsy, = I'y, UT'y,, I'p = I'p, UTp,,

Ipe = Dpea UTe,. The further interface betweén, , and(},,, isT'4 4. The scheme

is plotted inFig. 2.18.

The equations to be used are (2.305)—(2.312), (2.2232{2&hd (2.160)—(2.162)
in the subregiort2., Q,, and(,,, respectively, which must be completed by some
continuity equations and boundary conditions defined gnandI’ 4 .

The interface conditions oh,., are the same as dn,. in the gaugedd,V — A
formulation, see (2.357)—(2.361). The interface condgionT ., are the same as on
T',c inthe gaugedd, V — @ formulation, see (2.473)—(2.476). The tangential compone
of the magnetic field intensity and the normal component efrifagnetic flux density
must be continuous on the interfdtg &, moreover this is a boundary of the regian,, ,
whereA - n = 0 is prescribed because of the condition for the tangentiapmment of
the magnetic field intensity, which is a condition forV x A) x n (see (2.514)). ltis
noted that the last three boundary conditions are the saindlasgauged’, ® — A — ®
formulation.

The summarized equations are as follows:

VX (1aV % A) =~V (1oV - A) + 022 4 oWV =~V x I, in Q.. (2.489)

ot
A
-V (0% + UVV) =0, in €, (2.490)
Vx(WVxA) -VWV-A)=Jg, in Qp,, (2.491)
V.- (upV®) ==V - (uTy), in Qn,, (2.492)
(WoVxA+I)xn=0, on Iy, (2.493)
— (a%—? + aVV) n=0, on Ig, (2.494)
A-n=0, on Iy, (2.495)
(WxA)yxn=K, on Tpy,, (2.496)
A-n=0, on Ipy,, (2.497)
b = (I)(), on FH(I), (2498)
nxA=0, on Ig, (2.499)

V=V, on Ig, (2.500)
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v,W-A=0, on Ig, (2.501)
nxA=«a on Ip,, (2.502)
vW-A=0, on I'p,, (2.503)
(uTo—pVe®)-n=-b, on Ip,, (2.504)
WoVxA+I)xn.+ WV xA)xna=0, on Ty, (2.505)
(WoV-An.+ WV -Ana =0, on T,.,, (2.506)
- (a%—? + aVV) n.=0, on I'pe,, (2.507)
nex A+n,xA=0, on I',, (2.508)
A-n.+A-n,=0, on TI,, (2.509)
WoVxA+I)xn.+ (Tog—VP) xneg =0, on T, (2.510)
(VxA) nag+ (pTo—puVP) -ng =0, on T, (2.511)
- (a%—? + aVV) n.=0, on I'pe,, (2.512)
A-n.=0, on I, (2.513)
(WVxA) xna+ (Ty—VP) xng=0, on I'as, (2.514)
(VxA) na+ (pTo—pVP)-neg =0, on Taq, (2.515)
A-nyg=0, on Tas. (2.516)

M. The ungaugedA,V — A — & formulation

Applying the same notations and theory, presented in theitr®, the summarized
equations of the gauged version can be set up, but the ingaressrent vector potential
T is used to represethy, seeFig. 2.18.

The equations to be used are (2.294)—(2.299), (2.228Bq2anhd (2.160)—(2.162)
in the subregiort2,., Q,, and(,,, respectively, which must be completed by some
continuity equations and boundary conditions defined s, (see (2.486)—(2.488)), on
I'ea (see (2.371)—-(2.373)) and @iy ¢ (see (2.514) and (2.515)).

Finally, the system of equations of the ungaugkd” — A — ® formulation are as
follows:

V x (1,V x A) + a% +oVV =-VxI, in Q (2.517)
-V <a% + chV) =0, in Q, (2.518)
Vx(WwVxA)=VxTy in Q,, (2.519)

—V - (uV®) = -V - (uTo), in Q,, (2.520)



2. POTENTIAL FORMULATIONS IN ELECTROMAGNETIC FIELD

(VobVXA+I)xn=0, on Ty,

- (U%—?‘FUVV) ‘n=0, on Iy,

(WxA)xn=K, on Ipy,,

=&y, on Ty,

nxA=0, on Ig,

V=V, on Ig,

nxA=«a on Ip,,

(uTo —pV®P®) - n=-b, on Ipg,,

(W VXA+I)xn.+ (vVxA)xng=0,

—(U%"’UVV) 'nc:Ov on FncAa

nexA+n,xA=0, on D[,.,,
WoVxA+I)xn.+ (To—VP) xng =0,

on

on

FncAa

Fn&pa

(VxA) nag+ (pTo—puVP) -ng =0, on T,

—(U%"’UVV) 'nc:Ov on Fan)a

WV xA)yxna+(To—VP) xng=0, on Iss,
(VxA) na+pu(To—VP) -neg=0, on Ipe.

(2.521)
(2.522)

(2.523)
(2.524)
(2.525)
(2.526)
(2.527)
(2.528)
(2.529)

(2.530)

(2.531)
(2.532)
(2.533)

(2.534)

(2.535)
(2.536)



3 Weak formulation of nonlinear
static and eddy current field
problems

There are several methods to solve the partial differeegjahtions of the electromagnetic
fields based on thereighted residual methof42]. The first group is based on the direct
form of the weighted residual method, as the finite diffeeemethod [29, 42,52, 84] or
the classical Galerkin technique [42]. The weak form of thedglited residual method
results in the variational method [41] and the finite elenmeathod [11,12,19,46,52,59,
68,71,77,78,94,95], finally the boundary element meth&j §hd Trefftz method [42]
are coming from the inverse form of the weighted residuahmet

The numerical analysis of electromagnetic field problents wie aid of the Finite
Element Method (FEM) has been one of the main directionssgfarch in computational
electromagnetics [11,12,19,46,52,59,68,71,77,78 84This is the most widely used
technique to approximate the solution of the partial défdral equations. The basis of
this extensively studied method is the weak formulationantipl differential equations,
which also will be presented in this chapter, especiallyniagnetostatics and for eddy
current fields as well as the potential formulations of tHedds.

FEM is presented in the next chapter.

3.1 The weighted residual and Galerkin’s method

This section presents theeighted residual methodvhich is a family of methods for
solving partial differential equations. We are focusindyoon the partial differential
equations obtained from the static magnetic field problemdg@m the eddy current field
problems. The application @alerkin's methodo solve partial differential equations is
one possibility, however, it is the most widely used techieigThe finite element method
is based on the Galerkin’s method of the weighted residu#iod3,5,11-13,19,21, 28,
41-43,46,52,59,68,71,77,78,81-83,94,95].
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The weighted residual method can be applied to minimizesdhielual of a partial
differential equation. The best approximation for the ptitds can be obtained when
the integral of the residual of the partial differential atjan multiplied by a weighting
function over the problem domain is equal to zero. The wdaighfunction can be
arbitrary, but in Galerkin’s method, the weighting functsoare selected to be the same as
those used for expansion of the approximate solution.

3.1.1 Differential equations in electromagnetic field comptation

The order of partial differential equations in electrometimfield computation problems
is two. Generally these equations have the form

2
dﬁfb(r,t) n 0°d(r,t)

=V [eVO(r,t)] + En ey = flrt), (3.1)
or

VxkaAWJH—Vkvvﬂnﬂhda%;w+eyggJX:F@JL(3@
or

kaVxAﬁjﬂ+d&%?ﬂ+eyggJ):F&J) (3.3)

Herec, d ande are known parameters of the medium to be analyzed, whicheéindar

or nonlinear. Functiong(r, t) andF'(r, t) are known source terms. The unknown scalar
function®(r,t) and the unknown vector functioA(r, t) are depending on spaeeand
timet as well.

According to the parametetsd ande, the following three groups of partial differential
equations can be formulated in the analyzed dorfaaielliptic, parabolic and hyperbolic
type partial differential equation.

Theelliptic type partial differential equationisave the formd = ¢ = 0)

—V - [eVD(r,t)] = f(r,t), in O (3.4)
or

V x [V x A(r,t)] = V[cV - A(r,t)] = F(r,t), in (3.5)
or

V x [V x A(r,t)] = F(r,t), in . (3.6)

The first one is the Poisson equation of static fieldg.(H, ¢) = 0, then Laplace equation
can be obtained.

The parabolic type partial differential equationgpresent the diffusion equation (in
this case: = 0),

oD (r,t)

V- [V, 1)] +d

= f(r,t), in £, (3.7)

or



3.1. THE WEIGHTED RESIDUAL AND GALERKIN’'S METHOD 67

V x [V x A(r,8)] = VeV - A(r, 1)) + daA(g’t) _F(rt), in Q (38)
or

V x [eV x A(r, )] + daAé:’t) _F(r,i), in Q. (3.9)

Finally, wave equation is byperbolic type partial differential equatiqid = 0),

—V - [eVO(r,t)] +e% = f(r,t), in € (3.10)
or

Vx [eV x A(r,t)]=V[cV-A(r,t)] —i—e% =F(r,t), in Q, (3.11)
or

V x [eV x A(r,t)] + e% =F(r,t), in Q. (3.12)

Only the elliptic and the parabolic partial differentialedions of the scalar function
and of the vector function will be presented in this book aaese they represent the static
magnetic field and the eddy current field problems.

The following shorter notations will be used belo@®: = ®(r,t), A = A(r,t),
f=f(r,t)andF = F(r,t).

The left-hand side of the above partial differential equadi is usually called the
differential operator of the actually used potential fliowt

The patrtial differential equations are usually given in ttmmain(2, which has a
boundary’ = 0f2. As it was presented in the previous section, there are lidiand
Neumann type boundary conditions on the disjunct parts@btiundary. Herd, p, and
I"y are the two parts of the boundary where Dirichlet and Neuntamdary conditions
are prescribed, respectively aiid=T'p UT'y.

Dirichlet boundary conditioris specified ofl'p, i.e.

d=g, or nxA=G, or A-n=G, on Ip. (3.13)

Here, the functiong = ¢g(r,t), G = G(r,t) andG = G(r,t) are known on the part of
boundaryI' . Heren is the outer normal unit vector of the domdin
Neumann boundary conditias given on the redf v,

(cV@)-n:ca—q):h, or (¢VxA)xn=H,

on (3.14)

or ¢V-A=H, on Iy.

Here, the functiond = h(r,t), H = H(r,t) and H = H(r,t) are known on the
boundary part .
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3.1.2 The weighted residual method
A. Weighted residual of elliptic differential equations with scalar potential

The potential functionb can be approximated by a functidn i.e. ® ~ &, but this
function does not satisfy the differential equation exattbwever, it is possible to select
a function®, which satisfies Dirichlet boundary conditions exactlye(sext sections).

The weighted residual method is based oniiner productof the differential operator
of the partial differential equation and a weighting fupatiV = N (r), defined as

< N,PDE >= [~V - (cV®)] dQ. (3.15)
Q

In this caseN is a real function. Using the identity - (pv) = v - Vo + ¢V - v and
@ = N andv = ¢ V®, the inner product has the form

— | NV - (cV®)dQ = / cV®-VNdQ - ?f N(cV®-n)dr. (3.16)
Q Q r
Let us determine the following inner product in the same way:
—/ @V-(cVN)dQ:/cV(b-VNdQ—?{CD(cVN-n)dF, (3.17)
Q Q r

i.e.® andN are replaced, then

—/NV-(cV(I))dQ:—/CI)V~(cVN)dQ
Q Q

(3.18)
+?{ [®(cVN -m) — N(cV® - n)]dl,
r
because the first integrals on the right in (3.16) and in (3at& the same.
This relation is valid for the approximating trial functidnas well,
—/ NV - (cV®)dQ = —/ OV - (¢VN)dQ
«Q @ (3.19)

Wi [B(cYN -n) = N(cV )] dr

By subtracting equation (3.18) from (3.19) and applying dedinition of elliptic
partial differential equation-V - (¢ V®) = f, the following equation can be obtained:

/N[—V-(cV(i))—f} sz—/((i)—tI))V-(cVN)dQ
«Q @ (3.20)
+7§{((i>—(l>)(cVN-n) ~ N[eV(d — @) -n]}dr.
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Let us denote the two disjunct segments of the boundary,

/N {—V~(cV<i>)—f} a0 = —/(ci)—cb)v-(cwv)dg
Q Q (3.21)
+ /F DUFN{@_@)(CVN-n)_N[cv@_cb)-n]}dr.

The potential functiorb is prescribed oii’'p, ® = g and the normal component of the
gradient of® is given onI'yy, —V® - n = h (see equations (3.13) and (3.14)). Itis
possible to select the approximation function to satisfiidbiet condition exactly, but

N=0, on Tp (3.22)

should be specified in this case. These resultin
/N {—v-(cvé) —f} a0 = —/(ti)—tl))V-(cVN)dQ
v ¢ (3.23)
+/(<1> — 3)(cVN - n)dl —/ N{(cvqn n— h]dl“.
PN I‘N
Supposing that the difference between the unknown poteftigtion ® and the

approximation functiorp is equal to zero, i.e. the first and the second integrals on the
right of (3.23) disappeatr, it results in

/QN [~V (V) - f] do+ /FN N [(€9®) -n—h]dr =0. (3.24)

This is the sum of two terms, the first one is the inner prodfithe partial differential
equation and the weighting function, the second term is teanmann type boundary
condition multiplied by the weighting function, integrdtenly onIT'y. The Dirichlet
boundary condition can be specified by an appropriate setecf the approximation
function onl'p. This is called theveak formulatiorof elliptic differential equations with
scalar potential.

B. Weighted residual of elliptic differential equations with vector potential

The potential functiond can be approximated by a functioh, i.e. A ~ A, but this
function does not satisfy the differential equation exattbwever, it is possible to select
a functionA, which satisfies Dirichlet boundary conditions exactlye(sext sections).

Let us first determine the inner product of the differentipémator and a weighting
functionW = W (r),

< W,PDE >= / W[V x (cV x A) = V(cV - A)]dQ. (3.25)
Q

Here,W is a real function. Using the identity

Vi(uxv)=v-Vxu—u-VXv (3.26)
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with u = ¢V x A andv = W, moreover the relation
V:(pv)=v-Vo+ V- v, (3.27)

with ¢ = ¢V - A andv = W, the inner product has the form
/W-[v < (€V x A) = V(eV - A)]dO
Q

:/chA-VdoQ—i—/cV-AV-WdQ (3.28)
Q Q

+7§[(CV x A) x W] -ndl"—%cV-A(W-n)dl".
r r
Let us next determine the following inner product in the savag:

/A-[Vx(chW)—V(cV~W)]dQ
Q

:/chA-VdoQ—i—/cV-AV-WdQ (3.29)
Q Q

—l—%[(chW)xA]-ndl"—%cV-W(A-n)dF,
r r
then

W[V x(cVxA)—V(V-A)]dQ
Q
= [ A [Vx(cVxW)=V(V-W)dQ
@ (3.30)
+jlér[(cV><A)><W]~ndI‘—jléFcV-A(W-n)dF

—jlé[(chW)xA]wzdF—i—jécV-W(A-'n,)dF.
r r

Applying the identity(a x b) - n = (n xa)-b= —(axn)-binthefirst@ =cV x A,
b= W)andinthethirdg¢ = cV x W, b = A) boundary integral terms, it results in

W[V x(cVxA)—V(V-A)]dQ
Q
= A [Vx(cVXW)=V(V-W)dQ
@ (3.31)
_jé[(chA)xn]-Wdr_jécv-A(W-n)dr
T T

—|—jé[(cV><W)xn]-AdF—i—jIércV-W(A-n)dF.
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This relation is valid for the approximating trial functichas well,
/W-[v X (cV x A)=V(cV-A)]dQ
Q

:/A-[VX(CVXW)—V(CV-W)]dQ
@ (3.32)

—?{[(CVXA)xn]-WdF—%cV-A(W-n)dF
r r

+j§[(cv x W) xn]-AdP+7§cv-W(A-n)dr.
r r

By subtracting equation (3.31) from equation (3.32) anddpg the definition of
elliptic partial differential equatio’V x (¢V x A) — V(cV - A) = F, the following
equation can be obtained:

W [Vx(cVxA) -V(V-A) - F]dQ
Q
:/(A—A)-[VX(chW)—V(cv-W)]dQ
@ (3.33)
_jé{[CVX(A_A)]xn}-Wdr_jécv-(A_A)(W-n)dr
r r

+jé[(cV><W)><n]-(A—A)dl“—i—?ch-W[(A—A)~n]dF.

The boundary can be split in two disjunct segmehts; I'p, U I'y. Dirichlet boundary
condition is prescribed only on the segment of the boundarfaseI' , and Neumann
boundary condition is prescribed only on the segnignt

The first and the second boundary integral terms contain Meantype boundary
conditions(cV x A) xn = H,orcV-A = H, respectively. The last boundary integral
terms contain Dirichlet type boundary conditionsx A = G, or A - n = G. These are
coming from (3.13) and (3.14).

Dirichlet boundary conditions can be specified exactly byppropriate selection of
the approximation function. In this case

nxW=0, or W-n=0, on Ip (3.34)

must be specified.
Supposing that the_difference between the unknown poteftigtion A and the
approximation functiom is zero, i.e.

R(A, W) = /(A A [V (eVxW)—V(eV-W)d2=0,  (3.35)
Q
it results in the weak formulation of the elliptic differgatequations with vector potential,

/W-[Vx (cVx A)—=V(cV-A) - F|dQ
« (3.36)

+/[(CVXA)><n—H]-Wdr+/(cv-,£i—H)(W-n)dr=o.
I'n I'n
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The first term is the inner product of the partial differehgiguation and the weighting
function, the second and third terms are the Neumann typedaoy conditions multiplied
by the weighting function, integrated only @hy. Dirichlet boundary conditions can be
approximated exactly ofip.

The above formulation is valid if the gauged vector potdigiased. The formulation
of ungauged vector potential is as follows:

/W-[VX(CVXA)—F]dQ

« (3.37)

+/ [(cV x A) xn— H]-Wdl' =0,
I'n

because the form of partial differential equation is théofeing: V x (¢V x A) = F.

C. Weighted residual of parabolic differential equations

As it is presented in the last section, the partial diffei@m@quations of a transient eddy
current field problem has some terms containing time dévivatf the potentials. These
terms are appended to the integrand of the weighted residoxakver, additional initial
conditions must be specified as

B(t=0)=dp, and A(t=0)= Ao (3.38)

3.2 Approximation of unknown functions and weighting
functions

In the previous section, we have defined the weighted rekidtiae static magnetic field
problem and the eddy current field problem, but we have naidiiced the approximating
functions and the weighting functions, yet [5,11-13,1944252,59,68,71,77,78,94,95].

The approximating scalar and vector potential functiond tre scalar and vector
weighting functions are selected as

I J

O(r,t) = (r,t) =Y Qi(r)pilt), A(r,t) ~ A(r,t) Y Q,(r)a,(t), (3.39)

i=1 j=1

and

=

L

N(r)=> P(r)bk,, W(r) =Y Pir)a, (3.40)

k=1 =1

whereQ;(r), Q;(r), Pi(r) and P;(r) are the basis functions of the approximation,
@i(t), aj(t), by, ande; are the unknown coefficients, which must be determined.

This is the most general form of approximation and weighfungction. According
to the selection of the basis functions, the weighted redichethod results in several
technique.
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The weighted residual method has three forms as it is shoWwigir8.1,

() the direct form,
(ii) the weak form,

(iii) the inverse form.

Applying the direct form of the weighted residual method, i.e. using directly e.g.

(3.24), (3.36) or (3.37) and the formulations
of linear equations, which solution gives the

in (3.39) aBd1Q) results in a system
unknown coffits p;(t) or a;(t) of

the approximating potential functions. The finite diffecermethod and the general

Q=PQ=P

Q#P.Q#P

Direct form

Bubnov—Galerkin
methods

Moment and finite
difference methods

Weak form

Finite element method

General weak form

Inverse form

Trefftz method

Boundary element
method

Fig. 3.1. The numerical field analysis methods
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Bubnov—Galerkin method belong to this group. The finiteed#hce method is a popular
and widely used technique. The disadvantage of this forhmisthe basis functions must
be differentiated twice, because the differential operiata second order one.

Theweak formulatiorof the weighted residual method can be obtained when agplyin
the rule of integration by parts to decrease the order ofifferential operator in the inner
product. This means that the order of approximating fumotian be just one. The finite
element method or the general weak form can be derived frangtbup of the weighted
residual method, moreover the weak formulation of statigmesic field problems and
eddy current field problems is presented in the next sectiothe case of finite element
method, the weighting function and the basis function ofaphproximating function are
the same.

The boundary element method and the Trefftz method are mas#ukinverse form
of partial differential equations. In this situation, theighting function is a solution of
the homogeneous partial differential equation.

Further analysis of the direct form and the inverse form isafscope of this book,
since we are focusing on the weak formulation, which is thg teathe Finite Element
Method.

3.3 The weak formulation with Galerkin's method

The finite element method use the the weak formulation @ittierkin’s methodvhen
the basis functions of the approximating function and théghting function are the
same. Here, the weak formulations of the potential forntataccording to Galerkin’s
method are presented, which are appropriate in the finiteeriemethod. In the following
N = N(r) denotes the scalar weighting function as well as the basistifins of
approximating function andV. = W (r) denotes the vector weighting function as well
as the basis functions of approximating function [5,11498342,46,52,59,68,71,77,78,
94,95].

Scalar potential® = ®(r), or ® = ®(r,¢) are approximated by an expansion in
terms of] elements of an entire function sif,

I
O~d=0p+ Y Ni®;, (3.41)

=1
where® ;, satisfies the prescribed non homogendouighlet type boundary conditions
(I)D =g, On FD, (342)

that is why the elements of the function set must prescritmadgeneous Dirichlet type
boundary condition,

Ni = O, on FD. (343)

Finally, non homogeneous Dirichlet boundary conditions ba prescribed directly by
the help of the functio® p,.
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Vector potentialsA = A(r), or A = A(r,t) are approximated by an expansion in
terms ofJ elements of an entire function sBt ;,

J
A:AZAD-FZW]'AJ‘, (3.44)
j=1
where A p satisfies the prescribed non homogeneous Dirichlet boyrodenditions,
nxAp=G, or Ap-n=G, on Ip, (3.45)

that is why the elements of the function set must prescrilmadgeneous Dirichlet type
boundary condition,

nxW;=0, or W;-n=0, on Ip. (3.46)

Finally, non homogeneous Dirichlet type boundary condgioan be prescribed directly
by the help ofAp.

Shape functionsgV; and W ; are the elements of an entire function set, which can be
defined in many ways. The definition of these elements arepted in chapter 3.3.18.

In the following ®, ¥, A, V (v) and T will denote the approximated unknown
potential functions.

3.3.1 The reduced magnetic scalar potential, thé-formulation

The weak formulation of the partial differential equati@(60) and the Neumann type
boundary condition (2.162) can be written as

N V- (11, V®) dQ2 +/ Ny (b+ poTo -1 — Ve -n+ R-n)dl
Q r

5 (3.47)

= [ NV (uoT0)dQ+ [ NyV-RAQ, k=1,--- 1,
Q Q

where
Nk = O, on FH. (348)

The second order derivative in the first integral can be redde first order by using the
identity

V-(pv)=v -Vop+ V- v (3.49)

with the notationgp = N, andv = uovi and the Gauss’ theorem

—/ 1oV Ny, - VO AQ + ¢ 1Ny VP - ndl

Q r

+/ Nk(b+u01~“0-n—u0V§>~n+1~%-n)dF:
s (3.50)

—/ oV Ng - TodQ+ ¢ uoNTo - ndl
Q r

—/ VNk~ﬁdQ+j£NkRndr,
Q r
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where the right-hand side has been modified with notatijprs NV}, andv = MOTO and
v = R, too. The boundary integrals on the right-hand side areleaér the boundary of
the whole problemregioh =T'y UT'p, i.e.

—/ MOVNk-v§>dQ+/ 1t N, V® - ndl’
Q I'ygUul'p

+/ Nk(b—f—uo’fo-n—uovzig-n—i—ﬁ-n)dl":
s (3.51)

—/ oV Ny - TodQ) —|—/ wolNiTo - ndl
Q I'ygUul'p

—/VNk~1~2dQ+/ NyR-ndrl.
Q

I'ygul'p
Itis easy to see thatthe termﬁ“o-n, Nov&m andR-n onthe pari g are disappearing,

—/MOVNk-V5d9+/ LoNeV® -ndl + [ Npbdl =
Q Ty I'p

—/MOVNk-TOd(H—/ 1o N To - ndl’ (3.52)
Q Ty

—/VNk~ﬁdQ+ N.R-ndl.
Q T

On the rest part of the boundaly, the shape functio®v,, is equal to zero because of

Dirichlet type boundary condition (2.161).
Finally, the following weak form can be obtained for thdormulation ¢ =1, --- , I):

/MOVNk-v§>dQ= 1oV N, - TodQ+ [ VN, - RAQ + [ Npbdl.  (3.53)
Q Q Q T'p

3.3.2 Combination of magnetic scalar potentialsp — ¥-formulation

The partial differential equation (2.177) iy, the partial differential equation (2.178) in
Qy, the Neumann type boundary conditions (2.181) and (2.182)%, U ', and the
interface condition (2.184) ol ¢ can be summarized in the following formula:

NyV - (uV®)dQ + [ NV - (1, V) dQ
qu Q\IJ

+ Nk(b—l—u’fo-n—uvzlg-n)dl"

I'pg

+

S—

Ne (b= 1oV n+ Rn)dr (3.54)

ey

_|_
S—

Ny [(,ffo — uV®) -ng + (—poVV + R) - ng | dT

Ty, w

= NV-uTo)dQ+ [ N,V -RdQ, k=1,--- 1.
Qg Qu
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Here
Np=0, on I'yg,Ulpy,. (355)

The second order derivatives in the first and in the secordiiats can be reduced to first
order and the right-hand side can also be manipulated by tisenidentity

V:(pv)=v-Vo+ ¢V v (3.56)

with the notationsp = N andv = ;NtI) theny = N, andv = MOV\I/ moreover
@ = Ny andv = pT, finally ¢ = N, andv = R and the Gauss’ theorem

—/ MVNk.v%dQJr/ NV ® - ng dT'
Qs

FH®UFB®UF@’\IJ
—/ MOVNk~V\f/dQ+/ Lo Nk VU - ng dT
Qg FHqJUFBqJUF@,\IJ
+/ Nk(b—F/LT()-n@—/LV%-TL@)dF
FB@
+/ N (b= 1oV mg + R-my ) dr (3.57)

+/ Ny, [(/LTO — /LV&)) ‘N + (—/LOV{IVJ + R) ‘nyg | dl =
Fe,w

—/ MVNkT0d9+/ /LN]CTO"I’L@dF

Qs FH(I) UFB(I, Ul'g v

— VNk-RdQ+/ NyR-nydl.
Qy FH\I/ UPB\I, Ul'g,w

Here the orientation of normal unit vectors is also indidates. ng is pointing outward
the subreglomq> andny is pomtlng outward the subregltmp (seeFig. 2.14).

The termsuTo N, MV<1> Ng, MOV\I/ Ny andR - ny onI'p, and onl'g, are
disappearing in the boundary integral terms. All the term$'@ ¢ have also pairs in the
first, second and in the last two surface integrals. The @it arel’y type boundaries
where Dirichlet type boundary condition is prescribed,t tisawhy N, = 0 can be
supposed there.

Finally the weak formulation of thé& — W-formulation can be written as

/MVNk-védQ+/ 1tV N}, - VU dS
Qg

o (3.58)

VN, - RdQ +/ Nibdl,
N

By Ul'By

:/ VN - To d +
Qqs Q\I/

wherek =1,---, 1.
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3.3.3 The magnetic vector potential, thed-formulation with implicit
enforcement of Coulomb gauge

The weak formulation is built up by using the partial diffietiel equation (2.223) and the
Neumann type boundary conditions (2.224) and (2.227). Téekviormulation is,

/ka : [v X (1, % A) — V(1,V - 21)} o
v wy. {(I/OVXA—I—T)XTL—K}CH—‘ (3.59)
'y

+/ UOV-;l(Wk-n)dF:/Wk-JOdQ—/Wk-(VxT)dQ,
I'p Q Q

where

nxW,=0, on Ip, (3.60)
and

Wi -n=0, on Ip, (3.61)
wherek = 1,--- , J. The second order derivatives in the first integral can baaed to

first order one and the last integral can be reformulated mguke following identities:
V-(pv)=v-Vo+ oV - v, (3.62)
and
Vi(uxv)=v-Vxu—u-V X, (3.63)

with the notationsp = v,VA, v = Wy, u = 1,V x A andu = I and the Gauss
theorem, i.e.

/ [VO(VXWk)-(sz)wov-wkv-lqdﬂ
Q

- (v x ) x Wi omar - | w9 AW ar

aUl'p

L N (3.64)
+/ Wk~[(uov x A+I) x n—K] dF+/ voV-A (W - n)dD
FH I‘B
= Wk-Jon_/(vXWk)-fdQ_/ (I x W})-ndl.
Q Q I'pul's
The first surface integral can be reformulated according to
(1Y x A) x W] -n = [nx (v,V x A)] - W,
(3.65)

- W, [(VOVXA) Xn}.
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The last integral can be rearranged by using the identity
—IxWi) n=—mxI)-Wr=W;-(Ixn), (3.66)

/Q{VO(VXW,C)-(VXA)+VOV-ka-A}dQ

—/ W - [(uov X 21) X n} dF—/ VoV-A (W -n) dT
I'yguUul'p I'ygul'p
L B (3.67)
+ [ wy. Kyov x A+I) x n—K} dF+/uOV-A(Wk -n)dl
PH PB
:/Wk-JOdQ—/(Vka)-TdQJr/ W - (I xn)dr.
Q Q FgUl'p
Now, it is easy to see that the first and the last surface ialegre vanishing ofi;. On
the restl" 5, the Dirichlet boundary condition (2.226) must be satisfisdn x W =0
and

KUOV X ;1) X Wk} n=[Wj xn]- (UOV X A)N 3.68)
:—[ank]~(u0V><A).

This is the reason why the first and the last boundary intdgrais can be eliminated.
It is evident that the second boundary integral is vanising 5 (because of the fourth
boundary integral term) and it is equal to zero on the restqgfahe boundary because of
the Dirichlet boundary condition (2.225), % - n = 0onl'g.

Finally, the following weak formulation can be given to tHeformulation appended
by the implicit Coulomb gauge enforcement:

/ {I/O(VXW;C)- (VXE) +u0v-ka-Z1} o
« (3.69)

:/Wk-Jod(H— Wk-KdF—/(Vka)-TdQ,
Q Q

'y
wherek =1,--- ,J.

3.3.4 The magnetic vector potential, thed-formulation with a
numerical technique, which is not sensitive to Coulomb gaug

The partial differential equation (2.228) and the Neumamumiglary condition (2.229) can
be summarized in

/QWk . [V X (Vo V % Zx)] dQ
+] W [(rV x A+T) xn—K]|dr (3.70)

:Awk-(Vx’fo)dQ—/QWk-(fo)dQ, k=1,
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Here
nxWi=0, on Ip. (3.71)

The second order derivative in the first integral can be redue first order one by using
the identity

Vi(uxv)=v-Vxu—u-V X, (3.72)

with the notation®y = W, andu = vV x A. The right-hand side can also be simplified
by applying the same identity with the notations= Wy, u = Ty andu = I. After
using Gauss’ theorem the following equation can be obtained

/Quo(Vka)~(V><z)dQ+/

I'yul'p

[(VOV X E) ka} -ndl’

+/FHWk~ KVOVXAJJ) xn—K}dF

:/ (V x W) - T dQ +/ (To x W) -mar (3.73)
Q T'yul'p

—/ (V x W}) - 1dQ
Q

—/FHUFB (T x Wk) .ndr.

The first boundary integral can be eliminated by the procedpplied in equations above
(3.65)—(3.68). The integrand of the boundary integral teemained on the right-hand
side can be rewritten in the following forms:

(To X Wk)-n: (n X TO)-sz(ka n)-To=—(mxWy)To.  (3.74)

The second one is equal to zerolom, because the tangential component of the impressed
current vector potential is vanishing there, the last onagsisful on the resE'g of the
boundary, because of the Dirichlet type boundary cond{to®30). As a consequence of
these manipulations, the boundary integral terms can berelied.

Finally, the weak formulation of thed-formulation, which must be realized by a
numerical technique, which is not sensitive to Coulomb gdags follows:

/glVO(Vka)~(VXz) dQ:/ﬂ(Vka)~1~“0dQ -

+ VV;g-I{dF—/(V><Wk)-”1:dQ7 k=1,---,J.
Iy Q

It is possible to select the impressed current vector p'r;uléﬁt; such that it satisfies
the Dirichlet boundary condition

Toxn=K, on Ip. (3.76)
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In this case the according boundary integral term on the-tigind side on the boundary
partl'y can be reformulated as

/(Toka).ndr:/(nxTO)-Wkdr:

o T (3.77)

—/(Toxn)~Wde:— KWde,
T

H IS

i.e. the weak formulation of the ungaugddformulation can be written as,

/Quo(vXWk)-(VXﬁ)dQ:/ﬂ(vXWk)-TOdQ -
—/Q (V x W}) - 149,

wherek =1,---,J.

3.3.5 Combination of the magnetic vector potential and the ragnetic
scalar potential, the A — ®-formulation

There are two unknown potentials in this formulation, th@gnetic vector potentiad in
the iron region and theeduced magnetic scalar potenti@lin the air region, that is why
two equations must be realized. The first is coming from thygore( 4, the second is
from the regiorfs, but the two equations are coupled through the interfage. It is
important to note that the resulting system of equationsishile symmetric.

The first weak formulation is based on the partial differa@rgguation (2.231), on the
Neumann boundary conditions (2.233), (2.236) and on thovége interface condition
(2.239). The integral equation is very similar to (3.59),

/ W - [v X (1, % A) — V(1,V - 21)} o
Qa

+/ Wk-[(yowzﬁ)xn_z{} dF+/ voV-A (W}, -n)dl
Pita oa (3.79)
+/ Wk~[(u0V><A+I) X A+ (TO—V@) xncp} ar =
Ta,e
—/ Wk-(VxI)dQ, k=1, ,J,
Qa
where
nxW,p=0, on Ip,, (3.80)
and

Wi-n=0, on I'y,Ulss. (3.81)
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Obtaining the weak form of this weak formulation is very danto the manipulations
starting on page 78. After applying the identities (3.63)68), (3.65) and (3.66), the
following equation can be obtained:

/ {VO(VXW;C)-(sz)—i-VOV-WkV-;qu
Qa

_/FHAUFBAUFM W, - {(yov x 2&) x n} ar

VoV-A(Wy-n) dl

S—

PHAUPBAUFA,@

+/ Wk-[(uonZHT) xn—K] dr (3.82)
Thy
+/ VoV - A (W -n)dl
FBA
+ Wk-[(VOVx;i%—f)an%-(To—V‘i)Xn@}drz
T'a,e
—/ (Vka)-fdQJr/ Wy - (I x n)dr.
Qa Fg,UI'B,Ula,e

The boundary of the regiof 4 is 94 =Ty, UT'p, U 4 4 (seeFig. 2.15). It should
be noted that the normal unit vectarin the first and in the second boundary integral
terms must be replaced by4 on the interfacd’4 4. The first boundary integral is
vanishing on the paif 5, and onI 4 ¢ according to the third and to the last boundary
integral terms on the left-hand side, moreover it is equaéto according to the Dirichlet
boundary condition (2.235) ohig,. The second boundary integral term is vanishing
onI'p,, because of the fourth boundary integral term and it is etfuaéro on the rest
partl'yr, UI' 4 ¢ because the Dirichlet boundary conditions (2.234) and4(®.thust be
satisfied there. The term in the third and in the fifth boundiatggrals according to the
nonlinear residual are vanishing because of the same terms in the last boundegyal.
The last integral is equal to zero &, since (2.235) is prescribed there.

Finally, the following equation can be written:

/ {VO(VXW;C)-(sz)—i-VOV-WkV-;qu
Qa

- W - (v% x mp) dar
bae (3.83)
— W, Kdl — Wk-(f’oxn¢)d1“

FHA FA,CP

—/ (V x W},) - IdQ.
Qa

Unfortunately, this is not the final weak form. One more madifion is necessary
because of symmetry, but this will be presented after thersbweak form.
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The partial differential equation in (2.232), the Neumaypet boundary condition
(2.238) and the interface condition with scalar type (2)24dld the second equation,
which is similar to (3.47),

NV - (uV@)de+ [ Ny (b+uT0-n—w§>-n) ar

Qqs FB(I,
+/ N [(v x A) -nA+u(To—v€13) -n¢} dr (3.84)
l—‘Awq)
= [ NuV-(uTo)dQ,
Qg
where
N, =0, on Tp,, (3.85)
andk = 1,---,1. Obtaining the weak form is very similar to that on page 75teAf

using the manipulations (3.49), (3.50) and (3.51), but ssp linear media i, the
following equation can be obtained:

—/ uVNk-VzﬁdQJr/ (N V® - ndl
Qg

FH<I>UFB<I> UFqus
+/ Nk(b—l—u’fo-n—uvzlg-n)dl"
Paa (3.86)
+/ Nk[(VXA)-nA—i-,u(TO—V(I))-ncp}dl":
FAwq)

—/ uVNk-’deQ—l-/ uNeTo - ndr.
Qo Fae Uy UlMa e

The first surface integral is vanishing @ts, U I' 4 ¢, because of the same term with
opposite sign in the second and in the third surface inteqi&l coursen = ng on
I'a,s). The last surface integral is vanishing on the same pattebbundary according
to the second and the third boundary integrals. The first dswthe last surface integrals
are equal to zero on the rest p&t, , becauseV, = 0 there according to the Dirichlet
boundary condition (2.237). The result is as follows:

—/ UV N}, - VO dQ + Ni(V x A) - nadl =

e R e (3.87)
—/ UV Ny, - TodQ — Nibdr.

Qqs FB(I,

It can be seen that the surface integral terms on the left-b@e of equations (3.83)
and (3.87) have no got the same format, however, — from th&e felement point of
view — they should have. The surface integral term of (3.88)kwe rewritten as

— [ w,- (VZIB x nq,) ar

Tao (3.88)
_ PA;J/,C : (VZIS x nA) ar = /FA;LA : (Wk x v%) dr.



84 3. WEAK FORMULATION OF NONLINEAR STATIC AND EDDY CURRENT FIED PROBLEMS

The identity

V x(pv) =9V xv—vx Vo (3.89)
should be applied as

n- [V x (pv)] = pln- (Vxov)l—n-(vxVyp) (3.90)
with the notationg = ® andv = Wy, i.e.

/FM na- (Wk x v%) dr :/FM Dlna - (V x W) dl son

—/ dW, - dl,
C

where curveC is bounding the interface between tieregion and theb-region. If
this surface is closed (e.g. when symmetry planes are nehtaito account), the curve
integral can be eliminated. Otherwise, the cufvaneets with boundary type dfg
and/orl" g (Fig. 2.15). In the first casey x W = 0, i.e. W, - dl = 0. In the second
cased is given by (2.237), i.ed = ®,. Finally,

/%Wk-dl:/ DoW, - dl, (3.92)
C Cu

whereCy denotes the path lying dna ¢ and meeting .
The weak form the gauged — ®-formulation can be collected as follows:

/ {I/O(VXW;C)-(VXE)—FUOV-W;CV-:&}dQ
Qa
+/ D[(V x Wy) - naldl

FAwq)

- Wy Kdl + W - (TO x nA) dr (3.93)

Ty Fa,e

—|—/ PoW . - dl
Cu

—/ (V x W}) - 1dQ,
Qa

wherek =1,---,J and
—/ pV N, - VO dQ + Ni(V x A) - nadl =
o B Fae (3.94)
—/ UV Ny, - TodQ — NibdT,
qu FB@

withk =1,---, 1.
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3.3.6 The gauged’, ® — ® formulation

There are two unknown potentials in this formulation, therent vector potential” in
the eddy current regiofe. and the reduced magnetic scalar potentiaih the whole
regionQ2. U €, that is two equations must be worked out. These are comarg the
partial differential equations (2.316)—(2.318) and thermary and interface conditions
(2.319)—(2.330). It is important to note that the resultaygtem of equations should be
symmetric.

The first weak formulation is based on the partial differ@ng¢iquation (2.316), on
the Neumann type boundary conditions (2.321), (2.323) anthe interface condition

(2.330),
1 ~ 1 ~ T o
/Wk- Vx| -VxT |-V |-V -T —l—uoa——uova—
Q. ag ag 8t 3t

+/ lV-T(Wk-n)dl“—l- Wy - KEVXT) xn} dl' = (3.95)
Ty, Ul O e o

dQ

—/QCMOWk %dﬂ o Wy - %—?dﬂ k=1,---,J,
where

Wir-n=0, on Ig, (3.96)
and

Wixn=0, on Iy UL, (3.97)

The second order derivatives in the first integral can beaedito first order one by using
the identity

Vi(uxv)=v-Vxu—u-V X, (3.98)
with the notation®y = W andu = 1/0V X T and the identity
V:(pv)=v-Vo+ ¢V v (3.99)

with the notationsy = 1/0V - T andv = W . also must be used. This results in

/ [E(VXWk)-(VXT)+EV-WW-T}dQ
Q g g

“
Qe

+/ {Klv xT) X Wk} n— —v T(W, - )}dr (3.100)
Ul ULy, g

1 ~ 1 ~
+/ —V-T(Wk-n)df+ Wy - [<—V><T> Xn} dl' =
i Ul O e g

—/ LW - aTOdQ / W - —dQ
Qc

oD
ﬂowk V—1|dQ

oW
2 k- ot

T
ot
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The first and the last boundary integral terms on the left aréshing on the boundary
partl'z. The first integrand of the first boundary integral term candfermulated as

K%vwf) xwk} ‘n
_ [nx vaff)] Wi (3.101)
:—Wk-[(%VXT) xn],

which is the same as the last one with opposite sign. The énst of the first boundary
integral term is equal to zero on the rest pagt, U I',,., because of the Dirichlet type
boundary and interface conditions (2.319) and (2.328), i.e

Wirxn=0, on FHC UT .. (3102)

The second term of the first and the second boundary integmaistare vanishing on
'y, UT,. and the first one is equal to zero on the rest partbecause of the Dirichlet
type boundary condition (2.325) and

Wy-n=0 (3.103)

there.
Finally, the first equation of the weak form is the following:

1 N1 .
/[—(Vka)-(VxT)+—V~WkV~T}dQ
gCO' ag
oT 0P
[ naW G = wew v
o at

_/ wowy - 2E0 40
Q

(3.104)

) ot
OR

_ CZhan

/QC Wi 5 4

wherek =1,---,J.

The partial differential equations (2.317) and (2.318) reawer the Neumann type
boundary conditions (2.324), (2.326), (2.329) can be suriz@ain the weak formulation
formulation presented next.

The time derivative of these partial differential equasi@md the according Neumann
type boundary conditions must be performed, anyway thdthegisystem of equations
will not be symmetric. It is noted that it is useful to muliypthe partial differential
equations (2.317) and (2.318) byi.
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After taking the time derivative, the following form can betained:

oT 0P
_ NeVoe | g— dQ
N AY (u - Vm)

0P
N,V - — 1 dQ
+ o, [AY% (/LV at)

oT, oT 0® OR
Ni | 1o o — poV—+ — | -ndl’
+/FE K <u s + w o M V—+ ) n

ob  oT, o0
+‘/F Nk <_+MW n — /Lvat )dl“
o0

9lo _ 3.105
+/FMN,€<M - Vat>nnd1" ( )

0T, 0T | 0% 6R> ndr

Hogy T oy ot o

where
Np=0, on Iy UTg,, (3.106)
and
k=1,---,1. (3.107)
The first, the second and the last three integral terms caafbenulated by the use
of the identity

V-(pv)=v-Vo+ V- v (3.108)

with the notationsp = N, andv = MOaT/atN, orv = uaT/BE v = pu,Vod/dt, or
v = puVodv/ot andv = u,0Ty/0t, orv = pdT /0t andv = OR/Ot.
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The above manipulations result in the following equation:

T T
//LOVNk o 1 _ / N 2E par
Q. ot I zUT s, Ul e ot

0P 0P
- VN, - Ved — VN, - V—dQ
/QC“ Yot /Qn“ kYot

ot

0P
+ / Ny uV—-ndl'
I'5UCH, Ul e ot

oT oT 0® OR
+/ Nk< —O+uo——ro + ) -ndl
I'e

0%
+/ Ny 1oV - pdl
FEUFHCUFTLC

Ho~5y ot ot ot
ob 0T, od
+/FBNk<at+u — -n—uvng,)dl“ (3.109)

9T 0P

oT, oT 00 OR
_ T =
+/ Nk(ﬂo B +Moat uova +at>ncd

nc

8 0 8TO
— o VN - ——dQ) — Nj, - ——dQ
/QCMV B o / IV N =5

dT, oT
+/ Ny pro—=2 ndF+/ Njp—==2 - ndl
FEUPHCUFnc a FBUFHnUFnc at

— VN - a—RdQ—f—/ Nka—R ndl.
Q. 0 PpUlg Ul Ot

It must be noted that the boundary of the regianis 092, = I'y U 'y, U T, and the
boundary of the regiof2,, is 9, =Tp Uy, UT,e..

The fourth boundary integral term defined Bg is vanishing, because of the same
terms with opposite sign in the eighth, first, second anddkebdoundary integral terms.
The sixth and seventh boundary terms defined'gnare vanishing, too, because of the
same terms with opposite sign in the ninth, the third, moeedive eighth, the first, the
second and the last boundary integral terms. The first andebend boundary integral
terms are vanishing on the rds};, , because of the Dirichlet type boundary conditions
(2.320), i.e.N,, = 0 onI'y,. The last two terms in the fifth boundary integral, defined on
I', are vanishing according to the terms in the third and in théhrboundary integrals.
The third one is equal to zero dry, because of (2.320). The last three integrals are
equal to zero on the rest pati;, and onl' g, as well.
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Finally, the following weak formulation can be obtained:

oT 0P 0P
oV N - —dQ —/ 1oV Ny -V —dQ —/ UV Ny,-V—dQ =
\/g;c Bt Q. (9 Qn Bt
- / MOVNk-%dQ— MVNk %dﬂ (3.110)

Nk—dF /VNk —dQ

Finally, the weak formulation of th&, ® — ® formulation satisfying Coulomb gauge
is the following:

/ [E(VXW;C)-(VXT)+1V~WkV~1~“}dQ
Q ag ag

a0 = (3.111)

oT 0P o0
| u,VNL-Z—dQ JVN, v 240 Nev 2240
/QC“v Y +/QCMV Y o +/Qn“v eV G

:/Q HOVNk-%dQ +/Q (VN %dﬂ (3.112)

ab OR
Ni—dI’ VN —dQ, k=1,---
+FB kat +QC k Ot ) ) ’

3.3.7 The ungauged’, ® — ¢ formulation

There are two unknown potentials in this formulation, té® turrent vector potentidl
in the eddy current regiof?,. and the reduced magnetic scalar potenbiah the whole
region2.US2,,, thatis two equations must be realized, coming from theadalitferential
equations (2.331)—(2.333) and the boundary and interfadittons (2.334)—(2.342).

The first weak formulation is based on the partial differ@rgiquation (2.331) and on
the Neumann boundary condition (2.337),

1 ~ oT 0P
o V x (;V X T> +,uo—at — /LOVE dQ)
+ Wk [(1V><T)><n]d1“:—/ LoW i, - %dg (3.113)
Qe

/ Wy - —dQ
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Here
Wirxn=0, on FHC Uy, (3114)

andk = 1,--- ,J. The second order derivatives in the first integral can beaed to first
order one by using the identity

Vifuxv)=v-Vxu—u-V X, (3.115)

with the notation®y = W andu = 1/0V X T,

)

+/ [<1VXT> ka} -ndl
Ul ULy, o

+ Wk~[<leT> xn]dI‘_
I'e

—/ oW - aTOdQ / W - —dQ
Qc

The first and the second boundary integral terms are vawgghirthe boundary paftg,
the integrand of the first boundary integral term can be refdated as

K%vwf) xwk} n

_ [n « Gv « T)] W (3.117)

:_Wk.[(%Vx’f)xn],

which is the same as the second one with opposite sign. Thédundary integral term
is equal to zero on the rest pdtf;, U I',,. because of the Dirichlet type boundary and
interface conditions (2.334) and (2.341), W, x n =00onT'y, ULl,..

Finally, the first equation of the weak form is the following:

1 oT 0P
— (VX W) (VXT)—HLOW;C S — oWV | 40

(3.116)

1 oT 0
/ — (VXWk) (V X T) +N0Wk NoWk V— 1| dQ =
Q.0 ot ot
C (3.118)
—/ oW - %dﬂ Wy - a—RdQ k=1,---,.J.
Qe ot Q. ot

Fortunately, the weak formulation of the partial diffeiehequations (2.332) and
(2.333) and the Neumann type boundary conditions (2.32830), (2.342) is the same
as presented in the last point H.
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The weak formulation of the ungaug#&t ® — ® formulation is the following:

1 oT 0P
/QC — (VX W))- (v x T)—i—uOWk S oWV A =
—/ oW, - %dﬂ (3.119)

/ Wy - —dQ
and
0

oT
- JVN,-—dQ JVN. - V—dQ
/szcﬂ "ot +/QCH Yot

o
+ / wzvk-v%—dg
On (3.120)

T, aT,
—/ ,UOVNk WdQ‘f’/ ,UVN]g Wdﬂ

Nk—dl"—i—/ VNj,- —dQ

This weak formulation must be realized by a numerical tegh@j which is not sensitive
to Coulomb gauge. Herle=1,--- ,Jandk = 1,--- , I, respectively.

3.3.8 The gaugedd,V — A formulation

There are two unknown potentials in this formulation, thegmetic vector potentiad
in the entire problem regiof?. U 2,, and the electric scalar potentiel defined only in
the eddy current regiof2., consequently two equations are needed. These are coming
from the partial differential equations, the boundary amigtriface conditions given by
(2.344)—(2.361). It is important to note that the resultaygtem of equations should be
symmetric, we are going to take care about it.

First of all, electric scalar potential’ is replaced by the function = v(r, t) defined

by

t
v = / V(r)dr, (3.121)
from which
ov
=9 (3.122)

The resulting system of equations will be symmetric by thislification, and this function
is approximated by.
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The first weak formulation is based on the partial differaintiquations (2.344) and
(2.346), on the Neumann type boundary conditions (2.327350), (2.354), (2.356) and
on the interface conditions (2.359), (2.361),

5 W, - {v x (yov x 2&) _v (uov : 2&)} a0

DA o
+ o Wk . <O’W +O'VE> dQ

+[ Wi [vx (1wWxA) -V (17 4)] a0

Qn

+/ uov-ﬁ(wk-n)dr+/ vV - AWy -n)dl
FE FB

[ wy- [(yov ¥ A+ 'i) x n} ar (3.123)

T,

n Wk-[(qu;l)xn—K}dF

Ty,

+/FMWk~ KVOVXA+T) ch—l-(l/VX;i) xnn}dl“

+/ [uv AWy - n) + vV - AW, ~nn)] b= [ Wy JodQ
Tpe Qn

— [ Wi (VxI)dQ,

Qe

where

nxW,=0, on I'pUTp, (3.124)
and

Wi -n=0, on FHC UFan (3125)
and herée = 1,--- , J. The second order derivatives in the first and in the thiregrdls

can be reduced to first order one by using the identity
Vi(uxv)=v-Vxu—u-V X, (3.126)

with the notationyy = W, andu = v,V x A, oru =1V x A and the identity
V-(pv)=v-Vop+ V- v (3.127)

with the notationg = v,V - A, orp=vV- A andv = W . also must be used. The last

integral on the right-hand side can also be rewrittewby W, andu = 1. This results
in
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/Q [UO(VXWk)-(VXE)—FVOV-W/CV-A}dQ

0A ov
W, |lo== + 6V= |dQ
+/QC ’“<C’at+” 8t>

+/ [V(VXW;C)(VXA)—l—VV-WkV-z}dQ
Qp

+ [(VOVXE) ka} -ndl

5—

FEUPHCUFnc

_|_

S—

[(uv x 2&) x Wk] -ndl

I'p UFHn ()

VoV - A(Wy - n)dl

|
S—

FEUFHCUFTLC

vV - AWy -n)dl (3.128)

|
S—

I'pUl'y, Ul'ye

VoV - A(Wy -n)dl + / vV - AWy -n)dl
I's

W, - [(VOVXA—FT) xn}dF

+
5—

I'e

+

Ia.

_|_

Wi [(vWx A) xn - K|dr

FHn

+ PMW;C- KUOVXE—FT) ><nc+(1/V><:4) xnn}dl"

+/ [uov-l(wk-nc)+uv-2(wk-nn)] dr :/ Wi JodQ
nc Q’Vl

—/ (V x Wy)-TdQ — (I x W})-ndr.
Qc

FEUFHC Ul e

The first and the second boundary integrals are vanishingebdundary paif i, UT,,.
and o'y, UT',,., respectively, because of the seventh, eighth, ninth anldgt boundary
integral terms after using the identity

[(VVXZ)xwk}-n:[nx(wxzﬂ'w’“ 3.129
— W [(vWx A) xn]. o

The first and the second as well as the last boundary integrastare equal to zero on the
rest partd’r andI'p as well, because of the Dirichlet type boundary conditio3%2)

and (2.355), i.eW x n = 0 on these boundaries. The third and the fourth boundary
integral terms are vanishing dng, onI'g and onl',,., because of the fifth, the sixth
and the last boundary integral terms on the left-hand sideth® partl’;, and onl'y,
these integral terms are equal to zero, too, because ofititype boundary conditions
(2.349) and (2.351), i.eW, - n = 0 there. The last boundary integral term containing
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the nonlinear residual terthis vanishing, because of the same terms on the left-hand side
onI'y, U, and the Dirichlet type boundary condition (2.352). Hereittentity

—IxWi) n=—mxI)-Wir=~Ixn) W, (3.130)

must be used on the right-hand side.
Finally, the first equation of the weak form is the following:

/ [VO(Vka)~(sz)+u0V~WkV~;i]dQ
Q.

0A v
+/QCW;€-< = +0V8t>d§2

+/ [V(VXWk)-(VXE)—FVV-W;CV-:{}dQ
Qn

(3.131)

:/ Wi - JodQ + Wk-KdF—/ (V x W}) - 149,
Qn Qc

T,
andk=1,---,J.

The partial differential equation (2.345), with the Neumaype boundary condition
(2.348) and the interface condition (2.360) can be sumradiizthe formulation presented
next. Here, the conditions are multiplied by,

- NkV~< %?—l—crvav)dfl

Q. ot
~ N (3.132)
—|—/FHCUFM N <a%—? + UV%> -ndl’ =0,
where
Ny,=0, on Ig, (3.133)
andk = 1,---, I. The first volume integral can be reformulated by the use®fdbntity
V:(pv)=v-Vo+ ¢V v (3.134)

with the notationsy = N, andv = 00A/dt + oV /0t,

/ VN - <U + UVZ:) dQ
—/ N < %AJFUV‘%) ndl (3.135)
I'5UTH, Ul e t ot

+/ N, aA+av‘% ndl = 0.
PHCUFnc at 8
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The boundary integral terms are vanishinglap, U T, and the first one is equal to zero
becauséV; = 0 onT'g according to Dirichlet type boundary condition (2.353).
Finally, the following weak formulation can be written:
HA D]
QCVNIC<O'E+UVE> dQ—O, k—l,,] (3136)

Finally, the weak formulation of thd, V' — A formulation satisfying Coulomb gauge
is the following:

/Q [UO(VXW;C)-(VXA)+VOV-WkV-A}dQ

0A ov
+‘/QC Wk (UE—FUVE)dQ

+/ [V(VXW;C)-(VXA)+VV-WkV-A}dQ (3.137)
Qn

:/ W, JodQ+ [ W, Kdr
QTI,

Ca,

—/ (V x Wy)-1d9,

Qe

0A ov
Ny - |0 Z= —laa=o. 3.138
/ch k <06t —|—UVat> 0 ( )

Herek =1,--- ,Jandk =1,--- | I, respectively.

3.3.9 The ungaugedd,V — A formulation

There are two unknown potentials in this formulation, thegmetic vector potentiad
in the entire problem regiof?. U 2,, and the electric scalar potentiel defined only in
the eddy current regiof2., consequently two equations are needed. These are coming
from the partial differential equations, the boundary amigriface conditions given by
(2.362)—(2.373). It is important to note that the resultaygtem of equations should be
symmetric, we are going to take care about it. The electatas@otential is replaced
and approximated by = v(r, t) defined by (3.122) and, respectively.

The impressed current vector potenfla) has the property that

JOa in an

o m o (3.139)

V x TQ = {
that is why the ternV x Ty can be appended to the right-hand side of (2.362). In this
case it is easier to obtain the weak formulation.

The first weak formulation is based on the partial differaintiquations (2.362) and
(2.364), on the Neumann type boundary conditions (2.3@536(7) and on the interface
condition (2.372),
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/Slc Wy, - {V X (VOV X 2&)} dQ+/gCWk . (0% +0V%f> 40
[ wy. [VX (lei)}dg
(oAl
[(VVXE) Xn—K:|d1"

[ w,- KVOVXZHT) xnc+(quZ1) xnn}dr

:/QCUQHW;C-(VXTO) dQ—/QCW;C-(VXT) o,

wheren x W, =0onT'rUI'g,andk =1,---,J. The second order derivative in the
first and in the third integrals can be reduced to first orderlmnusing the identity

Vi(uxv)=v-Vxu—u- VX, (3.141)

with the notatiorv = W, andu = 1,V x A, oru = vV x A, moreover the integrals

on the right-hand side can also be reformulated by the wotati= W, u = T, and
u = I, finally

~ 0A v
/ch/o(VXWk)-(VXA)dQ—F/QCWk. (Gﬁ—i_ava)dg

+ V(VXWk)-(vXA)dQ

+
\..ég\..

[(uov x 2&) x Wk] ndl

FEUFHCUFTLC

Kuv x 2&) ka} ndl

+
S—

I'p UFHn () I

W, - {(I/OVXA—FT) xn}dl“

_|_

T
)

(3.142)

_|_

Wk-{(qu;l)xn—K}dF

T
3

W, - KVOVXE+T) ch-i-(l/VX;i) xnn}dl“

3
o

+
S— 55— 5— 5—

v ka)-’f’on—l-/ (Tox W)-ndl

FEUFHC ()

=
e}

cU

n

(Tox Wi)-ndl'

_|_
S—

I'p UFHn Ul e

(V x Wy) - TdQ — (I x W})-ndl

c FEUFHCUPnC

|
S~
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can be obtained. The first and the second boundary integnattare vanishing on the
boundary parf'y, UT',,. and onl'y,, UT,,., respectively, because of the third, fourth and
fifth boundary integral terms after using the identity

Kuv x 21) x Wk} = —Wy- [(uv x 21) x n} . (3.143)

The first and the second boundary integral terms are equattoon the rest parisg and
I'g, because of the Dirichlet type boundary condition (2.36&) €.370) W x n = 0
on these boundaries. The first and the second boundaryahtegms on the right-hand
side vanish or’,,., becauser = n. in the first andn = n,, in the second boundary
integral on the right-hand side, moreover = —n,,. On the rest part§'y, andl'y,,
Ty x n = 0, because these are symmetry planes where the tangentipboemt of
the magnetic field intensity is equal to zero and the impikssgrent vector potential
must satisfy this homogeneous Dirichlet type conditionreoeer, onl'r andI'g, the
Dirichlet type boundary condition (2.368) and (2.370) naatisfy, i.e. W x n = 0 on
these boundaries. The last boundary integral term on thé&-hignd side is vanishing, too,
because of the same terms on the left-hand sidd¥npd< n = 0 onT' g and

—IxWi) n=—mxI) -Wp=({xn) W, (3.144)

Finally, the first equation of the weak form is the following:

/ VO(Vka)-(Vxﬁ)d(H-/ Wy - <g%+av@>dﬂ

Qe e

+/ y(Vka)-(vXA)dQ:/ (V x W) - TodQ (3.145)
Qnp Q.UQ,

+ Wk-KdF—/ (V x Wy) - Idr.
FHn Sc

It is possible to select the impressed current vector piatiefit, such that it satisfies
the Dirichlet type boundary condition

Toxn=K, on Ip,. (3.146)

In this case the first boundary integral term on the rightehaide of (3.142) on the
boundary parf'z, can be reformulated as

/ (Toka)-ndF:/ (n x Tg)- Wjdl' =

Titn Fitn (3.147)

—/ (To xn) - Wpdl' = — K -W,dr,
Ly,

Cw,

i.e. the boundary integral term on the right-hand side df43) can be neglected.

The weak formulation of the partial differential equati@363), the Neumann type
boundary condition (2.366) and the interface conditiol373) can be obtained in the
same way presented in the last item, see the equations §3(B336).
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Finally, the weak formulation of the ungaugdd V' — A formulation is the following:

~ DA D
/QCIJO(VXW;C)-(VXA)dQ—I—/QCWk- <0E+0V8t>dﬂ
+/ v (V x W) - (v x 21) a0 (3.148)
Qn
=/ (Vka)-Ton—/ (V x Wy) - IdT,
Q.UQ, Qe
0A ov
N - dQ2 = 0. 3.149
/ch ! < at+"vat> 0 ( )
This weak formulation must be realized by a numerical tegh@j which is not sensitive
to Coulomb gauge, moreover=1,--- ,J andk = 1,--- , I, respectively.

3.3.10 The ungaugedd™ — A formulation

The only one unknown potential in this formulation is the meiic vector potential in
the entire problem regiof?, U Q,,, but it is usually denoted byA* in the eddy current
region().. The weak formulation can be obtained from the partial diffial equations,
the boundary and interface conditions given by (2.374B38@).

The impressed current vector potenfld has the property shown in (3.139), that is
why the termV x Ty can be appended to the right-hand side of (2.374). In this ités
easier to obtain the weak formulation.

The weak formulation is based on the partial differentialaepns (2.374) and (2.375),
on the Neumann type boundary conditions (2.376), (2.37d parthe interface condition
(2.381),

/QC W, - [v x (uov x Zi*)] dQ+/QC oWy - %d@

s Wk-{vX nyEﬂdQ

KVO x A ) X n} dr
(3.150)
. {quA)xn K}dr
+ PMW]C. [(yvxﬁ*+j) X N + (VVXZl) xnn} dr

:/ Wk-(VXTO)dQ—/ Wi - (V x 1) d.
Q.UQ, Qe

Here

nxW,=0, on I'gpUIlp, (3151)
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andk = 1,--- ,J. The first, the third and the last two integrals can be refdated as it
was presented in the last item.
Finally, the weak formulation of the ungaugdd — A formulation is the following:

/ Vo (V x W) - (sz*)dﬂ—i—/ UWk'%dQ

Qe Q. 8t

+/ u(Vka)-(vXZl)dﬂz/ (V x W) - TodQ (3.152)
1929 Q.UQ,

—/ (V x W) - IdT,
Qc

andk = 1,---,J. This weak formulation must be realized by a numerical tegn
which is not sensitive to Coulomb gauge.

3.3.11 The gauged’, ® — A formulation

The current vector potentid with the reduced magnetic scalar potentiais used in
the eddy current regiofl. and the magnetic vector potentidlis used in the region free
of eddy currents{2,,. There are three unknown potentials, ® and A, which can be
calculated by the following weak formulation obtained fréime gauged version of the
T, — A — ® formulation (see on page 101):

/QC [E(Vka)-(VXT)—F%V-WkV-T}dQ

g
+/Qc HoWk'g_UoWk'vg dQ
[ Wk~<%xn,4> ar - (3.153)
—/KCMoWk'aa—J:OdQ
— QCWIC-(Z—I?dQ, k=1,---,J,

oT 0P
- VN, — dQ VN, -V— dQ
/KC” R ot +/QC“ Yot

(3.154)
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.

—/ aT (WkX’nA)dF / 8(1) (VXWk) ’I’I,AdF:
Fne

I/(VXW}C)-<VX%>+VV W,V % dQ

0 ot

ot ot
—/ W - aJOdQ / W, - —dF

/ Wy - <%XTLA>dF+/ Wye-dl, k=1,---,J.

3.3.12 The ungauged’, ® — A formulation

The current vector potentid with the reduced magnetic scalar potentiais used in
the eddy current regioft. and the magnetic vector potentidlis used in the region free
of eddy currents{2,,. There are three unknown potentials, ® and A, which can be
calculated by the following weak formulation coming fronethngauged version of the
T, — A — ® formulation (see on page 109):

(3.155)

1 oT 0P

/QC ;(wak)-(VXT)+/LOWk S~ oW V| d0
_/ W (24w na dI‘:_/ Wi Ty ., (3.156)

The Bt Qe (9

OR
-], W
oT oD
SN2 a0 SV NGV dQ

/Qﬂv e +/zcﬂv eV

[ (w5t e (3.157)
5 ot
aT, OR

— | wN,-Z a0 N, - Ztar,

/Qc“v’“at +/Qv’“at

DA oT

—‘/Q U(VXW]C) <VXE>dQ— FHCE'(WanA)dF
o (V x W}) -nadl = (3.158)

T
_/ (V x W) - aTOdQ / 0

Qp

wherek=1,--- J,k=1,---  Tandk =1,--- , J, respectively.
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3.3.13 The gauged’, ® — A — & formulation

The current vector potentidl with the reduced magnetic scalar potendtab used in the
eddy current regiof.., the magnetic vector potentidl is used in the holes},, , and the
reduced magnetic scalar potentials used in the rest region free of eddy currefits, .
There are three unknown potentidly, ® and A, so three equations must be set up.

It is important to note that the resulting system of equatishould be symmetric.
That is the reason why the time derivative of partial difféia equations (2.415), (2.416)
and (2.417) and the according Neumann type boundary andaogeconditions must be
taken. This will be highlighted while obtaining the formti¢an.

The first weak formulation can be obtained from the partiffiedéntial equations
(2.414) and the Neumann type boundary and interface congit2.420), (2.424), (2.433)
and (2.437),

/KCWk[Vx (%Vx’f)—V<%V-T>}dQ

oT od
o0 " HeVar| 49

+ Wk : [Mo
Qe

+/ EV-T(Wk-n)dF
Ta,Ulneg, 9

L (3.159)
+ Wk'[<—VXT>><n]dF

g

I'e
o
T

necaq

ot

(le’f)xnc—%an]dF:
ag

_/ MoWk'aTOdQ—/ Wk,a_RdQ’ k=1, ,J
Qe Qe ot

ot
where
Wixn=0, on Iy UL, (3.160)
and
Wi-n=0, on I'gUTl,,. (3.161)

The second order derivatives in the first two integrals careldaced to first order one by
using the identity

Viuxv)=v-Vxu—u-V X, (3.162)
with the notation®y = W andu = 1/0V x T and the identity
V:(pv)=v-Vo+ ¢V v (3.163)

with the notationgy = 1/0V - T andv = W, also must be used. This results in
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/ [1(V><Wk) (VXT)+1V~WkV~T}dQ

L,

1 -
—|—/ {<—VXT) ka]-ndF
TEUTH, UTpe , UTneg L\O

/ LV T(Wy - n)dr (3.164)
FEUFHCUFMAUFM@ g

+/FHUF T(Wi - n )dr+/FEWk.[GV><T>xn]dF

(leT> xnc—%anldF:
g

/ Wi ot
Trcn

—/ LW - aTOdQ / W - —dQ
Qc

The boundary integral terms on the boundary partare vanishing as well as the same
term on the boundary terin,. , , because the first boundary integral can be reformulated

as
{<§VXT> ka} n=-Wy- K%vwf) xn]. (3.165)

The first first boundary integral is equal to zero on the restlpa  UT',,.,, because of the

Dirichlet type boundary and interface conditions (2.418) §2.431),i.e W xn =0

onI'y, UT,.,. The second boundary integral term is vanishing'en U T',,.. because

of the third boundary integral term, as well as on the restparu I',,., because of the

Dirichlet type boundary and interface conditions (2.42&) §2.436) W, - n = 0 there.
Finally, the first equation of the weak form is the following:

0P

ﬂowk ,uoWk V— ot

dQ

/ [E(Vka)-(VXT)—FEV-WkV-T}dQ
Q g g

T oD
W W 40
+/QC poWik - o = oW - Vat
i ) (3.166)
— Wk' —— XMNA dF:—/ ;LOWk ﬂdQ
- ot 0 ot
TLCA c
OR
— — dQ,
. Wi 5

wherek =1,---,J.
The second weak equation of this potential formulation imiog from the time
derivative of the partial differential equations (2.416342.416) and the Neumann type
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boundary and interface conditions (2.425), (2.429), (2)48.435) and (2.440). lItis
noted that it is useful to multiply the partial differenteuations (2.415) and (2.416) by
—1. After taking the time derivative, the following formularcée obtained:

oT 0P
_ N.V - o— | dQ N.V - oV— | d©)
/QC AV <u 815) —1—/96 AV <uvat>
+/ N,V - <Mva—¢> dQ
Q. ot

T oT 0® OR
N o A, o A, (0] A, A, : dr
+/PE ’“<“ at Moo “Vat+at>"

ab . 9T o
Ne| &= +p=2-n—pV n|dl
+/FB® k<6t+” a TV g n)

oT, oT 0® OR
N o0 o, 0 A, ~ MoV 5, . . ch 3167
+/Fn% ’“<“ at  Foai “Vat+at>" (3.167)
+/ N;g(VX%)-’nAdF
r ot
nen
oT, oT o0 OR
N 0 A, 0 5, ~ MoV 5, A, : ch
+/FMA ’“(“ ot Mo MY at> "

dA 9T, o
V x E) “na+ (MW —/LVE> "I’Lq>‘| dr

o
- Nkv.< 8To>dg

° ot

Qc
+ NV - u% dQ+/ NV - 8—RdQ,
0 ot 0 ot
ng c
where
N =0, on FHC U FH(I), (3168)

andk = 1,---,I. The first, the second, the third on the left and the thregyratderms
on the right can be reformulated by the use of the identity

V-(pv)=v-Vo+ V- v (3.169)

with the notationsp = N, andv = uoaf/at, orv = 1oV OD /Ot or v = VOB /Ot
andv = p,0T/0t, orv = pdTy/0t, orv = OR/Ot.
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Finally, the following equation can be obtained:

/ MOVNk'&_TdQ_ Nkuoa—T-ndl"
Qe ot T EUC g, Ul e, Ul ey ot
@ &
_/ NOVNk'Va—dQ—/ ,LLVNkva—dQ
Q ot Q ot
€ ng
+/ N, Mova—q)-ndf
TpUlH Ul e, Ul ey ot
+/ Nk,uva—q)-ndf
Ul g Ul neg Ul 4,0 ot
oT, oT 0%  OR
Nic | bo—~ + Mo — 1oV o + o~ | -ndl
+/FE k(” ot Tt ot Mvat+3t> n
b T, 0
(88 )
>
517’0 o0
N | n—= —pV—- | nedl
+/Fn% k (M B uVvV 3t> ne
oT, . OT 0% OR
N o0 o, o= — MoV — - . ch '
+/rn% ’ <“ ot Mo HVgr T 6t> n (3.170)
0
+ Ni [V x nadl
r ot
nen
oT,  oT 89d OR
N, o o~ — MoV (= —_— . ch
+/rm,, ’“<“ o Mar 6t+8t> "

dI' =

+
o~
z

DA T 0P
<V X E) “na+ (uw—uva> ‘N

()0 o ()

|
—
q
S

c l"<1>
oT
+/ Nkﬂo—o -ndl’
FEUFHCUFncA Urnc(r, 8t
oT
4 / Nipi=% - ndr

FB(I) UFH(I) UFnc(I) Ul'a, s

—/ (VNk)-a—RdF+/
Q. ot [ pUT g, UT

It must be noted that the boundary of the regignis 9. = T'p UT' g, Ul Ul e,
and the boundary of the regién, is0Q, =Tp UT'y, UL, Ul e,

OR

neaUlneg
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The fourth boundary integral term is vanishinglop because of the same terms with
opposite sign in the first on the right and on the left, secanthe left and the last on the
right boundary integrals. The second and the third frastinhe fifth boundary integrals
are vanishing according to the second one on the right anthifteone on the left on
I's,. The interface integral term dn,,, is vanishing according to the same terms with
opposite sign in the first two on the right and the first, secamdithird boundary integral
terms on the left. The ninth boundary integral and the setemd in the tenth integral are
vanishing, because of the terms in the first, second, thuldtafirst two on the right. The
OR/0t terms are vanishing, too, di,., U I',.,, because of the same terms on the left
and on the right. Dirichlet type boundary condition (sed{®) and (2.423)) is prescribed
onIl'y, and onl'y,, whereN; = 0, i.e. the according boundary terms are vanishing on
Ty, UT g, . Finally, the following weak formulation can be obtained:

oT oD 0P
—/ /LOVNk-—dQ—l—/ MOVNk-V—dQ—f—/ UV Np-V—dQ
o, ot Q. ot U,y ot

_/ N | V x % -nadl
FncAUFA,‘I> at

T T, b
= | 1w, VNy- =240 VN, 22240 N, 2 dr
/KC“ R ot +/ PV Nk =g G ot

FB@

(3.171)

Qng
+ VNk-a—RdQ, k=1,---,1.
Qc Bt
This equation has been multiplied byl again, because of symmetry conditions.
The last weak equation of this potential formulation is cogrfrom the time derivative
of the partial differential equation (2.417), the Neumaoatdary and interface conditions

(2.421), (2.428), (2.434), (2.438) and (2.439),

/Wk-Vx VVX% -V VV-% dQ
nA
+/Wk- I/VX% Xn—a—K dF+/ VV-%(VV;C-n)dF
oT, oT _od A (3.172)
+rzk [( 8t+8t Vat>xnc+<quat>an]dF
oT, 0P A
+ rf‘jk [(W —V§> X e + (uV X E) X nA] dr
= Wk-%dQ.
Q"A Bt
Here
Wk Xmn = 07 on FBA, (3173)

and
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Wi-n=0, on I'y,Ulas, (3.174)

moreoverk = 1,---,J. The second order derivatives in the first integral can baced
to first order one by using the following identities:

V-(pv)=v-Vo+ oV - v, (3.175)
and
Viuxv)=v-Vxu—u-V X, (3.176)

with the notationsy = vV A, v = W, andu = vV x A, i.e.

J

Yo g

dQ
ot

w5t v wy O

+/
FHAUFBAUFTLCAUFA,CP

~/FHAUFBAUFTLCAUFA,® 8t

dA oK
(UVX E) Xn—ﬁ‘| dr

—|—/ VV-%(Wk-n)dF
r

BAUFncA at

0T, oT _0d dA
+/F Wk <W+E_VE>XTLC+<VVXE>X”A‘| dr

necaq

0T, 0% oA
+ ’W]g[(W—VE>XTL¢+<VVXE>X”A‘|(1F

+ Wy -

Tra

(3.177)

The first surface integral can be reformulated according to

(VV X %> X Wk] n=-Wy- <VV X %—?) X n] , (3.178)

and it is vanishing o' 7, UT',,., UT" 4 & according to the third, fifth and sixth integrals.
On the rest parf;' 5, it is equal to zero because of the Dirichlet type boundary@am
(2.427) andW ;. x n = 0 here. The second boundary integral term is vanishing on
I'p, Ul and it is equal to zero on the rest p&it;, U T 4,4, because of the fourth
boundary integral term and the Dirichlet type conditiong2), (2.441), respectively.
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The following weak formulation can be obtained after thewebmanipulations:

¥

2n 4

5 dQ

V(VXW}C)-<VX%—?>+VV-W]CV'%

_/ a_T.(kanA)dr_/ 9 (G x W) - madl =
r ot FnegUla,e ot

0Jy 0K
- 00— 2 ar
Wi = T

neca

(3.179)

Qn s Tr,

—/ Wiy - %X’FLA dl—‘—i-/a—q)wk-dl,
FncAUPA,<I> at C 8t

wherek = 1,---,J. Some notes must be appended here about the boundary integra
terms. First of all, the integral equation has been muéipby—1, because of symmetry
conditions. The term®, - (0T /0t) x n. onl',., andWy, - (0T/0t) x ng onT' 4 ¢

have been put to the right-hand side and notatiegs= —n. andn 4 = —ng have been
used. Because of symmetry, the teWny, - (0T"/0t) x n. onT',., is manipulated as

oT oT oT
Wk.<axnc>:_wk.<gxn!4>:E-(WanA). (3180)

The third termW , - (VO® /0t x n..), or W, - (VO /Ot x ng) 0Ny, UT 4 o caN be
reformulated as

/ Wi, - Va—q)X’rLA dl—‘Z/ na - kava—(I) dr, (3.181)
TpeaUl Ao ot TpenaUl a0 ot

after usingna = —n. andna = —ng. The identity

V x (pv) =9V xv—vx Vo (3.182)
must be applied as

n- [V x (pv)] = pn- (Vxv)]-n-(vxVp) (3.183)

with the notationg = 6&)/& andv = Wy, i.e.

/ nAa - Wk X Va—(I) dr
FncAUFA,<I> at
d d
:/ a—[nA(Vka)]dF—/a—Wkdl,
PpoyUlag OF o ot

where curveC' is bounding the interface between tHeregion and the region where
can be found, i.eQ). U Q,,,. . If this surface is closed (e.g. when symmetry planes are not
taken into account), the curve integral can be eliminatetthefvise, the curvé€’ meets

(3.184)
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with boundary type of 5, UT'g and/orl' g, UT' g7, . In the first casen x W, = 0 (see
(2.427)),i.e. W, -dl = 0. Inthe second cask is given by (2.419), i.e® = ®,. Finally,

/%Wk-dl:/ DoW, - dl,
C Cu

whereC'y denotes the path lying dng ¢ and meeting 5.

The weak equations of the gaug€d® — A — ® formulation are:

/ [E(VXW;C)-(in’)—i—lv-wkv-’f}dfl
Qe g g
+
Q.
-/ Wk.(%an)dr_
- at

T OR
- W =240 - -2 40,
/g N Wi 5 QCW’“ at

oT 0P
,LLOWk Ty T ,LLOWk -V—

ot ot s

oT 0P
- JVNL-—— df VN,V d
/gc“v’“at +/Qc“v’“vat

ot
ng

oT oT

:/ MOVNk-—Od(H—/ UV Ny, —=2 dQ

Qc at an) 8t

+ Nar 4 VNk-a—RdQ,
FB@ at Q. (9t

|

V(VXW}C)-<VX%>+VV-W]€V'%

ot ot
naA
oT 0%
—/ —~(Wk><nA)dF—/ —(VXWk)~nAdF:
FncA at FncAUFA,<I’ 6t
_ Wk-%dﬂ— Wk-a—KdF
Q 3t Ty 8t
nA A

—/ wi- (250, dF+/ 9 - dl.
FncAUFA,<I> at C 8t

Herek=1,--- ,J,k=1,--- ,Tandk =1,---, J, respectively.

+/ MVNk-Va—(I)dQ— Nk V x % -’I’LAdP
Q at FncAUFA,<I’

(3.185)

(3.186)

(3.187)

(3.188)
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3.3.14 The ungauged’, ® — A — ® formulation

The current vector potentidl with the reduced magnetic scalar potendtab used in the
eddy current regiof.., the magnetic vector potentidl is used in the holes},, , and the
reduced magnetic scalar potentials used in the rest region free of eddy currefits, .
There are three unknown potentidly, ® and A, so three equations must be set up.

It is important to note that the resulting system of equatishould be symmetric.
That is the reason why the time derivative of the partialedéhtial equations (2.443),
(2.444) and (2.445) and the according Neumann type bouradatynterface conditions
are taken. This will be highlighted while obtaining the fardation.

The first weak formulation is coming from the partial diffatal equations (2.442)
and the Neumann type boundary and interface condition5@2 and (2.459),

[w
Qc

+ [ wW,- Klvwf) xn}dl“
T'g a

oT o0d

G vAChal ITe
ar MV

1 ~
V x (—VxT)—i—uo
g

(3.189)
+ Wi -

rncA

ot

(le’f)xnc—%an]dF_
ag

oT, OR
_ W =240 - - 2240,
/g N Wi . Wi 5

where
Wirxn=0, on FHC U Fan>, (3190)

andk =1,---,J. The second order derivative in the first integral can be ceduo first
order one by using the identity

Viuxv)=v-Vxu—u-V X, (3.191)

with the notation®y = W andu = 1/0V X T,ie.

).

+/ |:(1V><T) ka}-ndF
TpUlH Ulpe 4 Ul ney g
1 ~
+/ W;C-K—V X T) X n}dl“ (3.192)
Iz g

(le’f)xnc—%an]dF_
o ot

1 ~ oT 0P
—(Vka)-(VxT)+uoWk-——uoWk-V—

dQ
o ot ot

+ Wi -

rncA

8%0 81~%
— Wi —dQ — Wi - — d€.
/sc . g ot Qe g ot
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The boundary integral terms on the boundary pastare vanishing as well as the same
term on the boundary terin,. ,, because the first term of the first boundary integral can
be reformulated as

K%va>xm@}n

= [n X (év X T)] W, (3.193)

:_W%.K%fo)xn}

The first boundary integral is equal to zero on the rest partu I',,., because of the
Dirichlet type boundary and interface conditions (2.446) §2.455),i.e W xn =0
onI'y, UT,.,. Finally, the first equation of the weak form is the following

1 . oT 0P
/gc — (VW) (VX T) 4 poWi - S — oW - Vo | 9

—/ W - <—‘9A X nA> dr = —/ poWh, - 9Ty dQ (3.194)

. ot } ot

e .
OR

| w, - Zaa

0, ot 7

wherek =1,--- ,J.

The second weak equation is coming from the time derivafiteeopartial differential
equations (2.443) and (2.444) and the Neumann type boumdaarjnterface conditions
(2.451), (2.453), (2.456), (2.458) and (2.461). It is nateat it is useful to multiply the
partial differential equations (2.443) and (2.444)-by,.

The same form can be obtained as in the gaufjed — A — ® formulation, see
(3.167), so the weak formulation is the following:

0%

oT o0
—/ ;LOVNk~—dQ+/ MOVNk-V—d(H—/ LV NV dQ
Q. Bt Q. at an) Bt
—/ Nk<Vx%>-nAdF
Freatlae (3.195)

oT, oT, ob
= VN, =240 Ny =240 Ny — dT
/QCMV "ot +/Q%’N R T "ot

FB@

OR
Ny - == dQ
+/ch Far T

wherek =1, -, 1.
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The last weak equation of this potential formulation is cogrfrom the time derivative
of the partial differential equations (2.445) and the Neomigpe boundary and interface
conditions (2.448), (2.457) and (2.460),

W, <m %) a0
nA
dA oK
+ FHAWk' (UVXE>Xn—W‘|dF

BTO aT 6213 0A

T 0P DA

Ta,®

:/ Wy - vxaTO aQ, k=1,---,J.
., ot

HereW xn = 0onI'p, is used. The second order derivative in the first integral can
be reduced to first order one and the integral on the righttisade can be reformulated
by using the following identity:

Vifuxv)=v-Vxu—u-V X, (3.197)

with the notation®) = W, u = vV x (0A/dt) andu = 8T, /0t i.e.

/Q u(VxW@-(Vx%—?)dQ

na
0A
<Vv X E) X Wk‘| -ndl’

+/
PHAUPBAUFncAUPA,<I>

0A 0K
<VV>< E) Xn—ﬁ‘| dr

<8T° %T v%f) X Moo + <VV>< %> x nA] dr  (3.198)

+ Wy -

FHA

gm

+ Wy -

T'a,e

ot

T, o DA
<W—v8t>xn@+<VVXE>XnA‘|dF
BTO

— V xW ——dQ
/QnA( k) 5

oT
+/ C0 Wy | .
PHA UFBA UFncA Ul'a, e at
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The first surface integral can be reformulated according to

<VV X %> X Wk] n=-Wy- (uV X %) X n] ) (3.199)

ot
and it is vanishing oi'y, U T, UT 4 ¢ according to the second, third and fourth
integral terms. On the rest palfts,, it is equal to zero because of the Dirichlet type
boundary condition (2.452) ar’;, x n = 0 here. The last boundary integral term can
be reformulated as

<% X Wk> ‘ng=-—-Wy- <% X ’I”LA> (3200)

ot ot

This is the reason why the last boundary integral term issking onl',,., U ' s,
because of the same terms in the third and fourth boundagrialtterms aneth = —n,
andn = —ng. The last boundary integral term is equal to zeradly), as well, since
(2.452) is a Dirichlet type boundary condition, i¥/; x n = 0 here. According to the
time derivative of (3.146) and (3.147), the surface curdamsity K can be eliminated
from the formulation and the last boundary integral ternaisishing on the rest part;y, .
The following weak formulation can be obtained after thevebmanipulations:

_/Q V(vXWk)-<vX%—‘?>dQ

nA

T )
_/ 0 (Wk X ’flA) dI' — / 9 (V X Wk) nadll = (3201)
Py O Cucallae ot

T
_/ (V x W) - aaOdQ / —Wk dt.
Qs

Some notes must be appended here about the boundary irtergnal First of all, the
equation has been multiplied byl, because of symmetry conditions, moreover notations
na = —n.andn 4 = —ng have been used. The teW, - (0T /0t) x n.onTl,.,
as well as the third terfiV;, - (VO® /0t x n.), of Wy, - (VOD /9t X ng) oNType, U
I' 4, have been reformulated as it is presented in the last iteenfremanipulations
(3.180)—(3.185).

Finally, the weak formulation of the ungaug@&® — A — & formulation can be
summarized as

1 T 0P
/ﬂc ;(Vka). (VxT)—i—uoWk a5 — Wi - v&t d0
—/ Wy - <% X nA> dl' = —/ oW, - % dQ (3.202)
necp 8t Qe at

/ Wy - —dQ
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® ®
/ 116V N - 8—dQ+/ MOVNk-Va—d(H—/ 1N v 40
o, B o, ot ot

g
A
—/ N | V x 8— -nadl
The Ul A o ot

/ oV N+ %dﬂ—i—/ UV N %dQ—i— Nk%dl"
Q,

0 ot rs, Ot
o

—/ v(Vx Wy)- Vx% dg
Qny ot

r r

TLCAUFA P 8t

(3.203)

neca

0]
—/ (VX Wk) a—dQ—i—/ a—Wk dl.
Qs ot cy Ot

Herek=1,--- ,J,k=1,--- ,Tandk =1,---,J, respectively.

3.3.15 The gauged,V — ¢ formulation

The magnetic vector potentizl and the electric scalar potentidl are used in the eddy
current regiorf2,. and the reduced magnetic scalar poterii& used in the region free of
eddy currents(2,,. The three unknown potentiald, V and® can be obtained from the
weak formulation of the more general gaugédl” — A — ® method (see on page 114),

/Q [UO(VXWk)-(VXE)—FVOV-W/CV-A}dQ

+/ Wk-< aA—i—aVaU)dQ—i-/ B (V x W}) - nadl (3.205)
Q. ot ot
= Wk-(Toan)dr+/ q>0wk-dl—/ (V x W},) - 1dQ,

The C Qe

0A ov
Ny o= aQ = 3.206

/ch k <cra +Uvat> 0, ( )
—/ uVNk-VEI;dQ—i—/ Ni(V x A) - nadl =

o R (3.207)
- / VN -TodQ— [ Npbdr.

Qn I's

Herek=1,--- ,J,k=1,--- ,Tandk =1,--- , I, respectively.
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3.3.16 The ungaugedd,V — & formulation

The magnetic vector potential with the electric scalar potenti®l is used in the eddy
current regior). and the reduced magnetic scalar potenbas used in the region free
of eddy currents{2,,. The three unknown potentialgl, V and®, can be obtained by
reducing the weak formulation of the more general ungautigd — A — ® method (see
on page 119),

/ VO(VXWk)-(vXA)dQ

Qe

0A ov
+‘/QC Wk . <O’W +O'VE> dQ

+/ ®(V X W}) - nadl (3.208)
T

neg

:/ PoW, - dl
C

—/ (V x Wy) - 1dQ,

Qe

0A ov
/QC VN, - <UE + avg) dQ =0, (3.209)

—/ VN, - Vo dQ

Qo

+/ Nk(VxliynAdF:
Pne (3.210)

—/ UV Ny, - To dS
Qnp

— Nibdl'.
I's

Herek=1,--- ,J,k=1,--- ,Tandk =1,--- , I, respectively.

3.3.17 The gaugedd,V — A — & formulation

The magnetic vector potential with the electric scalar potenti®l is used in the eddy
current regiort,., the magnetic vector potentiad is used in the holes?, , and the
reduced magnetic scalar potentiais used in the rest region free of eddy currefits, .
There are three unknown potentials, V and®, that is three equations must be set
up.
Itis important to note that the resulting system of equatisimould be symmetric, we
are going to take care about it.
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The first weak formulation is based on the partial differaintiquations (2.489) and
(2.491), on the Neumann type boundary conditions (2.423396), (2.501), (2.503) and
on the interface conditions (2.505), (2.506), (2.510%12)

/SCWk. [V x (1Y x A) - V(¥ 4)] a0

+ [ Wi [Vx (vwwxA)-v(ww-a)]a0

Dy
+/PEVOV.A(Wk.n)dF+/FBAyV-Zl(Wk-n)dF
W [(vV x A+T) xn|dr
W [(WxA) xn-K|ar (3.211)
+/FMAW,€. (709 x A+ 1) xne+ (V7 x A) x ma dr

+/F [Vov AWy -n) + vV - AW, - nA)} dr

necaq

+/Fn% Wi - {(I/OVXK—FT) xnc+(T0—V§>) an)} dr

+ Wk-[(quZt)an+(T0—v§>)><nq,}dP

Ta,®

Qn Qc

where

Wixn=0, on I'gUIp,, (3.212)
and

Wi-n=0, on I'yg Uy, Uy, U4 s, (3.213)
moreoverk = 1,--- ,J. The second order derivatives in the first and in the thirelgrels

can be reduced to first order one by using the identity
Vi(uxv)=v-Vxu—u-VXuv, (3.214)
with the notationsy = W, andu = 1,V x A, oru = vV x A and the identity

V:(pv)=v-Vo+ ¢V v (3.215)
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with the notationg = v,V - A, orp=vV- A andv = W . also must be used. The last
integral on the right-hand side can also be modified by usiegibtationsy = W, and
u = I. Thisresults in

/Q {1/0 (VXWk)-(vXA)+ VoV - W,V - Zl] o

0A v

+/ [V(VXW;C)-(VXA)—i—VV-WkV-:i}dQ
Q

nA

+
5—

Kyov x 2&) x Wk] ‘ndl

'euly, UFncA Ul—‘nc(b

Kyv x 2&) x Wk} -ndl

+
—

BaUl'H Ul Ul A @

VoV - A(Wy, -n)dl

|
S—

T'r UFHC UF"CA UFncq;

vV - A(Wy -n)dl
BAUFHAUFncAUFA,@
+/ VOV-;l(Wk-n)dl"—i—/ vV - AWy -n)dl
= T5a (3.216)
+ Wk-{(VOVxA+T)xn}dF

Tu,

|
—

+ Wk-[(quZ)xn—K]dF
Pra
+/FMAWk- KVOVXE+T) ch—l-(l/VX;i) an} dr
+ /F [0V - AWy o) + 0V - AW mg)| ar
nea
+ - Wy - KUOV X ;1—1—7) X M + (TO —VE)) X ’I'Lq>:| dr

+ Wk-[(quA)an+(T0—v§>)><n¢}dP

Ta,®

:/ Wk-Jon—/ (V x Wy)-Idl
Qn Qc

—/ (I x W})-ndl.
I'g UPHCUFncA ul“n%

The first and the second boundary integrals are vanishiigsoru I, , UT,.,, and
onl'y, UT,., UT 4 ¢, respectively, because of the seventh, the first term ofigiete
the ninth, the first term of eleventh and the twelfth boundaiggrals after using
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{(yv x 2&) x Wk} ‘n=-Wy- [(uv x 2&) x n} . (3.217)

The first and the second boundary integral terms are equartan the rest partSg
andI'p, as well, because of the Dirichlet type boundary conditi@$49) and (2.502),
i.e. Wi x n = 0 on these boundaries. The third and the fourth boundary riateg
terms are vanishing oig UT,.,, onTp, UT,.,, because of the fifth, the sixth and
the tenth boundary integral terms. On the rest parf U 'y, and onI'y, U4 &
these integral terms are equal to zero, too, because ofBititype boundary conditions
(2.495), (2.513), (2.497) and (2.516), iB/ - n = 0 there. The last boundary integral
term on the right is vanishing dng, U T, U I',.,, because of the same terms on the
left-hand side and the identity(I x W) -n = (I x n) - W, must be used. It is equal
to zero on the rest paltz, because of the Dirichlet type boundary condition (2.499).

The last two interface integral terms on the left-hand sidet@iningV® can be
reformulated in the same way as in tde— ® formulation on page 83, from (3.88) to
(3.92).

Finally, the first equation of the weak form is the following:

/{VO(VXW;C)-(VXZ)+VOV~WkV~z}dQ
Q.
DA o

+/ [V(VXW;C)-(VXA)+VV-WkV-E}dQ

na (3.218)
+/ é(vXWk)-nAdP:/ Wi - JodQ

l—‘nc(b UPA,<I> QnA

+ W - KdT +/ Wi (To x na)dl

I8 FnegUTa, @
+/<I>0Wk~dl—/ (V x W) - TdS.
C QC

Here, all the normal unit vectors are changeatp, pointing out from the regions where
A can be foundQ. U, ,)andk =1,---,J.

The partial differential equation (2.490), the Neumanretygoundary and interface
conditions (2.494), (2.507) and (2.512) can be summarizéidd following formulation.
Here, the conditions are multiplied by1,

0A v
| NV |22 LoV | dD
0, " (08t+0 675)

_ _ (3.219)
+/ Ni (U%—l—av%) -ndll =0,
P iUl p T ot ot
wherek = 1,--- , I. Thefirstintegral terms can be reformulated by the use atlénatity
V:(pv)=v-Vo+ ¢V v (3.220)

with the notationsy = N, andv = 00A/dt + oV /dt,
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0A ov
QCVNIC. <U 5 -i-UVat)dQ

- / N, BA + UVB -ndl’ (3.221)
I U Ul e, Ul ey “or ot

+/ N (024 4 o9 ar — o,
PHCUF7lCAUF7lC(I) at (9

The boundary integral terms are vanishindop UT',,. , UT,,.,, and the first one is equal
to zero becaus#&/;, = 0 onI'g according to Dirichlet type boundary condition (2.500).
Finally, the following weak formulation can be obtained:

/VNk (a +avg:>dﬂzo, k=1, 1. (3.222)

The partial differential equation (2.492), the Neumanretgpundary condition (2.504)
and the interface conditions (2.511) and (2.515) build tirel tweak formulation,

/ Nkv-(wci)dmr/ Nk(b+ufo-n—ﬂv<f>-n)dr
Qg

T,
" /rn%upA N {(V X A) - Ap (TO - VE}) ' "<I>] dr (3.223)

=/, NV - (uTo) dS,
wherek = 1,-- -, I. Thefirstintegral terms can be reformulated by the use atitatity
Volpr) =v- Vet gV-v (3.224)

with the notationsy = N, andv = ;LVE),

—/ ;NNk-VflidQJr/ NV - ndl
Q r

ng Hg UPB(I) ul“mq, Ul'a, e

—|—/ Nk(b+uf”0~n—uV<f>~n)dF
"o (3.225)
+/ Nk[(sz)-nA+u(To—V&>)~nq>}dl“:
FnCI,UFA i3

—/ UV N - TodQ +/ uNkTO -ndl.
Q r

ng Hg UPB(I) UFnc(I) UPA,<I>

The first surface integral is vanishing on the pagt, U I',,., UT'a s of the boundary
because of the same term with opposite sign in the seconadinel third surface integrals
(of coursen = ng onl',,., UT'4 o). The last surface integral is vanishing on the same
part of the boundary according to the second and the thirddny integrals. The first as
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well as the last surface integrals are equal to zero on theeaed 1, , becauseV, = 0
there according to the Dirichlet type boundary conditio®@8). The result of this math
is as follows:

—/ MVNk-vidQJr/ Ni(V x A) -nadl =

e . st (3.226)
—/ pV Ny, - TodQ — Npbdl, k=1,--- 1.

an, FB@

Finally, the three equations of the weak formulation of tegedA,V — A — &
method is the following:

/ [VO(VXWk)-(vXZ) +y0v.ka-A}dQ
Q.

DA o
+—/{CVV¢-<77§Z-+-0V152><jﬂ

o

o

[u(v x Wk)(v xl&) +uv-ka-2i} ao

+/ ®(V x W}) - nadl (3.227)
Fncq)UFA,q)

:/ W, JodQ+ [ Wy Kdr
Qi a Tu,

+/ W, - (To x nA)dF—i-/ DoW, - dl
l—‘nc(bUl—‘A,(I’ C

—/ (V x W) - 1dQ,
Q

A v
/QC VN - <UE + avg> dQ =0, (3.228)
—/ uVNk-VCTJdQ—l-/ Ni(V x A) - nadl =
QUng FhepUla,e
N (3.229)
—/ /LVNk~T0dQ— Nkbdl“
Qng Iy

Herek=1,--- ,J,k=1,--- ,I,k=1,--- I, respectively.

3.3.18 The ungaugedd,V — A — & formulation

The magnetic vector potential with the electric scalar potenti®l is used in the eddy
current regiort,., the magnetic vector potentiad is used in the holes?,,, and the
reduced magnetic scalar potentals used in the rest region free of eddy currefits, .
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There are three unknown potentials, V and®, so three equations must be set up. Itis
important to note that the resulting system of equationsilshioe symmetric.

The source current densiffy, is represented by the impressed current vector potential
T.

The first weak formulation is based on the partial differ@intiquations (2.517) and
(2.519), on the Neumann type boundary conditions (2.52192@) and on the interface
conditions (2.529), (2.532), (2.535). The te¥iix Ty has been appended to the right-hand
side of the partial differential equation (2.517), sinljato (2.519), according to the
definition (3.139). The weak formulation is as follows:

/gcwk[vX(uonz)}dQ

DA v
+‘/KCW]€ <0E+UVE> dQ

+ [ Wi [Vx (vwxA)|dn

Qi
+ - Wy - KUOV xﬁ—i—f) xn} dr
+ Wk-[(quli)xn—K}dr
Tiig (3.230)
+ PMAWk.{ VOVXE+T) ch—l-(l/VX;i) an} dr
+ - Wi - [(VOV X 2&+T) X M + (’f‘o —V&J) X ’I’L.:p} dr
- W - [(uv x 2&) X A + (TO—V&S) x ncp} dr

:/ W]C . (V X To)dﬂ
QcUQ 4

—/ Wy - (V x 1)dQ,
Qc
where
Wiexn=0, on FEUFBA, (3231)

andk = 1,---,J. The second order derivatives in the first and in the thirdgrdls can
be reduced to first order one by using the identity

Viuxv)=v-Vxu—u-V X, (3.232)

with the notatione» = W, andu = 1,V x A, oru = vV x A. The integrals on the
right-hand side can also be reformulatediby- Wi, u = Ty andu = I. This results
in
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N A )
/VO(VXWk) (VxA)d(H—/ Wk-<cr—+ch ”)dﬂ
Qc

0 ot
“h.,

/FEUFHCUFTLCA UF’"'C@

v (V x W) - (VXA)dQ

:O

+

[(VOV X E) X Wk} -ndl’
/F TR KVV X 2) X Wk} -ndl

+/FHC W - {(I/OVXA—FT) xn} ar

+/ Wk-[(quﬁ)xn—K}dr

4—/P Wi - KVOVXE+T) xnc—i-(VVxﬁ) an} dr (3.233)
+/ Wi [(#0V x A+ 1) xne+ (To — V&) x mg] dr

+/ Wk-[(quz)><nA+(TO—V<T>)><nq>}dF

(V x W) - TodQ

I
:\
o
C

(To x Wy)-ndl

_|_

‘/FEUFHCUFTLCA UF’"'C@

/ (To x W) -ndl
FBAUFHAUFncAUPA,¢’

—/(Vka)-TdF—/ (I x W})-ndr.
Q. FEUFHCUFncAUFncq)

The first and the second boundary integral terms are vamjsinthe boundary pafty_ U
Fpea UTpe, andonl'y, UT,, ., UT 4 &, respectively, because of the third, fourth, fifth
and the first term of the sixth and of the seventh boundargiatéerms after using the
identity

{(yv x 2&) x Wk} ‘n=-Wy- [(uv x 2&) x n} . (3.234)

The first and the second boundary integral terms are equartan the rest partSg
andI'p, as well, because of the Dirichlet type boundary conditioB%3) and (2.527),
i.e. W, x n = 0 on these boundaries.

The first and the second boundary integral terms on the hghtt side are vanishing
onI',., and onl 4 4 according to the sixth and the seventh terms and that

Wi (Toxng)=ng- (Wi xTo) =—ng - (To x Wy), (3.235)
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and—ng = n. and—nge = n 4 inthe first and in the second case, respectivelyl'Qn), ,
they compensate each others, because the normal unit ¥dztee opposite direction.
Dirichlet type boundary conditions (2.525) and (2.527) satisfied o' and onl g,
that is why these two surface integrals are equal to zero esetparts of the boundary.
On the rest segments, the tangential component of the isgutesirrent vector potential
must be equal to zeray x Ty = 0, however, it is useful to apply (3.146), because the
surface currentterni’ can be eliminated on the left-hand side.

The surface integral terms containing the nonlinear redithrm I are vanishing on
Ty, U, U, » because of the same terms on the left-hand SidEQMW . xn = 0
according to the Dirichlet type boundary condition (2.525)

The interface integral terms containifgp can be reformulated in the same way as
in the A — ® formulation on page 83, from (3.88) to (3.92) and B&g 2.18.

Finally, the first equation of the weak form is the following:

/QCVO(VXW;C)-(VXE)dQ

0A ov

+/QM v(V x Wy)- (V x ;‘) de (3.236)

+/ P (V x W) - nadl
l—‘nc(b UPA,<I>

:/ (V x W) - TpdQ
QU ,
+/ <I>0Wk~dl—/ (V x W}) - 1dQ,
c Q.

andk =1,---,J. Here, all the normal unit vectors are changeg fo, pointing out from
the regions whered can be found. U €2, ,).

The partial differential equation (2.518), the Neumanretyppundary and interface
conditions (2.522), (2.530) and (2.534) can be summariz¢iad following formulation.
Here, the conditions are multiplied by1,

DA v
— o Nkv . <0W +Uv5> dQ

(3.237)

+/ N U%‘FUV@ -ndl’ =0,
PHCUFncAPnc(I, at 8t

which is the same as in the gaugddl” — A — & formulation presented in the last item.
The weak formulation is repeated here,
ov

dA
Nj, - — — | dQ = k=1,---,1. 3.238
\/S;CV k <U ot +Gvat> 07 ) ) ( )
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The partial differential equation (2.520), the Neumannrimary condition (2.528)
and the interface conditions (2.533) and (2.536) build kel tweak formulation,

NV - (uV®) dQ +/

FB@

+/ N [(V % A) - 1a + 1 (To - V8) - mo| dr (3.239)
TpegUl a0

Ny, (b—i—uf’o ~n—uV&>~n) dr
Qg

= NV - (uT) dS.
Qng

Obtaining the weak formulation can be realized in the samg agait was presented in
the last item, in the gauged, V — A — & formulation,

—/ uVNk-VCTJdQ—l-/ Ni(V x A) - nadl =

o _ Freetia (3.240)
—/ UV Ny - TodQ) — Ngbdl', k=1,---,1.

Qg I'pg

Finally, the three equations of the weak formulation of thgaugedd,V — A — ®
method is the following:

~ 0A ov
[ (@ wi (9 A)ans [ wi (”E ”VE)‘M

+/QnA v(V x W) (V x ;1) de (3.241)

+/ é(vXWk)-nAdP:/ (V x W}) - TodQ
Fnc(I,UFA,@ Q

nA

+/(I)0Wk'dl—/ (Vx W) -1dQ, k=1,---,J,
C Q.

0A o
N - — — | dQ = k=1,---,1 3.242
/SCV k <Gat +Uvat> 07 3 ) ( )
—/ uVNk-VEI;dQ—i—/ Ni(V x A) -nadl =
an) Fnc(I)UFA,‘I) (3.243)
—/ UV Ny - TodQ — Nybdl, k=1,---,1.
Qng by



4 The finite element method

By using scalar and vector potentials, Maxwell's equaticarsbe transformed into partial
differential equations as it is introduced in section 2.2n€rally, the partial differential
equations can be solved by numerical methods [3,5,11, 128]1€1-43,46,52,59,68,71,
77,78,81-83,94,95]. One of these numerical methods isritie Element method, which
is based on the weak formulation of the partial differerggiations, as it is presented in
the previous chapter.

The basis of numerical techniques is to reduce the partfidrditial equations to
algebraic ones whose solution gives an approximation ofutilehnown potentials and
electromagnetic field quantities. This reduction can beedoy discretizing the partial
differential equations in time if necessary and in spacee phtential functions, the
approximation method and the generated mesh distinguéshutimerical field solvers.

This section summarize the finite element method as a CADniquk in electrical
engineering to obtain the electromagnetic field quantitiethe case of static magnetic
field and eddy current field problems. Here, we show how toreise the analyzed
domain with finite elements, how to approximate potentiattions with nodal and vector
shape functions and how to build up the system of equatiohighasolution obtain the
unknown potentials.

4.1 Fundamentals of FEM

The Finite Element MethodFEM) is the most popular and the most flexible numerical
technique to determine the approximate solution of theiglatifferential equations in
engineering [3,5,11,12,19,28,41-43,46,52,59,68, 713 81-83,94,95]. For example,
commercially available FEM software packageCi©® MSOL Multiphysigswhich is able

to solve one, two and three-dimensional problems [19, &3 (ast chapter). A free mesh
generator with a built-in CAD engine and post-processonisst [89].

The main steps of simulation with FEM are illustratedFig. 4.1. Firstly, in the
model specification phase, the model of the real life probletich simulation require
electromagnetic field calculations must be set up, i.e. we ha find out the partial
differential equations, which must be solved with presadiltboundary and continuity
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conditions. We have to find out, whether it is a linear or a m@dr problem and how
the characteristics look like. After selecting potentidle weak formulation of these
partial differential equations must be worked out as weiks Hepending on the problem,
of course, but the chosen mathematical model of the arraaegeshould be adequate
to calculate electromagnetic field quantities in the givecuaacy. The geometry of the
problem must be defined by a CAD software tool, e.g. by usingea friendly interface,
see e.gFig. 4.2.

The next step is thpreprocessingask. Here we have to give the values of different
parameters, such as the material properties, i.e. theitdivg relations, the excitation
signal and the others. The geometry can be simplified acogtdi symmetries or axial
symmetries.

The geometry of the problem must be discretized B{EM mesh The fundamental
idea of FEM is to divide the problem region to be analyzed srtwller finite elements
with given shape. A finite element can be e.giangle (Fig. 4.3(a)) orquadrangle
(Fig. 4.3(b)) in 2D, e.g.tetrahedron(Fig. 4.4(a)) orhexahedraFig. 4.4(b)) in 3D. A
triangle has three vertices 1, 2 and 3, here numbered cecloskwise and has 3 edges.
The quadrangle element has 4 nodes and 4 edges. A tetrabksirant has 4 vertices

Specify model
i Preprocessin
r--- - - - - - - - - - N -"—-"-" - —-—_ - - - - - = |
| |
: Data I
|
! |
gl : |
2 | FEM mesh generation :
o L T As - = I
= .
S| e[ Vo S?QTEU_ta_“PI”
=] a1 ) o |
2 ol Equations of one finite element
— E | I
(@] = |
> T v |
£ Q1 - . !
E S| Assembling equations !
i= O !
=1 g | V !
°| g !
< | Solver :
o
2l .
.I
v

Postprocessing

Fig. 4.1. Steps of simulation by FEM
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Fig. 4.2. COMSOL Multiphysics, a CAD environment to solve@tomagnetic
field problems

and 6 edges and a hexahedral element has 8 nodes and 12 édgesu@l numbering of
nodes is shown in the illustrations).

There are some simple rules, how to generate a mesh. Neitedapping nor holes
are allowed in the generated finite element mesh. If matariatface are included in
the problem region, the configuration of mesh must be adaptédtese boundaries, i.e.
interfaces coincide with finite element interfaces.

FEM mesh, as two illustrations, generated by COMSOL Muitgibs [88] can be

edge edge
e L

1 vertex 1 vertex

(a) Triangular element (b) Quadrangle element

Fig. 4.3. Typical finite elements in the two-dimensionat y plane
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(a) Tetrahedral element (b) Hexahedral element

Fig. 4.4. Typical finite elements in 3D

seen inFig. 4.5 and inFig. 4.6. The first 2D illustrationKig. 4.5) shows the mesh of

a horseshoe-shaped permanent magnet. The two ends areagnetimed in different
directions. The second illustratiofri§. 4.6) presents a model of a micro-scale square
inductor, used for LC bandpass filters in microelectromaatad systems. The model
geometry consists of the spiral-shaped inductor and theuaiounding it (the mesh in air

is not shown). The outer dimensions of the model geometrnaarend 0.3 mm. These
illustrations are cited from the Model Documentation of CO®L Multiphysics.

=

Fig. 4.5. COMSOL model of a permanent magnet, geometry idhatkeby triangles

The next step in FEM simulations is solving the problem. TE®&Fequations, based
on the weak formulations, must be set up in the level of on¢efisiement, then these
equations must be assembled through the FEM ma&skemblingneans that the global
system of equations is built up, which solution is the appration of the introduced
potential. The obtained global system of algebraic equoatie linear, or nonlinear but
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Fig. 4.6. COMSOL model of a micro-scale square inductorngetoy is discretized by
tetrahedral shape finite elements

linearized, depending on the medium to be analyzed. Themtbbal system of equations
must be solved by a solver. The computation may containtiteraf the constitutive
equations are nonlinear. This is the situation when sirmgderromagnetic materials
with nonlinear characteristics. Iteration means that trstesn of equations must be set
up and must be solved step by step until convergence is réathihe problem is time
dependent, then the solution must be worked out at everyadéstime instant.

The result of computations is the approximated potentialeven the FEM mesh. Any
electromagnetic field quantity (e.g. magnetic field intBngr magnetic flux density,
etc.) can be calculated by using the potentials apitstprocessingtage. Capacitance,
inductance, energy, force and other quantities can alsaloalated. The postprocessing
give a chance to modify the geometry, the material parameateithe FEM mesh to
get more accurate result. The COMSOL Multiphysics [88] hesrbused to show two
examples about postprocessing. The pattern of the madimtiaround the permanent
magnet is well known through experiments (§ég 4.7). Figure 4.8 shows the electric
potential in the inductor and the magnetic flux lines. Thekhess of the flow lines
represents the magnitude of the magnetic flux.
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Fig. 4.7. COMSOL solution of the static magnetic field gerteula
by a permanent magnet
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Fig. 4.8. Electric potential in the device and magnetic flags around the device,
the problem has been solved by COMSOL

4.2 Approximating potentials with shape functions

It has been shown in section 2.3 that the introduced potdatiation can be scalar valued
(e.g. the magnetic scalar potential or the electric scalar potenti&l), or vector valued
(e.g. the current vector potenti&l or the magnetic vector potentidl).

The scalar potential functions can be approximated by #eebaodal shape functions
and the vector potential functions can be approximatedthgenodal or so-calledector
shape functionslso callecedge shape function&enerally, a shape function is a simple
continuous polynomial function defined in a finite element &iis depending on the type
of the used finite element.

Shape functions have the following general properties:[59]

(i) Each shape function is defined in the entire problem region;

(i) Each scalar shape function corresponds to just one nodiat @oed each vector
shape function corresponds to just one edge;

(i) Each scalar shape function is nonzero over just those ététaents that contain its
nodal point and equals to zero over all other elements. Eactovshape function
in nonzero over just those finite elements that contain iteeeahd equals to zero
over all other elements;

(iv) The scalar shape function has a value unity at its nodalt poid zero at all other
nodal points. The line integral of a vector shape functioegeal to one along its
edge and the line integral of it is equal to zero along theratkdges;

(v) The shape functions are linearly independent, i.e. noeshapction equals a linear
combination of the other shape functions.

The accuracy of solution obtained by FEM can be increasetireetways. The
first one is increasing the number of finite elements, i.e.relsing the element size.
It is called h-FEM. The second way is to increase the degree of polynomialdibyil
up a shape function (e.g. using Lagrange or Legendre intgipo functions). This
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is the so-callegp-FEM. The mixture of these methods resultstip-FEM. Potentials
approximated by:-version orp-version are assigned in the indices of the potentials.

4.2.1 Nodal finite elements

Scalar potential functions can be represented by a lineabowtion of shape functions
associated with nodes of the finite element mesh. Within eefelement, a scalar potential
function® = ®(r, t) is approximated by

P~ i Niq)i, (41)
i=1

whereN; = N;(r) and®; = ®,(t) are thenodal shape functionand the value of
potential function corresponding to ti& node, respectively. The number of degrees of
freedom ism = 2 in 1D problemsyn = 3 in a 2D problem using triangular FEM mesh
andm = 4 in a 3D arrangement meshed by tetrahedral elements andape &imctions
are linear. The nodal shape functions can be defined by thtgawe!

1, atthe node,
Ni = { 0, atother nodes. (4.2)
() In 1D, the linear shape functions can be build up by
Ny =272 and Ny=2TEL (4.3)
To — I T2 —T1

wherez, andz, are the coordinates of the boundaries of one finite elememg. lifear
shape functions are plotted kig. 4.9. It is easy to control the equation (4.2).

Ni(z) -2 TNy (2)

\
[ £ —

T

=]
¥

Fig. 4.9. The 1D linear shape functiong (z) and N2 (x)

If the values of the potential are known in the two boundarnyn{sa:; andxs, then the
potential can be determined easily inside the finite elemert © < x5 as (sed-ig. 4.10)

To — T r — X
d

=N, &y + Ny &y = D, (4.4)

ro — I ! ro — I

Of course, it is valid in the other finite elements as well, &g, < x < z3, then

xr3 — X r—X
3 iy 2

d =Ny Py + Ny O3 = Ps, (45)

Tr3 — T2 2 Tr3 — T2
andNy, N, are shifted to the second finite element.
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The scalar potential is continuous in the whole 1D regioris hoted here that the
accuracy of approximation can be increased by decreasinetiyth of the elements,
especially where the rate of change of the solution is laegg, between:s andz4 in
Fig. 4.10. Here, the mesh can be very fine and higher order appab®imcan results in
better solution.

(I>1 CI)4
D,
Ni(x) -~ TN2(z) Dy
1
xr1 Z(,:Q $‘3 T4

Fig. 4.10. Known potential values are approximated by lifieactions

One way to build up higher order shape functions is udiagrange interpolation
functions defined by the formula

m Tr—T;
j=lg#i

The order ism — 1 and N;(z) is equal to one in the nodeand equal to zero in all the
other nodes. Here, second and third order approximati@ensteown.

The second order approximation can be defined by 3 quadteamesfunctions (i.e.
m = 3in (4.1), sedrig. 4.11),

(x — x2)(x — x3)
(21 — 22) (21 — 23)

Np = 4.7)

Nl(l‘) V

Mz

—~
8

~—

g

Fig. 4.11. The 1D quadratic shape functigWig(z), N2(x) and N5 (z)
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Ny = Fm )l —w) (4.8)
(502 - 171)(172 - 503)
Ny = Fma)le—w) (4.9)
(x5 — x1)(23 — 22)
and the new point; is placed in the center of the element,
2y = 21 ;“’2. (4.10)

The third order approximation can be defined by 4 cubic shapetions (» = 4 in
(4.1), sedrig. 4.12),

_ (CL‘ - =T2)(CC - $3)($C - x4)
M= (1 — z2) (@1 — x3) (21 — 24)’ (4.12)

Ny — (x — 1) (z — x3)(x — 24) ’ (4.12)
(z2 — 1) (w2 — 23)(T2 — T4)
Ny = (x —z1)(z — x2) (T — 24) ’ (4.13)
(x3 — x1) (w3 — @2) (w3 — 24)
Ny = (x —z1)(z — x2)( — 23) ’ (4.14)
($4 - 171)(174 - 12)(174 - 173)
and the new points; andxz4 are placed inside the element as
g = M@ T) 2w F3s) (4.15)
3 3
N3(z) o7~ Na()
4 \
/ \\ /TNQ(m)
/ \ 7 1
/
’ N !
1 Nl(x) // ,’ \ :
/ / A
// // \l
_____ NP , Y

Fig. 4.12. The 1D cubic shape functioNs(z), Na(x), N3(z) andNy(z)

With this technique, the interpolation functions of any erdan be defined and the
equation (4.2) can be controlled.

Figure 4.13 shows the higher order approximation of therg@tkplotted inFig. 4.10.
This illustration shows the applicability of higher ordenttions.

(i) 2D linear shape functions can be built up as follows when usifigite element
mesh withtriangular finite elementsLinear basis functions can be introduced by using
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(I)l (1)4

Dy

®3

X1 o I3 g

Fig. 4.13. Known potential values are approximated by gatadfunctions

the so-calledarycentric coordinate systeim a triangle as follows. The area of a triangle
is denoted by\ and it can be calculated as

1 &1 w»n
A= 5 1 T2 Y2 |, (416)
1 x3 w3

where(x1, y1), (z2,y2) and(zs, y3) are the coordinates of the three nodes of the triangle
in the global coordinate system building an anticlockwisguence. Tharea functions
(seeFig. 4.14) of a given pointinside the triangle with coordinatesy) can be calculated

as

TR 1| zowm | oowm
AIZ_ 1 To Y2 7A2:— 1 x Yy ,A?,:_ 1 xr2 Y2 |, (417)
2 2 2
1 23 ys 1 z3 ys3 Iz y

i.e. A1 = Aq(z,y), Ay = Ag(z,y) andAs = As(x, y) are depending on the coordinates
x andy.

The barycentric coordinatds = L;(z, y) can be defined by the above area functions
as

A
L; = N 1=1,2,3. (4.18)
Three linear shape functiod;, = N;(z,y) can be described as
N, = L;, 1=1,2,3. (4.19)

The shape functiorV; is equal to 1 at thé'® node of the triangle and it is equal to zero at
the other two nodes, becauAg is equal toA at node and it is equal to zero at the other

two nodes. That is why the relation (4.2) is satisfied. It iziobs that the three shape

functions are linearly independent.

The linear shape functions; (i = 1, 2, 3) vary linearly over the triangle, because the
fractionA; /A measures the perpendicular distance of the paing) toward the vertex
opposite to nodeé as it is illustrated irFig. 4.15 and the linear shape function is constant
along such a line. The three linear shape functions are shrotig. 4.16.
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(21,91)
Fig. 4.14. The area function of a triangle

Ay/A =0

A1/A =025 e (23, Y3)

Fig. 4.15. Fractiom\;/A measures the perpendicular distance of the gaing) toward
the vertex opposite to noddherei = 1)

If the potential at the nodes is known, then a linear apprasiom of the potential
function can be represented by (4.1). The derivative of & dirder approximation is
zeroth order, i.e. constant. The magnetic field intenAltyor the magnetic flux density
B are constant within a triangle, if these are obtained fromsadirder approximation by
H = -V, 0orB =V x A. This may results in inaccurate solution. This is the reason
why higher order approximations are studied. Here, onlyst@nd and the third order
approximations are shown.

Higher order shape functions can also be built up by usinpéngcentric coordinates
Ly, Ls and L3 introduced above in (4.18) [46].
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(9337313)

(a) Nl(w7y) (b) N2("£7y)

(z1,91)

(C) N3 (507 y)

Fig. 4.16. The 2D linear shape functioNs(z, y), Na2(z,y) andNs(z, y)

A polynomial of orderm must contain all possible term® 44,0 < p + ¢ < n, as it
is presented b{Pascal’s triangle

ZCS $2y £Cy2 y

3
The first row contains the only one term of the zeroth ordeympaiials, the second,
third and fourth rows contain the terms of the first, secordl third order polynomials.

Pascal’s triangle can be used to generate the elements dfrzopdal with given order.
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Such a polynomial contains

(n+1)(n+2)
DS E—

elements altogether, i.en = 1, m = 3, m = 6 andm = 10 in the case of zeroth,
first, second and third order polynomials. It means thatoefficients must be expressed,
finally m points must be placed within a triangle. Pascal’s triangle loe continued, of
course.

The interpolation function of order can be constructed as

(4.20)

and the integer$, J and K label the nodes within the triangle, resulting in a numbgrin
scheme. Figure 4.1Fjg. 4.18 andFig. 4.19 illustrate the numbering scheme of the first,
the second and the third order approximations. It is notatighints must be inserted not
only the edges, but inside the trianglenit> 2.

The polynomialsP}*(L1), P} (L) and P} (Ls) are defined as

H"Ll 1ﬁ( Li—p), if I>0 (4.22)
ET] nty—p) 1 , .
T—p T 1%
J—1 J—1
Ly—p 1
H”J2 P jH(nLQ—p), it J>0, (4.23)
p=0 p " p=0
K— lTL 1 K—
PR(Ls) = [] =2 Ls pp < [[(nLs=p). if K>o0, (4.24)
p=0 " p=0

and as a definition
Pl =1. (4.25)

If n =1, thenm = 3, i.e. (sedFig. 4.17)

Ny = P!(L1) Py (L2) Py (Ls) = Ly, (4.26)
Ny = Py (L1) P! (L2) Py (L3) = Lo, (4.27)
Ny = Py(L1) Py (La) P! (L3) = Ls, (4.28)
since
1-1
o 1Li P - )
P (L)—pl;[0 - L (4.29)

as it was mentioned in (4.19).
If n =2, thenm = 6, i.e. (sedFig. 4.18)

N1 = PJ(L1) F§(L2) P§(Ls) = L1(2 Ly — 1), (4.30)
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3:(0,0,1)

1:(1,0,0)

Fig. 4.17. Numbering scheme for linear element; 1

3:(0,0,2)

1:(2,0,0)

Fig. 4.18. Numbering scheme for quadratic element; 2

3:(0,0,3)

7:(0,1,2
8:(1,0,2) (0,1,2)

6:(0,2,1)
9:(2,0,1)

1:(2,1,0)
1:(3,0,0)

Fig. 4.19. Numbering scheme for cubic element: 3

=z
Il
T, %
&5
T, %
>~ ™~
»ox
%, %
=B
L &
(1
N
N
’;w
Ny
|
=

(4.31)
(4.32)
(4.33)
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N5 = By(Ly) P{(La) PP (L3) = 4 Ly Ls, (4.34)
Ng = P}(Ly) P5(Lg) P{(Ls) = 4 Ly Ls, (4.35)
because
) 1-1 2L,L —p
PE(L:i) =[] T = 2L (4.36)
p=0
and
) oLi—p 2L;2L;—1
Pi(Li) =] 7= =3 — =Li(2Li - 1). (4.37)

p=0

Figure 4.20 shows the shape functiakis and V4. The other shape functions look like
these,N, and N3 are the same a¥;, moreoverN; and Ny are the same a¥,, but they
must be rotated to the corresponding nodes.

(r3,93) (73,3)

(z2,92) (z2,92)

(z1,91) (71,91)
(a) Nl (Z‘, y) (b) N4(SC7 y)

Fig. 4.20. The 2D quadratic shape functioWg(z, y) and Ny (z, y)

Finally, if n = 3, m = 10, shape functions can be constructed as Bget.21)

Ny = PJ(Ly) P3(Ls) P3(L3) = %Ll(?) L —1)(3L; —2), (4.38)
Ny = P3(Ly) P3(Ly) P3(L3) = %LQ(?, Lo —1)(3 Ly —2), (4.39)
N3 = P3(L1) P§(L2) P§(L3) = %Lg(?, L3 —1)(3L3 —2), (4.40)
Ny = P}(Ly) P} (Ly) P3(L3) = ng(?, Ly — 1)L, (4.41)

9
Ny = P}(Ly) P(Lo) B (Ls) = SLa(3 Lo — 1)Ly, (4.42)
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9
Ng = P3(Ly) P3(Ly) P (L3) = 5L2(3 Lo —1)L3, (4.43)
9
Ny = P3(Ly) PP (Ly) P3(L3) = 5L3(3 L3 —1)Lo, (4.44)
9
Ng = P}(Ly) P3(Ly) P3(L3) = 5L3(3 Ls— 1)Ly, (4.45)
9
No = P3(Ly) P3(Ly) P (L3) = 5L1(3 Ly —1)Ls, (4.46)
Nio = P}(Ly) P{(Ls) P(L3) = 27 Ly Ly L3, (4.47)
because
1-1 3L;—p
3 _ L _ A
Py (Li) = H T 3 L, (4.48)
p=0
*3Li—p 3L:3Li—1 3
P3(L;) = v B2 =me - L3, —1 4.49
2=l 5= =5 —1— =3L6L-1. (4.49)

p=0

3—1
3L;—p 3L;3L;—13L;—2
3 _ i _ i i i
p=0

:%Li(?)Li B Li—2).

(4.50)

These functions satisfy the condition (4.2). Figure 4.24wghthe shape functions
N; and Ns, as examples. The other shape functions look like th&seand N5 are the
same asVy, N4, Ng, N7, Ng and Ny look like N5, but they must be imagined at the
corresponding nodes. The shape functddn is equal to one at the center of mass of the
triangle and equal to zero on the other nine nodes.

(9337313) ($3,y3)

(z2,92) (z2,92)

(‘rlayl) (58173/1
(a) Nl(xvy) (b) N5(557y)

Fig. 4.21. The 2D cubic shape functioNs (z, y) andNs(z, y)
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The scalar potential along any edge of a triangle is the timeanbination of the
values defined in the points of this edge ($ég 4.17,Fig. 4.18,Fig. 4.19), so that if
two triangles share the same vertice, the potential willdrgiauous across the interface
element boundary. This means that the approximate soligioontinuous everywhere,
however, its normal derivate is not.

It is easy to see that the 1D shape functions are the same amttteons along the
edges of a triangle.

(iii) 3D linear shape functions can be worked out as follows whengusitrahedral
finite elements. Linear basis functions can be introducedhdgy using théarycentric
coordinate systemrhe volume of a tetrahedron is denotedibyand it can be expressed
as

T4 —T1 Y4 —Y1 24— 21
V= Gl T~ %2 Ya—vy2 -2, (4.51)
Ty —T3 Y4 —Y3 24— 23

where(z1, y1,21), (T2, Y2, 22), (3, Y3, 23) @and(z4, y4, z4) are the coordinates of the four
nodes of the tetrahedron as showifrig. 4.22. The volume functions according to a given
point inside the tetrahedron with coordinatesy, z) can be calculated as

Ty — T Ygs — Y Z4 — 2
Ty —T2 Yqa—Y2 24— 22 |, (4.52)
Ty —T3 Y4 —Y3 24 — 23

1
Vlzg

1 Ty —T1 Y4 —Y1 24— 21
Vo==| 24— wya—y z4—2 |, (4.53)
Ty — X3 Ya—Y3s 24— 23

Tya—T1 Y4a—Y1 24— 21

1
Vi = G| TaTT2 Ya—vy2 A2 |, (4.54)
Ty —2T Ysa—Y 24—z
1| ¥—%T1 Y= 2—=
Vi = g T—2o Y—Y2 2Z—29 |. (4.55)

r—T3 Y—Ys 2—2z23

Thebarycentric coordinates,; = L;(z, y, z) of a tetrahedron can be formulated as

L= % i=1,2,34. (4.56)
Four linear shape functions; = N;(z,y, z) correspondingly to the four nodes are
N; = L;, 1=1,2,3,4. (4.57)

A shape functionV; is equal to 1 at thé" node of the tetrahedron, moreover it is equal to
zero at the other three nodes and it is varying linearly withe tetrahedron, because the
fractionV;/V measures the perpendicular distance of the paing, z) toward the facet
opposite to nodéas it is illustrated irFig. 4.23 and the linear shape function is constant
along such a surface. That is why the relation (4.2) is satisfit is obvious that the four
shape functions are linearly independent.
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(%4, Y4, 24)

e T
;- N

(50172/1721)

(I27 Y2, 22)

(Jf4,y472’4) (I4,y472’4)

Vi

(z,y, 2) (2,9, 2)

(23,93, 23) (w3,y3, 23)

(3717y1,21) (3717y1,21)

(w2,2, 22) (w2,y2, 22)
v x4,y4724) x4,y4724)
° (z,y,2)

(l'sa Ys, Zs)

(3717y1,21)

(@2, Y2, 22) (w2, Y2, 22)

Fig. 4.22. The volume functions in a tetrahedron

The higher order shape functions can be worked out simitslif was mentioned in
the case of triangular elements [46]. The barycentric doatdsl,, L., L3 andL, can be
used. A polynomial of ordet must contain all possible term8 y? 2", 0 < p+qg+r <n
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and a polynomial contains

_— (n+1)(n—6|—2)(n+3) (4.58)

elements altogether, i.ex = 1, m = 4, m = 10 andm = 20 in the case of zeroth, first,
second and third order polynomials. It means thatoefficients must be expressed and
m points must be placed within a tetrahedron.

(%4, Y4, 24)

Vi/V =1

(3,3, 23)
(1,91, 21) Vi/v =075
V;/V = 0.5
Vi/V =0.25

V;/V =0

(9327 Y2, 2’2)

Fig. 4.23. FractiorV;/V measures the perpendicular distance of the faing, z)
toward the facet opposite to nodénerei = 3)

The interpolation function of order can be constructed as
Ni = PIn(Ll) P?(LQ) P}é(L3) PE(L4), where I+ J+ K+ L= n, (459)

where the integerg, J, K and L label the nodes within the tetrahedra, resulting in a
numbering scheme. Figure 4.Zg. 4.25 andrig. 4.26 illustrate the numbering scheme
of the first, the second and the third order approximations.

The polynomialsP}*(L1), P} (L2), Pj(L3) andP;'(L4) are defined in the same way
as it was presented in the 2D situation, see definitions J4(225).

If n =1, thenm = 4, i.e. (sedFig. 4.24)

Ny = P} (L) Py (L2) Py (L3) Py (Ls) = L, (4.60)
Ny = Py (L1) P! (L2) Py (Ls) Py (La) = Lo, (4.61)
N3 = Py (L) Py (L2) Py (L3) Py (La) = La, (4.62)
Ny = Py (L1) Py (L2) Py (Ls) P! (Ls) = La, (4.63)

since (4.29) as it was mentioned in (4.57).
If n =2, thenm = 10, i.e. (se€Fig. 4.25)

N1 = P§ (L) P (L2) P§ (Ls) P§ (La) = L1(2 L1 — 1), (4.64)
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Ny = F§ (L) P} (L2) F§ (L3) g (La) = La(2 Lz — 1),
N3 = Pj(L1) P5(Lg) P3(L3) Py (Ls) = L3(2 Lz — 1),
Ny = P3(L1) P (L2) F§ (L) P3(La) = La(2 Ly — 1),
N5 = P{(Ly) P{(L2) F§ (Ls) P§ (L) = 4 Ly Lo,
Ng = PZ(Ly) Pf(Ly) PE(L3) P3(Ly) = 4 Ly L3,
N7 = PE(L1) By (L2) P{ (L) F§(La) = 4 L1 Ls,
Ng = P}(Ly) By (La) P3(L3) PY(Ls) = 4Ly Ly,
Ny = P§(L1) By (L2) Pf(L3) P}(La) = 4 L3 La,
Nig = P§(L1) P{(Lg) P (L3) P}(La) = 4 Ly Ly,

because (4.36) and (4.37).

(4.65)
(4.66)
(4.67)
(4.68)
(4.69)
(4.70)
(4.71)
(4.72)
(4.73)

Finally, if n = 3, m = 20 shape functions can be constructed as [$ge4.26)

Ni = P3(L1) B (L2) B (Ls) Pg (La) = %Ll(s Ly = 1)(B3 L1 - 2),

Ny = Bj(L1) P§(La) P (Ls) B (La) = %L2<3 Ly —1)(3 Ly - 2),
N3 = Bj(L1) P§(La) P§(Ls) B (La) = %L3<3 Ly —1)(3 Lz — 2),
Nu = P(L) P (L) P (L) (L) = La(3 Lo — )3 L —2),
N5 = P3(Ly) PP (Lg) Py (Ls) Py (L) = ng(?)Ll — 1)L,
Ng = P}(Ly) Py (Lg) Py (Ls) Py (La) = ng(?)Lz — 1)Ly,
N7 = Py(Ly) P3(Lg) P (Ls) Py (La) = ng(?)Lz —1)Ls,
Ng = Py (Ly) PP(Lg) Ps(L3) Py (La) = gL3(3L3 — 1)L,
Ng = P}(Ly) Pj(Lg) Py (L3) Py (Ls) = gL3(3L3 — 1)Ly,
Nio = PR(L1) P(L2) P(Ls) PR(Ls) = 3L (313 — )L,
Nit = PE(L1) B (L) B (L) PS(L)) = 3La(3La — L1,
Niz = PJ(L1) Py (La) Py (Ls) Py (La) = ng(?) Ly — 1)Ly,

9
Ni3 = P3(Ly) P} (L) P3(L3) Py (Ly) = 51:4(3 Ly —1)Lo,

(4.74)

(4.75)
(4.76)
(4.77)
(4.78)
(4.79)
(4.80)
(4.81)
(4.82)
(4.83)
(4.84)
(4.85)

(4.86)
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9
Niy = P§(L1) P3(Ly) Py (Ls) PP (L) = 5L2(3 Ly — 1)Ly, (4.87)
9
Nis = Pg(L1) P§(Ly) PP (Ls) P3 (L) = 5L4(3 Ly—1)Ls, (4.88)
9
Nig = Py(L1) P§(L2) Py (Ls) PP (Ly) = 51?3(3 L3 — 1)Ly, (4.89)
Ni7 = P}(Ly) P}(Lo) P(L3) P§(Ls) = 27 Ly Lo L3, (4.90)
Nig = P}(Ly) P (Ls) P (L3) PY(La) = 27 Ly Ly La, (4.91)
Nig = P}(Ly) PJ(Lg) P{(L3) P}(Ly) = 27 Ly L3 Ly, (4.92)
Noog = PJ(Ly) PP (Ls) PP (Ls) PP (L) = 27 Ly L3 La, (4.93)

because of the equations (4.48), (4.49) and (4.50).

The scalar potential along any edge of a tetrahedron is tieatlicombination of
the values defined on the points of the given edge, so thatoftétrahedra share the
same facet, the potential will be continuous across thisriate. This means that the
approximate solution is continuous everywhere, howetenarmal derivate is not.

If potentials at the nodes are known, then a linear appraximaf the potential
function can be represented by (4.1).

The sum of all nodal shape functions is equal to 1, hence tlmecfuheir gradient is
zero,

m

> Ni=1, and zm:vzvi:o. (4.94)

=1 i=1

This means that the maximal number of linearly independedahbasis functions is:
and the maximal number of linearly independent gradiente@hodal basis functions is
m — 1, i.e. shape functions are linearly independent but theidignts are not.

4:(0,0,0,1)

3:(0,0,1,0)
1:(1,0,0,0)

2:(0,1,0,0)

Fig. 4.24. Numbering scheme for linear element: 1
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4:(0,0,0,2)

9:(0,0,1,1)
8:(1,0,0,1)

1:(2,0,0,0)

5:(1,1,0,0)

2:(0,2,0,0)
Fig. 4.25. Numbering scheme for quadratic element; 2

4:(0,0,0,3)
16: (0,0,1,2)
15:(0,0,2,1)

12:(1,0,0,2)

:(0,1,0,2)

11:(2,0,0,1) 19:(1,0,1,1)
18 (1,1,0,1) 9:(1,0.2.0- 723 (0,0,3,0)
, 20:(0,1,1,1)
1:(3,0,0,0) 8:(0,1,2,0)

5:(2,1,0,0)

7:(0,2,1,0)
6:(1,2,0,0)

17:(1,1,1,0)
2:(0,3,0,0)

Fig. 4.26. Numbering scheme for cubic element: 3

4.2.2 Edge finite elements

Vector potentials can be represented either by nodal sheqeéidns or by so-calleddge
shape functionf33, 46,58, 86,90-92]. Edge shape functions are also cedletbr shape
functions

The natural approach is to treat the vector fi€lé= T'(r, t) as two or three coupled
scalar fieldsl, = T, (r,t), T, = T, (r,t) andT, = T,(r,t), i.e.

T=T,e, +Tye,, (4.95)
and

T=T,e, +Tye, +T.e, (4.96)
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in 2D and in 3D situations, respectively,, e, ande are the orthogonal unit vectors in
thex — y and in ther — y — z plane.

Nodal shape functions can be used in this case as well, asipreaented for scalar
potentials in the previous section, however, each nodeiasit three unknowns. Nodal
shape functions can be applied to approximate the scalap@oents of the vector field
T. For example in 3DT" can be approximated as

T N; (Tmﬂ' e, + Ty,i ey + Tzﬂ' ez)

R
.MS

@
I
=

(4.97)

m m
NiTm,i e, + Z NlTyz ey + Z NiTz,i €.
i=1 i=1

o

@
I
=

HereN; = N;(r) are the usual nodal shape functions defined by (4.2Jand= T ;(t),
Ty =T,:t), T.; = T, :(t) are the values of components of the approximated vector
potential at nodé. The number of degrees of freedomz2is: in a 2D problem using
triangular mesh andm in a 3D arrangement meshed by tetrahedral elements.

Nodal shape functions are used to approximate gauged veatentials, which was
the first in the history of finite element method in electrometics. Unfortunately, there
are some problems when the usual nodal based finite elementssed to interpolate
vector potentials. The lack of enforcement of the divergerandition (lack of gauging)
results in a system of algebraic equations, which has iefmitmber of solution and the
application of iterative solvers sometimes fails. We havtake care about the Coulomb
gauge. There are problems on the iron/air interface whemgutsie magnetic vector
potential approximated by nodal elements and extra irceré@nditions must be set up
to solve this problem.

Fortunately, vector shape functions have been develop#tkitast decades, which
application in static and eddy current field problems is nairé more popular, because
of their advantages. The useaxfge shape functiors®lves the problems described above.
Some illustrations and examples are shown in chapter 6 hadiins to compare not only
the different potential functions, but the performancenefhodal and edge representation
of vector potentials. It will be shown that the divergencevettor shape functions is
equal to zero, that is why, gauging is satisfied automayicallhe ungauged potential
functions are approximated by vector elements. Vectorefapctions are usually called
edge shape functions, because they are associated to the@dbe FEM mesh. Vector
shape functions are more and more popular in wave problems, t

Instead of scalar shape functiongctor shape functionr edge shape functiops
W, = W,(r) can be applied to approximate a vector poterifial

k
i=1

whereT; = T;(t) is the line integral of the vector potenti&lalong the edgé First order
vector shape functions are defined by the line integral

_ ~ | 1, along edge,
/ZWZ ndb= { 0, along other edges, (4.99)
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i.e. the line integral of the vector shape funct#n; along theit" edge is equal to one. In
other words, the vector shape functit¥; has tangential component only along the
edge and it has only normal component along the other edgeaubdV; - dl is equal
to zero only if the vector¥¥; anddl are perpendicular to each others a¥Wd;||dl| > 0.
Moreover, in 3D case, the vector shape func#ni has zero tangential component along
every facet of the 3D finite element, which not share the édge

If two triangles share the same vertices, the tangentiapoorant of the approximated
vector potential will be continuous across the interfaeamgnt boundary. This is true
in 3D case as well, moreover, if two tetrahedra share the danst, the tangential
component of the vector potential will be continuous actbissinterface. This means that
the tangential component of the approximate solution isicanus everywhere, however,
its normal component is not. In the words of equations, afingrto the definition (4.99),
the line integral of the vector potential along thé® edge is equal t@),,, i.e.

k k
/T-dl:/ (ZWZ-TZ)@I—Z/ (W, T;) - dl
lm lm \i=1 i=1"Im

:Tm/ W, -dl =1T,,.
I,

(4.100)

That is why, edge shape functions are also caledentially continuous shape functions
The gradients of the nodal shape functions are in the funci@mce spanned by the
edge basis functions, that is

k
i=1

Wherer:1 cfz > 0. Taking the curl of each equation in (4.101) results in

k
chivxwizg’ j=1,---,m—1, (4.102)
i=1

becausev x (Vy) = 0. This shows that the maximal number of linearly independent
curls of the edge basis functionsis— (m — 1). The interdependence of the curls of
the edge basis functions means that an ungauged formulatida to a singular, positive
semidefinit finite element curl-curl matrix. Singular systecan be solved by iterative
methods, if the right-hand side of the system of equatiortoissistent. We took care
about it when obtaining the weak formulations of the ungauggrsion of potentials,
because excitation current density has been taken intaatty the use of impressed
current vector potentiall’.

The vector function

will be applied to construct the edge shape functions, beedcan be used in functions,
which satisfies (4.99) and (4.100). In 2D, (i = 1, 2, 3) are thebarycentric coordinates
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of the triangle defined by (4.18). In 3D, (i = 1, 2, 3, 4) are the barycentric coordinates
of the tetrahedron defined by (4.56). According to the notetiin (4.103), the edges of
a finite element are pointing from nod¢o nodej, as it can be seen ikig. 4.27 and in
Fig. 4.28.

The vector fieldw;; has the following important properties, which proofs the o
vector functionw;; as vector shape function.

(i) Lete;; is a unit vector pointing from nodeto nodej, then

1 , (4.104)

ot
wherel;; is the length of edgé¢:, j}. This means thatv,;; has constant tangential
component along the edde, j}.

SinceL; and L; are linear functions that vary from node¢o node;j from 1 to 0
and fromo to 1, respectively, we have;; - VL; = —1/l;; ande;; - VL; = 1/1;;,
finally

1

1 . .
ij ij ij 17

becausel; + L; = 1 along the edgdi, j}. See, for exampl&ig. 4.16 and let
i = 1,7 = 2,s0N; = L, is decreasing along eddd,2} and N, = Ls is
increasing along the same edge. See Bigo4.9, from which it is easy to see the
gradient%ij -VL; = _1/lij andeij . VLJ = 1/113

(it) In 2D, the functionZ; varies linearly from node to the opposite edggj, k} (see
e.0.N1inFig.4.16,i = 1, j = 2, k = 3), i.e. the vector field/ L, is perpendicular
to this edge, buk; is zero there, thatis why,; is perpendicular to the eddg, k},

wij = —L;VL;, ontheedge {j,k}, (4.106)

and the length of this vector is decreasing from ngpttek according taL;. On the
other hand, the functiofi; varies linearly from nodg to the opposite edggk, i}

(w3,¥3)

(z1,91)

Fig. 4.27. The definition of edges with local directions o thiangular finite element
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(334, Ya, 24)

(953793,23)

(‘rlvylazl)

(562» Y2, 22)

Fig. 4.28. The definition of edges with local directions of tetrahedral finite element

(seeN, in Fig. 4.16), i.e. VL, is perpendicular to this edge, bLj is zero there
andw,; is perpendicular to the eddé, i},
w;j = L;VL;, on the edge {k,t}, (4.107)

and the length of this vector is decreasing from notiek according tol;.

This with item (i) means that the vector functian;; has tangential component
only on the edgé:, j} and it is perpendicular to the other edges.

In 3D, this is valid to the whole triangular facet with the Inoling edges opposite
to a node, see e.ffig. 4.23.

(iii) The vector fieldw;; is divergence-free,

V- w;;=V-(L;VL;—L;VL)=V-(L;VL;) =V - (L;VL;)

(4.108)
=VL;-VL;+ L,V-VL; —=VL;-VL; — L;V-VL;=0,
by using the identity
Vi (pv)=Vp-v+¢V- v (4.109)

with the notationg = L;, v = VL; inthe second angd = L;, v = VL, inthe last
term. The barycentric coordinates are linear functionfefdoordinates and their
gradient is constant, which divergence is equal to zero the second and fourth
terms are vanishing. The first and the third terms are equall{ij V - w;; = 0.

(iv) The vector fieldw;; has constant curl,
V x Wij =V x (LZVL7 —L7VL1) =V- (LZVLj) -V- (LJVLl)
:LiVXVLj—VLjXVLi—LjVXVLi +VLZ'><VLJ‘ (4110)
:2VLZ X VLJ',

by using the identity
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Vx(pv)=¢Vxv—vxVp (4.111)

with the notationsp = L;, v = VLj; in the first andp = L;, v = VL; in
the second term. The first and the third terms are equal to lzezause of the
identity V x V¢ = 0 for any functiony. The second term can be reformulated
bya x b = —b x a, finally, the result is constant, because the gradientsef th
barycentric coordinates are constant.

First, the edge shape functions defined on triangles bas¢d.bd3) are collected.
The basic 2D vector shape functioWs; can be constructed by using the first order nodal
shape functions,

W1 =13 (N1 V Ny — NV )6y, (4.112)
Wy = lo(N2aV N3 — N3V N,)5s, (4.113)
W5 = I3(NsVN; — N1V N3)ds. (4.114)

Herel; (Fig. 4.27) denotes the length of thi€" edges of the triangle and it is used to
normalize the edge shape function according to (4.104). éidye basis functio®V;

(i = 1,2, 3) has tangential component only along ti& edge and it is perpendicular to
the other two edges as representeéion 4.29(a)-4.29(c). It is easy to see that an edge
shape function has magnitude and direction. The valdgisfequal tot+-1, depending on
whether the local direction of the edge is the same as thabttection or opposite (see
Fig. 4.27 for local direction). This set of vector functions idled zeroth order vector
shape functions.

If the approximation of the vector functidh is known along the edges of the mesh,
then (4.98) can be used to interpolate the function anywduedan linear casé&” = 3.

Higher order vector shape functions can be constructed img tise vector function
w;; defined by (4.103), too. This vector function must be mukighlby a complete
interpolatory polynomial, which results in the higher ardlector shape functions. First
and second order polynomials will be used to build up firstgembnd order vector shape
functions. Here, we follow [46], the method is as follows.

First of all, an indexing sequence must be set up, which idaito the method used
to build up the scalar shape functions, because the higtler gector shape functions are
based on the Lagrange polynomials and (4.103). In the cd#stodrder approximation,
the numbering scheme of the third order scalar interpoiatan be used and the points
are shown irFig. 4.30,Fig. 4.31 andrig. 4.32 must be used to represent first order vector
shape functions associated to the ed@e2}, {2,3} and {3,1}, respectively. In the
case of second order approximation, the numbering schentgedburth order scalar
interpolation can be used and the interpolation points shiowFig. 4.33,Fig. 4.34 and
Fig. 4.35 must be used to represent second order vector shagmhs@ssociated to the
edge{1,2}, {2, 3} and{3, 1}, respectively. The interpolation points have been seidote
this special way, because the interpolation of field veatimsg vertices has been avoided,
i.e. the points have been shifted inside the triangle anthttexing scheme of order+ 2
is used to represent the vector interpolation of ordef his is called global numbering
and denoted byI, J, K) on the 'big’ triangle, local numbering means the numbering
scheme with the real ordéi, j, k) defined over the 'small’ triangle.
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Fig. 4.29. The 2D edge shape functions
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(0,0,3) ©.9.1)

(0,1,2)
(0,1,0)
(0,2,1) (1:0.0)

(0,3,0)
1,2,0)

(2,1,0)
(3,0,0)

Fig. 4.30. Numbering scheme for the first order vector eldrassociated withw,

(0,0,3) ©.9.1)

0,1,2
(1,0,2) (©.1,2)
(0,1,0)

(0,2,1) (10,0
(2,0,1)
(0,3,0)
(1,2,0)

680 (2,1,0)

Fig. 4.31. Numbering scheme for the first order vector eldrassociated withvas

(0,0,3) ox

0,1,2
(170’ 2) ( ) ) )
(0,1,0)

(0.2,1) (0.0
(2,0,1)
(0,.0)
(1,2,0)

6,60 (2,1,0)

Fig. 4.32. Numbering scheme for the first order vector el@rassociated withws;
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(0,0,4) 002
(0,1,3)
(0,2,2)

101

110
200

Fig. 4.33. Numbering scheme for the second order vectorexieassociated withy o

(0,0,4)
(0,1,3)

Fig. 4.34. Numbering scheme for the second order vectorexieassociated withvo
(0,0,4)

(0,1,3)

(0,2,2)

(4,0,0) 3 1.0)

Fig. 4.35. Numbering scheme for the second order vectoreziéassociated withs,
Itis noted here that the OMSOL Multiphysicsoftware uses this kind of vector shape

functions, howeverp, = 0, n = 1 andn = 2 are named as linear, quadratic and cubic
vector shape functions.
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The vector functionw,;, (associated to the edge pointing from nad® nodeb) can
be multiplied by the Lagrange polynomials as

WK = ol PI1y) PP (o) P (ls) was, (4.115)

wheren is the order of approximation and the integérg andk satisfyi + 7 + k = n
(see the small triangles Fig. 4.30+Fig. 4.35).

If n = 0, the basic vector shape functions can be obtained, bed3i6¢ = 1 and
« can be selected as the length of the appropriate éggesinceal /X is a normalizing
factor. The barycentric coordinatés I, andis are imagined in the small triangles. The
transformation between local and global numbering is devi!:

i=I—-1, j=J-1, k=K, ontheedge {1,2}, (4.116)
i=1, j=J-1, k=K-—1, ontheedge {2,3}, (4.117)
i=I1—-1, j=J, k=K-1, ontheedge {3,1}. (4.118)

The relation between the barycentric coordinates of thdlsmd the big triangles is as
follows:

P 2 1 2 1
ll—L1n+ , 12_L2"+ T N (4.119)
n

n

Using these relations, (4.115) can be written as (let kieb¢ = {23} for simplicity)

2 2 1
WK = oldK pp (Ll’”) (Lz’” __)

" (4.120)
pro (022 - L)
K—1 3 n n 23-
According to (4.22)Lagrange polynomialsan be reformulated as
I—-1
n n+2\ 1 n+2
Py <L1 " ) il 11 (nLl " —p)
’;*1 (4.121)
e
:FH n+2)Ly —p] =PM3(Ly), if I>0
ey
and
J—-2
- n+2 1) 1 n+2 1
i (1 =3) e [ (25 -3) )
1 J—-2
" p=0 (4.122)
1 J—=2
= ) (Ly— —— ) —
o L oo (1 525)
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The so-called shifte®ilvester polynomialsan be used to simplify the relations above
[46],

J—1
ST (Lg) = PIH} (Lz — n}r2> = (Ji i [Tin+2)L2-p]. (4123
14

Finally, the higher order vector shape functions can be édated as follows by using
the Lagrange and Silvester polynomials:

WI]K algX Sn+2( D) S}H_Q(Lg) P;+2(L3)W12, (4.124)
WK = olJK Prt2(Ly) §772(Ly) S7H2(Ls) was, (4.125)
WK = ol 75§72 (Ly) PPY2(Ly) S7H2(Ls) war. (4.126)

The parameter denoted lyis a normalization factor, which must have the value such
that the line integral of vector shape functithi’/*” is equal to 1 on the edge pointing
from nodeqa to nodeb. Here,

Py()=1, and S7()=1. (4.127)
The number of vector basis functions is
kE=m+1)(n+3). (4.128)

There is one shape function associated with the introduttegpolation nodes on the
edges. It mean3(n + 1) basis functions. There are three basis functions for amiante
interpolation point, because every interpolation poiside the triangle is used to build
all the vector shape functions in the three edges. Sincefacguvector has only two
degrees of freedom, these three basis functions are ngiéndent and one of them must
be discarded. This results i(n + 1) interior basis functions. In total, the number of
shape functionsi8(n + 1) + n(n+1) = (n+ 3)(n + 1).

In the case of first order approximatian= 0 andk = 3. In the case of second order
approximatiom = 1 and K = 8. In the case of third order approximatien= 2 and
k = 15and so on.

The first order vector shape functions are as follows (piteseim Fig. 4.36) from
(4.124)—(4.127):

Wi=Wp3'=al20S3(L1) S3(Ls) P3(L3) wiz= ai2?(3 Ly — 1) w2, (4.129)
Wo=WH= a2l S3(L1) S3(Lo) P3(L3) wiz= a2 (3 L1 — 1) w2, (4.130)
Wi=Wi' = ais' S¥(L1) S7(Ls) PP (Ls) wis = aj3' 3 Ly ws, (4.131)
Wi =Wy = abi® Pi(L1) S7(La) S3(Ls) waz = a93°(3 Ly — 1) w3, (4.132)
Wis=Woal = 92! P3(L1) S3(La) S3(L3) waz = a93'(3 Ly — 1) wa3, (4.133)
Wo=Wii*= a3i” ST(L1) P (L2) S5(Ls) wa = a3i” (3 Ly — 1) wa1, (4.134)
Wr=Wilt = a2 S3(L1) P3(Ls) S} (L3) ws1 = a2 (3L — 1) w3y, (4.135)
We=Wit=aill S3(L1) P}(Ls) S3(L3) ws1 = ailt 3 Lows. (4.136)



156 4. THE FINITE ELEMENT METHOD

w
w

2.5 T 2.5 T

2
2.5 - & 2.5
SASNN
| RN
2 RN 2
- | /oo an S\ -
w /o 15
1 R 1 A
‘I IR []
0.5 1 =t 0.5
0 0.5 1 15 2 0 2
X
/-
2.5 i
- T
2 Ny T
> . /j;l
15 /00 o
IS
A :
4 T
0.5 1
"0 0.5 1 15 2
X
O wr=wit
2.5 e
az—
e
I Sl
- 7 //
1.5 v;// /
1 "///
I -
0 0.5 1 15 2 %% 0.5 1 15 2
X X
(@) W3 = wij! (h) Ws = Wil

Fig. 4.36. First order vector shape functionss= 1, k = 8

The second order vector shape functions are as follows (4itg4)—(4.127):

W1 = W310 310 53 (Ll) 84 (LQ) PO (Lg) w12
3101 (4.137)
= Q9 (4 Ll — 1)(4L1 — 2) w12,
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Wo = W20 — 0220 §4(1,) S4(Ly) BA(Ls) wio

(4.138)
- a§§0(4L1 — 1AL — 1) wiz,
Wy = W0 = 4130 51 (L1) S5(L2) Py (L3) wiz
. (4.139)
= 2(4L2—1)(4L2—2)w12,
Wi =Wih' = afy! S5(L1) 81 (L2) P (Ls) wia (4.140)
= a3t (4L — 1)4 Ly wyo, |
W5 =Wi3" = 13" S1(L1) S3(L2) Py(Ls) wio (4.141)
= a}§1(4 Ly —1)4 Ly w2, |
Wi — WA = aft! PA(L) SH(La) S}(La) was
4.142
- 0312(4L2—1)(4L2—2)w23, ( )
Wr =W = a3 Py(L1) S3(La) S3(Ls) was (4.143)
= a3 (4 Ly —1)(4 L3 — 1) was,
Wy = WS = o013 Po (L1) SH(L2) S5(L3) was
(4.144)
— 013 (4_ L3 — 1)(4 L3 - 2) w23,
Wo = Wil = a33' P/(L1) S3(L2) S1(Ls) was (4.145)
= a§§1(4L1)(4 Ly — 1) was,
Wi = W112 a2 pA(L,) 5’4(L2) S5 (L3) was (4.146)
(L)AL 1) was |
Wi = W3t = a3’ S{(L1) Py (L) S3(Ls) wa
"l (4.147)
ol 2(4L3 —1)(4 L3 — 2) w3,
W2 = Wi* = a3? S5(L1) Py (L2) S3(Ls) wa (4.148)
=a3?(4L1 —1)(4Ls — 1) wa1,
Wiz = Wil = 30 S3(Ly) P(Ly) St(L3) wa
| (4.149)
= 2?12(4L1—1)(4L1_2)w317
Wiy = W2 = o112 SY(Ly) Pl(Ly) S4(Ls) wa (4.150)
= 0%12(4 Lo)(4Ls — 1) wan,
W _W211: 2115’L PHLy) SH(L3) w
5 5(L1) Py (L) Si(Ls) ws: (4.151)

=31 (4 L) (4 Ly — 1) ws;.

The second order shape functions associated to the{dd@¢ can be seen ifig. 4.37.
The edge shape functions associated to the other two edgbs t@agined as the rotation
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(e) W5 = Wid! () Wio = Wi3?

Fig. 4.37. Second order vector shape functiens; 2, K = 15

of the vector functions shown ifig. 4.37. For exampleW ;, = W32 is also plotted,

which is the same a5 = W13, but along the edg€2, 3}.

The vector shape functionis 3D can be constructed as the extension of the above
presented 2D realization. Three-dimensional zeroth ocedge shape functions can be
constructed as [46],

W1 =11 (N\V Ny — NoaVN)6y, (4.152)
Wy = lo(NaV N3 — N3V N,)5s, (4.153)
Wy = I3(N3 VN, — N1 VN3)ds, (4.154)
W, = 14(N1VNy — NyVNy )6y, (4.155)
W5 = I5(NaV Ny — NyVN,)3s, (4.156)
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W = lg(N3V Ny — N4V N3)S. (4.157)

Herel; (Fig. 4.28) is the length of the edges and it is used to normalizedge shape
function according to (4.104). The value &fis also equal ta-1 depending on whether
the local direction of the edge is the same as the globaltibreor opposite. The edge
definition employed in my analysis can be seefrim 4.28.

If the approximation of the vector functidh is known along the edges of the mesh,
then (4.98) can be used to interpolate the function anywdueden linear casé = 6.

To construct higher order vector basis functions, the gaihinterpolation polynomials
are arranged in a pyramid format to build an applicable numbeschemd1, J, K, L)
and/,J,K,L = 0,1,--- ,n + 2, wheren is the order of the element. The illustration
of numbering scheme in 3D is not easy, but it can be constraidbllows. Let us
imagine the same numbering scheme on the triangular fatdtedetrahedron as in
Fig. 4.33Fig. 4.35 and the integers J, K andL can be set up according to the facets.

The vector shape functions of ordeare given as [46],

WKL = ol JKL §ut2(1,) §"F2(Ly) Pit2(L3) Py 2 (La) ws, (4.158)
Wit = ag " PIH2(Ly) 8742 (La) 53t (Ls) PP+ (La) was, (4.159)
WI]KL I]KL Sn+2(L1)R’?+2(L2) S?{+2(L3) Pn+2(L4) w317 (4160)
WEE = oIJKL §n2( L)) PA2(Ly) PRt (Ls) SPH2(Ly) wha, (4.161)
WIJKL aIJKL Pn+2(L1)Sn+2(L2)P£+Q(L3)SH+Q(L4) Waa, (4162)

WLIKL _ G1IKL PP2(Ly) PPF2(Lo) SE2(Ls) ST2(Ly) wss. (4.163)

The parameters denoted hyare normalization factors, which must have the value such
that the line integral of the vector shape funcﬂzlﬁ”KL is equal to 1 on the edge
pointing from node: to nodeb.

The number of edge shape functions when definingitheorder family is

(n+1)(n+3)(n+4)
5 )

k:

(4.164)

For each interpolation point on the edge, there is one qoorating vector shape function,
which mean$(n + 1) functions. For each interpolation point on the face of atetdron
there are three vector functions, but one of them is depgnalinthe other two and it
must be discarded, finally there ate(n + 1) vector shape functions defined on the four
facets. For each interpolation points inside the elemesrethare six basis functions. A
3D vector has only three degree of freedom, that is why theetov basis functions must
be discarded resulting in(n — 1)(n + 1)/2 vector basis functions. Totally, there are
6(n+1)+4n(n+1)+nn—-1)(n+1)/2 = (n+ 1)(n+ 3)(n + 4)/2 vector shape
functions. There aré = 6, k = 20 andk = 45 shape functions for = 0, » = 1 and
n = 2, respectively.

As an example, the following vector shape functions can beigevhenn = 1,
W%%OO W1200 W0210 W0120 W1020 W2010 W2001 W1002 W0201 W0102,
W0021 W0012 W1110 Wﬁl})}lo Wl()ll Wil%gll WOlll WOlll W1101 W1101.



5 The polarization method and
the fixed point technique

This short chapter, based on the publications [14,17,2898460,51,53,69,70] presents a
method to handle nonlinear characteristics of ferromagnedterials in electromagnetic
field computation and a technique to solve the resultingesysif nonlinear equations
According to the so-callegolarization methogdthe output of the nonlinear model is split
in two parts, a linear part and a nonlinear part. The systenoofinear equations can be
solved by thdixed point iteratiortechnique.

First, the general form of nonlinear equations is shortlgspnted, then a simple
illustrative example is solved in the first part of this claptn the second part, the most
important definitions and formulations are shown, whichiamgortant to understand the
introduction of the polarization technique and the appiicaof the fixed point based
iteration technique.

5.1 Solution of nonlinear equations

A nonlinear equation
F(z) =0, (5.1)

or a system of nonlinear equatiofg<) = 0 (hereF is a vector valued function) generally
can be solved by iterative methods. Iteration means a repeaijuence of operations,
which must lead to the solution of the nonlinear equationeréhare two main groups
of methods, thesuccessive approximation based methadd the techniques based on
Newton’s method

Here, only the first family will be analyzed, the so-calfeed point iteratiorscheme
is introduced to solve nonlinear electromagnetic field feots.

The successive approximation methizdbased on the following form of nonlinear
equations:

x = f(x), (5.2)
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which is usually called the fixed point form of nonlinear etjoias (the system of nonlinear
equations can be represented by the vector valued functiofi(x)).

Let us follow the iteration sequence illustratedRig. 5.1. Here, the fixed point
equationz = f(z) is solved. A simple functiony = f(x), as well as the function
y = x are presented here. The point denoted byherec = f(c), is called fixed point,
which is the solution of the nonlinear equation and it is tbemon point of the functions
y = f(x) andy = z. The iteration can be started by any arbitrary paiftyo = f(zo)
can be calculated by using the functif). Valueyy is the input of the second step of
iteration, i.e.z; = yo = f(xo) as it is illustrated by the linear function = x. This
results iny; = f(z1) andzy = y1 = f(z1). This iteration scheme can be generalized as

Tn+1 = f(In)v TL:O,L"' . (53)

The sequence shown fig. 5.1 leads to the solution of the nonlinear equatios f(z),
which is called the fixed point, because its coordinates agglfithey do not change if
n — oo. This iteration is convergent, meaning that the distdnge; —z,,| is decreasing
by increasing the index. The condition

|Xpp1 —2n] < e (5.4)

can be used to stop the iteration, wheiie a small positive real number.

The example shown ifig. 5.2 shows an iteration, which is not convergent. This
nonlinear equation can not be solved by the above presdrtation.

The following can be summarized after this illustrationt Ls denote the set of the
input (argument) and of the output (value) of the functjpiby I and Q, respectively.
Convergent iteration can be realized onl\pifC T and functionf only has solution if,

Ay

, ’ ..’1'72 I Zo Xz

Fig. 5.1. Convergent iteration to a fixed point
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Fig. 5.2. Iteration does not converge to the fixed point

if it is continuous inll. Figure 5.1 illustrates that the rate of change of functiea f(z)
should not exceed the rate of change of the funcgien, i.e.

‘df (z)

- S 1 (5.5)

dx dx

o ’df(w)

The iteration scheme (5.3) is convergent in this case. M@ed can be seen iRig. 5.1,
that the smaller the rate of change of functipnthe smaller the number of iterations
needed to reach the fixed point.

In practical situations, the derivative of functigncan not be calculated analytically,
or it is a time consuming task. In this case the formulation

[f(x) = f(y)|

<1 (5.6)
lz -yl

can be applied. The mappirfgs said to becontraction if

|f(@) = fWl <dglz—yl, foralzyel, (5.7)

andq < 1, because it decreases the distance between the paamisy .

Equation (5.1) can be reformulated:as= « + F(x). Positive or negative sign must
be used if functionF'(z) is decreasing or increasing, respectively. Let us suppuse t
F(z)isincreasing, i.ex = 2 — F(x) can be used anfl(z) = = — F(x), from which the
following condition can be obtained after (5.5):

‘df(:z:) _‘ _ dF(z) <1, (5.8)

dx dx
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i.e. |dF(x)/dz| < 1 must be satisfied. This can not be said generally, that is Wy t
following modification must be used:

Flx)=0 = f(z)=x— \F(x), (5.9)
wherel is a free parameter. In this case

‘L(x) dF ()

and|AdF(z)/dz| < 1 can be set easily by selecting The same can be obtainedifz)
is decreasing.

If the solution, i.e. the fixed point of (z) is located in the intervat € [a,--- ,b]
andm = mindF(z)/dz, M = maxdF(z)/dz are the minimum and maximum slope
of function F'(x) in the intervalla, - - - , b], then the following inequality can be written:

dF(zx)

0<1-AM<1-2) <1-AIm<l1. (5.11)

From the first inequality) = 1 — AM can be selected, i.e.

A= (5.12)

can be used as a general rule to satj3ft F'(x)/dz| < 1, i.e. the condition (5.5). The
following simple example shows the application of this paare.

lllustration.  Let us try to find the solution of the nonlinear equation= cos . It
can be performed by the iterative sequence

Tpt1 = COSTy, n=0,1,---, (5.13)
1.2 .
0.8r ’
> //
0.4t
0L ‘ ‘
0 0.4 0.8 1.2

X

Fig. 5.3. Solution of the nonlinear equatior= cos = by the fixed point method
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0.8

0.4¢

0.4
X

0.8

12

Fig. 5.4. Solution of the nonlinear equation= cos x by the fixed point method,

and letzy = 0 and let the interval of search bec [0, - - -

when\ = 1/2

,7/2]. This iteration sequence

can be seen iifrig. 5.3. Here, the solution = 0.7390851332 can be reached after 58
iteration steps and the stopping criterionis ;1 — z,,| < 10710,

The problem can be formulated %x) = = — cosz = 0, too and it can be written as
x=x—Nax—cosz),i.e. f(x) =x—A(x—-cosx). The maximum value of the derivative
of the functionF'(z) in the intervalx € [0, - - -
of A = 1/2, 13 steps are enough to reach the error critefign; — z,,| < 1071, The

, /2] iIsmax(1 4 sinx) = 2. In the case

1.2

0.8

0.4¢

0.4
X

0.8

12

Fig. 5.5. Solution of the nonlinear equation= cos x by the fixed point method,

if A=1/1.75
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iteration sequence can be seelfrig. 5.4. By decreasing the interval,= 1/1.75 can be
selected and the fixed point can be reached after 8 stepFEi(see5), however, 58 steps
are needed without.

It is easy to see thatf(z)/dx can be set smaller and smaller by the selection of the
appropriate value of, but the fixed point does not change.

The following scheme is a very important conclusion of tHisstrative introduction.
Thefixed point scheme

Tpt1 = Tp — AF(z,) = f(zn), n=0,1,--- (5.14)

with appropriate value ok is convergent, i.e. the mapping defined bis acontraction
mapping The convergence speed can be increased by the approptattan of\. This
formulation will be used in the next sections.

5.2 Nonlinearity in electromagnetic field simulation

Design and simulation of electrical engineering applaadi containing ferromagnetic
parts require the accurate modeling of hysteresis chaistate and the implementation
of the models into a procedure to solve the nonlinear patiffdarential equations derived
from Maxwell’'s equations with appropriate boundary coiwtis. The partial differential
equations are generally nonlinear because of the nonliheaacteristics of ferromagnetic
materials.

The numerical analysis of electromagnetic fields can beaciarized by the electric
and magnetic field intensities and flux densities formulatedlaxwell’s equations, which
are the collection of partial differential equations of tlectric field intensityE, the
magnetic field intensity , the electric flux densityD and the magnetic flux densii#g.

Constitutive relationbetween the above quantities are defined to take into actioant
macroscopic properties of the medium where the electrostagineld has been studied.
The constitutive relation between the magnetic field intg@sd the magnetic flux density
is nonlinear in this work, given by the operatBr= #{H} or H = #~'{B}. These
nonlinear characteristics can be reformulated by introdpthe polarization method and
the resulting system of nonlinear equations can be solvettidyixed point technique.
The constitutive relations can be rewritten in a form simita(5.14).

According to thepolarization methodthe magnetic flux density can be split in two
parts as

B =yuH + 8, (5.15)

whereuH is a linear term, because is supposed to be constant and nonlinearity is
hidden in the second ter@. It is a magnetic flux density like quantity. The question is
the appropriate value of the parametefThis representation can be reformulated as

B=B—-uH =B - 1% {B}. (5.16)

Here, the inverse type hysteresis characteristics arearsgdhe right-hand side of this
equation is similar to the formula (5.14), which we are gdimgenote by

fB(B) =B - u%~'{B}. (5.17)
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This equation can be used to obtain the optimal valug, @fhich results in a convergent
fixed point iteration sequence and it is as fast as possible.
There is anothefiormula of polarization

H=vB+n, (5.18)

wherev B is a linear term, becauseis supposed to be constant. Nonlinear behavior is
hidden in the second term which is a magnetic field intensity like quantity. The quest

is the appropriate value of the parameteBy using the direct model, this representation
can be reformulated as

n=H-vB=H - v#{H}. (5.19)

The right-hand side of this equation is similar to the foran{#.14), which we are going
to denote by

fu(H) = H — v#{H}. (5.20)

This equation can be used to obtain the optimal value, @fhich results in a convergent
fixed point iteration scheme and it is as fast as possible.

It is noted that the functiongs(B) and fg(H) have the same form. Here, the
parameterg andv are supposed to be constant for simplicity.

Itis important to note that the nonlinear equations areesbhy iterative methods, the
n*® step of iteration is denoted by the superscfiptin the following.

By using the formula (5.15) or (5.18) in the constitutiveat&ins defined in Maxwell’s
equations, the solution of theonlinear partial differential equationsith appropriate
boundary conditions can be formulated as

B = {311, (5.21)
or
H™ = #{n"V}, (5.22)

where the operatar#{-} represents the set of Maxwell's equations and the boundary
conditions. The startin@(o) andn(© are arbitrary. The value of electromagnetic field
quantities in thex'" step are depending on the valugdbr n in the (n — 1)*" step, these
represent source like quantities. The source of electroetagfields (e.g. the electric
current density/) is not changing during fixed point iteration, i.e. fixed paberation
has no got physical meaning.

By using the magnetic flux density or the magnetic field initgrsatisfying Maxwell's
equations and boundary conditions, the nonlinear termsheampdated by the relation
(5.16) or (5.19),

B™ = fp{B™}, (5.23)
or

n™ = fa{H™M}. (5.24)
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The above sequence can be rewritten in the form of the fixeat pguation (5.3),

B = fe{a{B"V}} = ¢{B" "V}, (5.25)

or

N = ful{a{n""} = op{n" "V} (5.26)

This kind of nonlinear equation can be formulated by usirgghlarization method
and the convergence and speed of convergence can be setapptiopriate value qf or
v. Itis noted that these parameters are constant.

A fixed point technique was proposed for the first time in eleat engineering for
solving nonlinear electric circuits. The method base#mard—Banach theoremequires
a contractive mappinglefined inmetric spacesA great benefit of contractive mapping
is that uniqueness and existence of a solution are guarhhyg®anach’s theoremThe
main disadvantage of this method is its slow convergence.

The polarization methodtombined with thdixed point techniqués one of the most
popular technique in electromagnetic field analysis dusstadvantages,

() itisrobustsince itis proved to be convergentwith any lehchonotonic, Lipschitz
continuous, nonlinear relationship, also in the presefaglection points,

(i) preliminary operations, in order to define a suitable stgrtalue of residual term,
are not required because the process is proved to be convésgany trial value,

(iii) at each iteration the updates are performed only on the-highd side of the
linearized system of equations, without modifications efgtiffness matrix, which
can be computed once and for all,

(iv) it requires no constraint on the smoothness of the magobtcacteristics so a
simple piecewise linear representation can be assumed.

First, metric spaces and some definitions are given in tHewolg sections, then
Banach fixed point theorem is introduced and used.

5.3 Metric spaces

5.3.1 Definition of metric spaces
Let X be a set. The function
d: XxX—RL (5.27)

is a function of two variables;, y € X, which results in a positive real number, i.e.
d(z,y) € RL. This function called metric on the s&t such that

(i) the metricd is nonnegative,
d(z,y) >0, (5.28)
andd(z,y) = 0ifand only ifx = y,
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(ii) the metricd is symmetric
d(z,y) = d(y, z), (5.29)
and
(iii) the triangle inequality is true, i.e.

d(z,y) < d(z,z) +d(z,y). (5.30)

These are the axioms of the metric spaceang, z € X. The functiond is also called
distance defined on the St The metric space is a set together with a metric on this set.
A simple example of a metric space is the set of real nuniRevgh the usual metric

d('rvy) = |I - y|7 T,y € R. (531)

Another usual metric space can be defined by using the Eadl@iektric, i.e.

d(z,y) = | Y |k — ykl?, (5.32)
k=1
wherex = [x1,--- ,x,] andy = [y1,- - - , y»] are two points, or by the equation
d(,y) —\/ [ Jar) = y(r) a0, (5.33)

whereQ2 € R3. There are many other metrices, e.g. the Hamming distarteeeba two
digital words, the maximum absolute value of the differebetveen two vectors and so
on.

In some cases, metril{x, y) is denoted by|z — y||.

5.3.2 Definitions

Convergent sequence. Let {z1,z9, - ,x,} be a sequence in the metric spate
This sequence convergesitee X, i.e.

lim z, =z, (5.34)

if for eache > 0 there existsV such that
d(z,z,) <e, if n>N. (5.35)
Cauchy sequence. Let X be a metric space with metri¢ A sequence given as

{x1,22, - ,2,} In X is said to be a Cauchy sequence if for each 0 there existsV
such that, > N andm > N implies

d(zy,nm) < e. (5.36)

It is evident that a convergent sequenc€&ichy sequence
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Complete metric space. A metric spaceX is said to be complete if each Cauchy
sequence iX is convergent to a point iK. A subset ofX (denoted byA C X)) is said to
be complete if each Cauchy sequencaiis convergentto a point iA.

The definition of complete metric spaces is very importanBanach fixed point
theorem. Before defining this theorem, some useful defimstare repeated here.

Let f be a mapping from a metric spaketo itself, i.e. f : X — X (it can be defined
on a subset of the metric spake of course). The mapping is usually an operator or a
function defined on the metric spake

Nonexpansive mapping. The mappingf is said to benonexpansivgf

1f(@) = fWl < lle =y, forallz,ye X. (5.37)

Lipschitzan mapping. The mappingf is said to bel-Lipschitzian, if
If(x) = fWIl < Ll|lz —yll, forallz,ye X. (5.38)
whereL > 0 is a positive constant, callddpschitz constant

Contraction mapping. The mappingf is said to be Banach contraction, ffis
L-Lipschitzian, moreover Lipschitz constant is lower thaf@é&noted byy),

1f (@) = fW)ll < gqlle —yll, forall z,y € X. (5.39)

5.3.3 Banach fixed point theorem

TheBanach fixed point theorefoontraction mapping principlevas formulated by Stefan
Banach (1892-1945) in 1922 [51].
The fixed point of a functiorf : X — X is a pointz € X such that

f(z) =x. (5.40)

Banach fixed point theorem is as follows. L&tbe a complete metric space. Let
f : X — X be a contraction mapping from metric spa€eo itself with contractivity
coefficientg. Letz, € X be an arbitrary starting point of the iteration

Tnt1 = f(zn), n>0. (5.41)
Mapping f has a unique fixed pointand the sequence, converges te, i.e.

fle)=e¢, (5.42)
and

d(c,zn) < q"d(c,xp), (5.43)

or equivalently

n

d(c,rpy1) < %qd(anrlvxn)a or d(c,rn) < =4

d(Il,xo). (544)
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The last inequality is an applicable estimate of the errarjiif ¢ is known.

The speed of convergence is depending on the value of theactimity coefficient
g. The smaller the value af the faster the convergence, i.e. the aim is to find as small
contractivity coefficient as possible.

5.4 The optimal value of parameters: and v

5.4.1 Using the inverse characteristics

The fixed point iteration (5.25) is convergent if the mappifgf-} is contraction, i.e.
(5.39) must be satisfied in every point of the domain undegstigation,

lpa{B1} — 0p{B2}l| < dllBy — Boll, for all By, By, (5.45)

and0 < ¢ < 1. Here|| - || means the square of the inner product,

2| = V= Z TS = \// 2 zdQ— \// 2]2dQ. (5.46)
Q Q

The relation (5.45) is difficult to use, a simpler relatiomdzse formulated, as it is proved
in the following.
Fortunately, the set of Maxwell's equations is nonexpansie.

#2181} — A{B2}| < |18y — Ball,  for all By, Bs. (5.47)

Moreover, the parametgr can be selected such a way that the operator (5.17) is a
contraction mapping,

IfB{B1} = fB{B2}|| < ¢|[B1 — Bal|, forall By, By, (5.48)

where0 < ¢ < 1 must be satisfied. Relation (5.48) together with (5.47) iswedent with
(5.45) and this results in the condition for the paramgter

Here,B, = .#{3,} and By = .#{3,} and the right-hand side of relation (5.48)
can be reformulated by using (5.47),

lfB{B1} — fB{B2}|| <q||B1 — Bz|| = q|[-#{B,} — #{B.}||

(5.49)
<q||B1 — Ball.
The left-hand side of (5.48) can also be rewritten as
lfB{-2{B:1}} — fB{2{B2}}| < 4llB, — Ball, (5.50)

which is the same as the contraction mapping (5.45) by u&mby.

This means that the mappings{-} is a contraction if the mappingig{-} defined
by (5.17) is a contraction. Finally, the parametecan be selected so th@g{-} is a
contraction. A possible solution is shown in the following.

The relation (5.48) can be rewritten as

||fB{B1} — fB{B2}l|
||B1 — Ba|

<gq, forall By, B>, (5.51)
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181 = Boll _ 1IAB]I
IB1 = Bs||  [|AB|

<gq, forall By,Bo, (5.52)

by using the notationdg = 3, — B3, andAB = B; — B,. The integral in (5.46) can
be omitted, if inequality (5.52) is true in every point of themain{2. These quantities
can be decomposed into their three orthogonal components,

and
AB = AB,e, + ABye, + AB.e,, (5.54)

wheree,, e, ande, are the three orthogonal unit vectors.
The inequality (5.52) can be rewritten as

AB-AB AR+ AR +ABE
AB-AB AB2+ABZ+AB2 -1

(5.55)

The upper bound of this fraction 832 /AB2, or AB; /ABZ, or A2 /AB2.
The upper bound\ 52 /A B2 can be rewritten as

2 2 2
A \" _ (ABa—pAH A" _ (0 # )T (5.56)

wherepua, is the differential permeability,

ABz Bm,l - Bz,Q

A, = = 5.57
. AHm Hz,l - Hz,Q ( )
which has two extreme values along the hysteresis curve
. Bml_BwQ Bml_BwQ
in = —_— " d ax = ———= (5.58
Hanin Hmr,?alg}z,z Hm,l - Hz.,Q’ o Himasx Hmrwrll?gliv? HI,I - HI-,Q ( )

Herepimin andumax are the minimum and maximum slope of the hysteresis chaistits.
The inequality

Hmin S 12 S Mmax (559)

is obvious, from which the inequalities

H <0, and 1- ad

HMmin Mmax

1-—

> 0, (5.60)

moreover

2 2 2 2
TS S R s g
A, HMmin ma, Hmax

are valid.
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These expressions result in

2 2 2 2
(1__M > §<1_ H ) <q¢* and (1——” > §<1— r ) < ¢,
KA, Hmin KA, Hmax

—(1— a )gq, and 1-— <q. (5.63)

HMmin Mmax

The minus sign on the left of the first inequality is comingfr¢(s.60).
From the last expressions, the inequalities

:umin(l + Q) Z M, a'nd ,umax(l - Q) S M (564)

are coming, which can be written as

0 < pmax(1 = q) <t < prmin (1 + q) < 24min, (5.65)
becaus® < ¢ < 1. This inequality occurs surely, if

fimax(1 = q) < pmin(1 + q), (5.66)
hence

Pmox — Fnin < g < 1. (5.67)

Hmax T Hmin

The least value of is

_ Hmax — Mmin (568)

q - )
Mmax + HMmin

and the corresponding optimal value of permeability is it from one of the equations
in (5.64) by substituting the least valuepin (5.68),
lio = 2 fimax fomin (5.69)

Hmax + Hmin
The subscripb refers to theoptimal value of permeability

The same formulations can be done to obtain the optimal \&lpermeability used
in they andz directions, too. If the three characteristics are the sdinesy.: is constant.
This is the situation, when isotropic hysteresis model edussenerally, the permeability
is a tensor with three constants in the diagonal.

Finally, in this case the inverse type hysteresis model rhasipplied whose input
and output are the magnetic flux density and the magnetic ifiedahsity, respectively,
H = %~ '{B}. Equations (5.15) and (5.16) can be rewritten as

2 max Mmin
B =u,H + 3, where p,= A, (5.70)
HMmax + HMmin

and
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B8 =B —u,% '{B}. (5.71)

The value ofuy,in and umax is defined in (5.58). In this case, the sequence (5.25) can
be used in the nonlinear electromagnetic field computatitmwever, we use its inverse,
summarized in section 5.5.1.

5.4.2 Using the direct characteristics

The fixed pointiteration (5.26) is convergentif the mapping-} is contraction mapping,
i.e. (5.39) must be satisfied,

lEn{n} = on{na}ll < gllm —moll,  for all g, my, (5.72)

and0 < ¢ < 1. Itis easy to see that this relation is very similar to (5.4%hat is
why, the optimal value of reluctivity in (5.20) can be obtihin the same way as it was
presented in the previous section, howeygrB andu must be changed t, H andv,
respectively.

Finally, in this case the direct type hysteresis model mesapplied, which input
and output are the magnetic field intensity and the magneticdensity, respectively,
B = #{H}. Equations (5.18) and (5.19) can be rewritten as

2 max Ymin
H=vy,B+mn, where r,= = Vmax Vinin (5.73)

)
Vmax + Vmin

and
n=H —v,%{H}. (5.74)

The value ofvy,;, and vy, are the minimum and the maximum slope of the inverse
hysteresis characteristics. In this case, the sequer2g) (&an be used in the nonlinear
electromagnetic field computation. The subsariggfers to theptimal value of reluctivity

5.5 The applied formulation, summary

5.5.1 Using the inverse characteristics

It may be better to use the reluctivity when applying theénverse hysteresis model
because/(B) = 0H/JB.
Let us now multiply the relation (5.70) by, = 1/,

vo,B =H + 1,03, (5.75)

H=v,B—v,3. (5.76)
Here, we are going to denote the second term3 by I,

H=v,B+1, (5.77)
and from (5.70),
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Vmax + Vmin
2 )

where vy, andvy,;, are the maximum and minimum slope of the inverse hysteresis

characteristics. It is evident that,ax = 1/ptmin @Ndvmin = 1/pmax. This formulation

is more convenient when obtaining the partial differentiqliations of electromagnetic

field problems, i.e. the magnetic field intensity vector itk by the sum of two terms,

H = y,B + I. There is a condition obtained from (5.65), which must besBadl,

(5.78)

Vo =

Vo > % (5.79)

The nonlinear iteration can be summarized as follows. Tération can be started by
an arbitrary value of (*’, then in then'® iteration steps > 0),

(i) the magnetic flux densitB(") can be calculated by solving the partial differential
equations obtained from Maxwell’s equations and uslf "), in other words,
B™ = gz {1""V},

(i) the magnetic field intensitﬁ(") can be calculated by applying the inverse type
hysteresis modeH ™ = #-1{B™},

(iii) the nonlinear residual term can be updated by using the etagiux density and
magnetic field intensity,

™ =" —y,B™ =2 {B™} - 1,B™), (5.80)

(iv) and the sequence defined by steps (i)—(iii) must be repeaatddconvergence.
Convergence criterion can be

I — 1V < ¢, (5.81)
wheree is a small positive real number. Convergence criterion @ddfined by
using the magnetic field intensity or the magnetic flux dgnai well.

5.5.2 Using the direct characteristics

It may be better to use the permeabiliiywhen applying thelirect hysteresis model
because.(H) = 0B/0H.
Let us now multiply the relation (5.73) by, = 1/v,,

poH = B + pom, (5.82)

B = 1,B — pom. (5.83)
Here, we are going to denote the second termn by R,

B =pu,H + R, (5.84)
and from (5.73),
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_ HMmax + Hmin

. , (5.85)

Ho
where pmax and i, are the maximum and minimum slope of the direct hysteresis
characteristics. It is evident that,ax = 1/Vmin @ndpmin = 1/Vmax. This formulation
is more convenient when obtaining the partial differenti@gliations of electromagnetic
field problems, i.e. the magnetic flux density vector is defibg the sum of two terms,

B = u,H + R. There is a condition obtained from theversion of (5.65), which must
be satisfied,

Hmax

0 >
H D

(5.86)

The nonlinear iteration can be summarized as follows. Tération can be started by
an arbitrary value oR(?, then in then'™ iteration step# > 0),

(i) the magnetic field intensitH(") can be calculated by solving the partial differential
equations obtained from Maxwell's equations and usm(ﬁ_l), in other words,
H™ = ///{R(n—l)},

(i) the magnetic flux densitﬁ(”) can be calculated by applying the inverse hysteresis
model, B = {H™},

(iii) the nonlinear residual term can be updated by using the etizdield intensity and
magnetic flux density,

R™ =B™ — ,, H™ = 2{H"™} — 1, H™, (5.87)

(iv) and the sequence defined by steps (i)—(iii) must be repaatgdconvergence.
Convergence criterion can be

I|IR™ — R V|| <&, (5.88)

wheree is a small positive real number. Convergence criterion caddfined by
using the magnetic field intensity or the magnetic flux dgnai well.

5.5.3 Proof of the nonexpansive property of Maxwell's equabns
Theorem (5.47) is reformulated by using the notations irftheulationB = uH + R,
||//{R1} —//{RQ}H S ||R1 —R2||, for all Rl,RQ. (589)

Let (H,, B, R;), (H2, B2, Ry) be two fields and polarizations having the same
boundary conditions and same current densifieg he solution of Maxwell’s equations
is unique, that is why the difference of these fiedg = H, — Hy, B; = B, — B
verifies

<B4, H, >:/Bd~HddQ:O. (590)
Q
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This inner product can be reformulated as

< By,v(Bg— Ry) >=< B4,vB; > — < Bg,vR; >=0, (5.91)
wherer = 1/pandR; = Ry — R». It can be rewritten as

< By4,vBg >=< By, vR; > . (5.92)

According to Schwartz inequality

<@,y >[ < ]| [[y]| (5.93)
the upper bound of the right-hand side of (5.92) can be predlic

< Bg,vRg > < ||B4| [|[vRa4l|. (5.94)

It is obvious from (5.91) that the value of inner prodeciB,, v Ry > is always positive
because< B, vB, > is always positive. Finally

< Bg,vBq >= ||Bd|||[vBad| < |[Badl| [[vRadll, (5.95)
i.e. the inequality

llvBal| < [[vRadl| (5.96)
is true. It can be written as

llv(B1 — B2)|| < [[v(R1— R2)|l. (5.97)

Parameter can be omitted if it is constant. Generaidlys tensor.
This theorem can be proved by applying the formila= vB + I, too, in a similar
way.



6 Application of the finite
element method

6.1 Introduction

This chapter contains some illustrative examples, whickelieeen solved on the basis of
the previous methods by the help@OMSOL Multiphysics[19, 88]. This commercial
finite element software has the advantage that the weak fatimo of a problem can
be inserted easily and it is not necessary to implement meskrgtors, solvers and
postprocessors. The user can focus on the problem and onethle farmulation, can
design the geometry of the problem under test, can insemvéak form, the boundary
and interface conditions according to the applied potéfdgianulation. It is available to
select nodal or edge finite elements. Using higher ordercqapation is also possible,
COMSOL Multiphysics uses the scalar shape functions withdider from one to five
and vector shape functions with the order from one to threlee Mesh generation is
performed automatically. Many solvers are implemented@MSOL Multiphysics, so
all of them can be tested and the best one, the most applitaltee problem can be
selected. The postprocessor is perfect, simulated datelacilomagnetic field quantities
obtained from the potentials can also be simulated andgleisily. These properties are
very useful from the point of view of research, because the tonsuming programming
task can be eliminated.

Seven problems are shown in the following.

The first 2D magnetostatic problem illustrates how to sefleetimpressed current
vector potentialT, when applying magnetic scalar potential formulations. prablem
contains a C-shaped magnet and the magnetic field is geddxpatecoil. Here, we show
the false solution according to the cancellation error,aeect solution by the help of
the two scalar potentials (total and reduced), finally trgeeglement representation of the
impressed current vector potential will be proposed. Theremce solution is obtained by
the magnetic vector potential. Edge element representafid@’ is very advantageous
and useful in the other formulations based on the ungaugephatia vector potential,
too.
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The second 3D problem containing an iron cube placed in a Bemeous magnetic
field illustrates the effect of gauging on the magnetic veptmtential A. The problem
has been solved without and with Coulomb gauge 4nd approximated by nodal finite
elements. Unfortunately, the solution of the gauged varsmot correct on the iron/air
interfaces, that is why two potentials are used, one in theegion and an other one in the
iron part and only the tangential component is prescribdxtoontinuous on the iron/air
interfaces. This modification can be implemented easily MSOL Multiphysics.
Edge element representation of ungaugkds much better, because it results in less
computation time. We will show thd — ® andA — A — ® formulations as well. The
aim of these methods is to reduce the degree of freedom. Tiepn is solved by the
reduced magnetic scalar potential, too, as a referencé@ulibecause no currents are
present.

The third problem is a modification of the second one. It cimistan iron cube made of
conducting material placed in a homogeneous magnetic fadd,The problem illustrates
the effect of mesh generation on skin effect problems. Tlblpm has been solved by
using the Coulomb gauged, V — A andT', & — ¢ formulations and by the ungauged
version of them. The gauged vector potentials are apprdrirtay nodal finite elements,
the ungauged vector potentials are approximated by veaite 8lements.

The fourth problem is a Benchmark problem containing antation coil and steel
plates around it. First, the problem is supposed to be ljlean nonlinear with saturating
characteristics, but hysteresis is neglected. The probkesrbeen solved by nodal and
edge element representation of the magnetic vector patemid by reduced magnetic
scalar potential combined with the edge element representaf the impressed current
vector potential. The magnetic flux density inside the gitstes simulated by the reduced
magnetic scalar potential is a little larger than the resalltulated by the magnetic vector
potential formulations. However, simulated results aoselto measured ones.

After linear simulations, the nonlinear problem has bedmesbby the fixed point
technique.

The next one is a Benchmark problem again. It consists ofta plade of aluminum
containing a hole in it and an excitation coil generates tiag/ing magnetic field. The
effect of eddy currents are taken into account by applyiffgidint potential formulations.
The problem contains a multiply connected region and thewieh of formulations are
studied. The time varying problem has been solved in freqpdomain and simulated
results are compared with measured ones.

The last problem is the analysis of a vector hysteresis meamnt system, which
is under construction in the Laboratory of Electromagné&ilds, at the Department
of Telecommunications, Széchenyi Istvan Universityd6yThe simulations have been
implemented in the time domain because of the hysteresiactesistics and we show
a time stepping scheme with the fixed point technique. Hgstetis taken into account
inside the specimen by a 2D isotropic vector hysteresis inode
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6.2 lllustration how to selectTy, the C-magnet

The first problem focuses on how to represent the impressedrtwector potential’y

to eliminatecancellation erroron the interface between iron and air when applying the
magnetic scalar potential formulatior{the ®-formulation, the¥-formulation and the

® — U-formulation) [8,11, 72,79, 80, 87].

A simple 2D example has been chosen for illustration: a (pstigoke is magnetized
by a coil as it can be seenlfig. 6.1. The yoke is made of iron and a linear characteristics
have been supposed with permeability= 10009. The coil has only two turns placed
symmetrically to thec-axis and the value of DC currentis= 1A (z4; = z_; = 0,

Y41 = £105mm, y_; = 35 mm).

y
. r h
’ Ko 30 mm
160 mm
1t/ L ‘
— |
I; _J f +40 mm b
iron p 130 mm
+/
160 mm

Fig. 6.1. C-shaped yoke magnetized by a coil

Only the half of geometry has been analyzed because of symmaleing the line
y = 0. The tangential component of magnetic field intensity isisiaing here, i.e. the
liney = 0is al'y type boundary.Atrtificial far boundaryis supposed at the distance
r = 800 mm, whereB - n = 0. Itis denoted by'5. The value ofr, i.e. the place of the
artificial far boundary can be determined after some triils boundary condition along
I"p should not modify the magnetic field in the problem region.

First of all, the problem has been solved by using the magmetitor potentialA
as a reference solution, because the problem is 2D and tkiel mhiferential equation
(2.199) with boundary conditions (2.200) and (2.201) carubed. HereK = 0 and
a = 0. The magnetic flux densiti inside and around the yoke can be seefign6.2(a)
and inFig. 6.2(b). The system of linear equations has been solved bglitaet solver
UMFPACK[19, 88].

Itis easy to see that the magnetic field intensity is perpseriali to the lingy = 0, i.e.
to the boundary' iz and the magnetic flux lines follow the shape of the yoke.
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(a) The magnetic flux density inside and around the (b) A magnified plot
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Fig. 6.2. The magnetic flux density simulated by using the me#ig vector potentiad
as a reference solution

The absolute value of magnetic flux density along the line- —65,--- , 65 mm,
y = 65 mm (along the center of upper leg of the yoke) can be seéigir6.3. This result
is used as a reference solution in the following.

Theimpressed current vector potentiahs two components and it can be determined
easily by using the well known relation of the magnetic figltensity according to one
infinite long filamentary conductdd = I /2R [28,81], i.e.

TQ = T()yxez + T()yyey, (61)
where
-4
3x 10
2.25
E
— 1.5 I_I?\_‘
g
0.75
0 i i i
-66 -33 0 33 66
X [mm]

Fig. 6.3. The absolute value of magnetic flux density alorgitie
x = —65,---,65mm, y = 65 mm calculated by the magnetic vector potential
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The impressed current vector potential can be calculatedniayytical expression
in nodes of the finite element mesh and the reduced scalantfitean be used in the
simulations. It is noted that there is no node where the fitetarg conductors are placed.
The partial differential equation (2.160) with the boundewnditions (2.161) and (2.162)
can be applied to solve the problem. Hdrg = 0 since K = 0 and the tangential
component ofl'y is equal to zero alonf i, Ty x n = 0, moreoveb = 0 onI'g.

The formulation is very simple, however, the solution isassatophic in the iron region
as it can be seen ifig. 6.4(a) (here first order elements are used). The absoluie w4l
magnetic flux along the line = —65, - - - , 65 mm, y = 65 mm calculated by the reduced
magnetic scalar potential can be seeFim 6.4(b).
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i
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0
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(a) The simulated magnetic flux density inside and (b) The absolute value of magnetic flux along the
around the yoke linex = —65,--- ,65mm, y = 65 mm

Fig. 6.4. The distribution of magnetic flux density vectoc#&astrophic when using the
reduced magnetic scalar potental

The accuracy of solution can not be increased very well byessing the number of
finite elements, however, applying higher order approxiomaesults in better distribution
of the magnetic flux density. Here, the coarse mesh condist8»triangles with 419
unknowns, the very fine mesh consists of 50048 triangles 26241 unknowns and the
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approximation is linear. The geometry discretized by 3I&hyles when third order
approximation is applied and the number of unknowns is 14239

Let us now compare the value of impressed current vectonpiatdy and the gradient
of the reduced magnetic scalar poten§ab. It can be seen irrig. 6.5 for different
value of the relative permeability,. of the iron yoke. The difference between the two
quantities is decreasing by increasing the relative pebitigai.e. |H| = |Tg — V| is
decreasing inside the C-shaped yoke. The impressed cuaetolr potential is expressed
by analytical formulation, while the magnetic scalar pdigdns approximated by first
order polynomial. The difference field can be very inacaiifthey are almost the same,
which results in numerical difficulties. This problem is aly referred asancellation
error. This is the reason why the accuracy can be increased byasiogethe order of
approximating polynomials, however, this is not a geneudd (the impressed current
vector potential is very simple in this situation).

16 ‘
TO
— @ =10
12y ~—-@ ,p =100 ||
£ @ , 1 =1000
$ r
8,
i
©
'—
4,

-66 -33 0 33 66
X [mm]

Fig. 6.5. Comparison of the impressed current vector piatieartd the gradient of the
reduced magnetic scalar potential

There are two widely used solutions for this problem. The fgs combination of
the reduced and the total scalar magnetic potential, trenskis applying edge elements
for the representation of impressed field.

The origin of cancellation error is the presence of impréssarent vector potential
inside regions with high permeability. In iron regions tbéat scalar potentiall without
T, should be used and the reduced scalar potertialith Ty should represent the
magnetic field in the air region. In this case the partialadiéhtial equations (2.177)
and (2.178) must be solved satisfying the boundary condit{@.179), (2.180), (2.181)
and (2.182), moreover the interface conditions (2.183) @nti84). In this example,
®y = ¥y =0, becauséK = 0 andTy x n = 0, furthermoreb = 0. The line integral in
(2.183) can now be expressed by analytical formula, how#visris not general.

Here a coarse mesh with 782 elements and 419 unknowns hasubednagain.
Figure 6.6 shows the comparison between results simulgtétlseduced scalar potential
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formulation with third order approximation and the two patal approach with linear
and second order approximation. The first order approxonaif ® — U-formulation is
much better than the linear onehig. 6.4(b), however, the mesh is the same. The result
calculated by the second order elememdis{ W-formulation) is almost the same as the
third order one ¢-formulation).

—4

4x 10 ‘ ‘

—— @ - 3%0rder element, fine

— oW - 1% order element, coarse
3t - ToW - an order element, coarse

-66 -33 0 33 66
X [mm]

Fig. 6.6. Cancellation error can be eliminated by ¢he ¥-formulation
(the first and the last curves are practically the same)
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T0 vector - ' order element
3t —_— TO vector — 2% order element ||
- == T0 vector - & order element

0 i i i
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Fig. 6.7. Cancellation error can be eliminated by applyidgeselements in the
approximation of impressed field (the last two curves aretjally the same)
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If the impressed current vector potential and the gradifthieoreduced scalar potential
are in the same function space, then tamcellation errorcan be eliminated as it is
presented irFig. 6.7. Here the result of second order approximation simdlatethe
® — w-formulation has been compared by the first, the second anthitd order vector
approximation of impressed field. The impressed currentovemotentialTy has been
represented by edge elements and the reduced scalar pbveittii the same order has
been applied in the simulations. The second and the thiref@pproximations are almost
the same, however, the first order one is also accurate.

The difference between the magnetic flux density simulaiethb magnetic vector
potential and by the last method is maxim@m10~5, i.e. the relative error i$.8 %.

6.3 Iron cube in homogeneous magnetic field

The problem s a very simple structure, an iron cube is gtlist a homogeneous magnetic
field [72]. The linear model can be seerfig. 6.8 (By = (1 T)e., 1 = 10004).

Ko IB()

iron p /Sy

20 mm

100 mm

Fig. 6.8. Iron cube in a homogeneous magnetic field

The three planes = 0, y = 0 andz = 0 are symmetry planes. On the planes- 0
andy = 0 the normal component of the magnetic flux density is vanghi® - n = 0,
i.e. they ard’ 5 type boundaries, the plane= 0 is al'y boundary, where the tangential
component of the magnetic field intensity is equal to zédox n = 0. Atrtificial far
boundariesatz = £50 mm, y = 50 mm andz = +50 mm are assumed, where the
cube does not affect the magnetic field. The first and the skloonndaries ar€ g type
where the source magnetic flux is given by boundary condititafined by potentials, the
artificial far boundaries placed at= +50 mm arel'y type, whereH x n = 0. These
simplifications result in the analysis of the eighth of theolehproblemx > 0,y > 0
andz > 0 (seeFig. 6.9).
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Fig. 6.9. The analyzed region, the type of boundaries isiat$icated

The aim of simulations is to compare the different potertiainulations, the gauged
and the ungauged magnetic vector potential approximateddal elements, the magnetic
scalar potential, the combination of the gauged magnetitmoveotential and the magnetic
scalar potential, finally the magnetic vector potentialragpnated by vector elements.

First, the effect of gauging on the magnetic vector pot¢mdidnas been studied. The
vector field of magnetic vector potential is not uniqueCibulomb gauges not used,
but the magnetic field calculated from is unique and of course, it is correct. The
behavior of the ungauged magnetic vector potential is viEange as it is presented in
Fig. 6.10(a). It is a very important experiment that the numbeateshtions of iterative
solvers needed for the solution can be very high, becauskeoilliconditioned mass
matrix. The solvers sometimes do not converge in the casagduged vector potential
(theconjugate gradient methodith algebraic multigrid preconditioner has been applied
in the simulations). Coulomb gaugé- A = 0 can be easily satisfied by the modified

z [mm]
z [mm]

~
~
-
-
~
~
-
-

X [mm]

(a) The ungauged magnetic vector potential (b) The gauged magnetic vector potential

Fig. 6.10. The effect of gauging on the magnetic vector pakn
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partial differential equation (2.223). The gauged magnedictor potential as well as
the boundary conditions according to (2.224)—(2.227) caséden inFig. 6.10(b). The
number of iterations of the solver is decreasing by intranly€oulomb gaugerig. 6.11).
The resulting magnetic flux density and the gauged magnetitov potential can be
seen inFig. 6.12. The results seem to be accurate, moreover the numbierations
is decreasing. However, let us take a closer look at theisalaiong the liney = 0,
z = 0 (Fig. 6.13(a)) and; = 10mm, z = 0 (Fig. 6.13(b)). The gauged solution is not the
same as the ungauged one, especially in the second caseroftenpis coming from
the abrupt change of the permeability along the iron/aerface.

10°

without gauging

Relative tolerance
N

with gauging

0 50 100 150 200
Number of iterations

Fig. 6.11. The number of iterations is decreasing by intoirtygauging

z [mm]

Fig. 6.12. Magnetic flux density as vectors and the gaugedatagvector potential in
iron as streamlines
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The problem can be solved by the following modifications:

(i) The solution is correct if gauging is not used, howevelisgl the system of the
resulting equations can be very difficult, so this is not aveatigeous way;

(i) Applying nodal finite elements to approximate the magnedittor potential results
in continuous normal and tangential components of the magwmector potential.
Allowing the jump of the normal component of the magneticteepotential can
solve efficiently the problem. This means that a magnetitorgmtentialA; has
to be used inside iron and a magnetic vector potemtiahas to be used in the air
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(b) Along the liney = 10mm, z =0

Fig. 6.13. Distribution of the magnetic flux density
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region. There are two unknown vector functions along the/aw interface, but
A x n must be continuous;

(i) Usingedge element® represent unknown vector potentials.

The problem can be solved easily by teduced magnetic scalar potentiélas well.
The main advantage of using magnetic scalar potential isethenumber of unknowns,
because it can be decreased from three per node to only oneger

A very advantageous formulation can be built up by applyimg tagnetic vector
potential inside iron and the magnetic scalar potentiddérdtir region A— W formulation).
Unfortunately, the behavior of the magnetic field is verastre on the iron/air interface,
which is caused by the weak coupling of the normal componéthe magnetic flux
density and of the tangential component of the magnetic iihsity along the iron/air
interface. If theA /¥ interface is moved from the iron/air interface into the &igion,
the problem disappears resulting the— A — ¥ formulation. Comparison between the
results of the two potential formulations can be seeRiq 6.14. The disadvantage of
this formulation is the high number of iterations and tharstye behavior of error during
the iterations, but this can be eliminated by an appropsateer, as it is presented in
Fig. 6.15.

\

N

B
X [mm]

(a) By A — W-formulation (b) By A — A — W-formulation

z [mm]

X [mm]

Fig. 6.14. Magnetic flux density calculated by usibgn the air region

The value of flux inside the cube over the surface 0, fr B.dI" has been computed
and compared. The reference result of paper [72]487 mVs. The number of elements
in the tetrahedral mesh, the number of equations, the nuwibiéerations (conjugate
gradient method with algebraic multigrid preconditioreamil the resulting flux are shown
in Table 6.1. The magnetic flux calculated by the magnetic vectantdation is a little
lower, the magnetic flux calculated by using the magnetitasgmtential is a little higher
when using the same mesh.

Comparison between the performance and results of diffesemulations is collected
in Table 6.1.



6.4. CONDUCTING CUBE IN HOMOGENEOUS MAGNETIC FIELD 189

£

10

10°
3
g . AMG
8 10
o
g
£ 107
T
x

107}

GMG
10°L }
0 40 80 120 160

Number of iterations

Fig. 6.15. The performance of iteration is sensitive forgheconditioner when
applying magnetic scalar potentail in the air region
(AMG-Algebraic Multigrid, GMG-Geometric Multigrid)

Table 6.1. Comparison between the performance and resuli§eyent formulations

A-formulation A, — Ao-formulation W-formulation
No. of | No. of | No. of | Flux | No.of | No.of | Flux | No.of | No. of | Flux
FEs egs. iter. [mVs] egs. iter. [mVs] egs. iter. [mVs]

146 915 11 0.339 | 972 11 0.339 | 306 5 0.346
2552 | 12216 20 0.399 | 12309 21 0.399 | 3919 10 0.438
16838 | 73812 39 0.411 | 74139 40 0.411 | 24990 12 0.423
103034| 434256| 88 0.414 | 435087 96 0.414 | 145989| 16 0.419

6.4 Conducting cube in homogeneous magnetic field

The problem is a modification of the previous one, i.e. a cetidg cube made of iron
is situated in a homogeneous magnetic field resulting arliegdy current field problem.
The linear model can be seen kig. 6.8, too By = (1T)e,, u = 1000w, but the
conductivity of the cube is = 2 - 10 S/m).

The problem has been solved in the time domain and the sietlfa¢quencies are
f=0.1Hz, f = 1Hz, f = 10Hz andf = 100 Hz, and theskin depths § = 35.59 mm,
0 = 11.25mm, § = 3.559mm anddé = 1.125mm, respectively, calculated by the
relation [28,43,81]

1
5= ,/WU. (6.4)

The number of calculated periods is 3 and every periods aigadi into 72 time instants,
i.e. wAt = 5°, wherew is the angular frequency of the external magnetic field Ands
the time step.
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The problem has been solved by tHe V' — A and by theT’, ® — & formulations
and the vector potentials have been approximated by nodaleator shape functions of
second order. In case of nodal approximation, eV — A, formulation is used, i.e.
the magnetic vector potentidl; is used in the cube and; in the air region, similarly to
that presented in the last example. The aim was to compareshés obtained by these

four formulations.

The finite element mesh of the problem can be seé&iign6.16 in case of = 0.1 Hz
andf = 1 Hz. Here, only the discretized cube is shown. The variatioheftcomponent
of magnetic flux density inside the cube is almost linearalbise the frequency is small
enough. The four methods result in practically the same mtégflux density as it is

plotted inFig. 6.17.
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Fig. 6.16. The FEM mesh of the eighth of the problem wlfea 0.1 Hz andf = 1 Hz
(the mesh in air is not shown)
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Fig. 6.17. Magnetic flux density calculated by using the footential formulations

along the linez € [0, - - -

,10Jmm, y = 10 mm, z = 0 mm



6.4. CONDUCTING CUBE IN HOMOGENEOUS MAGNETIC FIELD 191

Here, thez component of the magnetic flux density is shown in the thinige when
the external flux density is decreasing frepi T to —1 T (curves are denoted by the
integerk and curves are plotted at the time instants= (2.25 + k£/18)/f). In small
frequency, the eddy currents have very small effect.

It is our experience that worse results can be obtained hehfgequency when using
the same mesh. The effect of eddy currents is higher and thighen increasing the
frequency of the excitation and it is observable as the #edakin effect [28, 43, 81],
i.e. the magnetic flux density and the magnetic field intgresie crowded out from the
interior parts of the cube. When the frequency is high enotigda magnetic field can
almost be equal to zero in the central part of the cube.

The changing (i.e. the gradient) of the magnetic field candrg 8mall inside the
cube and it can be very fast close to the surface when thedrayus higher and higher.
The information, i.e. the change of magnetic field is crowdetlto the surface, that is
why finer and finer mesh close to the surface and as coarse mpsiksible in the interior
space should be generated. Increasing the degree of thexappting functions is not
the only way to solve this problem, the mesh must also be naatifi

After some trials, the finite element mesh plottedrig. 6.18 and inFig. 6.19 are
generated to reach accurate resultg at 10 Hz and f = 100 Hz, respectively. The
mesh is finer close to the surface and it is coarser inside ube.c This modification
has solved the problem of worse results as it can be se€iyir6.20 and inFig. 6.21
when the frequency i = 10Hz and f = 100 Hz, respectively. The figures show
the difference between the solutions calculated by usiagith” — A and theT', ® — &
formulations. The magnetic flux density simulated by the nedig vector potential is first
order, because the magnetic vector potential is second. didevever the magnetic flux
density calculated by the second order current vector fiateand the magnetic scalar
potential is smoother than the one calculated by the magwetitor potential. Even so,
the results are comparable.

(IS5
N
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Fig. 6.18. The FEM mesh of the eighth of the problem wlfea 10 Hz
(only the cube is shown)
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Fig. 6.19. The FEM mesh of the eighth of the problem wifea 100 Hz
(only the cube is shown)
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(a) Magnetic flux inside cube, calculated by thgb) Magnetic flux inside cube, calculated by the
A,V — A formulation T, ® — ® formulation

Fig. 6.20. The magnetic flux density At= 10 Hz along the linez € [0, - - - , 10jmm,
y = 10mm, z = 0mm

The magnetic field is almost equal to zero when the distancasuared from the
surface is higher thaby [28, 43, 81]. It can be seen easilykig. 6.21.

As a consequence of the above simulations, we can say thaiabeetic flux density
simulated by nodal or vector representation of the unknostergials leads to the same
results, however, this is not true for simulation time. Thenputation time is smaller in
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(a) Magnetic flux inside cube, calculated by thgb) Magnetic flux inside cube, calculated by the
A,V — A formulation T, ® — & formulation

Fig. 6.21. The magnetic flux density At= 100 Hz along the linec € [0, - - - , 10]mm,
y = 10mm, z = 0 mm

the case of vector representation of the magnetic vectengiat and in the case of nodal
approximation of the current vector potential at low fregeyg but in the case of vector
representation of the current vector potential in highegfirency. Results are presented
in Table6.2 and inTable6.3. Here, DOF means the number of degree of freedom, i.e.
the number of unknowns. The number of steps means the aveuagger of steps of the
whole time stepping scheme.

It is important to note that the ungaugdd V' — A formulation can be reformulated
by usingV = 0 asA* — A formulation. The performance of this formulation is very
bad, the number of step 1922, 1014 and928 in the case off = 0.1 Hz, f = 1 Hz and
f = 10 Hz, moreover the convergence was very weak wfiea 100 Hz. The mesh was
the same as it is presentedTliable6.2.

Table 6.2. Computational costs of using the magnetic veuitential

Formulation Frequency [Hz]| DOF | No. of steps
A,V — A, nodal 0.1 20180 105
A,V — A, vector 0.1 25324 50
A,V — A, nodal 1 20180 112
A,V — A, vector 1 25324 50
A,V — A, nodal 10 59579 219
A,V — A, vector 10 76356 72
A,V — A, nodal 100 105008 495
A,V — A, vector 100 136843 90
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Table 6.3. Computational costs of using the current veattential

Formulation Frequency [Hz]| DOF | No. of steps
T,® — &, nodal 0.1 15622 17
T, ® — d, vector 0.1 20456 32
T,® — &, nodal 1 15622 19
T,d — d, vector 1 20456 34
T,® — o, nodal 10 49458 53
T,d — d, vector 10 66773 49
T,® — ®, nodal 100 86400 383
T,® — ®, vector 100 117297 98

6.5 Steel plates around a coil, linear problem

This problem is a modification of Problem No. 10 of the TEAM W&hops [25, 63,
72]. The original task is to compute the transient eddy cusrén saturated steel plates
around racetrack-shaped coil excited by exponentialgdrisurrent. Here, the problem is
simplified, the current as well as the permeability of steel@nstant and static magnetic
field has been simulated.

The problem has been solved by the ungaudefbrmulation represented by edge
finite elements first, then by the gaugddformulation approximated by nodal FEM to
study the effect of gauging. Here tigeneralized minimum residual meth(@MRES
with algebraic multigrid preconditionehas been applied to solve the linear system of
equations. The FEM mesh of the eighth of the problem can be iselig. 6.22 (it is
enough to simulate the eighth of the problem because of syrym@&he convergence of
the ungauged version is very bad, but gauging can speed wgplingon of the system

Fig. 6.22. The FEM mesh of the eighth of the problem
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of linear equations (e.g. a mesh with 76662 tetrahedral@tsmand second order FEM
approximation results in 328116 equations, which can nadbeed without gauging —

normalized residual was only 0.13 after 500 steps and it dicddecrease —, however, it
is 274 steps with gauging when the error limiils=6). Unfortunately, the magnetic flux
density calculated from the gauged magnetic vector patistinot correct, especially
in the vicinity of iron/air interface, because of the comtds normal component of the
magnetic vector potential. Generating finer and finer mess dot solve this problem.
If the jump of the normal component of magnetic vector pa&tig allowed, the problem

can be eliminated, however, the number of unknowns is isngaa bit as well as the

number of iterations (in this case, the number of unknowgk109 and the number of
iterations is 780). The magnetic flux density vectors inflideplate and inside the central
plate can be seen ffig. 6.23 and inFig. 6.24.

Fig. 6.23. The magnetic flux is driven by the plates
(current density inside coil can also be seen)
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(a) Continuous magnetic vector potential (b) Normal component QA is not continuous

Fig. 6.24. Magnetic flux density vector calculated by usimggauged magnetic vector
potential approximated by nodal finite elements
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The magnetic flux should be almost constant inside the sgetig. 6.25 shows the
results simulated by differem -formulations using the same mesh. It must be noted that
the solution without gauge fix has been solved by the dirdeaesSPOOLES

3 ‘ :
—— Gauge fix off
- - —Gauge fix on
Gauge fix on, finer mesh
2.25 —— Gauge fix on, normal jump
e - \M
E
— 1.5 N
m \
\
\\
0.75 : N
K
0
0 7.5 15 22.5 30
y [mm]

Fig. 6.25. The: component of the magnetic flux densify,, along the line
z=0,y=0,---,30mm, 2 =0
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=
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TO,CD, 3rd order
0.75 —— A, nodal
- 7TO—A, vector
TO—A, vector, finer mesh
0
0 7.5 15 22.5 30
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Fig. 6.26. The: component of the magnetic flux densify,, along the line
x=0,y=0,---,30mm, z = 0 simulated by different formulations

The problem has been solved by the ungauged version of theatiagector potential
formulation, too. In this case, the coil's current must bpresented by the impressed
current vector potentidl’y approximated by edge elements. Edge elements are used to
represent the magnetic vector potential, too, which resultarger value of the magnetic
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flux density (sed-ig. 6.26). The number of unknowns is 95397 and 290123 for a coarse
and a fine mesh. In the first situation 55 and 112 steps neededcdalate the ungauged
impressed field and the magnetic vector potential, respegtiln the case of fine mesh 93
and 349 steps needed. The ungauged version results in adakttion than the gauged
one.
Next, the problem has been solved by the reduced magnetar gzdential®. The
coil's current has been representedBy approximated by edge elements, the magnetic
scalar potential has been approximated by nodal elemeigtste6.26 shows the results
simulated by different formulations. It can be seen thatrttagnetic flux density inside
the magnetic material is larger than the result obtainechbyntagnetic vector potential
represented by nodal elements. The result calculated byettheced scalar potential
formulation can be smaller and smaller by increasing the bamof unknowns or the
order of approximation (the number of unknowns here is 14tid173163 for a coarse
and a fine mesh). It must be noted that the ordé&F@and of® must be the same.

6.6 Steel plates around a coil, nonlinear problem

The modified version of Problem No. 10 of the TEAM Workshopedlaeen solved when
the nonlinearity of the steel plates is taken into accountadlired data is known from
the paper [25,63,72].

The measured magnetization curve of steel plates can bersEgn 6.27. This curve
can be modeled by simple functions, like the inverse tanfiemdtion, however, here a
neural network has been trained to represent the measui@ed da

2

1.5 /

B [T]

0.5;

% 2000 4000 6000 8000
H [A/m]

Fig. 6.27. The measured magnetization curve of steel plates

The problem has been solved by first order reduced magnetiarguotentiakb and
by first order ungauged magnetic vector potential. The grolilegion is discretized by
a mesh used in the last example, too, it consists of 76662egltsm The number of

unknowns is 95397 fal'y, 14710 for® and 95397 forA.



198 7. APPLICATION OF THE FINITE ELEMENT METHOD

The magnetic field intensity vectdd can be calculated directly when the reduced
magnetic scalar potentidl is used, obtained from the finite element method,

H =T, - V. (6.5)

In this case, the direct modeB = #{H} can be used to calculate the magnetic flux
density, then

B=uyuH+R = R=B-u,H (6.6)

is used to update the residual tefn After it, the updated finite element equations must
be solved again and the procedure described here has todsedpuntil convergence.

The magnetic flux density vectdB can be calculated when the magnetic vector
potentialA is used, obtained from the finite element method,

B=Vx A. (6.7)

In this case, the inverse moddl]f = %~ '{B} can be used to calculate the actual
magnetic field intensity, then the formula

H=v,B+I = I=H-uv,B (6.8)

is used to update the residual tefmAfter it, the updated finite element equations must
be solved again and the procedure described here has todmedpintil convergence.

The magnetic field quantities as well as the residual teresg@fined on the points of
the mesh, where the scalar potentials are.

1.5

B, [T]

0.5;

. e

—A

0 75 15 225 30
y [mm]

Fig. 6.28. Thex component of the magnetic flux densify,, along the line
x=0,y=0,---,30mm, z = 0 simulated by different formulations
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Updating the nonlinear residual ternfg or I means that the right-hand side of the
linearized, assembled system of equations is changing fienation to iteration. The
difference between two iteration steps (i8R, AI, AH, or AB) is decreasing during
the convergence algorithm. The iteration can be stoppedpifedefined error limit is
reached.

The fixed point iteration scheme with 154 and 143 steps fohadblution by using
the ® and theA-formulation, respectively. The component of the resulting magnetic
flux density along the line = 0,y = 0,--- , 30 mm, z = 0 can be seen iRig. 6.28. The
averaged value of measured dat®ijs= 1.67 T [72]. Simulated resultsarB, = 1.72 T,
moreoverB, = 1.68 T by the®-formulation and by thed-formulation, respectively.

6.7 Asymmetrical conductor with a hole

Benchmark problem No. 7 of the TEAM workshop consists of amaretrical conductor
with a hole [30,40,64,85], sddg. 6.29. The conductor is made of aluminum. The source
of magnetic field is the sinusoidal current flowing in the teamek-shaped coil placed
above the plate eccentrically. The conductivity of theglatr = 3.526 - 107 S/m, the
maximumampere-turnis 2742 AT (the ampere-turn (AT) is the unit of magnetomotive
force, represented by a direct current of one ampere flowing single-turn loop in
vacuum), the frequencies afe= 50 Hz and f = 200 Hz.

The amplitude of the source current density of the coil carcdleulated by the
formula |J| = 2742/(0.1 - 0.025) A/m?, where the denominator is the cross-section
area of the coil. The impressed current vector potefitjpnust be used to represent the
current of coil in the case of ungaugddformulation andd-formulation.

The problem is a linear quasi-steady state eddy currentfiedtdlem with multiply
connected eddy current region, because there is a holeitigcconducting material.

Paper [30] is a summary of the measurement system and theacimmp between 25
solutions with different methods and formulations and theasurements [1, 2, 7, 15, 26,
27,32,48,62,67,76]. Here, the problem has been solvedefptimulations introduced
previously. The problem has been discretized by tetrahdidite elements. The air
region has been closed by an artificial far boundary as it @aselen inFig. 6.30. The
radius of the bounding sphere has been determined after s@itse Figure 6.31 shows
the discretization of the plate and the coil. After somdgritne third order approximation
on a mesh with 8604 elements has been selected.

The weak formulations have been transformed toftbguency domaiby replacing
the operatot)/dt by the multiplierjw, i.e. the resulting system of equations is complex.
The weak form of the gauged, V' — A formulation (3.137)—(3.138) in the frequency
domain can be summarized as

/chn[u (V x W). (v X 2&) +UV WV 2&] ao oo

—i—jw/ W-(aﬁ+aﬁ)dﬂz W JodQ+ [ WK,
Q. Q. Iw,

jw/ VN - (021 + 05) do = 0. (6.10)
Q

c
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Fig. 6.29. A plate beneath a coll

The other formulations in the frequency domain can be obthgimilarly. It is noted that
the problem based on nodal finite elements has been solvédBMRESGeneralized
Minimum Residual Methddsolver with thelncomplete LU preconditionerlf the vector
functions have been approximated by vector elements, th&@ES/solver withSSOR
(Symmetric Successive Over-Relaxatimeconditioner has been applied. Our experiment
is that the other solvers of COMSOL Multiphysics are verysin this case [18].

The reference solution is obtained by tAeV — A-formulation. The eddy currents
have a path around the hole filled with air, as it can be seEigir6.32 and irFig. 6.33, for
f =50Hzandf = 200 Hz, respectively. The use of the reduced magnetic scalar palen
® in the eddy current free region results in false solutiorit &sillustrated inFig. 6.34.
This is the situation when applying the, V — ®-formulation or thel’, ® — ®-formulation
aiming the reduction of the degree of freedom.
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Fig. 6.30. Finite element mesh of the problem

Fig. 6.31. Finite element mesh of the plate and its surround

The problem of thed, V' — ®-formulation can be solved by applyingtie V' — A —
d-formulation, when the magnetic vector potentiais introduced in the hole, too. The
false solution of thel’, ® — ®-formulation can be corrected by employing thed —
A-formulation or theT',® — A — ®-formulation, when the magnetic vector potential
A is introduced in the whole air region, or only in the hole,pestively. The other
possibility is filling the hole with a conducting materialtivivery low conductivity, i.e.
theT, & — d-formulation can be used without any modification. The catidity of air
region in the hole can be determined by trial and error metheds.;; = daluminum/¢
wherec is a constant. Increasingresults in a model, which is closer and closer to the
original one, however, the system of linear equations maypime ill-conditioned and the
number of iterations may increase.

The nodald, V — A-formulation as well as the noddl, V — A— ®-formulation can be
sped up by using edge element representation of the unkn@gnetic vector potential.
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Fig. 6.33. Real part of eddy current field inside the alumirplate atf = 200 Hz

The convergence of the gaugddV — A — ®-formulation is extremely slow. According
to [11], the reason of this inferior performance is the onlgusann type boundary
conditions (2.507) and (2.512) @n,.,, and onI',,.,, respectively, of the electric scalar
potential V', since, there is no plane of symmetry. However, the perfameaf the
ungaugedd, vV — A — ®-formulation is much better. The fastest solver can be abthi
by using the nodal’, & — A — ®-formulation, however, the performance of the nodal
T,® — d-formulation (the hole is filled with conducting media) isalsatisfactory. It
is our experience that the use of edge elements irifthé-based methods slow down
the solvers. In the case of edge element representatiore sh#tynetic vector potential,
V = 0 can be supposed resulting tdé — A-formulation or thed™ — A — ®-formulation.
These methods have the advantage that the number of unki®adesreasing, however,
the solution time is increasing.

Comparison of measured and simulated resultBign 6.35 and inFig. 6.36 show
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Fig. 6.34. False eddy current distribution inside the alumi plate aiff = 50 Hz
obtained by thed, V' — ®-formulation or by thel', & — ®-formulation (real part)

that the solution of different potential formulations isaptically identical and close to
measurements. The solution is complex, following [30],qbantity

C =sign(C,)\/C2 + C? (6.11)

has been determined, where andC; are the real and the imaginary parts of the complex
quantity, respectively (e.g. of the magnetic flux densityd sign(C..) is the sign of the
real part. FinallyC' can be plotted and analyzethple 6.4, where CPU time means the
results of an AMD Athlon 64 X2 Dual Core Processor 4600+ 2. A2@omputer with
4GByte RAM).

6.8 Rotational single sheet tester

The example closing this chapter contains an ongoing relseahich aims to build up a
vector hysteresis measurement apparatus. The CAD desifpe afrangement is based
on the finite element method.

The rotational single sheet testés one of the possible measurement arrangements
of the two-dimensional vector hysteresis properties. is¢hse, the specimen has round
shape and this is callRIRSST systerf81, 44, 45, 54-57].

The RRSST system is an induction motor, which rotor has bearoved and the
round-shaped specimen has been installed in this place.mHgaetic field inside the
specimen can be generated by a special two phase windingexuni two independent
current generators. The two orthogonal components of tlgneig field intensity vector
and of the magnetic flux density vector inside the specimearbeameasured by a sensor
system. The tangential component of the magnetic field itenan be measured by two
coils placed onto the surface of the specimBndoils), the magnetic flux density inside
the specimen can be measured by two coils slipped into hbkke apecimenB-coils).
The block diagram can be seenfiy. 6.37.
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Table 6.4. Comparison between the performance and resuifeyent formulations

Method Frequency [Hz]| DOF | Iteration| CPU time [sec]
A,V — A, nodal 50 122020 532 1924
A,V — A, nodal 200 122020 857 2454
A,V — A, vector 50 132344 132 616
A,V — A, vector 200 132344 132 616
AV — A — d, nodal 50 55554 980 1450
AV — A — d, nodal 200 55554 9995 9919
AV — A— d,vector 50 58377 185 259
AV — A— d,vector 200 58377 180 255
T, — ®, nodal 50 53204 50 319
T, — ®, nodal 200 53204 60 345
T,d — ®, vector 50 55949 216 278
T,d — ®, vector 200 55949 277 355
T, - A— ®, nodal 50 53422 47 340
T, - A— @, nodal 200 53422 44 325
T,&— A— ®,vector 50 55999 2353 2409
T, & — A— ®,vector 200 55999 1092 1171
A* — A, vector 50 128952 405 1598
A* — A, vector 200 128952 301 1213
A" — A — ®, vector 50 54147 436 456
A" — A — ®, vector 200 54147 328 384

The stator core is made of laminated iron, that is eddy ctsreave been neglected
there. Eddy currents have been taken into account onlydrthigl specimen. According
to the preliminary studies of the problem [54-57], the maigrfgeld intensity is much
smaller inside the stator core than inside the specimen,ls®ar characteristics have
been supposed inside the stator cqre £ 4000) and a nonlinear hysteretic one inside
the specimen. The hysteresis characteristics of the rmbteve been simulated by the
isotropic neural network based vector model. Theomponent of the applied hysteresis
characteristics can be seerfig. 6.38. Here, the terms, H,, and R, are also presented.

The arrangement has been simulated by the gaiiy€d— ®-formulation. Ther —

y plane of the arrangement has been discretized by trianqugah Fig. 6.39), which
has been extruded in thedirection resulting in prism elements. The mesh consists of
94512 prism elements. The impressed current vector patdhtihas been represented by
edge elements (sdég. 6.40), the unknown current vector potenffaland the unknown
reduced magnetic scalar potentialhave been approximated by nodal elements. The
number of unknowns is 68893 and 5800 vector hysteresis medti 20 scalar models
per one vector model, i.e. the full number of scalar modeld 8000. There are 3 layers
inside the specimen.
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Fig. 6.35. Thez component of the magnetic flux density along- 0, - - - , 288 mm,
y = 72mm andy = 144 mm, z = 34 mm, simulated by different formulations
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Fig. 6.36. They component of the eddy current densify, along the two lines
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by different formulations
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Fig. 6.38. The hysteresis characteristics and the terghs. and R,

The system of the nonlinear ordinary differential equati¢®111) and (3.112) must
be solved in the time domain, because of the hysteresis aigaistics and it has been
solved in the(n + 1) time step by the following scheme for the general variable

(n+1) _ g(n) (n+1) (n)
a a™ _ eé‘a +-0) da 7
At ot ot

(6.12)

whereAt is the time step of the time discretization ahd [0, - - - , 1] is a parameter [41].
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Fig. 6.39. The 2D mesh of the arrangement, which is extrudedlirection

First, the equations (3.111) and (3.112) must be multighedAt and it is supposed
in the time stefdn + 1),

/ [G—At (V x Wp) - (v x T<”+1>) n
Q.

g
+ /
Q

—/ Lo OAtW - dQ—/ OANtW , -
Q. ot Q.

oAt

OV WLV T("H)] dQ
g

(n+1) 9P (n+1)

O ALW . - — B OAtW -V ot

Ao = (6.13)

c

8R(n+1)
ot

dQ,

Fig. 6.40. Ther component of the impressed current vector potefijal
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(nt1)
- / (VNk)~<u09AtaT )dQ
o, ot

oo (n+1)
+ / (VNk)-<u09AtV -~ )
0.UQ, t
(n+1)

=/Q Q(VNk)'<N09At gt )dﬂ (6.14)
CU n

(n+1)
+ / (VNk)~<9At6R )dQ
0. ot

gp(n+1)

+ NiOAt
I's

Next, equations (3.111)—(3.112) are multiplied(fily— 8) At in the time stefn),

/ U=9A G w,). (v x T<">) a0
Qe

g

dr.

+/ LMV-WkV-T(")dQ
Q

oT™

. ot
(6.15)

(n)
ho(1 = AW, - w22 g -

/Lo(l — H)Ath . dQ

ot

J
J
oTy”
—/ fo(1 = O)AtW - =0 dQ)
Q
J

ot

OR™

(1 — G)Ath . B

dQ,

and

(n)
—/QC(VN;C)- (uo(l —9)Ata€t )dQ

oo™
+/ (V) - <u0(1 A YNAY > an
Q.UQ, ot

aT(n)
:/ (VNg) - | o(1 — 0)At 0 dQ (6.16)
Q.UQ, ot
OR™
+/ (VNg) - | (1 —0)At dQ
Q. ot
ap(m)

dr.

+ Ni(1—-0)At
T T



210 7. APPLICATION OF THE FINITE ELEMENT METHOD

Finally, the equations (6.13), (6.15) and (6.14), (6.16snie added using (6.12),

/ 08 5w - (v x T("+1)) a0
Q. O
+/ @v-wkv-ﬂ"*l)dg

Q. 0

+ / [1oWie - T4 — W T | 4o =
Q

c

—/ uowk-(Tg”” —Té”’)dQ
2 (6.17)
W, - (R<"+1> - R(")) a0

i
/Q (1—0)At

g

(V x W) - (v x T<”>) o

_/ mv.wkv.jﬂ(n)dg

Q. g

+/ (W T = W - V0| dr,

and

- / (VNk)~(uoT("+1))dQ
Q.

+ / (Vi) - (Movqﬂ"“)) a0
Q.UQ,

= / (VN - 1o (TG =77 ) a0
Q.UQ,

- / (VNg) - (R<"+1> - R<">) dQ (6.18)
Qe

+ /F N (b<n+1> - b(”>) dr

- / (VN - (5T ) d2

Qe

+ / (Vi) - (u(,w(")) Q.
Q.UQ,

Different schemes can be realized by selecting 6 = 1,0 = 0,6 = 1/20r6 = 2/3,
the scheme is thisackward Euler scheméheforward Euler schemeaheCrank—Nicolson
schemeor the Galerkin schemerespectively. Here, the Galerkin scheme has been used.
The other formulations can be formulated in a similar way.

The problem is nonlinear, which must be solved iterativale appliedfixed point
based algorithnis the following.
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1. Starting from demagnetized stafd, = 0, B = 0. Initialize variablesT) = 0,
0 =0, RY =0,n =0,k =1 (k is the index of fixed point iteration, for
short, it is denoted only if necessary). Calculateusing thex component of the
isotropic vector hysteresis characteristics;

2. Solve the equations (6.17) and (6.18) in the time $tep 1);

3. Calculate the magnetic field intensity inside the specimehe time stefn + 1)
by H(n+1) _ Tgn+1) + T(n+1) _ v@(n—f—l),

4. Calculate the magnetic flux density by the direct isotraeictor hysteresis model,
B = g{H"Y,

5. Update the residual ter®,"") = B"+1 — ,, H"+1 which is the new value
of R™*Y in the equations (6.17) and (6.18);

6. Repeat from step 2 until the procedure is not convergentiard k& + 1. The
criteria of stopping the sequence 2-5 is

RV - RE}“’H <er, (6.19)
or

H{Y - HY| <en, (6.20)
or

B - BV <ep, (6.21)

wheres g, ey ande  are predefined error limits, e.gr = 10~% and)||-|| is a norm.
Here, the following norm has been used:

Nh
1 n n
N_h Z ‘Hl(ﬁjglz) - Hl(c.,iﬂ) ) (6.22)
i=1

where Ny, is the length of vector storing the values Hf, moreovelk is the index
of fixed point iteration. In other words, the iteration isggping if two subsequent
solution are close enough to each others. If time §tep 1) is convergent, then
the next time step must be iterated.

Every data is modified by the iteratde" ") in time step(n + 1).
The independent excitation currents have been prescripttetfunctions

iz (t) = Iy sin(wt + ), (6.23)
and

iy(t) = I sin(wt + f). (6.24)
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The amplitude and the phase of currents define the polar angl¢he amplitude of the
magnetic field intensity vector or of the magnetic flux dgngéctor. Controlling the flux
or the magnetic field can be worked out by an iterative feeklladgorithm. Here the
relationship between the currents and the magnetic fiedshgity is studied af = 5 Hz,
f = 50Hz and f = 500 Hz. The conductivity of the specimenis= 2 - 10°S/m, the
value of, is aboutd000u, and the peak value of currentslis\. The thickness of the
sample i9).5 mm.

In Fig. 6.41, the magnetic field intensity has been increased in tieection then it
has been rotated in the counter clockwise direction andtbelgtationary state of the two
orthogonal components of the magnetic field intensity atfpoi= y = z = 0 is plotted.

400

——BHz
- - ~50Hz

200r

T 200

y

[A/m], B [T]

H /200

% ) 0 1 2
H, /200 [A/m], B, [T]

Fig. 6.41. Variation ofr andy components of the magnetic field intensity vector and the
loci of the magnetic field intensity and the magnetic flux digret the point
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The effect of eddy currents can be sensed at 500 Hz, because the magnetic field
has some phase shift and its amplitude becomes smalleryvkeawkie result according
to f = 50Hz seems to be almost the same as the results ef 5Hz calculations.
Figure 6.41 shows the rotating magnetic field intensity eeind the magnetic flux
density vector wherf = 5 Hz. The effect of hysteresis can be seen in the figure, because
the magnetic flux density has some delay, which moreover st the material is not
in the saturation state.

Figure 6.42 shows the time variation of thendy components of the magnetic field
intensity at some points inside the specimén= 50 Hz). The coordinates are given in
the legend of the figure in mm and= 0.
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Fig. 6.42. Loci of magnetic field inside the specimen, roigfield

Figure 6.43 shows the loci of the magnetic field intensityteem linear excitation
wheni,(t) = i,(t). The coordinates are given again in the legend of the figurerin
andz = 0.
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Fig. 6.43. Loci of magnetic field inside the specimen, lintsd
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